1
|
Cañizo CG, Guerrero-Ramos F, Perez Escavy M, Lodewijk I, Suárez-Cabrera C, Morales L, Nunes SP, Munera-Maravilla E, Rubio C, Sánchez R, Rodriguez-Izquierdo M, Martínez de Villarreal J, Real FX, Castellano D, Martín-Arriscado C, Lora Pablos D, Rodríguez Antolín A, Dueñas M, Paramio JM, Martínez VG. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Oncoimmunology 2025; 14:2438291. [PMID: 39698899 DOI: 10.1080/2162402x.2024.2438291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
High-risk non-muscle-invasive bladder cancer (NMIBC) presents high recurrence and progression rates. Despite the use of Bacillus Calmette-Guérin gold-standard immunotherapy and the recent irruption of anti-PD-1/PD-L1 drugs, we are missing a comprehensive understanding of the tumor microenvironment (TME) that may help us find biomarkers associated to treatment outcome. Here, we prospectively analyzed TME composition and PD-L1 expression of tumor and non-tumoral tissue biopsies from 73 NMIBC patients and used scRNA-seq, transcriptomic cohorts and tissue micro-array to validate the prognostic value of cell types of interest. Compared to non-tumoral tissue, NMIBC presented microvascular alterations, increased cancer-associated fibroblast (CAF) and myofibroblast (myoCAF) presence, and varied immune cell distribution, such as increased macrophage infiltration. Heterogeneous PD-L1 expression was observed across subsets, with macrophages showing the highest expression levels, but cancer cells as the primary potential anti-PD-L1 binding targets. Unbiased analysis revealed that myoCAF and M2-like macrophages are specifically enriched in high-grade NMIBC tumors. The topological distribution of these two cell types changed as NMIBC progresses, as shown by immunofluorescence. Only myoCAFs were associated with higher rates of progression and recurrence in three independent cohorts (888 total patients), reaching prediction values comparable to transcriptomic classes, which we further validated using tissue micro-array. Our study provides a roadmap to establish the landscape of the NMIBC TME, highlighting myoCAFs as potential prognostic markers.
Collapse
Affiliation(s)
- Carmen G Cañizo
- Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - Mercedes Perez Escavy
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Iris Lodewijk
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Lucía Morales
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Sandra P Nunes
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network) Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Ester Munera-Maravilla
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carolina Rubio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Rebeca Sánchez
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Jaime Martínez de Villarreal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Castellano
- Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - David Lora Pablos
- Scientific Support Unit, Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Marta Dueñas
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Victor G Martínez
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| |
Collapse
|
2
|
Takamatsu K. Editorial Comment on "Peritumoral Infiltration of Regulatory T Cells Reduces the Therapeutic Efficacy of Bacillus Calmette-Guérin Therapy for Bladder Carcinoma In Situ". Int J Urol 2025. [PMID: 40318109 DOI: 10.1111/iju.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Kimiharu Takamatsu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
4
|
Di Spirito A, Balkhi S, Vivona V, Mortara L. Key immune cells and their crosstalk in the tumor microenvironment of bladder cancer: insights for innovative therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002304. [PMID: 40177538 PMCID: PMC11964778 DOI: 10.37349/etat.2025.1002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease associated with high mortality if not diagnosed early. BC is classified into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC), with MIBC linked to poor systemic therapy response and high recurrence rates. Current treatments include transurethral resection with Bacillus Calmette-Guérin (BCG) therapy for NMIBC and radical cystectomy with chemotherapy and/or immunotherapy for MIBC. The tumor microenvironment (TME) plays a critical role in cancer progression, metastasis, and therapeutic efficacy. A comprehensive understanding of the TME's complex interactions holds substantial translational significance for developing innovative treatments. The TME can contribute to therapeutic resistance, particularly in immune checkpoint inhibitor (ICI) therapies, where resistance arises from tumor-intrinsic changes or extrinsic TME factors. Recent advancements in immunotherapy highlight the importance of translational research to address these challenges. Strategies to overcome resistance focus on remodeling the TME to transform immunologically "cold" tumors, which lack immune cell infiltration, into "hot" tumors that respond better to immunotherapy. These strategies involve disrupting cancer-microenvironment interactions, inhibiting angiogenesis, and modulating immune components to enhance anti-tumor responses. Key mechanisms include cytokine involvement [e.g., interleukin-6 (IL-6)], phenotypic alterations in macrophages and natural killer (NK) cells, and the plasticity of cancer-associated fibroblasts (CAFs). Identifying potential therapeutic targets within the TME can improve outcomes for MIBC patients. This review emphasizes the TME's complexity and its impact on guiding novel therapeutic approaches, offering hope for better survival in MIBC.
Collapse
Affiliation(s)
- Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
5
|
Burns CP, Parker JM, Schaap DM, Wakefield MR, Fang Y. From Bench to Bladder: The Rise in Immune Checkpoint Inhibition in the Treatment of Non-Muscle Invasive Bladder Cancer. Cancers (Basel) 2025; 17:1135. [PMID: 40227644 PMCID: PMC11987787 DOI: 10.3390/cancers17071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) represents a significant clinical challenge due to its high recurrence rate and need for frequent monitoring. The current treatment modality is bacillus Calmette-Guérin (BCG) therapy combined with chemotherapy after transurethral resection of the bladder tumor (TURBT), which is highly effective in most patients. Yet, the cancer becomes resistant to these treatments in 30-40% of patients, necessitating the need for new treatment modalities. In the cancer world, the development of immune checkpoint inhibitors that target molecules, such as programmed cell death protein-1 (PD-1), its ligand, PD-L1, and Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), have revolutionized the treatment of many cancer types. PD-1/PD-L1 and CTLA-4 are shown to be upregulated in NMIBC in certain circumstances. PD-1/PD-L1 interactions play a role in immune evasion by suppressing T cell activity within the tumor microenvironment (TME), while the binding of CTLA-4 on T cells leads to downregulation of the immune response, making these pathways potential immunotherapeutic targets in NMIBC. This review seeks to understand the role of these therapies in treating NMIBC. We explore the cellular and non-cellular immune landscape in the TME of NMIBC, including Tregs, T effector cells, macrophages, B cells, and relevant cytokines. We also discuss the biological role of PD-1/PD-L1 and CTLA-4 while covering the rationale for these immunotherapies in NMIBC. Finally, we cover key clinical trials that have studied these treatments in NMIBC clinically. Such a study will be helpful for urologists and oncologists to manage patients with NMIBC more effectively.
Collapse
Affiliation(s)
- Caitlin P. Burns
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
| | - Jacob M. Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
| | - Dylan M. Schaap
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Fukiage Y, Muramoto A, Terada N, Kobayashi M. Peritumoral Infiltration of Regulatory T Cells Reduces the Therapeutic Efficacy of Bacillus Calmette-Guérin Therapy for Bladder Carcinoma In Situ. Int J Urol 2025. [PMID: 40084633 DOI: 10.1111/iju.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVES Intravesical instillation of bacillus Calmette-Guérin (BCG) is the standard treatment for bladder carcinoma in situ (CIS); however, factors that predict its therapeutic efficacy have not been identified. We focused on immune cells infiltrating within 20 μm of tumor cells and examined factors that predict the efficacy of intravesical BCG treatment. METHODS Formalin-fixed, paraffin-embedded tissue specimens from 82 patients with bladder CIS treated with intravesical BCG were used. Patients who relapsed after BCG treatment were grouped as non-responders, and those who did not were grouped as responders. Tissue sections were immunostained for CD4, CD8, and forkhead box P3 (FOXP3), a marker of regulatory T cells (Tregs). The number of immune cells positive for the above markers present within 20 μm of the lower edge of the basement membrane on which CIS is present was counted and compared between groups. RESULTS Both the peritumoral Treg density and Treg+/CD4+ cell ratio were significantly greater in nonresponders than in responders. The patients were divided into high and low groups based on Treg density and Treg+/CD4+ cell ratio cut-off values; recurrence-free survival was significantly longer in the low group than in the high group (p = 0.005 and p < 0.001, respectively). CONCLUSIONS The Treg density and Treg+/CD4+ cell ratio within 20 μm of bladder CIS may be useful predictors of therapeutic response to BCG.
Collapse
Affiliation(s)
- Yusuke Fukiage
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Akifumi Muramoto
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| |
Collapse
|
7
|
Ma W, Liu R, Li X, Yu J, Wang W. Significant association between systemic inflammation response index and prognosis in patients with urological malignancies. Front Immunol 2025; 16:1518647. [PMID: 40079014 PMCID: PMC11897710 DOI: 10.3389/fimmu.2025.1518647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background The systemic inflammation response index (SIRI) as an immune marker, is associated with prognosis of urological malignancies(UM). However, the conclusion remains controversial. Therefore, the objective of this study was to conduct a meta-analysis to comprehensively evaluate the predictive value of SIRI in patients with UM. Methods A comprehensive search of PubMed, Web of Science, and EMBASE databases was performed for articles investigating the association between SIRI and UM. The search deadline was August 28, 2024. Survival outcome such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and recurrence-free survival (RFS) were analyzed. Results 15 studies from 13 articles involving 4985 patients were included in the meta-analysis. The results showed that increased SIRI was associated with poorer OS (HR: 2.16, 95% CI: 1.61-2.89) and DFS/PFS/RFS (HR: 3.56, 95% CI: 1.41-8.99). Subgroup analysis further confirmed the prognostic value of SIRI in urinary system cancer.
Collapse
Affiliation(s)
- Wangbin Ma
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Xinyi Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| |
Collapse
|
8
|
Ricciardi G, Fiorentino V, Pierconti F, Giordano WG, Germanà E, Ieni A, Palermo G, Racioppi M, Rossanese M, Ficarra V, Pizzimenti C, Tuccari G, Gallo A, Cesarini V, Fadda G, Martini M. Roles for Androgen Receptor, ADAR2, and PD-L1 in Primary Urothelial Carcinoma In Situ of the Bladder Treated with Bacillus Calmette-Guérin Therapy. J Transl Med 2025; 105:104120. [PMID: 40010639 DOI: 10.1016/j.labinv.2025.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
In this retrospective observational multicenter study, we identified tumors and immune markers that are related to each other, which could help in selecting patients with bladder primary urothelial carcinoma in situ (CIS) who responded better to Bacillus Calmette-Guérin (BCG) therapy. Seventy-three patients with primary bladder CIS who were homogeneously treated with BCG were studied. Tumor-infiltrating lymphocytes (TILs) measured as CD4/CD8 ratio, androgen receptor (AR), adenosine deaminase acting on RNA 1 (ADAR1), adenosine deaminase acting on RNA 2 (ADAR2), and programmed death ligand 1 (PD-L1) expression were analyzed using immunohistochemistry, whereas miR-200a-3p and INF-γ were correlated with clinicopathological features and recurrence-free survival. High AR levels in CIS were significantly associated with higher ADAR1 expression, lower ADAR2 expression, higher PD-L1 TPS, higher CD4/CD8 ratio, and multifocality of CIS (P < .001). All patients with the above-mentioned characteristics had significantly worse recurrence-free survival (P < .0001). Multivariate and multiple regression analyses confirmed the predictive role of AR, ADAR2, and PD-L1, especially when all 3 parameters were combined. Additionally, we demonstrated that patients with lower AR and higher ADAR2 expressions had significantly higher levels of miR-200a-3p and INF-γ than those with higher AR and lower ADAR2 expression (P = .0011 and P = .0002, respectively). Our findings highlight the role of AR in the response to BCG therapy by modulating PD-L1 expression and TILs through the ADAR2, miR-200a-3p, and INF-γ pathways. Furthermore, our data provide valuable insights for optimizing BCG therapy in patients with CIS, paving the way for other possible combined treatment strategies.
