1
|
Hashem C, Altin SE, Guyton JR, Boden WE. Nonlinearity of the inverse relationship between high-density lipoprotein (HDL) cholesterol and incident cardiovascular risk: Is it time to revisit the "HDL hypothesis"? J Clin Lipidol 2025; 19:238-246. [PMID: 39934033 DOI: 10.1016/j.jacl.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Low levels of high-density lipoprotein cholesterol (HDL-C) are clearly associated with atherosclerotic cardiovascular disease (ASCVD), but the risk curve is not well defined, especially at very high and low HDL-C levels. Current proportional hazards prediction models assume inverse linearity of effect, which may not accurately represent risk at these levels. SOURCES OF MATERIAL Clinical inattention to risk associated with low HDL-C may derive from randomized controlled trials (RCTs) aimed at raising HDL-C, though most failed to reduce ASCVD events when combined with statin-based therapy. However, these prior trials enrolled patients with HDL-C levels largely in the 35-45 mg/dL range. ABSTRACT OF FINDINGS Mounting post hoc evidence from RCTs as well as new genetic and observational data suggest that very low HDL-C (less than 30 or 35 mg/dL) may signal a further increase in incident cardiovascular events. Moreover, when HDL-C exceeds 90 mg/dL, monotonic reduction of ASCVD risk appears to reverse. Because a pervasively agnostic view of the importance of both very low and high levels of HDL-C now exists, consideration should be given to incorporating nonlinear effects of HDL-C into future risk prediction models such that very low HDL-C and/or very high HDL-C levels could be considered as new risk-enhancing factors to promote more optimal risk stratification. CONCLUSION When revision of the U.S. Cholesterol Guideline recommences, consideration should be directed to whether HDL-associated risk matches the assumptions of current statistical models. Thus, it may be both timely and opportune to revisit the "HDL hypothesis" based on evolving scientific evidence.
Collapse
Affiliation(s)
- Carl Hashem
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States (Hashem)
| | - S Elissa Altin
- Division of Cardiology, Department of Medicine, Yale New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut, United States (Altin); Division of Cardiology, Department of Medicine, West Haven VA Medical Center, West Haven, Connecticut, United States (Altin)
| | - John R Guyton
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States (Guyton)
| | - William E Boden
- VA Boston Healthcare System, Boston, Massachusetts, United States (Boden); Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States (Boden).
| |
Collapse
|
2
|
He J, Dai Y, Xu F, Huang X, Gao Y, Liu L, Zhang W, Liu J. High-density lipoprotein-based nanoplatforms for macrophage-targeted diagnosis and therapy of atherosclerosis. Int J Biol Macromol 2025; 306:140826. [PMID: 40010459 DOI: 10.1016/j.ijbiomac.2025.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/19/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Atherosclerosis, the primary cause of cardiovascular disease, which has the highest mortality worldwide, is a chronic inflammatory disease mainly induced by excessive lipid accumulation in plaque macrophages. Lipid-laden macrophages are crucial at all stages of atherosclerotic lesion progression and are, thus, regarded as popular therapeutic targets for atherosclerosis. High-density lipoprotein (HDL), an endogenous particle with excellent atherosclerotic plaque-homing properties, is considered a potential therapeutic agent for treating atherosclerosis. Based on the excellent properties of HDL, reconstituted HDL (rHDL), with physiological functions similar to those of its natural counterparts, have been successfully prepared as therapeutics and are also recognized as a potential nanoplatform for delivering drugs or contrast agents to atherosclerotic plaques owing to their high biocompatibility, amphiphilic structure, and macrophage-targeting capability. In this review, we focus on the (a) important role of macrophages in atherosclerotic lesions, (b) biological properties of rHDL as a delivery nanoplatform in atherosclerotic diseases, and (c) multiple applications of rHDL in the diagnosis and treatment of atherosclerosis. We systematically summarize the novel applications of rHDL with unique advantages in atherosclerosis, aiming to provide specific insights and inspire additional innovative research in this field.
Collapse
Affiliation(s)
- Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Fengfei Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu Gao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Giacaglia MB, Pires V, Santana MFM, Passarelli M. Unraveling the Pleiotropic Role of High-Density Lipoproteins (HDLs) in Autoimmune Rheumatic Diseases. Int J Rheumatol 2024; 2024:1896817. [PMID: 39574464 PMCID: PMC11581784 DOI: 10.1155/2024/1896817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Autoimmune rheumatic diseases (ARDs) exhibit an elevated incidence of cardiovascular disease (CVD). The elevation of inflammatory and immune stress accompanying ARDs contributes to atherosclerosis development and alterations in lipid metabolism and lipoprotein profile add to cardiovascular (CV) risk. The plasma concentration of high-density lipoprotein cholesterol (HDLc) is inversely related to CVD and serves as a discriminator of CV risk. However, this association is not unequivocal, and changes in HDL functionality appear to emerge as a better indicator of CV risk, albeit difficult to measure and monitor clinically. The modulation of HDLc itself can bring benefits in controlling autoimmunity and reducing ARD activity. Understanding HDL function and each peculiarity involved in ARDs enables to seek means to prevent ischemic outcomes associated with CVD, in the face of the residual CV risk persisting even with controlled disease activity and classic risk factors. By comprehending HDL's structural and functional nuances, it will be possible to develop more effective strategies to manage the evolution and outcomes of ARDs. It is also necessary to standardize diagnostic methods and establish different markers for each specific disease allowing the design of intervention strategies to restore HDL functionality, reduce residual CV, and prevent, alleviate, or even suppress ARD activity.
