1
|
Liu Y, Liu X, Liu C, Zhang W, Shi T, Liu G. Development of biomaterials for bone tissue engineering based on bile acids. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:11. [PMID: 39812871 PMCID: PMC11735600 DOI: 10.1007/s10856-024-06850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction. Certain bile acids (BAs) demonstrate significant antioxidant, anti-inflammatory, and immunosuppressive properties, and effectively promote bone and tissue regeneration. Additionally, the combination of BA molecule with other biological materials can help overcome problems associated with limited local bone regeneration and maintain a defined release state for a long time. Thus in this review, we focus on the role and the mechanism of bile acids in bone healing under different conditions, highlighting their unique properties and applications in gel fabrication, microencapsulation, and nanotechnology. These advancements serve as a basis for the advancement of biomaterials derived from BAs, specifically for the purpose of bone reconstruction.
Collapse
Affiliation(s)
- Yongjun Liu
- The Second Department of Spine Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Xiaojie Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Wenan Zhang
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Ting Shi
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Guanying Liu
- Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China.
| |
Collapse
|
2
|
Tao Z, Yang M, Shen CL. Tauroursodeoxycholic acid combined with selenium accelerates bone regeneration in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:64. [PMID: 39404912 PMCID: PMC11480188 DOI: 10.1007/s10856-024-06803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024]
Abstract
More recently, increased studies have revealed that antioxidants can cure osteoporosis by inhibiting oxidative stress. Tauroursodeoxycholic acid (TUDCA) and Selenium (Se) have been confirmed to possess potent anti-oxidative effects and accelerate bone regeneration. In addition, very little is currently known about the effects of a combination with Se and TUDCA on bone defects in osteoporotic states. We, therefore, aimed to assess the protective effect of combination with Se and TUDCA on bone regeneration and investigate the effect and underlying mechanisms. When MC3T3-E1 was cultured in the presence of H2H2, Se, TUDCA and Se/TUDCA therapy could increase the matrix mineralization and promote expression of anti-oxidative stress markers in MC3T3-E1, while reducing intracellular reactive oxygen species (ROS) and mitochondrial ROS levels. Meanwhile, silent information regulator type 1 (SIRT1) was upregulated in response to Se, TUDCA and Se/TUDCA exposures in H2H2 treated-MC3T3-E1. In the OVX rat model, Se, TUDCA and Se/TUDCA showed a clear positive effect against impaired bone repair in osteoporosis. The results above demonstrate that Se/TUDCA exhibits superior efficacy in both cellular and animal experiments, as compared to Se and TUDCA. In conclusion, combination with Se and TUDCA stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.
Collapse
Affiliation(s)
- ZhouShan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
3
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
4
|
Cha KY, Cho W, Park S, Ahn J, Park H, Baek I, Lee M, Lee S, Arai Y, Lee SH. Generation of bioactive MSC-EVs for bone tissue regeneration by tauroursodeoxycholic acid treatment. J Control Release 2023; 354:45-56. [PMID: 36586671 DOI: 10.1016/j.jconrel.2022.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized carriers that reflect the parent cell's information and are known to mediate cell-cell communication. In order to overcome the disadvantages of mesenchymal stem cells (MSCs) in cell therapy, such as unexpected differentiation leading to tumorization, immune rejection, and other side effects, EVs derived from MSCs (MSC-EVs) with the tissue regenerative function have been studied as new cell-free therapeutics. However, therapeutic applications of EVs require overcoming several challenges. First, the production efficiency of MSC-EVs should be increased at least as much as the quantity of them are required to their clinical application; second, MSC-EVs needs to show various functionality further, thereby increasing tissue regeneration efficiency. In this study, we treated tauroursodeoxycholic acid (TUDCA), a biological derivative known to regulate cholesterol, to MSCs and investigated whether TUDCA treatment would be able to increase EV production efficiency and tissue regenerative capacity of EVs. Indeed, it appears that TUDCA priming to MSC increases the yield of MSC-EVs >2 times by reducing the cellular cholesterol level in MSCs and increasing the exocytosis-related CAV1 expression. Interestingly, it was found that the EVs derived from TUDCA-primed MSCs (T-EV) contained higher amounts of anti-inflammatory cytokines (IL1RN, IL6, IL10, and IL11) and osteogenic proteins (ALP, RUNX2, BMP2, BMPR1, and BMPR2) than those in control MSC-EVs (C-EV). Besides, it was shown that T-EV not only regulated M1/M2 macrophages differentiation of monocytes, also effectively increased the osteogenic differentiation of MSCs as well as bone tissue regeneration in a bone defect rat model. Based on these results, it is concluded that TUDCA treatment to MSC as a new approach endows EV with high-yield production and functionality. Thus, we strongly believe T-EV would be a powerful therapeutic material for bone tissue regeneration and potentially could be expanded to other types of tissue regeneration for clinical applications.