Collapse
Affiliation(s)
- Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy; Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.p.a., Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Francesco Pierconti
- Department of Women, Children and Public Health Sciences, Division of Pathology, Catholic University of the Sacred Heart, "A. Gemelli" Hospital Foundation, IRCCS, Roma, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Giuseppe Palermo
- Department of Medical and Abdominal Surgery and Endocrine-Metabolic Science, Division of Urology, Catholic University of the Sacred Heart, "A. Gemelli" Hospital Foundation, IRCCS, Roma, Italy
| | - Marco Racioppi
- Department of Medical and Abdominal Surgery and Endocrine-Metabolic Science, Division of Urology, Catholic University of the Sacred Heart, "A. Gemelli" Hospital Foundation, IRCCS, Roma, Italy
| | - Marta Rossanese
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Urology, University of Messina, Italy
| | - Vincenzo Ficarra
- Department of Clinical and Experimental Medicine, Division of Urology, University of Messina, Italy
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Angela Gallo
- Department of Onco-hematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| | - Guido Fadda
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology of Adults and Developmental Age "Gaetano Barresi", Division of Pathology, University of Messina, Messina, Italy.
| |
Collapse
|
9
|
Thuya WL, Cao Y, Ho PCL, Wong ALA, Wang L, Zhou J, Nicot C, Goh BC. Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00003-6. [PMID: 39893129 DOI: 10.1016/j.cytogfr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.
Collapse
Affiliation(s)
- Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Yang Cao
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Laboratory Medicine, Lequn Brance, The First Hospital of Jilin University, Changchun, Jilin 130031, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Jalan Lagoon, Selangor Darul Ehsan 47500, Malaysia
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, National University Health System, 119074, Singapore
| |
Collapse
|
10
|
Miyake M, Iida K, Nishimura N, Ohnishi S, Owari T, Fujii T, Oda Y, Miyamoto T, Shimizu T, Ohnishi K, Hori S, Morizawa Y, Gotoh D, Nakai Y, Tanaka N, Fujimoto K. Serum metabolomic analysis identified serum biomarkers predicting tumour recurrence after Bacillus Calmette-Guérin therapy in patients with non-muscle invasive bladder cancer. Bladder Cancer 2025; 11:23523735251325100. [PMID: 40109498 PMCID: PMC11921002 DOI: 10.1177/23523735251325100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Background Metabolomic research and metabolomics-based biomarkers predicting treatment outcomes in bladder cancer remain limited. Objective We explored the serum metabolites potentially associated with the risk of recurrence after intravesical Bacillus Calmette-Guérin (BCG) therapy. Methods Two independent cohorts, a discovery cohort (n = 23) and a validation cohort (n = 40), were included in this study. Blood was collected before the induction of BCG therapy (pre-BCG blood; both discovery and validation cohorts) and after six doses of BCG (post-BCG blood; only discovery cohort). Metabolome analysis of serum samples was conducted using capillary electrophoresis time-of-flight mass spectrometry. The endpoint was intravesical recurrence-free survival, which was analysed using Kaplan-Meier estimates, the log-rank test, and the Cox proportional hazard model. Results Of the 353 metabolites quantified, nine (2.5%) and four (1.1%) were significantly upregulated and downregulated, respectively. The heatmap of hierarchical clustering analysis and principal coordinate analysis for the fold changes and in serum metabolites differentiated 10 recurrent cases and 13 non-recurrent cases in the discovery cohort. A metabolome response-based scoring model using 16 metabolites, including threonine and N6,N6,N6-trimethyl-lysine effectively stratified the risk of post-BCG recurrence. Additionally, pre-BCG metabolome-based score models using six metabolites, octanoylcarnitine, S-methylcysteine-S-oxide, theobromine, carnitine, indole-3-acetic acid, and valeric acid, were developed from the discovery cohort. Univariate and multivariate analyses confirmed a high predictive accuracy in the validation and combination cohorts. Conclusions We demonstrated that numerous types of serum metabolites were altered in response to intravesical BCG and developed high-performance score models which might effectively differentiated the risk of post-BCG tumour recurrence.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Sayuri Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takuya Owari
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
- Division of Cancer Immunology, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Tomomi Fujii
- Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yuki Oda
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Tatsuki Miyamoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kenta Ohnishi
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
- Department of Prostate Brachytherapy, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
11
|
Takahashi H, Kojima D, Watanabe M. Therapeutic potential of trained immunity for malignant disease. Immunol Med 2024:1-12. [PMID: 39639550 DOI: 10.1080/25785826.2024.2438426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Trained immunity (TI) is functional memory displayed by innate immune cells (IICs). TI facilitates rapid, non-specific responses to pathogens upon secondary challenge. It is driven by immunological signaling and metabolic rewriting via epigenetic alteration, triggered by recognition of certain stimuli. Recently, immune checkpoint inhibitors have come into common use in clinical oncology settings, and genetically engineered cytotoxic T cells comprise a potent cancer treatment strategy. However, the contributions of TI in the tumor microenvironment (TME) are only beginning to be uncovered. Accumulating evidence that various microorganisms and vaccines convey tumoricidal ability suggest that TI may become a useful anti-cancer tool. The expected roles of TI in tumor therapy are the 1) promotion of proinflammatory cytokine section, 2) enhancement of phagocytosis, 3) quick expansion and recruitment of cancer-specific cytotoxic T cells to the TME through neoantigen presentation, 4) reversal of immunosuppression in the TME, and 5) removal of pathogens associated with carcinogenesis or tumor development. Medium- to long-term TI durability may reduce the risk of tumor development. Recent findings on TI usher in new aspirations for cancer treatment.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Daibo Kojima
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Masato Watanabe
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| |
Collapse
|
12
|
Yan T, Zhou W, Li C. Discovery of a T cell proliferation-associated regulator signature correlates with prognosis risk and immunotherapy response in bladder cancer. Int Urol Nephrol 2024; 56:3447-3462. [PMID: 38789872 DOI: 10.1007/s11255-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The efficacy of immunotherapy is heavily influenced by T cell activity. This study aimed to examine how T cell proliferation regulators can predict the prognosis and response to immunotherapy in patients with bladder cancer (BCa). METHODS T cell proliferation-related subtypes were determined by employing the non-negative matrix factorization (NMF) algorithm that analyzed the expression patterns of T cell proliferation regulators. Subtypes were assessed for variations in prognosis, immune infiltration, and functional behaviors. Subsequently, a risk model related to T cell proliferation was created through Cox and Lasso regression analyses in the TCGA cohort and then confirmed in two GEO cohorts and an immunotherapy cohort. RESULTS BCa patients were categorized into two subtypes (C1 and C2) according to the expression profiles of 31 T cell proliferation-related genes (TRGs) with distinct prognoses and immune landscapes. The C2 subtype had a shorter overall survival (OS), with higher levels of M2 macrophage infiltration, and the activation of cancer-related pathways than the C1 subtype. Following this, thirteen prognosis-related genes that were involved in T cell proliferation were utilized to create the prognostic signature. The model's predictive accuracy was confirmed by analyzing both internal and external datasets. Individuals in the high-risk category experienced a poorer prognosis, increased immunosuppressive factors in the tumor microenvironment, and diminished responses to immunotherapy. Additionally, the immunotherapeutic prediction efficacy of the model was further confirmed by an immunotherapy cohort (anti-PD-L1 in the IMvigor210 cohort). CONCLUSIONS Our study characterized two subtypes linked to T cell proliferation in BCa patients with distinct prognoses and tumor microenvironment (TME) patterns, providing new insights into the heterogeneity of T cell proliferation in BCa and its connection to the immune landscape. The signature has prospective clinical implications for predicting outcomes and may help physicians to select prospective responders who prioritize current immunotherapy.
Collapse
Affiliation(s)
- Ting Yan
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China
| | - Wei Zhou
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Chun Li
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Yu Y, Liu M, Wang Z, Liu Y, Yao M, Wang L, Zhong L. Identification of oxidative stress signatures of lung adenocarcinoma and prediction of patient prognosis or treatment response with single-cell RNA sequencing and bulk RNA sequencing data. Int Immunopharmacol 2024; 137:112495. [PMID: 38901238 DOI: 10.1016/j.intimp.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Lung adenocarcinoma (LUAD), the most common subtype of lung cancer globally, has seen improved prognosis with advancements in diagnostic, surgical, radiotherapy, and molecular therapy techniques, while its 5-year survival rate remains low. Molecular biomarkers provide prognostic value. Oxidative stress factors, such as reactive nitrogen species and ROS, are crucial in various stages of tumor progression, influencing cell transformation, proliferation, angiogenesis, and metastasis. ROS demonstrate dual roles, affecting tumor cells, hypoxia sensitivity, and the microenvironment. Comprehensive analysis of oxidative stress in LUAD has not been conducted to date. Therefore, we systematically investigated the regulatory patterns of oxidative stress in LUAD based on oxidative stress-related genes and correlated these patterns with cellular infiltration characteristics of the tumor immune microenvironment. The model utilizes single-factor Cox analysis to screen key differential genes with prognostic value and employs least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis to construct a prognostic-related prediction model. Ten candidate genes were selected based on this model. The risk score was constructed using the coefficients and expression levels of these ten genes. Furthermore, the impact of this risk score on overall survival (OS) was determined. Two genes with the most significant differential expression, SFTPB and S100P, were selected through qRT-PCR. Cell experiments including CCK-8, Edu, transwell assays confirmed their effects on lung cancer cells growth, consistent with the results of bioinformatics analysis. These findings suggested that this model held potential clinical value for evaluating the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yunchi Yu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Miaoyan Liu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Zihang Wang
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yufan Liu
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Yao
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Li Wang
- Research Center for Intelligence Information Technology, Nantong University, Nantong 226001, Jiangsu, China
| | - Lou Zhong
- Department of Thoracic Surgery and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
14
|
Zheng JM, Lou CX, Huang YL, Song WT, Luo YC, Mo GY, Tan LY, Chen SW, Li BJ. Associations between immune cell phenotypes and lung cancer subtypes: insights from mendelian randomization analysis. BMC Pulm Med 2024; 24:242. [PMID: 38755605 PMCID: PMC11100125 DOI: 10.1186/s12890-024-03059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.