Collapse
Affiliation(s)
- Marcia B. Giacaglia
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE) 01525-000, São Paulo, Brazil
| | - Vitória Pires
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo 01246-000, São Paulo, Brazil
| | - Monique F. M. Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo 01246-000, São Paulo, Brazil
| | - Marisa Passarelli
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE) 01525-000, São Paulo, Brazil
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo 01246-000, São Paulo, Brazil
| |
Collapse
|
4
|
Grundler F, Palumbo M, Adorni MP, Zimetti F, Papotti B, Plonné D, Holley A, Mesnage R, Ruscica M, Wilhelmi de Toledo F. HDL cholesterol efflux capacity and cholesterol loading capacity in long-term fasting: Evidence from a prospective, single-arm interventional study in healthy individuals. Atherosclerosis 2024; 397:118548. [PMID: 39180960 DOI: 10.1016/j.atherosclerosis.2024.118548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND AIMS Long-term fasting (LF) is increasingly emerging as a non-pharmacological approach to modulate risk factors associated with the development of atherosclerotic cardiovascular diseases (ASCVD). However, protection from ASCVD is more tied to the functionality of high-density lipoprotein (HDL) than its plasma levels. Our prospective interventional study focuses on the functional properties of lipoproteins in modulating cholesterol homeostasis on peripheral cells and examines how LF may influence this and lipoprotein subclass composition. For that purpose, we investigated its impact on HDL-cholesterol efflux capacity (CEC), and on serum cholesterol loading capacity (CLC). METHODS Forty healthy subjects (50 % females) underwent medically supervised 9-day fasting (250 kcal/day) in a specialised facility. Thirty-two subjects had a follow-up examination after one month of food reintroduction. RESULTS LF was well tolerated and increased self-reported energy levels. Fasting reduced triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C). Very-low-density lipoprotein cholesterol (VLDL-C) and LDL3-C showed sustained reductions at follow-up. Only HDL-C, specifically HDL2-C levels, increased at follow-up. Total HDL-CEC decreased during LF and increased above baseline at follow-up. Fasting decreased ATP binding cassette (ABC)A1-mediated HDL-CEC whereas ABCG1-mediated HDL-CEC remained unaffected. Aqueous diffusion increased at follow up. LF decreased serum CLC and then returned to baseline levels. CONCLUSIONS LF not only maintains lipoprotein functionality but also contributes to a favorable shift in the atherogenic risk profile, which persists even after food reintroduction. This further emphasizes the importance of considering HDL functionality alongside traditional lipid measurements to understand the potential for non-pharmacological interventions like LF to promote cardiovascular prevention and health. TRIAL REGISTRATION NUMBER NCT05031598.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662, Überlingen, Germany.
| | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | | | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dietmar Plonné
- MVZ Humangenetik Ulm, Karlstraße 31-33, 89073, Ulm, Germany
| | - Alfred Holley
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662, Überlingen, Germany
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, 88662, Überlingen, Germany; Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, London, UK
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | |
Collapse
|
5
|
Sugrue JA, Duffy D. Systems vaccinology studies - achievements and future potential. Microbes Infect 2024; 26:105318. [PMID: 38460935 DOI: 10.1016/j.micinf.2024.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Human immune responses to vaccination are variable both within and between populations. Systems vaccinology, which is the application of multi-omics technologies to vaccine studies, seeks to understand such variation and predict responses to optimise vaccine strategies. Here, we outline new approaches to systems vaccinology, focusing on the incorporation of additional cohorts, endpoints and technologies.