Collapse
Affiliation(s)
- Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Woongjin Cho
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Hyoeun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Minju Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Sunjun Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, 04620 Seoul, South Korea.
| |
Collapse
|
5
|
Harnessing the Physiological Functions of Cellular Prion Protein in the Kidneys: Applications for Treating Renal Diseases. Biomolecules 2021; 11:biom11060784. [PMID: 34067472 PMCID: PMC8224798 DOI: 10.3390/biom11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-β-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.
Collapse
|
6
|
Pioltine EM, Costa CB, Barbosa Latorraca L, Franchi FF, dos Santos PH, Mingoti GZ, de Paula-Lopes FF, Nogueira MFG. Treatment of in vitro-Matured Bovine Oocytes With Tauroursodeoxycholic Acid Modulates the Oxidative Stress Signaling Pathway. Front Cell Dev Biol 2021; 9:623852. [PMID: 33681203 PMCID: PMC7933469 DOI: 10.3389/fcell.2021.623852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
In several species, oocyte and embryo competence are improved by the addition of endoplasmic reticulum (ER) stress inhibitors to in vitro maturation (IVM) medium and/or in vitro culture (IVC) medium. This study aimed to evaluate the effects of three concentrations of tauroursodeoxycholic acid (TUDCA; 50, 200, and 1,000 μM), a chemical chaperone for relieving ER stress, during IVM of bovine cumulus-oocyte complexes (COCs) for 24 h. Treated oocytes were analyzed for nuclear maturation, reactive oxygen species (ROS) production, mitochondrial activity, and abundance of target transcripts. In addition, the number of pronuclei in oocytes was evaluated after 18-20 h of insemination, and the rates of blastocyst and hatched blastocyst formation were evaluated after 7 and 8/9 days of culture, respectively. We further evaluated the transcript abundance of embryonic quality markers. Our findings showed that supplementation of IVM medium with 200 μM of TUDCA decreased ROS production and increased abundance of transcripts related to antioxidant activity in oocytes (CAT, GPX1, and HMOX1) and embryos (GPX1 and PRDX3). Interestingly, high concentration of TUDCA (1,000 μM) was toxic to oocytes, reducing the nuclear maturation rate, decreasing mitochondrial activity, and increasing the abundance of ER stress (HSPA5) and cellular apoptosis (CASP3 and CD40) related transcripts. The results of this study suggest that treatment with 200 μM of TUDCA is associated with a greater resistance to oxidative stress and indirectly with ER stress relief in bovine oocytes.
Collapse
Affiliation(s)
- Elisa Mariano Pioltine
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Camila Bortoliero Costa
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | | | - Fernanda Fagali Franchi
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Priscila Helena dos Santos
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Department of Production and Animal Health, São Paulo State University, Araçatuba, Brazil
| | | | - Marcelo Fábio Gouveia Nogueira
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
- Laboratory of Embryonic Micromanipulation, School of Sciences and Languages, Department of Biological Sciences, São Paulo State University, Assis, Brazil
| |
Collapse
|
7
|
Yoon YM, Go G, Yun CW, Lim JH, Lee SH. Knockdown of CK2α reduces P-cresol-induced fibrosis in human renal proximal tubule epithelial cells via the downregulation of profilin-1. Int J Med Sci 2020; 17:2850-2860. [PMID: 33162813 PMCID: PMC7645352 DOI: 10.7150/ijms.48429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is one of the main causes of chronic kidney disease. Many studies have focused on fibroblasts and myofibroblasts involved in renal fibrogenesis. Recently, several studies have reported that renal proximal tubule epithelial cells are possible initiators of renal fibrosis. However, the mechanism through which cells induce renal fibrosis is poorly understood. In this study, we found that CK2α induces fibrosis in renal proximal tubule epithelial cells (TH1) by regulating the expression of profilin-1 (Pfn1). CKD mouse model and TH1 cells treated with P-cresol also showed an increased level of Pfn1. The knockdown of CK2α suppressed fibrosis in TH1 cells via the downregulation of Pfn1. In particular, CK2α knockdown inhibited the expression of stress fibers and fibrosis-related proteins in P-cresol-treated TH1 cells. Furthermore, the knockdown of CK2α inhibited mitochondrial dysfunction and restored cellular senescence and cell cycle in P-cresol-treated TH1 cells. These results indicate that CK2α induces renal fibrosis through Pfn1, which makes CK2α a key target molecule in the treatment of fibrosis related to chronic kidney disease.