Collapse
Affiliation(s)
- Jin-Min Zheng
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi, China
| | - Chen-Xi Lou
- Department of Surgery, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yu-Liang Huang
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen-Tao Song
- Department of Surgery, Youjiang Medical University For Nationalities, Baise, Guangxi, China
| | - Yi-Chen Luo
- Department of thoracic surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guan-Yong Mo
- Department of thoracic surgery, Guilin Medical University, Guilin, Guangxi, China
| | - Lin-Yuan Tan
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi, China
| | - Shang-Wei Chen
- Department of thoracic surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Bai-Jun Li
- Department of thoracic surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
15
|
Drachneris J, Morkunas M, Fabijonavicius M, Cekauskas A, Jankevicius F, Laurinavicius A. Spatial Distribution of Macrophage and Lymphocyte Subtypes within Tumor Microenvironment to Predict Recurrence of Non-Muscle-Invasive Papillary Urothelial Carcinoma after BCG Immunotherapy. Int J Mol Sci 2024; 25:4776. [PMID: 38731992 PMCID: PMC11084693 DOI: 10.3390/ijms25094776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Non-muscle-invasive papillary urothelial carcinoma (NMIPUC) of the urinary bladder is the most common type of bladder cancer. Intravesical Bacille Calmette-Guerin (BCG) immunotherapy is applied in patients with a high risk of recurrence and progression of NMIPUC to muscle-invasive disease. However, the tumor relapses in about 30% of patients despite the treatment, raising the need for better risk stratification. We explored the potential of spatial distributions of immune cell subtypes (CD20, CD11c, CD163, ICOS, and CD8) within the tumor microenvironment to predict NMIPUC recurrence following BCG immunotherapy. Based on analyses of digital whole-slide images, we assessed the densities of the immune cells in the epithelial-stromal interface zone compartments and their distribution, represented by an epithelial-stromal interface density ratio (IDR). While the densities of any cell type did not predict recurrence, a higher IDR of CD11c (HR: 0.0012, p-value = 0.0002), CD8 (HR: 0.0379, p-value = 0.005), and ICOS (HR: 0.0768, p-value = 0.0388) was associated with longer recurrence-free survival (RFS) based on the univariate Cox regression. The history of positive repeated TUR (re-TUR) (HR: 4.93, p-value = 0.0001) and T1 tumor stage (HR: 2.04, p-value = 0.0159) were associated with shorter RFS, while G3 tumor grade according to the 1973 WHO classification showed borderline significance (HR: 1.83, p-value = 0.0522). In a multivariate analysis, the two models with a concordance index exceeding 0.7 included the CD11c IDR in combination with either a history of positive re-TUR or tumor stage. We conclude that the CD11c IDR is the most informative predictor of NMIPUC recurrence after BCG immunotherapy. Our findings highlight the importance of assessment of the spatial distribution of immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Julius Drachneris
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Mindaugas Morkunas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08406 Vilnius, Lithuania
| | - Mantas Fabijonavicius
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Albertas Cekauskas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08406 Vilnius, Lithuania
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Feliksas Jankevicius
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08406 Vilnius, Lithuania
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| |
Collapse
|
16
|
Liu X, Liu S, Jiang Z, Yang C, Yang X, Li J, Liu H. Peripheral B-cell levels predict efficacy and overall survival in advanced melanoma patients under PD-1 immunotherapy. Immunotherapy 2024; 16:223-234. [PMID: 38126156 DOI: 10.2217/imt-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
Aims: Programmed death-1 (PD-1) blockade is a vital therapy for solid tumors, but not all patients benefit. Identifying which patients will benefit from immunotherapy is a key focus in oncology research. Patients & Methods: This study analyzed the correlation between the number of peripheral lymphocytes and the efficacy and prognosis of immunotherapy in advanced malignant melanoma. Results: Patients with a partial response had significantly lower peripheral B cell levels, and patients with a lower number of B lymphocytes had a longer survival time. Conclusion: These results suggest that peripheral B cells are correlated with the efficacy of PD-1 antibody and prognosis and are thus potential biomarkers for the efficacy and prognosis of PD-1 antibody immunotherapy in malignant melanoma.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuochuan Liu
- Henan Breast Cancer Centre, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhiqiang Jiang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chengliang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xuchu Yang
- Department of Integrated Traditional Chinese & Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jia Li
- Department of Integrated Traditional Chinese & Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Huaimin Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Semeniuk-Wojtaś A, Modzelewska M, Poddębniak-Strama K, Kołaczyńska S, Lubas A, Górnicka B, Jakieła A, Stec R. CD4, CD20 and PD-L1 as Markers of Recurrence in Non-Muscle-Invasive Bladder Cancer. Cancers (Basel) 2023; 15:5529. [PMID: 38067231 PMCID: PMC10705362 DOI: 10.3390/cancers15235529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 06/30/2024] Open
Abstract
INTRODUCTION A tumor microenvironment plays an important role in bladder cancer development and in treatment response. PURPOSE The aim of the study was to assess how the components of the microenvironment affect tumor recurrence and to find the potential biomarkers for immunotherapy in NMIBC. METHODS The study group consisted of 55 patients with primary NMIBC. Immunohistochemistry was performed on sections of primary papillary urothelial carcinoma of the bladder. Cox proportional hazard multiple regression analysis was performed to characterize tumors with the highest probability of an unfavorable outcome. RESULTS Multivariate analysis confirmed that the CD4 (p = 0.001), CD20 (p = 0.008) and PD-L1 expressed on tumor cells (p = 0.01) were independently associated with the risk of recurrence of bladder cancer. Patients with weak CD4+ cell infiltration (<4.6%) and severe CD20+ infiltration (>10%) belong to the group with a lower risk of recurrence. The cancer in this group also frequently recurs after 12 months (p = 0.0005). CONCLUSIONS The evaluation of CD4+ and CD20+ cells in the tumor microenvironment, in addition to PD-L1 on tumor cells, facilitates the determination of a group of patients with a low risk of recurrence.
Collapse
Affiliation(s)
| | | | | | - Sylwia Kołaczyńska
- Oncology Department, 4 Military Clinical Hospital with a Polyclinic, 53-114 Wroclaw, Poland
| | - Arkadiusz Lubas
- Department of Internal Medicine, Nephrology and Dialysis, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Barbara Górnicka
- Pathomorphology Department, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Jakieła
- Oncology Department, 4 Military Clinical Hospital with a Polyclinic, 53-114 Wroclaw, Poland
| | - Rafał Stec
- Oncology Department, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
18
|
Chen JQ, Salas LA, Wiencke JK, Koestler DC, Molinaro AM, Andrew AS, Seigne JD, Karagas MR, Kelsey KT, Christensen BC. Genome-Scale Methylation Analysis Identifies Immune Profiles and Age Acceleration Associations with Bladder Cancer Outcomes. Cancer Epidemiol Biomarkers Prev 2023; 32:1328-1337. [PMID: 37527159 PMCID: PMC10543967 DOI: 10.1158/1055-9965.epi-23-0331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Immune profiles have been associated with bladder cancer outcomes and may have clinical applications for prognosis. However, associations of detailed immune cell subtypes with patient outcomes remain underexplored and may contribute crucial prognostic information for better managing bladder cancer recurrence and survival. METHODS Bladder cancer case peripheral blood DNA methylation was measured using the Illumina HumanMethylationEPIC array. Extended cell-type deconvolution quantified 12 immune cell-type proportions, including memory, naïve T and B cells, and granulocyte subtypes. DNA methylation clocks determined biological age. Cox proportional hazards models tested associations of immune cell profiles and age acceleration with bladder cancer outcomes. The partDSA algorithm discriminated 10-year overall survival groups from clinical variables and immune cell profiles, and a semi-supervised recursively partitioned mixture model (SS-RPMM) with DNA methylation data was applied to identify a classifier for 10-year overall survival. RESULTS Higher CD8T memory cell proportions were associated with better overall survival [HR = 0.95, 95% confidence interval (CI) = 0.93-0.98], while higher neutrophil-to-lymphocyte ratio (HR = 1.36, 95% CI = 1.23-1.50), CD8T naïve (HR = 1.21, 95% CI = 1.04-1.41), neutrophil (HR = 1.04, 95% CI = 1.03-1.06) proportions, and age acceleration (HR = 1.06, 95% CI = 1.03-1.08) were associated with worse overall survival in patient with bladder cancer. partDSA and SS-RPMM classified five groups of subjects with significant differences in overall survival. CONCLUSIONS We identified associations between immune cell subtypes and age acceleration with bladder cancer outcomes. IMPACT The findings of this study suggest that bladder cancer outcomes are associated with specific methylation-derived immune cell-type proportions and age acceleration, and these factors could be potential prognostic biomarkers.
Collapse
Affiliation(s)
- Ji-Qing Chen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - John K. Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Angeline S. Andrew
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - John D. Seigne
- Department of Surgery, Section of Urology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Karl T. Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| |
Collapse
|
19
|
Wan Z, Wang Y, Li C, Zheng D. The G protein-coupled receptor-related gene signatures for predicting prognosis and immunotherapy response in bladder urothelial carcinoma. Open Life Sci 2023; 18:20220682. [PMID: 37588995 PMCID: PMC10426760 DOI: 10.1515/biol-2022-0682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Bladder urothelial carcinoma (BLCA) is the most common malignant tumor of the urinary tract with a high lethality rate, and its immunotherapy resistance and tumor recurrence have become a major challenge in its clinical treatment. G Protein-Coupled Receptors (GPRs) are the largest family of receptors on the cell membrane surface, involved in multiple signaling pathways, and are excellent targets for oncology drug action. The transcriptome profile, single cell transcriptome profile, and clinical data of BLCA were extracted and integrated from TCGA and GEO databases, respectively. The GPR-related genes were obtained from GSEA-MSigDB database. The GPR-related gene signatures of 15 genes were constructed by using the methods of least absolute shrinkage and selection operator regression, multifactor Cox model. At the same time, tumor microenvironment (TME)-score signatures were constructed based on the immune microenvironment of BLCA, and GPR-TME-score signature was further constructed. The stability of this model was verified by using the external dataset GSE160693. We constructed risk groups by combining BLCA patient prognostic information, and with the help of BLCA scRNA transcriptome profiling, we explored differences in prognosis, immune scores, cell-cell interactions, tumor mutational burden, immune checkpoints, and response to immunotherapy in each risk group. We found that the GPR-TME-score signature was an independent prognostic factor for BLCA patients. the TME-score was a protective factor for the prognosis of BLCA patients. Among BLCA patients, GPR-high + TME-low risk group had the worst prognosis, while GPR-high + TME-high risk group had the best prognosis, and the latter had better immune score and immunotherapy response. The above differences in immune response among the subgroups may be related to the higher immune cell infiltration in the GPR-high + TME-high group. GPR-related gene signatures and TME are closely related to BLCA prognosis and immunotherapy, and GPR-related gene signature can be a useful tool to assess BLCA prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Zhengqiang Wan
- Department of Thoracic Surgery, The First People’s Hospital of Suining, Suining, Sichuan, China
| | - Yinglei Wang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Cheng Li
- Binzhou Medical University, Yantai, China
| | - Dongbing Zheng
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
20
|
Semeniuk-Wojtaś A, Poddębniak-Strama K, Modzelewska M, Baryła M, Dziąg-Dudek E, Syryło T, Górnicka B, Jakieła A, Stec R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol Immunother 2023; 72:1971-1989. [PMID: 36928373 PMCID: PMC10264486 DOI: 10.1007/s00262-023-03376-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
Bladder cancer (BC) can be divided into two subgroups depending on invasion of the muscular layer: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Its aggressiveness is associated, inter alia, with genetic aberrations like losses of 1p, 6q, 9p, 9q and 13q; gain of 5p; or alterations in the p53 and p16 pathways. Moreover, there are reported metabolic disturbances connected with poor diagnosis-for example, enhanced aerobic glycolysis, gluconeogenesis or haem catabolism.Currently, the primary way of treatment method is transurethral resection of the bladder tumour (TURBT) with adjuvant Bacillus Calmette-Guérin (BCG) therapy for NMIBC or radical cystectomy for MIBC combined with chemotherapy or immunotherapy. However, intravesical BCG immunotherapy and immune checkpoint inhibitors are not efficient in every case, so appropriate biomarkers are needed in order to select the proper treatment options. It seems that the success of immunotherapy depends mainly on the tumour microenvironment (TME), which reflects the molecular disturbances in the tumour. TME consists of specific conditions like hypoxia or local acidosis and different populations of immune cells including tumour-infiltrating lymphocytes, natural killer cells, neutrophils and B lymphocytes, which are responsible for shaping the response against tumour neoantigens and crucial pathways like the PD-L1/PD-1 axis.In this review, we summarise holistically the impact of the immune system, genetic alterations and metabolic changes that are key factors in immunotherapy success. These findings should enable better understanding of the TME complexity in case of NMIBC and causes of failures of current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Syryło
- Department of General, Active and Oncological Urology, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Górnicka
- Pathomorphology Department, Medical University of Warsaw, Warsaw, Poland
| | - Anna Jakieła
- Oncology Department, 4 Military Clinical Hospital with a Polyclinic, Wroclaw, Poland
| | - Rafał Stec
- Oncology Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Papasavva M, Amvrosiou S, Pilala KM, Soureas K, Christodoulou P, Ji Y, Stravodimos K, Xu D, Scorilas A, Avgeris M, Christodoulou MI. Deregulated Expression of IL-37 in Patients with Bladder Urothelial Cancer: The Diagnostic Potential of the IL-37e Isoform. Int J Mol Sci 2023; 24:ijms24119258. [PMID: 37298214 DOI: 10.3390/ijms24119258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular and molecular immune components play a crucial role in the development and perpetuation of human malignancies, shaping anti-tumor responses. A novel immune regulator is interleukin-37 (IL-37), already shown to be involved in the inflammation associated with the pathophysiology of many human disorders, including cancer. The interplay between tumor and immune cells is of great importance, especially for highly immunogenic tumors such as bladder urothelial carcinoma (BLCA). This study aimed to investigate the potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) to serve as prognostic and/or diagnostic markers in patients with BLCA. To this end, a series of bioinformatics tools processing -omics datasets and specifically designed qPCR assays on human BLCA tumors and cancer cell lines were utilized. Bioinformatics analysis revealed that IL-37 levels correlate with BLCA tumor development and are higher in patients with longer overall survival. Furthermore, mutations on SIGIRR are associated with enhanced infiltration of the tumor by regulatory T cells and dendritic cells. Based on the qPCR validation experiments, BLCA epithelial cells express the IL-37c and IL-37e isoforms, while the latter is the predominant variant detected in tumor biopsies, also associated with higher grade and the non-muscle-invasive type. This is the first time, to the best of our knowledge, that IL-37 and SIGIRR levels have been assessed in BLCA tumor lesions, and associations with pathological and survival parameters are described, while a transcript variant-specific signature is indicated to have a diagnostic potential. These data strongly indicate the need for further investigation of the involvement of this cytokine and interconnected molecules in the pathophysiology of the disease and its prospective as a therapeutic target and biomarker for BLCA.