Collapse
Affiliation(s)
- Jamie A Sugrue
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
6
|
Tian B, Zhao C, Liang JL, Zhang HT, Xu YF, Zheng HL, Zhou J, Gong JN, Lu ST, Zeng ZS. Glymphatic function and its influencing factors in different glucose metabolism states. World J Diabetes 2024; 15:1537-1550. [PMID: 39099805 PMCID: PMC11292332 DOI: 10.4239/wjd.v15.i7.1537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Dysfunction of the glymphatic system in the brain in different stages of altered glucose metabolism and its influencing factors are not well characterized. AIM To investigate the function of the glymphatic system and its clinical correlates in patients with different glucose metabolism states, the present study employed diffusion tensor imaging along the perivascular space (DTI-ALPS) index. METHODS Sample size was calculated using the pwr package in R software. This cross-sectional study enrolled 22 patients with normal glucose metabolism (NGM), 20 patients with prediabetes, and 22 patients with type 2 diabetes mellitus (T2DM). A 3.0T magnetic resonance imaging was used to evaluate the function of the glymphatic system. The mini-mental state examination (MMSE) was used to assess general cognitive function. The DTI-ALPS index of bilateral basal ganglia and the mean DTI-ALPS index was calculated. Further, the correlation between DTI-ALPS and clinical features was assessed. RESULTS The left-side, right-side, and mean DTI-ALPS index in the T2DM group were significantly lower than that in the NGM group. The right-side DTI-ALPS and mean DTI-ALPS index in the T2DM group were significantly lower than those in the prediabetes group. DTI-ALPS index lateralization was not observed. The MMSE score in the T2DM group was significantly lower than that in the NGM and prediabetes group. After controlling for sex, the left-side DTI-ALPS and mean DTI-ALPS index in the prediabetes group were positively correlated with 2-hour postprandial blood glucose level; the left-side DTI-ALPS index was negatively correlated with total cholesterol and low-density lipoprotein level. The right-side DTI-ALPS and mean DTI-ALPS index were negatively correlated with the glycosylated hemoglobin level and waist-to-hip ratio in the prediabetes group. The left-side, right-side, and mean DTI-ALPS index in the T2DM group were positively correlated with height. The left-side and mean DTI-ALPS index in the T2DM group were negatively correlated with high-density lipoprotein levels. CONCLUSION Cerebral glymphatic system dysfunction may mainly occur in the T2DM stage. Various clinical variables were found to affect the DTI-ALPS index in different glucose metabolism states. This study enhances our understanding of the pathophysiology of diabetic brain damage and provides some potential biological evidence for its early diagnosis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Chen Zhao
- Magnetic Resonance Research Collaboration, Siemens Healthineers, Guangzhou 510620, Guangdong Province, China
| | - Jia-Li Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Ting Zhang
- Magnetic Resonance Research Collaboration, Siemens Healthineers Ltd., Wuhan 430071, Hubei Province, China
| | - Yi-Fan Xu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Lei Zheng
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiang-Nian Gong
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shu-Ting Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-San Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Zhen J, Li X, Yu H, Du B. High-density lipoprotein mimetic nano-therapeutics targeting monocytes and macrophages for improved cardiovascular care: a comprehensive review. J Nanobiotechnology 2024; 22:263. [PMID: 38760755 PMCID: PMC11100215 DOI: 10.1186/s12951-024-02529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.
Collapse
Affiliation(s)
- Juan Zhen
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiangjun Li
- School of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Haitao Yu
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Bing Du
- The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Machado VA, Santisteban ARN, Martins CM, Damasceno NRT, Fonseca FA, Neto AMF, Izar MC. Effects of phytosterol supplementation on lipoprotein subfractions and LDL particle quality. Sci Rep 2024; 14:11108. [PMID: 38750162 PMCID: PMC11096344 DOI: 10.1038/s41598-024-61897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Phytosterols are natural components of plant-based foods used as supplements because of their known cholesterol-lowering effect. However, their effects on lipoprotein subfractions and the quality of the LDL particle have not been studied in greater detail. We aimed to evaluate the effects of phytosterols supplements on lipids, lipoproteins subfractions, and on the quality of LDL. A prospective, pilot-type, open label, cross-over study, randomized 23 males in primary prevention of hypercholesterolemia to receive diet or diet plus phytosterol (2.6 g in 2 doses, with meals) for 12 weeks, when treatments were switched for another 12 weeks. Lipoprotein subfractions were analyzed by electrophoresis in polyacrylamide gel (Lipoprint System®). The Sampson equation estimated the small and dense (sd) and large and buoyant (lb) LDL subfractions from the lipid profile. Quality of LDL particle was analyzed by Z-scan and UV-vis spectroscopy. Primary outcome was the comparison of diet vs. diet plus phytosterols. Secondary outcomes assessed differences between baseline, diet and diet plus phytosterol. Non-parametric statistics were performed with p < 0.05. There was a trend to reduction on HDL-7 (p = 0.05) in diet plus phytosterol arm, with no effects on the quality of LDL particles. Heatmap showed strong correlations (ρ > 0.7) between particle size by different methods with both interventions. Diet plus phytosterol reduced TC, increased HDL-c, and reduced IDL-B, whereas diet increased HDL7, and reduced IDL-B vs. baseline (p < 0.05, for all). Phytosterol supplementation demonstrated small beneficial effects on HDL-7 subfraction, compared with diet alone, without effects on the quality of LDL particles.This trial is registered in Clinical Trials (NCT06127732) and can be accessed at https://clinicaltrials.gov .
Collapse
Affiliation(s)
- Valeria Arruda Machado
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Celma Muniz Martins
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Francisco A Fonseca
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil
- Institute of Physics, National Institute of Complex Fluids, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio M Figueiredo Neto
- Institute of Physics, National Institute of Complex Fluids, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Izar
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil.
- Institute of Physics, National Institute of Complex Fluids, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
An D, He P, Liu H, Wang R, Yu X, Chen N, Guo X, Li X, Feng M. Enhanced chemoimmunotherapy of breast cancer in mice by apolipoprotein A1-modified doxorubicin liposomes combined with interleukin-21. J Drug Target 2023; 31:1098-1110. [PMID: 37909691 DOI: 10.1080/1061186x.2023.2276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.