Collapse
Affiliation(s)
- Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Gyeongyun Go
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, 31151, Republic of Korea
| | - Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea.,Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, 31151, Republic of Korea
| |
Collapse
|
8
|
Kusaczuk M. Tauroursodeoxycholate-Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives. Cells 2019; 8:E1471. [PMID: 31757001 PMCID: PMC6952947 DOI: 10.3390/cells8121471] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that has been used for centuries in Chinese medicine. Chemically, TUDCA is a taurine conjugate of ursodeoxycholic acid (UDCA), which in contemporary pharmacology is approved by Food and Drug Administration (FDA) for treatment of primary biliary cholangitis. Interestingly, numerous recent studies demonstrate that mechanisms of TUDCA functioning extend beyond hepatobiliary disorders. Thus, TUDCA has been demonstrated to display potential therapeutic benefits in various models of many diseases such as diabetes, obesity, and neurodegenerative diseases, mostly due to its cytoprotective effect. The mechanisms underlying this cytoprotective activity have been mainly attributed to alleviation of endoplasmic reticulum (ER) stress and stabilization of the unfolded protein response (UPR), which contributed to naming TUDCA as a chemical chaperone. Apart from that, TUDCA has also been found to reduce oxidative stress, suppress apoptosis, and decrease inflammation in many in-vitro and in-vivo models of various diseases. The latest research suggests that TUDCA can also play a role as an epigenetic modulator and act as therapeutic agent in certain types of cancer. Nevertheless, despite the massive amount of evidence demonstrating positive effects of TUDCA in pre-clinical studies, there are certain limitations restraining its wide use in patients. Here, molecular and cellular modes of action of TUDCA are described and therapeutic opportunities and limitations of this bile acid are discussed.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222 Białystok, Poland
| |
Collapse
|
9
|
Role of endoplasmic reticulum stress on developmental competency and cryo-tolerance in bovine embryos. Theriogenology 2019; 142:131-137. [PMID: 31593880 DOI: 10.1016/j.theriogenology.2019.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
Abstract
Endoplasmic reticulum (ER) stress, a dysfunction in protein folding capacity of the ER, is involved in many physiological responses including mammalian reproductive systems. Studies have shown that ER stress interferes with the developmental process of in vitro oocyte maturation and embryo development; however, little is known about its effects on bovine preimplantation embryonic development. In this study, we examined the effects of ER stress during IVC on developmental competency and cryo-tolerance in bovine embryos. IVF-derived zygotes were cultured in CR1aa medium supplemented with tauroursodeoxycholic acid (TUDCA) and/or tunicamycin (TM), which are ER stress-inhibitory and stress-inducing agents, respectively, for 8 days. TM treatment decreased the blastocyst developmental rate and increased the percentage of apoptotic cells compared to that in the control group (10.2 ± 2.3% vs. 39.75 ± 1.3% and 17.8 ± 1.2% vs. 3.6 ± 1.1%, respectively; P < 0.01). However, the blastocyst developmental rate was increased and the percentage of apoptotic cells was decreased by addition of TUDCA in IVC medium compared to that in the control group (50.9 ± 0.9% vs. 39.75 ± 1.3% and 1.13 ± 1.0% vs. 3.6 ± 1.1%, respectively; P < 0.01). Importantly, in the group treated with TM plus TUDCA, the developmental rate and the percentage of apoptotic cells in blastocysts were similar to that in the control group, indicating that TUDCA ameliorates the adverse effects of TM alone on embryo development. In addition, TUDCA treatment significantly reduced the reactive oxygen species, expression of ER stress (GRP78, ATF4, ATF6, IER1, and sXBP1) and pro-apoptotic (CHOP and BAX) genes, while it increased anti-apoptotic BCL2 gene expression and glutathione levels. Moreover, TUDCA improved blastocyst cryo-tolerance as marked by a significantly increased hatching rate and decreased the number of apoptotic cells recorded at 48 h after a post-warming. Therefore, in concordance with a previous report in mice or pig, we showed that TUDCA supplementation during IVC increases the developmental competency of bovine in vitro-derived embryos. Additionally, we found that the presence of TUDCA in IVC medium improves the cryo-tolerance of bovine embryos. These results suggest that modulation of ER stress during IVC contributes to the production of high-quality bovine embryos in terms of cryo-tolerance.