Collapse
Affiliation(s)
- Maria Papasavva
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Styliana Amvrosiou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Panayiota Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Yuan Ji
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
22
|
Drachneris J, Rasmusson A, Morkunas M, Fabijonavicius M, Cekauskas A, Jankevicius F, Laurinavicius A. CD8+ Cell Density Gradient across the Tumor Epithelium-Stromal Interface of Non-Muscle Invasive Papillary Urothelial Carcinoma Predicts Recurrence-Free Survival after BCG Immunotherapy. Cancers (Basel) 2023; 15:1205. [PMID: 36831546 PMCID: PMC9954554 DOI: 10.3390/cancers15041205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Bacille Calmette-Guerin (BCG) immunotherapy is the first-line treatment in patients with high-risk non-muscle invasive papillary urothelial carcinoma (NMIPUC), the most common type of bladder cancer. The therapy outcomes are variable and may depend on the immune response within the tumor microenvironment. In our study, we explored the prognostic value of CD8+ cell density gradient indicators across the tumor epithelium-stroma interface of NMIPUC. METHODS Clinical and pathologic data were retrospectively collected from 157 NMIPUC patients treated with BCG immunotherapy after transurethral resection. Whole-slide digital image analysis of CD8 immunohistochemistry slides was used for tissue segmentation, CD8+ cell quantification, and the assessment of CD8+ cell densities within the epithelium-stroma interface. Subsequently, the gradient indicators (center of mass and immunodrop) were computed to represent the density gradient across the interface. RESULTS By univariable analysis of the clinicopathologic factors, including the history of previous NMIPUC, poor tumor differentiation, and pT1 stage, were associated with shorter RFS (p < 0.05). In CD8+ analyses, only the gradient indicators but not the absolute CD8+ densities were predictive for RFS (p < 0.05). The best-performing cross-validated model included previous episodes of NMIPUC (HR = 4.4492, p = 0.0063), poor differentiation (HR = 2.3672, p = 0.0457), and immunodrop (HR = 5.5072, p = 0.0455). CONCLUSIONS We found that gradient indicators of CD8+ cell densities across the tumor epithelium-stroma interface, along with routine clinical and pathology data, improve the prediction of RFS in NMIPUC.
Collapse
Affiliation(s)
- Julius Drachneris
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, 01513 Vilnius, Lithuania
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Allan Rasmusson
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, 01513 Vilnius, Lithuania
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Mindaugas Morkunas
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Institute of Clinical Medicine, Faculty of Medicine, Clinic of Gastroenterology, Nephrourology and Surgery, Vilnius University, 01513 Vilnius, Lithuania
| | - Mantas Fabijonavicius
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Albertas Cekauskas
- Institute of Clinical Medicine, Faculty of Medicine, Clinic of Gastroenterology, Nephrourology and Surgery, Vilnius University, 01513 Vilnius, Lithuania
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Feliksas Jankevicius
- Institute of Clinical Medicine, Faculty of Medicine, Clinic of Gastroenterology, Nephrourology and Surgery, Vilnius University, 01513 Vilnius, Lithuania
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, 01513 Vilnius, Lithuania
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| |
Collapse
|
23
|
Ye K, Xiao M, Li Z, He K, Wang J, Zhu L, Xiong W, Zhong Z, Tang Y. Preoperative systemic inflammation response index is an independent prognostic marker for BCG immunotherapy in patients with non-muscle-invasive bladder cancer. Cancer Med 2023; 12:4206-4217. [PMID: 36214475 PMCID: PMC9972176 DOI: 10.1002/cam4.5284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The Systemic Inflammatory Response Index (SIRI) is a novel prognostic biomarker based on peripheral blood counts of neutrophils, monocytes, and lymphocytes. Recent evidence suggests that it is associated with poor prognosis in various cancers. However, the predictive value of the SIRI in non-muscle-invasive bladder cancer (NMIBC) patients treated with intravesical Bacillus Calmette-Guerin (BCG) immunotherapy remains elusive. Therefore, this study aimed to evaluate the potential of SIRI as a prognostic factor in these patients. METHODS A total of 540 patients with NMIBC who underwent BCG immunotherapy following transurethral resection of bladder tumor (TURBT) were enrolled in this study. Using receiver operating characteristic (ROC) curves and the Youden index, patients were divided into high and low SIRI groups based on the cutoff values. Univariable and multivariable logistic regression analyses were performed to identify independent predictors of BCG non-response. Thereafter, propensity score matching (PSM) was used to eliminate bias due to confounding factors between the low and high SIRI groups. Finally, the Kaplan-Meier method was used to compare recurrence-free survival (RFS) and progression-free survival (PFS) between the two groups. RESULTS Multivariable logistic regression analysis revealed that high SIRI (p = 0.001), high MLR (p = 0.015), and high tumor pathological T stage (p = 0.015) were significantly correlated with non-response to BCG therapy. In addition, both RFS and PFS were shorter in the high SIRI group than in the other group before and after PSM (both p < 0.05). Collectively, our results indicate that the combination of tumor pathological T staging and the SIRI can enhance the predictive power of BCG response. CONCLUSION Pretreatment peripheral blood SIRI can be employed to predict the response to BCG immunotherapy and the prognosis of NMIBC patients. Taken together, the combination of T stage and SIRI demonstrated robust performance in predicting the response to BCG immunotherapy in NMIBC patients.
Collapse
Affiliation(s)
- Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Kancheng He
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jinhua Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| |
Collapse
|
24
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
25
|
Liu J, Zhou Z, Jiang Y, Lin Y, Yang Y, Tian C, Liu J, Lin H, Huang B. EPHA3 Could Be a Novel Prognosis Biomarker and Correlates with Immune Infiltrates in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15030621. [PMID: 36765579 PMCID: PMC9913674 DOI: 10.3390/cancers15030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To assess the mechanism of EPH receptor A3 (EPHA3) and its potential value for immunotherapy in BLCA. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) bladder cancer (BLCA) database and the Gene Expression Omnibus (GEO) database were used for assessing whether EHPA3 could be used to predict BLCA prognosis. This work carried out in vitro and in vivo assays for exploring how EPHA3 affected the biological behaviors. The downstream pathway was explored using a Western blotting technique. The CIBERSORT, ESTIMATE, TIMER, and TIDE tools were used to predict the immunotherapy value of EPHA3 in BLCA. RESULTS EPHA3 was poorly expressed in BLCA (p < 0.05), its high expression is related to a good survival prognosis (p = 0.027 and p = 0.0275), and it has a good predictive ability for the histologic grade and status of BLCA (area under curve = 0.787 and 0.904). Overexpressed EPHA3 could inhibit BLCA cell biological behaviors, and it be associated with the downregulation of the Ras/pERK1/2 pathway. EPHA3 was correlated with several immune-infiltrating cells and the corresponding marker genes. CONCLUSIONS EPHA3 could be regarded as an acceptable anti-cancer biomarker in BLCA. EPHA3 plays an inhibiting role in BLCA, and it could be the candidate immunotherapeutic target for BLCA.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Zewen Zhou
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Yifan Jiang
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Yuzhao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Yunzhi Yang
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Chongjiang Tian
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Jinwen Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
- Correspondence: (H.L.); (B.H.); Tel.: +86-1355649460 (H.L.); +86-13539885017 (B.H.)
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- Correspondence: (H.L.); (B.H.); Tel.: +86-1355649460 (H.L.); +86-13539885017 (B.H.)
| |
Collapse
|
26
|
Hu B, Chen R, Jiang M, Xiong S, Liu X, Fu B. EIF4A3 serves as a prognostic and immunosuppressive microenvironment factor and inhibits cell apoptosis in bladder cancer. PeerJ 2023; 11:e15309. [PMID: 37180585 PMCID: PMC10174062 DOI: 10.7717/peerj.15309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
EIF4A3 (Eukaryotic translation initiation factor 4A3 (EIF4A3) was recently recognized as an oncogene; however, its role in BLCA (bladder cancer) remains unclear. We explored EIF4A3 expression and its prognostic value in BLCA in public datasets, including the TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus). Thereafter, the association between EIF4A3 expression and the infiltration of immune cells and immune-checkpoint expression was determined using TIMER2 (Tumor Immune Estimation Resource 2) tool. Additionally, the impact of EIF4A3 on cellular proliferation and apoptosis events in BLCA cell lines was determined by siRNA technology. In this study, EIF4A3 was found to be significantly upregulated in BLCA, upregulated expression of EIF4A3 was related to poor prognosis, advanced histologic grade, subtype, pathological stage, white race, and poor primary therapy outcome. The immune infiltration analysis revealed that EIF4A3 expression was negatively associated with CD8+ and CD4+ T cells and positively with myeloid-derived suppressor cells, macrophage M2, cancer-associated fibroblasts, and Treg cells. Moreover, EIF4A3 was coexpressed with PD-L1 (programmed cell death 1-ligand 1) and its expression was higher in patients responding to anti-PD-L1 therapy. EIF4A3 knockdown significantly inhibited proliferation and promoted apoptosis in 5,637 and T24 cells. In summary, BLCA patients with elevated EIF4A3 expression had an unfavorable prognosis and immunosuppressive microenvironment, and EIF4A3 may facilitate BLCA progression by promoting cell proliferation and inhibiting apoptosis. Furthermore, our study suggests that EIF4A3 is a potential biomarker and therapeutic target for BLCA.