Collapse
Affiliation(s)
- Duopeng An
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Peng He
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hongchuan Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaochen Yu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Nanye Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaohan Guo
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
10
|
Malajczuk CJ, Mancera RL. Unravelling the influence of surface lipids on the structure, dynamics and interactome of high-density lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184201. [PMID: 37541644 DOI: 10.1016/j.bbamem.2023.184201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
Surface lipids influence the biological activities of high-density lipoproteins (HDLs) but their species-specific effects on HDL structure, dynamics, and surface interactome has remained unclear. Building upon the five-lipid species HDL models developed and characterised in previous work, representative models of the major HDL subpopulations found in human plasma containing apolipoprotein A-I (apoA-I) have been studied using molecular dynamics simulation to describe their varying degrees of surface lipidome complexity. Specifically, two additional sets of representative HDL subpopulation particles were developed, one with sphingomyelin (SM) and the other with SM, phosphatidylethanolamine, phosphatidylinositol, and ceramide in quantities reflecting average levels characterised for HDL subpopulations derived from normolipidemic patients. These lipid species were assessed in terms of HDL size, morphology, dynamics, and overall interactome. The findings reveal that the presence of a representative SM fraction marginally enhanced HDL interfacial curvature and surface monolayer rigidity, manifesting in tighter phospholipid packing and slower surface lipid dynamics relative to SM-deficient HDL models. Furthermore, the presence of SM resulted in a reduction in the solvent exposure of core lipids and cholesterol molecules, whilst also enhancing apolipoprotein conformational flexibility and its overall twisting across the HDL surface. The hydrophobicity of apoA-I-bound lipid patches and the proportion of apoA-I hydrophobic surface area is enhanced by the overall lipidation of apoA-I irrespective of lipid composition. These findings offer new insights into how the surface lipid composition of different HDL subpopulations can significantly impact the overall interactome of HDL particles, potentially influencing subpopulation-specific biological functions like lipid scavenging and receptor interactions.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
11
|
Lin W, Luo S, Li W, Liu J, Zhou T, Yang F, Zhou D, Liu Y, Huang W, Feng Y, Luo J. Association between the non-HDL-cholesterol to HDL- cholesterol ratio and abdominal aortic aneurysm from a Chinese screening program. Lipids Health Dis 2023; 22:187. [PMID: 37932803 PMCID: PMC10626699 DOI: 10.1186/s12944-023-01939-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) can result in high mortality upon rupture but are usually undiagnosed because of the absence of symptoms in the early stage. Ultrasound screening is regarded as an impactful way to prevent the AAA-related death but cannot be performed efficiently; therefore, a target population, especially in Asia, for this procedure is lacking. Additionally, although dyslipidaemia and atherosclerosis are associated with AAA. However, it remains undetermined whether the non-high-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol ratio (NHHR) is associated with AAA. Therefore, this study was aimed at examining whether NHHR is associated with AAA. METHOD A total of 9559 participants who underwent AAA screening at Guangdong Provincial People's Hospital and through screening in two communities in Dongguan, from June 2019 to June 2021 joined in this screening program. The diagnosis of AAA was confirmed by the ultrasound examination of the abdominal aorta rather than any known or suspected AAA. Clinical and laboratory data of participants were collected. The participants were separated into a normal group and an AAA group according to the abdominal aortic status. To eliminate confounding factors, a propensity score matching (PSM) approach was utilized. The independent relationship between NHHR and AAA was assessed through the utilization of multivariable logistic regression analysis. In addition, internal consistency was evaluated through subgroup analysis, which controlled for significant risk factors. RESULTS Of all the participants, 219 (2.29%) participants were diagnosed with AAA. A significant elevation in NHHR was identified in the AAA group when contrasted with that in the normal group (P < 0.001). As demonstrated by the results of the multivariable logistic regression analysis, AAA was independently associated with NHHR before (odds ratio [OR], 1.440, P < 0.001) and after PSM (OR, 1.515, P < 0.001). Significant extension was observed in the areas under the receiver operating characteristic curves (AUROCs) of NHHR compared to those of single lipid parameters before and after PSM. An accordant association between NHHR and AAA in different subgroups was demonstrated by subgroup analysis. CONCLUSION In the Chinese population, there is an independent association between NHHR and AAA. NHHR might be propitious to distinguish individuals with high risk of AAA.
Collapse
Affiliation(s)
- Wenhui Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Songyuan Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wei Li
- Department of Cardiology, Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, China
| | - Jitao Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ting Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dan Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yuan Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wenhui Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yingqing Feng
- Hypertension Research Laboratory, Guangdong Provincial Clinical Research Center for Cardiovascular Disease, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Jianfang Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
13
|
Vavlukis A, Mladenovska K, Davalieva K, Vavlukis M, Dimovski A. Rosuvastatin effects on the HDL proteome in hyperlipidemic patients. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:363-384. [PMID: 37708957 DOI: 10.2478/acph-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
The advancements in proteomics have provided a better understanding of the functionality of apolipoproteins and lipoprotein-associated proteins, with the HDL lipoprotein fraction being the most studied. The focus of this study was to evaluate the HDL proteome in dyslipidemic subjects without an established cardiovascular disease, as well as to test whether rosuvastatin treatment alters the HDL proteome. Patients with primary hypercholesterolemia or mixed dyslipidemia were assigned to 20 mg/day rosuvastatin and blood samples were drawn at study entry and after 12 weeks of treatment. A label-free LC-MS/MS protein profiling was conducted, coupled with bioinformatics analysis. Sixty-nine HDL proteins were identified, belonging to four main biological function clusters: lipid transport and metabolism; platelet activation, degranulation, and aggregation, wound response and wound healing; immune response; inflammatory and acute phase response. Five HDL proteins showed statistically significant differences in the abundance (Anova ≤ 0.05), before and after rosuvastatin treatment. Platelet factor 4 variant (PF4V1), Pregnancy-specific beta-1-glycoprotein 2 (PSG2), Profilin-1 (PFN1) and Keratin type II cytoskeletal 2 epidermal (KRT2) showed decreased expressions, while Integrin alpha-IIb (ITGA2B) showed an increased expression after treatment with rosuvastatin. The ELISA validation of PFN1 segregated the subjects into responders and non-responders, as PFN1 levels after rosuvastatin were shown to mostly depend on the subjects' inflammatory phenotype. Findings from this study introduce novel insights into the HDL proteome and statin pleiotropism.