Collapse
|
10
|
Melatonin Enhances Mitophagy by Upregulating Expression of Heat Shock 70 kDa Protein 1L in Human Mesenchymal Stem Cells under Oxidative Stress. Int J Mol Sci 2019; 20:ijms20184545. [PMID: 31540288 PMCID: PMC6769944 DOI: 10.3390/ijms20184545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a potent source of cell-based regenerative therapeutics used to treat patients with ischemic disease. However, disease-induced oxidative stress disrupts mitochondrial homeostasis in transplanted hMSCs, resulting in hMSC apoptosis and reducing their efficacy post-transplantation. To address this issue, we evaluated the effects of melatonin on cellular defense mechanisms and mitophagy in hMSCs subjected to oxidative stress. H2O2-induced oxidative stress increases the levels of reactive oxygen species and reduces membrane potential in hMSCs, leading to mitochondrial dysfunction and cell death. Oxidative stress also decreases the expression of 70-kDa heat shock protein 1L (HSPA1L), a molecular chaperone that assists in the recruitment of parkin to the autophagosomal mitochondrial membrane. Decreased expression of HSPA1L destabilizes parkin, thereby impairing mitophagy. Our results indicate that treating hMSCs with melatonin significantly inhibited mitochondrial dysfunction induced by oxidative stress, which decreased hMSCs apoptosis. In damaged hMSCs, treatment with melatonin increased the levels of HSPA1L, which bound to parkin. The interaction between HSPA1L and parkin increased membrane potential and levels of oxidative phosphorylation, resulting in enhanced mitophagy. Our results indicate that melatonin increased the expression of HSPA1L, thereby upregulating mitophagy and prolonging cell survival under conditions of oxidative stress. In this study, we have shown that melatonin, a readily available compound, can be used to improve hMSC-based therapies for patients with pathologic conditions involving oxidative stress.
Collapse
|
11
|
Pioglitazone Improves the Function of Human Mesenchymal Stem Cells in Chronic Kidney Disease Patients. Int J Mol Sci 2019; 20:ijms20092314. [PMID: 31083336 PMCID: PMC6540009 DOI: 10.3390/ijms20092314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are optimal sources of autologous stem cells for cell-based therapy in chronic kidney disease (CKD). However, CKD-associated pathophysiological conditions, such as endoplasmic reticulum (ER) stress and oxidative stress, decrease MSC function. In this work, we study the protective effect of pioglitazone on MSCs isolated from CKD patients (CKD-MSCs) against CKD-induced ER stress. In CKD-MSCs, ER stress is found to induce mitochondrial reactive oxygen species generation and mitochondrial dysfunction. Treatment with pioglitazone reduces the expression of ER stress markers and mitochondrial fusion proteins. Pioglitazone increases the expression of cellular prion protein (PrPC) in CKD-MSCs, which is dependent on the expression levels of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Treatment with pioglitazone is found to protect CKD-MSCs against reactive oxygen species generation, aberrant mitochondrial oxidative phosphorylation of complexes I and IV, and aberrant proliferation capacity through the PGC-1α-PrPC axis. These results indicate that pioglitazone protects the mitochondria of MSCs from CKD-induced ER stress. Pioglitazone treatment of CKD-MSCs may be a potential therapeutic strategy for CKD patients.
Collapse
|
12
|
Lee JH, Yoon YM, Lee SH. TUDCA-Treated Mesenchymal Stem Cells Protect against ER Stress in the Hippocampus of a Murine Chronic Kidney Disease Model. Int J Mol Sci 2019; 20:ijms20030613. [PMID: 30708974 PMCID: PMC6386972 DOI: 10.3390/ijms20030613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) leads to the loss of kidney function, as well as the dysfunction of several other organs due to the release of uremic toxins into the system. In a murine CKD model, reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress are increased in the hippocampus. Mesenchymal stem cells (MSCs) are one of the candidates for cell-based therapy for CKD; however severe pathophysiological conditions can decrease their therapeutic potential. To address these issues, we established tauroursodeoxycholic acid (TUDCA)-treated MSCs using MSCs isolated from patients with CKD (CKD-hMSCs) and assessed the survival and ROS generation of neural cell line SH-SY5Y cells by co-culturing with TUDCA-treated CKD-hMSCs. In the presence of the uremic toxin P-cresol, the death of SH-SY5Y cells was induced by ROS-mediated ER stress. Co-culture with TUDCA-treated CKD-hMSCs increased anti-oxidant enzyme activities in SH-SY5Y cells through the upregulation of the cellular prion protein (PrPC) expression. Upregulated PrPC expression in SH-SY5Y cells protected against CKD-mediated ER stress and apoptosis. In an adenine-induced murine CKD model, injection with TUDCA-treated CKD-hMSCs suppressed ROS generation and ER stress in the hippocampus. These results indicate that TUDCA-treated CKD-hMSCs prevent the CKD-mediated cell death of SH-SY5Y cells by inhibiting ER stress. Our study suggests that treatment with TUDCA could be a powerful strategy for developing autologous MSC-based therapeutics for patients with CKD, and that PrPC might be a pivotal target for protecting neural cells from CKD-mediated ER stress.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
| | - Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 336-745, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 336-745, Korea.
- Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Korea.
| |
Collapse
|
13
|
Han YS, Kim SM, Lee JH, Jung SK, Noh H, Lee SH. Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrP C -dependent enhancement of the mitochondrial function. J Pineal Res 2019; 66:e12535. [PMID: 30372554 DOI: 10.1111/jpi.12535] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Although mesenchymal stem cell (MSC)-based therapy is a treatment strategy for ischemic diseases associated with chronic kidney disease (CKD), MSCs of CKD patients undergo accelerated senescence, with decreased viability and proliferation upon uremic toxin exposure, inhibiting their utility as a potent stem cell source for transplantation therapy. We investigated the effects of melatonin administration in protecting against cell senescence and decreased viability induced by pathophysiological conditions near the engraftment site. MSCs harvested from CKD mouse models were treated with H2 O2 to induce oxidative stress. CKD-derived MSCs exhibited greater oxidative stress-induced senescence than normal-mMSCs, while melatonin protected CKD-mMSCs from H2 O2 and associated excessive senescence. The latter was mediated by PrPC -dependent mitochondrial functional enhancement; melatonin upregulated PrPC , which bound PINK1, thus promoting mitochondrial dynamics and metabolism. In vivo, melatonin-treated CKD-mMSCs survived longer, with increased secretion of angiogenic cytokines in ischemic disease engraftment sites. CKD-mMSCs are more susceptible to H2 O2 -induced senescence than normal-mMSCs, and melatonin administration protects CKD-mMSCs from excessive senescence by upregulating PrPC and enhancing mitochondrial function. Melatonin showed favorable therapeutic effects by successfully protecting CKD-mMSCs from related ischemic conditions, thereby enhancing angiogenesis and survival. These results elucidate the mechanism underlying senescence inhibition by melatonin in stem cell-based therapies using mouse-derived CKD-mMSCs.
Collapse
Affiliation(s)
- Yong-Seok Han
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sang Min Kim
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Seo Kyung Jung
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University, Seoul, Korea
| | - Sang Hun Lee
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
14
|
Pioglitazone Protects Mesenchymal Stem Cells against P-Cresol-Induced Mitochondrial Dysfunction via Up-Regulation of PINK-1. Int J Mol Sci 2018; 19:ijms19102898. [PMID: 30250007 PMCID: PMC6213327 DOI: 10.3390/ijms19102898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSC) could be a candidate for cell-based therapy in chronic kidney disease (CKD); however, the uremic toxin in patients with CKD restricts the therapeutic efficacy of MSCs. To address this problem, we explored the effect of pioglitazone as a measure against exposure to the uremic toxin P-cresol (PC) in MSCs. Under PC exposure conditions, apoptosis of MSCs was induced, as well as PC-induced dysfunction of mitochondria by augmentation of mitofusion, reduction of mitophagy, and inactivation of mitochondrial complexes I and IV. Treatment of MSCs with pioglitazone significantly inhibited PC-induced apoptosis. Pioglitazone also prevented PC-induced mitofusion and increased mitophagy against PC exposure through up-regulation of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Furthermore, pioglitazone protected against PC-induced mitochondrial dysfunction by increasing the cytochrome c oxidase subunit 4 (COX4) level and activating complexes I and IV, resulting in enhancement of proliferation. In particular, activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) regulated the pioglitazone-mediated up-regulation of PINK-1. These results indicate that pioglitazone protects MSCs against PC-induced accumulated mitochondrial dysfunction via the NF-κB–PINK-1 axis under P-cresol exposure conditions. Our study suggests that pioglitazone-treated MSCs could be a candidate for MSC-based therapy in patients with CKD.
Collapse
|