Collapse
Affiliation(s)
- Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Ming Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
27
|
Prognostic Signature GXYLT2 Is Correlated with Immune Infiltration in Bladder Cancer. DISEASE MARKERS 2022; 2022:5081413. [PMID: 36263004 PMCID: PMC9576427 DOI: 10.1155/2022/5081413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 12/02/2022]
Abstract
Background GXYLT2 (glucoside xylosyltransferase 2) was known as an important gene that regulates classical Notch signaling and is involved in progression in human tumors. However, the correlation between GXYLT2 expression and bladder cancer remains unclear. Methods GXYLT2 expression was analyzed by ONCOMINE database, GEPIA database, and TIMER database. The Cancer Genome Atlas (TCGA) was utilized to confirm relationships between GXYLT2 and molecular subtypes of BLCA (bladder cancer). We discovered prognostic value of GXYLT2 in BLCA using GEPIA, LinkedOmics database, and Kaplan-Meier Plotter database. Subsequently, correlations between GXYLT2 and tumor immune infiltration were investigated through TIMER and TISIDB website. We then downloaded data of patients with BLCA from TCGA website, to conduct functional annotations and to construct protein-protein interaction network through STRING and Enrich web servers. Results Significant differences were observed between GXYLT2 expression of bladder cancer and normal tissues. GXYLT2 was a poor prognostic biomarker in BLCA with impact on diverse clinical characteristics. We found that GXYLT2 was closely related to tumor immune infiltrated cells and immune genes. Functional annotations indicated that GXYLT2 was linked to immune-related pathways. Conclusions The results suggested that GXYLT2 was associated with a poor prognosis and tumor immune cell infiltration of BLCA. GXYLT2 could be a promising therapeutic target in bladder cancer.
Collapse
|
28
|
Viveiros N, Flores BC, Lobo J, Martins-Lima C, Cantante M, Lopes P, Deantonio C, Palu C, Sainson RC, Henrique R, Jerónimo C. Detailed bladder cancer immunoprofiling reveals new clues for immunotherapeutic strategies. Clin Transl Immunology 2022; 11:e1402. [PMID: 36092481 PMCID: PMC9440624 DOI: 10.1002/cti2.1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Bladder cancer (BlCa) is the tenth most frequent malignancy worldwide and the costliest to treat and monitor. Muscle-invasive BlCa (MIBC) has a dismal prognosis, entailing the need for alternative therapies for the standard radical cystectomy. Checkpoint blockade immunotherapy has been approved for high-grade non-muscle-invasive BlCa (HG NMIBC) and metastatic disease, but its effectiveness in localised MIBC remains under scrutiny. Herein, we sought to characterise and compare the immune infiltrate of HG NMIBC and MIBC samples, including ICOS expression, a targetable immune checkpoint associated with regulatory T cell(Tregs)-mediated immunosuppression. Methods Immunohistochemistry for CD83, CD20, CD68, CD163, CD3, CD8, CD4, FoxP3/ICOS and PD-L1 was performed in HG NMIBC and MIBC samples (n = 206), and positive staining was quantified in the peritumoral and/or intratumoral tissue compartments with QuPath imaging software. Results CD20+ B cells, CD68+ and CD163+ tumor-associated macrophages were significantly increased in MIBCs and associated with poor prognosis. In turn, higher infiltration of T cells was associated with prolonged survival, with exception of the CD4+ helper subset. Intratumoral expression of CD3 and CD8 was independent prognostic factors for increased disease-free survival (DFS) in multivariable analysis. Remarkably, Tregs (FoxP3+/FoxP3+ICOS+) were found differentially distributed between tissue compartments. PD-L1 immunoexpression independently predicted a shorter DFS and associated with higher infiltration of FoxP3+ICOS+ Tregs. Conclusions Immune infiltrates of HG NMIBC and MIBC display significant differences that may help selecting patients for immunotherapies. Considering ICOS immunoexpression results, it might constitute a relevant therapeutic target, eventually in combination with anti-PD-1/PD-L1 therapies, for certain BlCa patient subsets.
Collapse
Affiliation(s)
- Nicole Viveiros
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal
| | - Bianca Ct Flores
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal.,Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences- University of Porto (ICBAS-UP) Porto Portugal
| | - Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Precision Medicine University of Campania "Luigi Vanvitelli" Naples Italy
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
| | | | | | | | - Rui Henrique
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal.,Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences- University of Porto (ICBAS-UP) Porto Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences- University of Porto (ICBAS-UP) Porto Portugal
| |
Collapse
|
29
|
Pan S, Li S, Zhan Y, Chen X, Sun M, Liu X, Wu B, Li Z, Liu B. Immune status for monitoring and treatment of bladder cancer. Front Immunol 2022; 13:963877. [PMID: 36159866 PMCID: PMC9492838 DOI: 10.3389/fimmu.2022.963877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor prognosis of advanced BC are therapeutic challenges that need to be solved. Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for early BC, and the discovery of immune checkpoint inhibitors has created a new chapter in the treatment of advanced BC. The benefit of immunotherapy is highly anticipated, but its effectiveness still needs to be improved. In this review, we collated and analysed the currently available information and explored the mechaisms by which the internal immune imbalance of BC leads to tumour progression. The relationship between immunity and progression and the prognosis of BC has been explored through tests using body fluids such as blood and urine. These analytical tests have attempted to identify specific immuyne cells and cytokines to predict treatment outcomes and recurrence. The diversity and proportion of immune and matrix cells in BC determine the heterogeneity and immune status of tumours. The role and classification of immune cells have also been redefined, e.g., CD4 cells having recognised cytotoxicity in BC. Type 2 immunity, including that mediated by M2 macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the recurrence and progression of BC. Pathological fibrosis, activated by type 2 immunity and cancer cells, enhances the rate of cancer progression and irreversibility. Elucidating the immune status of BC and clarifying the mechanisms of action of different cells in the tumour microenvironment is the research direction to be explored in the future.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Bitian Liu, ;
| |
Collapse
|
30
|
Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics (Basel) 2022; 12:diagnostics12092068. [PMID: 36140470 PMCID: PMC9497549 DOI: 10.3390/diagnostics12092068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Commensal microbes have increasingly been found to be involved in the development and progression of cancer. The recent discovery of the urinary microbiome bolstered the notion that microbes might play a role in bladder cancer. Although microbial involvement in bladder neoplastic transformation and metastatic progression, except schisto somiasis, has not been established, accumulating research suggests that dysbiosis of the urinary microbiome can produce a chronically inflammatory urothelial microenvironment and lead to bladder cancer. In this review, we describe how the urinary microbiome might facilitate the development of bladder cancer by altering the host immune system and the kind of cytokines that are directly involved in these responses. We investigated the therapeutic possibilities of modulating the urinary microbiome, including immune checkpoint therapy. The responsiveness of patients to intravesical Bacillus Calmette-Guerin therapy was evaluated with respect to microbiome composition. We conclude by noting that the application of microbes to orchestrate the inflammatory response in the bladder may facilitate the development of treatments for bladder cancer.
Collapse
|
31
|
Wang Z, So WZ, Loh KY, Lim YK, Mahendran R, Wu QH, Chiong E. Predictive biomarkers of response to bacillus Calmette‐Guérin immunotherapy and bacillus Calmette‐Guérin failure for non‐muscle invasive bladder cancer. Int J Urol 2022; 29:807-815. [PMID: 35598896 PMCID: PMC9543886 DOI: 10.1111/iju.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Within the heterogeneous population of patients with bacillus Calmette‐Guérin failure, there are clear differences in prognosis and therapy with regard to the timeline when bacillus Calmette‐Guérin failure occurred. There are a variety of classifications which include bacillus Calmette‐Guérin refractory disease, relapsing, unresponsive, and intolerant. Further profiling of these patients may help to shed light on other forms of therapy that are less radical. We hereby summarize the different biomarkers that predicts for response to bacillus Calmette‐Guérin immunotherapy and bacillus Calmette‐Guérin failure for non‐muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Ziting Wang
- Department of Urology National University Hospital Singapore
| | - Wei Zheng So
- Department of Urology National University Hospital Singapore
| | - Kep Yong Loh
- Department of Internal Medicine Singapore General Hospital Singapore
| | - Yew Koon Lim
- Department of Urology National University Hospital Singapore
| | - Ratha Mahendran
- Department of Urology National University Hospital Singapore
| | - Qing Hui Wu
- Department of Urology National University Hospital Singapore
| | - Edmund Chiong
- Department of Urology National University Hospital Singapore
| |
Collapse
|
32
|
Prediction of Prognosis and Recurrence of Bladder Cancer by ECM-Related Genes. J Immunol Res 2022; 2022:1793005. [PMID: 35450397 PMCID: PMC9018183 DOI: 10.1155/2022/1793005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Bladder cancer (BLCA) is one of the most common cancers and ranks ninth among all cancers. Extracellular matrix (ECM) genes activate a number of pathways that facilitate tumor development. This study is aimed at providing models to predict BLCA survival and recurrence by ECM genes. Methods Expression data from BLCA samples in GSE32894, GSE13507, GSE31684, GSE32548, and TCGA-BLCA cohorts were downloaded and analyzed. The ECM-related genes were obtained by differentially expressed gene analysis, stage-associated gene analysis, and random forest variable selection. The ECM was constructed in GSE32894 by the hub ECM-related genes and validated in GSE13507, GSE31684, GSE32548, and TCGA-BLCA cohorts. The correlations of the ECM score with cells (T cells, fibroblasts, etc.) and the response to immunotherapeutic drugs were investigated. Four machine learning models were selected and used to construct models to predict the recurrence of BLCA. A total of 15 paired BLCA and normal tissue specimens, human immortalized uroepithelial cell lines, and bladder cancer cell lines were selected for the validation of the difference in expression of FSTL1 between normal tissues and BLCA. Results Six ECM genes (CTHRC1, MMP11, COL10A1, FSTL1, SULF1, and COL5A3) were recognized to be the hub ECM-related genes. The ECM score of each BLCA patient was calculated using these six selected ECM-related genes. BLCA patients with a high ECM score group had significantly lower overall survival rates than patients in the low ECM score group. We found that the ECM score was positively associated with immune cells and fibroblasts and negatively correlated with tumor purity. When treated with immunotherapy, BLCA patients with a high ECM score presented a high response rate and better prognosis. We also found that the combination of FSTL1, stage, age, and gender achieved an AUC value of 0.76 in predicting bladder cancer recurrence. Based on the RT-qPCR results of FSTL1 gene expression, there was an overall decrease in the mRNA expression of FSTL1 in cancer tissues compared to their adjacent normal tissues. Subsequent in vitro validation demonstrated that the FSTL1 expression was downregulated at the gene and protein level compared to that in SVH cells. Conclusion Taken together, our results indicate that ECM-related genes correlate with immune cells, overall survival, and recurrence of BLCA. This study provides a machine learning model for predicting the survival and recurrence of BLCA patients.