Collapse
Affiliation(s)
- Ana Vavlukis
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
| | | | - Katarina Davalieva
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| | - Marija Vavlukis
- University Ss Cyril and Methodius Faculty of Medicine, 1000 Skopje RN Macedonia
| | - Aleksandar Dimovski
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| |
Collapse
|
14
|
Mørland JG, Magnus P, Vollset SE, Leon DA, Selmer R, Tverdal A. Associations between serum high-density lipoprotein cholesterol levels and cause-specific mortality in a general population of 345 000 men and women aged 20-79 years. Int J Epidemiol 2023; 52:1257-1267. [PMID: 36779319 PMCID: PMC10396424 DOI: 10.1093/ije/dyad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Benefits of elevated high-density lipoprotein cholesterol (HDL-C) levels are challenged by reports demonstrating U-shaped relations between HDL-C levels and all-cause mortality; the association with cause-specific mortality is less studied. METHODS A total of 344 556 individuals (20-79 years, 52 % women) recruited from population-based health screening during 1985-2003 were followed until the end of 2018 for all-cause and cause-specific mortality by serum HDL-C level at inclusion of <30, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99 and >99 mg/dl (< 0.78, 0.78-1.01, 1.04-1.27, 1.30-1.53, 1.55-1.79, 1.81-2.04, 2.07-2.31, 2.33-2.56, >2.56 mmol/L). Hazard ratios (HRs) were adjusted for sex, age, calendar period, smoking, total cholesterol, triglycerides, systolic blood pressure, physical activity, educational length, body mass index and ill health. RESULTS During a mean follow-up of 22 years, 69 505 individuals died. There were U-shaped associations between HDL-C levels and all-cause, cancer and non-cardiovascular disease/non-cancer mortality (non-CVD/non-cancer), whereas for CVD there was increased risk of death only at lower levels. With HDL-C stratum 50-59 mg/dl (1.30-1.53 mmol/L) as reference, HRs [95% confidence intervals (CIs)] for levels >99 mg/dl (>2.56 mmol/L) were 1.32 (1.21-1.43), 1.05 (0.89-1.24), 1.26 (1.09-1.46) and 1.68 (1.48-1.90) for all-cause, CVD, cancer and non-CVD/non-cancer mortality, respectively. For HDL-C levels <30 mg/dl (0.78 mmol/L), the corresponding HRs (95% CIs) were 1.30 (1.24-1.36), 1.55 (1.44-1.67), 1.14 (1.05-1.23) and 1.19 (1.10-1.29). The mortality from alcoholic liver disease, cancers of mouth-oesophagus-liver, chronic liver diseases, chronic obstructive pulmonary disease, accidents and diabetes increased distinctly with increasing HDL-C above the reference level. HDL-C levels lower than the reference level were mainly associated with increased mortality of ischaemic heart disease (IHD), other CVDs, stomach cancer and diabetes. CONCLUSIONS Higher HDL-C levels were associated with increased mortality risk of several diseases which also have been associated with heavy drinking, and lower HDL-C levels were associated with increased mortality from IHD, other CVDs, gastric cancer and diabetes.