Collapse
|
33
|
Emami F, Banstola A, Jeong JH, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Gellings P, Galeas-Pena M, Morici LA. Mycobacterium bovis bacille Calmette–Guerin-derived extracellular vesicles as an alternative to live BCG immunotherapy. Clin Exp Med 2022; 23:519-527. [DOI: 10.1007/s10238-022-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
|
35
|
Qiu Y, Gao Y, Chen C, Xie M, Huang P, Sun Q, Zhou Z, Li B, Zhao J, Wu P. Deciphering the influence of urinary microbiota on FoxP3+ regulatory T cell infiltration and prognosis in Chinese patients with non-muscle-invasive bladder cancer. Hum Cell 2022; 35:511-521. [PMID: 35032011 DOI: 10.1007/s13577-021-00659-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/08/2021] [Indexed: 02/02/2023]
Abstract
Despite increasing evidence that dysbiosis of urinary microbiota is closely correlated with bladder cancer, the influence of the urinary microbiota on immune evasion and tumor growth in bladder cancer is unknown. This study investigated whether the urinary microbiota influences intratumoral infiltration of FoxP3+ regulatory T cells, expression of Ki-67 and clinical prognosis in non-muscle-invasive bladder cancer. Forty male patients, including 12 and 28 with or without recurrence, respectively, were retrospectively enrolled. Midstream urine samples were preoperatively collected. Urinary microbiota composition was analyzed by 16s rDNA sequencing. Alpha and beta diversities were measured. LEfSe analysis was employed to identify specific bacteria associated with recurrence. Intratumoral infiltration of FoxP3+ regulatory T cells and Ki-67 expression were evaluated by immunohistochemistry. Patients with recurrence had higher α-diversity compared to those without (Shannon Index, P = 0.0007, Simpson Index, P = 0.0004). Distinct beta diversity was observed between recurrence and non-recurrence groups (weighted Unifrac P = 0.02; unweighted Unifrac P = 0.001). LEfSe analysis showed that the recurrence group displayed marked enrichment of Pseudomonas, Staphylococcus, Corynebacterium, and Acinetobacter genera. Patients with higher alpha diversity had elevated Ki-67 expression than those with lower alpha diversity (P = 0.0194), although microbial diversity was unassociated with infiltration of FoxP3+ regulatory T cells (P = 0.1653). Patients with lower urinary microbial diversity had prolonged recurrence-free survival compared to those with higher diversity. Perturbation of urinary microbiota may induce immune evasion and tumor growth, eventually contributing to unfavorable outcomes. Additional study is warranted to confirm a causal role of urinary microbiota in modulating antitumor immune response and survival in bladder cancer.
Collapse
Affiliation(s)
- Yifeng Qiu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhipeng Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Biao Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Clinical Microbiota Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Rubio C, Avendaño-Ortiz J, Ruiz-Palomares R, Karaivanova V, Alberquilla O, Sánchez-Domínguez R, Casalvilla-Dueñas JC, Montalbán-Hernández K, Lodewijk I, Rodríguez-Izquierdo M, Munera-Maravilla E, Nunes SP, Suárez-Cabrera C, Pérez-Crespo M, Martínez VG, Morales L, Pérez-Escavy M, Alonso-Sánchez M, Lozano-Rodríguez R, Cueto FJ, Aguirre LA, Guerrero-Ramos F, Paramio JM, López-Collazo E, Dueñas M. Toward Tumor Fight and Tumor Microenvironment Remodeling: PBA Induces Cell Cycle Arrest and Reduces Tumor Hybrid Cells' Pluripotency in Bladder Cancer. Cancers (Basel) 2022; 14:287. [PMID: 35053451 PMCID: PMC8773853 DOI: 10.3390/cancers14020287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is the second most frequent cancer of the genitourinary system. The most successful therapy since the 1970s has consisted of intravesical instillations of Bacillus Calmette-Guérin (BCG) in which the tumor microenvironment (TME), including macrophages, plays an important role. However, some patients cannot be treated with this therapy due to comorbidities and severe inflammatory side effects. The overexpression of histone deacetylases (HDACs) in BC has been correlated with macrophage polarization together with higher tumor grades and poor prognosis. Herein we demonstrated that phenylbutyrate acid (PBA), a HDAC inhibitor, acts as an antitumoral compound and immunomodulator. In BC cell lines, PBA induced significant cell cycle arrest in G1, reduced stemness markers and increased PD-L1 expression with a corresponding reduction in histone 3 and 4 acetylation patterns. Concerning its role as an immunomodulator, we found that PBA reduced macrophage IL-6 and IL-10 production as well as CD14 downregulation and the upregulation of both PD-L1 and IL-1β. Along this line, PBA showed a reduction in IL-4-induced M2 polarization in human macrophages. In co-cultures of BC cell lines with human macrophages, a double-positive myeloid-tumoral hybrid population (CD11b+EPCAM+) was detected after 48 h, which indicates BC cell-macrophage fusions known as tumor hybrid cells (THC). These THC were characterized by high PD-L1 and stemness markers (SOX2, NANOG, miR-302) as compared with non-fused (CD11b-EPCAM+) cancer cells. Eventually, PBA reduced stemness markers along with BMP4 and IL-10. Our data indicate that PBA could have beneficial properties for BC management, affecting not only tumor cells but also the TME.
Collapse
Affiliation(s)
- Carolina Rubio
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - José Avendaño-Ortiz
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Raquel Ruiz-Palomares
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
| | - Viktoriya Karaivanova
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28029 Madrid, Spain; (O.A.); (R.S.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28029 Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28029 Madrid, Spain; (O.A.); (R.S.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28029 Madrid, Spain
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain
| | - José Carlos Casalvilla-Dueñas
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Karla Montalbán-Hernández
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Iris Lodewijk
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Marta Rodríguez-Izquierdo
- Uro-Oncology Unit, 12 de Octubre University Hospital, Av Córdoba s/n, 28041 Madrid, Spain; (M.R.-I.); (F.G.-R.)
| | - Ester Munera-Maravilla
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Sandra P. Nunes
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Cristian Suárez-Cabrera
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Miriam Pérez-Crespo
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Víctor G. Martínez
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Lucía Morales
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Mercedes Pérez-Escavy
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Miguel Alonso-Sánchez
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Roberto Lozano-Rodríguez
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Francisco J. Cueto
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Luis A. Aguirre
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
| | - Félix Guerrero-Ramos
- Uro-Oncology Unit, 12 de Octubre University Hospital, Av Córdoba s/n, 28041 Madrid, Spain; (M.R.-I.); (F.G.-R.)
| | - Jesús M. Paramio
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| | - Eduardo López-Collazo
- TumorImmunology Laboratory and Innate Immunity Group, Institute for Health Research (IdiPAZ), 28029 Madrid, Spain; (J.A.-O.); (J.C.C.-D.); (K.M.-H.); (R.L.-R.); (F.J.C.); (L.A.A.)
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Marta Dueñas
- Biomedical Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain; (C.R.); (R.R.-P.); (I.L.); (E.M.-M.); (S.P.N.); (C.S.-C.); (M.P.-C.); (V.G.M.); (L.M.); (M.P.-E.); (M.A.-S.); (J.M.P.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040 Madrid, Spain;
| |
Collapse
|
37
|
Awadalla A, Zahran MH, Abol-Enein H, Zekri ARN, Elbaset MA, Ahmed AE, Hamam ET, Elsawy A, Khalifa MK, Shokeir AA. Identification of Different miRNAs and Their Relevant miRNA Targeted Genes Involved in Sister Chromatid Cohesion and Segregation (SCCS)/chromatin Remodeling Pathway on T1G3 Urothelial Carcinoma (UC) Response to BCG Immunotherapy. Clin Genitourin Cancer 2021; 20:e181-e189. [PMID: 34998699 DOI: 10.1016/j.clgc.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Till now, no definite clinical or laboratory marker can predict the recurrence or progression of T1 G3 urothelial carcinoma (UC). Genetic aberrations of the chromatin remodeling genes and sister chromatid cohesion and segregation (SCCS) were identified in UC. Here we investigated the impact of novel miRNAs and their targeted expressed SCCS and chromatin remodeling genes on T1G3 UC response to Bacillus Calmette-Guérin (BCG) therapy. METHODS One hundred tissue samples were obtained from NMIBC patients. Gene expression and immunohistochemical assay of STAG2, ARID1A, NCOR1and UTX were assessed. MiRNA analysis for their targeting miRNAs (miR-21, miR-31, Let7a and miR-199a) was carried out. Assessed genes were compared between responders and no responders to BCG. Univariate and multivariate analysis of predictors of disease recurrence and progression were performed using cox regression analysis. RESULTS Thirty-two and 22 patients developed recurrence and progression to MIBC (BCG non-responders). BCG non-responders showed statistically significant higher expression of miR-21 and their targeted STAG2, miR-199a and NCOR1 gene (P < .001), and lower expression of miR-31, Let7a, ARID1A and UTX genes (P < .001). Higher miR-199a (P = .006) and lower miR-31 (P = .01), ARID1A (P = .008) and UTX (P = .03) were independent predictor of higher tumor recurrence. Recurrent disease (P = .003), higher expression of STAG2 (P = .01), NCOR1 (P = .01) and miR-21 (P = .03) genes and lower expression of miR-31 (P = .02), Let7a (P = .04) and ARID1A (P = .04) genes were the independent predictor of disease progression. CONCLUSION Upregulation of STAG2 and NCOR1 and down regulation of ARID1A and UTX genes and their targeting miRNAs were associated with UC non-response to BCG.
Collapse
Affiliation(s)
- Amira Awadalla
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| | - Mohamed H Zahran
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt.
| | - Hassan Abol-Enein
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| | - Abdel-Rahman N Zekri
- Cancer biology department, virology and immunology unit, National Cancer Institute, Cairo University
| | - Mohamed Abd Elbaset
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| | - Asmaa E Ahmed
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| | - Eman T Hamam
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| | - Amr Elsawy
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| | | | - Ahmed A Shokeir
- Center of Excellence for genome and cancer research, Urology and Nephrology Center, Mansoura University, Egypt
| |
Collapse
|
38
|
Tham SM, Rahmat JN, Chiong E, Wu Q, Esuvaranathan K, Mahendran R. Intravesical High Dose BCG Tokyo and Low Dose BCG Tokyo with GMCSF+IFN α Induce Systemic Immunity in a Murine Orthotopic Bladder Cancer Model. Biomedicines 2021; 9:biomedicines9121766. [PMID: 34944584 PMCID: PMC8698822 DOI: 10.3390/biomedicines9121766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/21/2022] Open
Abstract
This study evaluates a short therapy schedule for bladder cancer using BCG Tokyo. BCG Tokyo was evaluated in vitro using bone marrow derived dendritic cells, neutrophils, RAW macrophages and the murine bladder cancer cell line, MB49PSA, and compared to other BCG strains. BCG Tokyo > BCG TICE at inducing cytokine production. In vivo, high dose (1 × 107 colony forming units (cfu)) and low dose (1 × 106 cfu) BCG Tokyo with and without cytokine genes (GMCSF + IFNα) were evaluated in C57BL/6J mice (n = 12–16 per group) with orthotopically implanted MB49PSA cells. Mice were treated with four instillations of cytokine gene therapy and BCG therapy. Both high dose BCG alone and low dose BCG combined with cytokine gene therapy were similarly effective. In the second part the responsive groups, mice (n = 27) were monitored by urinary PSA analysis for a further 7 weeks after therapy cessation. More mice were cured at day 84 than at day 42 confirming activation of the immune system. Cured mice resisted the re-challenge with subcutaneous tumors unlike naïve, age matched mice. Antigen specific T cells recognizing BCG, HY and PSA were identified. Thus, fewer intravesical instillations, with high dose BCG Tokyo or low dose BCG Tokyo with GMCSF + IFNα gene therapy, can induce effective systemic immunity.
Collapse
Affiliation(s)
- Sin Mun Tham
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228, Singapore; (S.M.T.); (J.N.R.); (E.C.); (K.E.)
| | - Juwita N. Rahmat
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228, Singapore; (S.M.T.); (J.N.R.); (E.C.); (K.E.)