Collapse
Affiliation(s)
- Jørg G Mørland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stein Emil Vollset
- Department of Health Metrics Sciences and Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - David A Leon
- Department of Non-communicable Diseases Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Randi Selmer
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Aage Tverdal
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
15
|
Yang M, Wang H, Bukhari I, Zhao Y, Huang H, Yu Y, Sun X, Mi Y, Mei L, Zheng P. Effects of cholesterol-lowering probiotics on non-alcoholic fatty liver disease in FXR gene knockout mice. Front Nutr 2023; 10:1121203. [PMID: 37545590 PMCID: PMC10397539 DOI: 10.3389/fnut.2023.1121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Background/aims Some studies showed that probiotics could improve the composition and structure of gut microbiota. Changes in the gut microbiota may alter bile acid (BAs) composition and kinetics, improving non-alcoholic fatty liver disease (NAFLD). However, it still needs to be clarified how probiotics improve both the metabolism of BAs and NAFLD. This study aimed to reveal the regulatory mechanisms of cholesterol-lowering (CL) probiotics on NAFLD from aspects involved in BA metabolism in FXR gene knockout (FXR-/-) mice. Methods FXR-/- male mice were randomly divided into three groups based on different interventions for 16 weeks, including normal diet (ND), high-fat diet (HFD), and probiotic intervention in the HFD (HFD+P) group. 16s rDNA sequencing and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were utilized to analyze the changes in gut microbiota and fecal bile acids in mice. Results We found that the intervention of the CL probiotics improved liver lipid deposition and function in HFD-induced NAFLD mice by decreasing the levels of total cholesterol (TC; p = 0.002) and triglyceride (TG; p = 0.001) in serum, as well as suppressing liver inflammation, such as interleukin-1 beta (IL-1β; p = 0.002) and tumor necrosis factor-alpha (TNF-α; p < 0.0001). 16S rDNA sequencing and metabolomic analyses showed that probiotics effectively reduced the abundance of harmful gut microbiota, such as Firmicutes (p = 0.005), while concomitantly increasing the abundance of beneficial gut microbiota in NAFLD mice, such as Actinobacteriota (p = 0.378), to improve NAFLD. Compared with the ND group, consuming an HFD elevated the levels of total BAs (p = 0.0002), primary BAs (p = 0.017), and secondary BAs (p = 0.0001) in mice feces, while the intervention with probiotics significantly reduced the increase in the levels of fecal total bile acids (p = 0.013) and secondary bile acids (p = 0.017) induced by HFD. Conclusion The CL probiotics were found to improve liver function, restore microbiota balance, correct an abnormal change in the composition and content of fecal bile acids, and repair the damaged intestinal mucosal barrier in mice with NAFLD, ultimately ameliorating the condition. These results suggested that CL probiotics may be a promising and health-friendly treatment option for NAFLD.
Collapse
Affiliation(s)
- Minghua Yang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyang Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ye Zhao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huang Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Yu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Mei
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Noflatscher M, Hunjadi M, Schreinlechner M, Sommer P, Lener D, Theurl M, Kirchmair R, Bauer A, Ritsch A, Marschang P. Inverse Correlation of Cholesterol Efflux Capacity with Peripheral Plaque Volume Measured by 3D Ultrasound. Biomedicines 2023; 11:1918. [PMID: 37509557 PMCID: PMC10376979 DOI: 10.3390/biomedicines11071918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) is a systemic multifocal illness called atherosclerosis that causes artery constriction and blockage. By causing cholesterol to build up in the artery wall, hypercholesterolemia is a major factor in the pathophysiology of atherosclerotic plaque development. Reverse cholesterol transport is the process of transporting cholesterol from the periphery back to the liver through cholesterol efflux mediated by high-density lipoprotein (HDL). It was suggested that the cholesterol efflux capacity (CEC), which is inversely linked with cardiovascular risk, can serve as a stand-in measure for reverse cholesterol transport. In this work, we sought to investigate a potential link between the peripheral plaque volume (PV) and CEC. METHODS Since lipid-lowering therapy interferes with CEC, we performed a cross-sectional study of 176 patients (48.9% females) with one cardiovascular risk factor or known CVD that did not currently take lipid-lowering medication. CEC was determined using cAMP-treated 3H-cholesterol-labeled J774 cells. Cholesterol ester transfer protein (CETP)-mediated cholesterol ester transfer was measured by quantifying the transfer of cholesterol ester from radiolabeled exogenous HDL cholesterol to Apolipoprotein B-containing lipoproteins. PV in the carotid and the femoral artery, defined as the total PV, was measured using a 3D ultrasound system equipped with semi-automatic software. RESULTS In our patients, we discovered an inverse relationship between high total PV and CEC (p = 0.027). However, there was no connection between total PV and low-density lipoprotein cholesterol, lipoprotein (a), or CETP-mediated cholesterol ester transfer. CONCLUSION In patients not receiving lipid-lowering treatment, CEC inversely correlates with peripheral atherosclerosis, supporting its role in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Maria Noflatscher
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Michael Schreinlechner
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Philip Sommer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Axel Bauer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Peter Marschang
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
- Department of Internal Medicine, Central Hospital of Bolzano (SABES-ASDAA), Via Lorenz Boehler 5, I-39100 Bolzano, Italy
| |
Collapse
|
17
|
Kavanagh K, Bashore AC, Davis MA, Jorgensen MJ, McClouth CJ, Beavers DA, Parks JS. Early time-restricted feeding improves high-density lipoprotein amount and function in nonhuman primates, without effects on body composition. Obesity (Silver Spring) 2023; 31 Suppl 1:75-84. [PMID: 36229981 PMCID: PMC9877107 DOI: 10.1002/oby.23564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Time-restricted feeding (TRF), whereby caloric intake is limited to a <12-hour window, is a potential regimen to ameliorate metabolic syndrome and cardiovascular disease (CVD) risk co-occurring with aging and with obesity. Early TRF (eTRF; early morning feeding followed by overnight fasting) times calorie consumption with hepatic circadian gene expression rhythms. Brief TRF trials demonstrate that high-density lipoprotein (HDL) cholesterol increases similar to diet/exercise interventions, which may impart beneficial CVD effects. Using a nonhuman primate (NHP) model, the efficacy of eTRF to raise HDL and increase plasma cholesterol efflux capacity (CEC) (primarily mediated by cholesterol efflux to HDL particles, a process that is inversely associated with CVD risk) was examined. METHODS Adult (8-16 years old, n = 25) and geriatric (≥17 years old) NHPs were randomized to ad libitum feeding or eTRF for 12 months, and relevant body composition, glycemic control, and plasma HDL cholesterol levels and CEC were measured. RESULTS Impaired CEC was found in geriatric NHPs. eTRF induced larger-sized HDL particles, increased HDL apolipoprotein A-1 content, lowered triglyceride concentrations, and increased plasma CEC (primarily to HDL particles) in both adult and geriatric NHPs without changes in glycemic control or body composition. CONCLUSIONS A beneficial effect of eTRF on increasing HDL CEC in NHPs was demonstrated.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of PathologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- College of Health and MedicineUniversity of TasmaniaHobartAustralia
- Department of Internal Medicine‐Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Alexander C. Bashore
- Department of Internal Medicine‐Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Matthew A. Davis
- Department of Internal Medicine‐Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Matthew J. Jorgensen
- Department of PathologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher J. McClouth
- Department of Public Health SciencesWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Daniel A. Beavers
- Department of Public Health SciencesWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - John S. Parks
- Department of Internal Medicine‐Section on Molecular MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
18
|
A Study on Multiple Facets of Apolipoprotein A1 Milano. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04330-2. [PMID: 36689166 DOI: 10.1007/s12010-023-04330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
For several strategies formulated to prevent atherosclerosis, Apolipoprotein A1 Milano (ApoA1M) remains a prime target. ApoA1M has been reported to have greater efficiency in reducing the incidence of coronary artery diseases. Furthermore, recombinant ApoA1M based mimetic peptide exhibits comparatively greater atheroprotective potential, offers a hope in reducing the burden of atherosclerosis in in vivo model system. The aim of this review is to emphasize on some of the observed ApoA1M structural and functional effects that are clinically and therapeutically meaningful that might converge on the basic role of ApoA1M in reducing the chances of glycation assisted ailments in diabetes. We also hypothesize that the nonenzymatic glycation prone arginine amino acid of ApoA1 gets replaced with cysteine residue and the rate of ApoA1 glycation may decrease due to change substitution of amino acid. Therefore, to circumvent the effect of ApoA1M glycation, the related mechanism should be explored at the cellular and functional levels, especially in respective experimental disease model in vivo.
Collapse
|
19
|
Ivanišević J, Ardalić D, Zeljković A, Vekić J, Gojković T, Vladimirov S, Antonić T, Munjas J, Stefanović A. Biochemical and hematological parameters in the 1st trimester of pregnancy. ARHIV ZA FARMACIJU 2023. [DOI: 10.5937/arhfarm73-41999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The 1st trimester of pregnancy is accompanied with changes in different biochemical and hematological parameters. Analyses scheduled to be performed in the 1st trimester are complete blood count, blood group, Rh factor and the double test. Many experts also suggest the determination of lipid status parameters as a routine analysis in the early pregnancy. Reliable data about maternal and fetal health can be obtained by the assessment of the above-mentioned parameters. They may be helpful in assessing the risk for pregnancy complication development and/or perinatal adverse outcomes.
Collapse
|
20
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. PCSK9 inhibition and cholesterol homeostasis in insulin producing β-cells. Lipids Health Dis 2022; 21:138. [PMID: 36527064 PMCID: PMC9756761 DOI: 10.1186/s12944-022-01751-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a central role in the pathology of atherosclerotic cardiovascular disease. For decades, the gold standard for LDL-C lowering have been statins, although these drugs carry a moderate risk for the development of new-onset diabetes. The inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged in the last years as potential alternatives to statins due to their high efficiency and safety without indications for a diabetes risk so far. Both approaches finally eliminate LDL-C from bloodstream by upregulation of LDL receptor surface expression. Due to their low antioxidant capacity, insulin producing pancreatic β-cells are sensitive to increased lipid oxidation and related generation of reactive oxygen species. Thus, PCSK9 inhibition has been argued to promote diabetes like statins. Potentially, the remaining patients at risk will be identified in the future. Otherwise, there is increasing evidence that loss of circulating PCSK9 does not worsen glycaemia since it is compensated by local PCSK9 expression in β-cells and other islet cells. This review explores the situation in β-cells. We evaluated the relevant biology of PCSK9 and the effects of its functional loss in rodent knockout models, carriers of LDL-lowering gene variants and PCSK9 inhibitor-treated patients.