- Department of Bioengineering, National University of Singapore, Singapore 119077, Singapore
| | - Edmund Chiong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228, Singapore; (S.M.T.); (J.N.R.); (E.C.); (K.E.)
- Department of Urology, National University Hospital, National University Health System, Singapore 119228, Singapore;
| | - Qinghui Wu
- Department of Urology, National University Hospital, National University Health System, Singapore 119228, Singapore;
| | - Kesavan Esuvaranathan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228, Singapore; (S.M.T.); (J.N.R.); (E.C.); (K.E.)
- Department of Urology, National University Hospital, National University Health System, Singapore 119228, Singapore;
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, 1E Kent Ridge Road, Singapore 119228, Singapore; (S.M.T.); (J.N.R.); (E.C.); (K.E.)
- Correspondence: ; Tel.: +65-6601-3982; Fax: +65-6777-8427
| |
Collapse
|
39
|
Peng H, Wu X, Zhong R, Yu T, Cai X, Liu J, Wen Y, Ao Y, Chen J, Li Y, He M, Li C, Zheng H, Chen Y, Pan Z, He J, Liang W. Profiling Tumor Immune Microenvironment of Non-Small Cell Lung Cancer Using Multiplex Immunofluorescence. Front Immunol 2021; 12:750046. [PMID: 34804034 PMCID: PMC8600321 DOI: 10.3389/fimmu.2021.750046] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
This study attempted to profile the tumor immune microenvironment (TIME) of non-small cell lung cancer (NSCLC) by multiplex immunofluorescence of 681 NSCLC cases. The number, density, and proportion of 26 types of immune cells in tumor nest and tumor stroma were evaluated, revealing some close interactions particularly between intrastromal neutrophils and intratumoral regulatory T cells (Treg) (r2 = 0.439, P < 0.001), intrastromal CD4+CD38+ T cells and CD20-positive B cells (r2 = 0.539, P < 0.001), and intratumoral CD8-positive T cells and M2 macrophages expressing PD-L1 (r2 = 0.339, P < 0.001). Three immune subtypes correlated with distinct immune characteristics were identified using the unsupervised consensus clustering approach. The immune-activated subtype had the longest disease-free survival (DFS) and demonstrated the highest infiltration of CD4-positive T cells, CD8-positive T cells, and CD20-positive B cells. The immune-defected subtype was rich in cancer stem cells and macrophages, and these patients had the worst prognosis. The immune-exempted subtype had the highest levels of neutrophils and Tregs. Intratumoral CD68-positive macrophages, M1 macrophages, and intrastromal CD4+ cells, CD4+FOXP3- cells, CD8+ cells, and PD-L1+ cells were further found to be the most robust prognostic biomarkers for DFS, which were used to construct and validate the immune-related risk score for risk stratification (high vs. median vs. low) and the prediction of 5-year DFS rates (23.2% vs. 37.9% vs. 43.1%, P < 0.001). In conclusion, the intricate and intrinsic structure of TIME in NSCLC was demonstrated, showing potency in subtyping and prognostication.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Tao Yu
- Genecast Biotechnology Co., Ltd., Beijing, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Jun Liu
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yiyuan Ao
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jiana Chen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yutian Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Miao He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongbo Zheng
- Genecast Biotechnology Co., Ltd., Beijing, China
| | - Yanhui Chen
- Genecast Biotechnology Co., Ltd., Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhenkui Pan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Medical Oncology, The First People's Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
40
|
Ke ZB, Chen H, Chen JY, Cai H, Lin YZ, Sun XL, Huang JB, Zheng QS, Wei Y, Xue XY, Xu N. Preoperative abdominal fat distribution and systemic immune inflammation were associated with response to intravesical Bacillus Calmette-Guerin immunotherapy in patients with non-muscle invasive bladder cancer. Clin Nutr 2021; 40:5792-5801. [PMID: 34775222 DOI: 10.1016/j.clnu.2021.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the predictors of response to intravesical Bacillus Calmette-Guerin (BCG) immunotherapy for intermediate and high-risk non-muscle invasive bladder cancer (NMIBC) patients. MATERIALS AND METHODS We retrospectively analyzed the clinicopathological data of 184 intermediate and high risk NMIBC cases receiving transurethral resection of bladder tumor (TURBT) and intravesical BCG immunotherapy from December 2014 to April 2021 at our center. All patients were divided into BCG responders and non-responders. Multivariate Logistic regression analysis was performed to identify the independent predictors of response to intravesical BCG immunotherapy. Univariate and multivariate Cox regression analyses were applied to explore the independent prognostic factors of recurrence-free survival (RFS). Receiver operating characteristic (ROC) curve and Kaplan-Meier survival analysis were also utilized. RESULTS The RFS of BCG responders was significantly increased compared with BCG non-responders. Multivariate Cox regression analysis demonstrated that low grade, pTa stage, non-CIS, lower relative visceral fat area (rVFA) and lower systemic immune inflammation index (SII) were independent prognostic factors of increased RFS after intravesical BCG immunotherapy. Multivariate Logistic regression analysis demonstrated that pTa stage, low grade, non-CIS, low rVFA, and low SII were independent predictors of response to intravesical BCG immunotherapy. Kaplan-Meier survival analysis indicated that the RFS of patients in low rVFA group or low SII group was significantly increased in comparison with those in high rVFA group or high SII group. ROC curve analysis showed that the area under ROC (AUC) of including SII and rVFA was significantly increased, indicating that the inclusion of preoperative SII and rVFA could significantly improve the predictive efficiency. CONCLUSIONS Low grade, pTa stage, non-CIS, preoperative lower rVFA and lower SII were vital independent predictors of response to intravesical BCG immunotherapy and were associated with preferable prognosis in NMIBC patients. The inclusion of preoperative SII and rVFA could significantly improve the predictive efficiency.
Collapse
Affiliation(s)
- Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hai Cai
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jin-Bei Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
41
|
Leblond MM, Zdimerova H, Desponds E, Verdeil G. Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers (Basel) 2021; 13:cancers13184712. [PMID: 34572939 PMCID: PMC8467100 DOI: 10.3390/cancers13184712] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting.
Collapse
Affiliation(s)
- Marine M. Leblond
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Normandie University, 14000 Caen, France;
| | - Hana Zdimerova
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Emma Desponds
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Grégory Verdeil
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
- Correspondence:
| |
Collapse
|
42
|
Yang Z, Xu Y, Bi Y, Zhang N, Wang H, Xing T, Bai S, Shen Z, Naz F, Zhang Z, Yin L, Shi M, Wang L, Wang L, Wang S, Xu L, Su X, Wu S, Yu C. Immune escape mechanisms and immunotherapy of urothelial bladder cancer. J Clin Transl Res 2021; 7:485-500. [PMID: 34541363 PMCID: PMC8445627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/12/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND AIM Urothelial bladder cancer (UBC) is a common malignant tumor of the urogenital system with a high rate of recurrence. Due to the sophisticated and largely unexplored mechanisms of tumorigenesis of UBC, the classical therapeutic approaches including transurethral resection and radical cystectomy combined with chemotherapy have remained unchanged for decades. However, with increasingly in-depth understanding of the microenvironment and the composition of tumor-infiltrating lymphocytes of UBC, novel immunotherapeutic strategies have been developed. Bacillus Calmette-Guerin (BCG) therapy, immune checkpoint blockades, adoptive T cell immunotherapy, dendritic cell (DC) vaccines, etc., have all been intensively investigated as immunotherapies for UBC. This review will discuss the recent progress in immune escape mechanisms and immunotherapy of UBC. METHODS Based on a comprehensive search of the PubMed and ClinicalTrials.gov database, this review included the literature reporting the immune escape mechanisms of UBC and clinical trials assessing the effect of immunotherapeutic strategies on tumor or immune cells in UBC patients published in English between 1999 and 2020. RESULTS Immune surveillance, immune balance, and immune escape are the three major processes that occur during UBC tumorigenesis. First, the role of immunosuppressive cells, immunosuppressive molecules, immunosuppressive signaling molecules, and DCs in tumor microenvironment is introduced elaborately in the immune escape mechanisms of UBC section. In addition, recent progress of immunotherapies including BCG, checkpoint inhibitors, cytokines, adoptive T cell immunotherapy, DCs, and macrophages on UBC patients are summarized in detail. Finally, the need to explore the mechanisms, molecular characteristics and immune landscape during UBC tumorigenesis and development of novel and robust immunotherapies for UBC are also proposed and discussed. CONCLUSION At present, BCG and immune checkpoint blockades have been approved by the US Food and Drug Administration for the treatment of UBC patients and have achieved encouraging therapeutic results, expanding the traditional chemotherapy and surgery-based treatment for UBC. RELEVANCE FOR PATIENTS Immunotherapy has achieved desirable results in the treatment of UBC, which not only improve the overall survival but also reduce the recurrence rate and the occurrence of treatment-related adverse events of UBC patients. In addition, the indicators to predict the effectiveness and novel therapy strategies, such as combination regimen of checkpoint inhibitor with checkpoint inhibitor or chemotherapy, should be further studied.
Collapse
Affiliation(s)
- Zhao Yang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,2Department of Bioscience, College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China,
Corresponding authors: Zhao Yang College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China. E-mail:
| | - Yinyan Xu
- 3Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Ying Bi
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nan Zhang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wang
- 4Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Tianying Xing
- 5Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Suhang Bai
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongyi Shen
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Faiza Naz
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zichen Zhang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqi Yin
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengran Shi
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luyao Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shihui Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Wu
- 3Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China,
Song Wu Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China.
| | - Changyuan Yu
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,
Changyuan Yu College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
43
|
Tumor microenvironment and radioresistance. Exp Mol Med 2021; 53:1029-1035. [PMID: 34135469 PMCID: PMC8257724 DOI: 10.1038/s12276-021-00640-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Metastasis is not the result of a random event, as cancer cells can sustain and proliferate actively only in a suitable tissue microenvironment and then form metastases. Since Dr. Stephen Paget in the United Kingdom proposed the seed and soil hypothesis of cancer metastasis based on the analogy that plant seeds germinate and grow only in appropriate soil, considerable attention has focused on both extracellular environmental factors that affect the growth of cancer cells and the tissue structure that influences the microenvironment. Malignant tumor tissues consist of not only cancer cells but also a wide variety of other cells responsible for the inflammatory response, formation of blood vessels, immune response, and support of the tumor tissue architecture, forming a complex cellular society. It is also known that the amounts of oxygen and nutrients supplied to each cell differ depending on the distance from tumor blood vessels in tumor tissue. Here, we provide an overview of the tumor microenvironment and characteristics of tumor tissues, both of which affect the malignant phenotypes and radioresistance of cancer cells, focusing on the following keywords: diversity of oxygen and nutrient microenvironment in tumor tissue, inflammation, immunity, and tumor vasculature.
Collapse
|
44
|
Wang Z, Tu L, Chen M, Tong S. Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer. BMC Cancer 2021; 21:692. [PMID: 34112144 PMCID: PMC8194149 DOI: 10.1186/s12885-021-08447-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Accumulating evidences demonstrated tumor microenvironment (TME) of bladder cancer (BLCA) may play a pivotal role in modulating tumorigenesis, progression, and alteration of biological features. Currently we aimed to establish a prognostic model based on TME-related gene expression for guiding clinical management of BLCA. Methods We employed ESTIMATE algorithm to evaluate TME cell infiltration in BLCA. The RNA-Seq data from The Cancer Genome Atlas (TCGA) database was used to screen out differentially expressed genes (DEGs). Underlying relationship between co-expression modules and TME was investigated via Weighted gene co-expression network analysis (WGCNA). COX regression and the least absolute shrinkage and selection operator (LASSO) analysis were applied for screening prognostic hub gene and establishing a risk predictive model. BLCA specimens and adjacent tissues from patients were obtained from patients. Bladder cancer (T24, EJ-m3) and bladder uroepithelial cell line (SVHUC1) were used for genes validation. qRT-PCR was employed to validate genes mRNA level in tissues and cell lines. Results 365 BLCA samples and 19 adjacent normal samples were selected for identifying DEGs. 2141 DEGs were identified and used to construct co-expression network. Four modules (magenta, brown, yellow, purple) were regarded as TME regulatory modules through WGCNA and GO analysis. Furthermore, seven hub genes (ACAP1, ADAMTS9, TAP1, IFIT3, FBN1, FSTL1, COL6A2) were screened out to establish a risk predictive model via COX and LASSO regression. Survival analysis and ROC curve analysis indicated our predictive model had good performance on evaluating patients prognosis in different subgroup of BLCA. qRT-PCR result showed upregulation of ACAP1, IFIT3, TAP1 and downregulation of ADAMTS9, COL6A2, FSTL1,FBN1 in BLCA specimens and cell lines. Conclusions Our study firstly integrated multiple TME-related genes to set up a risk predictive model. This model could accurately predict BLCA progression and prognosis, which offers clinical implication for risk stratification, immunotherapy drug screen and therapeutic decision. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08447-7.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Lei Tu
- Department of Urology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital of Central South University, No.88 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital of Central South University, No.88 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
45
|
Reyes RM, Deng Y, Zhang D, Ji N, Mukherjee N, Wheeler K, Gupta HB, Padron AS, Kancharla A, Zhang C, Garcia M, Kornepati AVR, Boyman O, Conejo-Garcia JR, Svatek RS, Curiel TJ. CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J Immunother Cancer 2021; 9:e002051. [PMID: 33849925 PMCID: PMC8051418 DOI: 10.1136/jitc-2020-002051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Anti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1. METHODS We studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites. RESULTS IL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells. CONCLUSIONS Mechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.
Collapse
Affiliation(s)
- Ryan Michael Reyes
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yilun Deng
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Deyi Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD, USA
| | - Niannian Ji
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Karen Wheeler
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Harshita B Gupta
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alvaro S Padron
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Aravind Kancharla
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Chenghao Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Myrna Garcia
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Anand V R Kornepati
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Robert S Svatek
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Clayton Foundation for Research, Houston, Texas, USA
| |
Collapse
|
46
|
Deng Y, Hong X, Yu C, Li H, Wang Q, Zhang Y, Wang T, Wang X. Preclinical analysis of novel prognostic transcription factors and immune-related gene signatures for bladder cancer via TCGA-based bioinformatic analysis. Oncol Lett 2021; 21:344. [PMID: 33747201 PMCID: PMC7967990 DOI: 10.3892/ol.2021.12605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Bladder cancer (BLCA) is a common malignancy of human urinary tract, whose prognosis is influenced by complex gene interactions. Immune response activity can act as a potential prognostic factor in BLCA. The present study established a prognostic model, based on the identification of tumor transcription factors (TFs) and immune-related genes (IRGs), and further explored their therapeutic potential in BLCA. The enrichment scores of 29 IRG sets, identified in The Cancer Genome Atlas BLCA tumor samples, were quantified by single-sample Gene Set Enrichment Analysis. The abundance of infiltrated immune cells in tumor tissues was determined using the Estimating Relative algorithm. Tumor-related TFs and IRGs signatures were retrieved using Least Absolute Shrinkage and Selection Operator Cox regression analysis. A prognostic gene network was built using Pearson's correlation analysis as a means of predicting the regulatory relationship between prognostic TFs and IRGs. A nomogram was devised to also predict the overall survival (OS) rate of patients with BLCA. Based on the Genomics of Drug Sensitivity in Cancer data, potential therapeutic drugs were identified upon analyzing the relationship between the expression level of prognostic genes and respective IC50 values. In vitro experiments were implemented for further validation. Respective TF binding profiles were acquired from the JASPAR 2020 database. The elevated infiltration of CD8+ T Cells was correlated with an improved OS of patients with BLCA. An innovative prognostic model for BLCA was then constructed that composed of nine putative gene markers: CXCL13, prepronociceptin, microtubule-associated protein tau, major histocompatibility class I polypeptide-related sequence B, prostaglandin E2 receptor EP3 subtype, IL20RA, proepiregulin, early growth response protein 1 and FOS-related antigen 1 (FOSL1). Furthermore, a theoretical basis for the correlation between the prognostic TFs and IRGs was reported. For this, 10 potentially effective drugs targeting the TFs in the present model for patients with BLCA were identified. It was then verified that downregulation of FOSL1 can lead to an enhanced sensitivity of the TW37 in T24 bladder cancer cells. Overall, the present prognostic model demonstrated a robust capability of predicting OS of patients with BLCA. Hence, the gene markers identified could be applied for targeted therapies against BLCA.
Collapse
Affiliation(s)
- Yuyou Deng
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xin Hong
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengfan Yu
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Qiang Wang
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yi Zhang
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Tian Wang
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xiaofeng Wang
- Department of Urology, Peking University International Hospital, Beijing 102206, P.R. China
| |
Collapse
|
47
|
Miyake M, Nishimura N, Inoue T, Suzuki S, Fujii T, Owari T, Hori S, Nakai Y, Toritsuka M, Nakagawa H, Tsukamoto S, Anai S, Torimoto K, Yoneda T, Tanaka N, Fujimoto K. Fluorescent cystoscopy-assisted en bloc transurethral resection versus conventional transurethral resection in patients with non-muscle invasive bladder cancer: study protocol of a prospective, open-label, randomized control trial (the FLEBER study). Trials 2021; 22:136. [PMID: 33579327 PMCID: PMC7881486 DOI: 10.1186/s13063-021-05094-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/02/2021] [Indexed: 11/26/2022] Open
Abstract
Background Transurethral resection of bladder tumor (TURBT) is an essential procedure both for the treatment and staging of bladder cancer, particularly non-muscle invasive bladder cancer (NMIBC). The dissemination of cancer cells during resection and the consequent seeding into the bladder mucosa is the main cause of post-TURBT intravesical recurrence. Although the tumor dissemination is inevitable during conventional TURBT (cTURBT), this drawback can be overcome by tumor resection in one piece with intact surrounding normal tissues, referred to as en bloc resection. We previously described the photodynamic diagnosis (PDD)-assisted en bloc TURBT (EBTUR) technique and its favorable outcomes. Based on our preliminary studies, this randomized controlled trial was designed to evaluate the superiority of PDD-EBTUR to PDD-cTURBT. Methods The FLEBER study is a single-center randomized controlled trial in NMIBC patients who require TURBT. The longest diameter of the tumor must be between 6 and 30 mm. A total of 160 eligible patients will be enrolled after screening and randomly allocated to the PDD-EBTUR (experimental) and PDD-cTURBT (control) groups in a 1:1 ratio (80 cases to 80 cases). All patients will be treated using a single, immediate postoperative intravesical chemotherapy with epirubicin. The primary endpoint of this trial is the 2-year recurrence-free survival after surgery in pathologically proven low- or intermediate-risk NMIBC. All patients will be monitored by cystoscopy and urine cytology every 3 months for 2 years. Patient data including adverse events and complications, and data from frequency volume charts, pain scales, and health-related QOL questionnaires will be collected before and after the TURBT at indicated visits. Discussion The goal of this trial is to determine the potential benefits of PDD-cTURBT and PDD-EBTUR followed by a single immediate postoperative intravesical chemotherapy in patients with low- or intermediate-risk NMIBC who undergo TURBT. Ultimately, our findings will lead to the development of better interventions and potentially change the standard of care. Trial registration This clinical trial was prospectively registered with the UMIN Clinical Trials Registry on 1 August 2020. The reference number is UMIN000041273, and the Ethics Committee of Nara Medical University Approval ID is 2702. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05094-y.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.
| | - Nobutaka Nishimura
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Takashi Inoue
- Institute for Clinical and Translational Science, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shota Suzuki
- Institute for Clinical and Translational Science, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Takuya Owari
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Hitoshi Nakagawa
- Cardiovascular Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Shinji Tsukamoto
- Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Tatsuo Yoneda
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan.,Department of Prostate Brachytherapy, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
48
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
49
|
Ariafar A, Vahidi Y, Fakhimi M, Asadollahpour A, Erfani N, Faghih Z. Prognostic significance of CD4-positive regulatory T cells in tumor draining lymph nodes from patients with bladder cancer. Heliyon 2020; 6:e05556. [PMID: 33305045 PMCID: PMC7711140 DOI: 10.1016/j.heliyon.2020.e05556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction and methods To clarify the role of CD4+ regulatory T cells in bladder cancer, we investigated the frequency of these cells in tumor draining lymph nodes of 50 patients with bladder cancer who underwent radical cystectomy using flow cytometry method. We also assessed their association with prognosis and survival. Results On average, 30.13 ± 2.17% of lymphocytes in draining lymph nodes from patients with bladder cancer were positive for both CD4 and FOXP3 molecules. Analyses also showed that 9.92 ± 0.8% of CD4+ lymphocytes had a regulatory phenotype (CD4+CD25+FOXP3+CD127low/neg). The frequency of total CD4+FOXP3+ lymphocytes as well as regulatory T cells was significantly greater in patients with at least one tumor-involved lymph node compared to those with tumor-free nodes (P = 0.026 and P = 0.036, respectively). Mean FOXP3 expression in CD4+ lymphocytes was greater in patients with stage IV compared with those in stage III (P = 0.046). No other significant associations were found between the frequency of regulatory T cells and other clinicopathological characteristics or patient survival. Conclusions The increased frequency of regulatory T cells in patients with involved lymph nodes suggests that these cells may negatively regulate antitumor immune responses in draining lymph nodes. Our findings may have implications for immunotherapy-based treatments for bladder cancer.
Collapse
Affiliation(s)
- Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasmin Vahidi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Fakhimi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Asadollahpour
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| |
Collapse
|
50
|
Kardoust Parizi M, Shariat SF, Margulis V, Mori K, Lotan Y. Value of tumour-infiltrating immune cells in predicting response to intravesical BCG in patients with non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int 2020; 127:617-625. [PMID: 33073457 DOI: 10.1111/bju.15276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the predictive value of tumour-infiltrating immune cells (TIICs) on oncological outcomes and response to BCG treatment in patients with non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS A systematic review and meta-analysis was performed using PubMed, Scopus and the Cochrane Library in July 2020 to identify relevant studies according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The pooled recurrence-free survival (RFS) rate was calculated using a fixed-effect model. RESULTS We retrieved 15 studies (including 791 patients) evaluating the effect of TIICs on oncological outcomes in patients with NMIBC treated with intravesical BCG. TIICs were reported to be a significant predictor of oncological outcomes and response to BCG treatment in 10 studies. Tumour-associated macrophages were associated with worse RFS (pooled hazard ratio 2.30, 95% confidence interval 1.64-3.22). CONCLUSIONS Based on these data, TIICs are significant predictors of RFS and response to BCG treatment in patients with NMIBC; therefore, incorporation of TIICs into risk stratification models may help patients and physicians in the clinical decision-making process in order to achieve the maximum possible benefit from BCG treatment.
Collapse
Affiliation(s)
- Mehdi Kardoust Parizi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic.,Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan.,European Association of Urology Research Foundation, Arnhem, The Netherlands
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Keiichiro Mori
- Department of Urology, Medical University of Vienna, Vienna, Austria.,Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|