Collapse
Affiliation(s)
- Günter Päth
- grid.5963.9Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany, Hugstetter Str. 55, Freiburg, Germany
| | - Nikolaos Perakakis
- grid.4488.00000 0001 2111 7257Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany ,grid.38142.3c000000041936754XDivision of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Christos S. Mantzoros
- grid.38142.3c000000041936754XDivision of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Section of Endocrinology, VA Boston Healthcare System, MA Jamaica Plain, USA
| | - Jochen Seufert
- grid.5963.9Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany, Hugstetter Str. 55, Freiburg, Germany
| |
Collapse
|
21
|
Yu M, Hong K, Adili R, Mei L, Liu L, He H, Guo Y, Chen YE, Holinstat M, Schwendeman A. Development of activated endothelial targeted high-density lipoprotein nanoparticles. Front Pharmacol 2022; 13:902269. [PMID: 36105190 PMCID: PMC9464908 DOI: 10.3389/fphar.2022.902269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
Endothelial inflammation is an important pathophysiological driving force in various acute and chronic inflammatory diseases. High-density lipoproteins (HDLs) play critical roles in regulating endothelial functions and resolving endothelial inflammation. In the present study, we developed synthetic HDLs (sHDLs) which actively target inflamed endothelium through conjugating vascular cell adhesion protein 1 (VCAM-1) specific VHPK peptide. The active targeting of VHPK-sHDLs was confirmed in vitro on TNF-α activated endothelial cells. VHPK-sHDLs presented potent anti-inflammatory efficacies in vitro through the reduction of proinflammatory cytokine production and inhibition of leukocyte adhesion to activated endothelium. VHPK-sHDLs showed increased binding on inflamed vessels and alleviated LPS-induced lung inflammation in vivo. The activated endothelium-targeted sHDLs may be further optimized to resolve endothelial inflammation in various inflammatory diseases.
Collapse
Affiliation(s)
- Minzhi Yu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kristen Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Lisha Liu
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongliang He
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
HDL as Bidirectional Lipid Vectors: Time for New Paradigms. Biomedicines 2022; 10:biomedicines10051180. [PMID: 35625916 PMCID: PMC9138557 DOI: 10.3390/biomedicines10051180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The anti-atherogenic properties of high-density lipoproteins (HDL) have been explained mainly by reverse cholesterol transport (RCT) from peripheral tissues to the liver. The RCT seems to agree with most of the negative epidemiological correlations between HDL cholesterol levels and coronary artery disease. However, therapies designed to increase HDL cholesterol failed to reduce cardiovascular risk, despite their capacity to improve cholesterol efflux, the first stage of RCT. Therefore, the cardioprotective role of HDL may not be explained by RCT, and it is time for new paradigms about the physiological function of these lipoproteins. It should be considered that the main HDL apolipoprotein, apo AI, has been highly conserved throughout evolution. Consequently, these lipoproteins play an essential physiological role beyond their capacity to protect against atherosclerosis. We propose HDL as bidirectional lipid vectors carrying lipids from and to tissues according to their local context. Lipid influx mediated by HDL appears to be particularly important for tissue repair right on site where the damage occurs, including arteries during the first stages of atherosclerosis. In contrast, the HDL-lipid efflux is relevant for secretory cells where the fusion of intracellular vesicles drastically enlarges the cytoplasmic membrane with the potential consequence of impairment of cell function. In such circumstances, HDL could deliver some functional lipids and pick up not only cholesterol but an integral part of the membrane in excess, restoring the viability of the secretory cells. This hypothesis is congruent with the beneficial effects of HDL against atherosclerosis as well as with their capacity to induce insulin secretion and merits experimental exploration.
Collapse
|
23
|
Effect of PCSK9 Inhibitor on Blood Lipid Levels in Patients with High and Very-High CVD Risk: A Systematic Review and Meta-Analysis. Cardiol Res Pract 2022; 2022:8729003. [PMID: 35529059 PMCID: PMC9072011 DOI: 10.1155/2022/8729003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives We aimed to investigate the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on blood lipid levels in patients with high and very-high cardiovascular risk. Design 14 trials (n = 52,586 patients) comparing treatment with or without PCSK9 inhibitors were retrieved from PubMed and Embase updated to 1st Jun 2021. The data quality of included studies was assessed by two independent researchers using the Cochrane systematic review method. All-cause mortality, cardiovascular mortality, and changes in serum low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), apolipoprotein B (ApoB), lipoprotein (a) (LP (a)), non-high-density lipoprotein cholesterol (non-HDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein A1 (ApoA1) from baseline were analyzed using Rev Man 5.1.0 software. Results Compared with treatments without PCSK9 inhibitor, addition of PCSK9 inhibitors (evolocumab and alirocumab) had obvious decreasing effects on the levels of LDL-C [MD = −46.86, 95% CI (−54.99 to −38.72), P < 0.00001], TC [MD = −31.92, 95% CI (−39.47 to −24.38), P < 0.00001], TG [MD = −8.13, 95% CI (−10.48 to −5.79), P < 0.00001], LP(a) [MD = −26.69, 95% CI (-27.93 to −25.44), P < 0.00001], non-HDL-C [MD = −42.86, 95% CI (−45.81 to −39.92), P < 0.00001], and ApoB [MD = −38.44, 95% CI (−42.23 to -34.65), P < 0.00001] in high CVD risk patients. Conversely, changes of HDL-C [MD = 6.27, CI (5.17 to 7.36), P < 0.00001] and ApoA1 [MD = 4.33, 95% CI (3.53 to 5.13), P < 0.00001] from baseline were significantly more in high cardiovascular disease risk patients who received PCSK9 inhibitors treatment. Conclusion Addition of PCSK9 inhibitors to standard therapy resulted in definite improvement in blood lipid levels compared with therapies that did not include them.
Collapse
|
24
|
Wilkens TL, Tranæs K, Eriksen JN, Dragsted LO. Moderate alcohol consumption and lipoprotein subfractions: a systematic review of intervention and observational studies. Nutr Rev 2022; 80:1311-1339. [PMID: 34957513 PMCID: PMC9308455 DOI: 10.1093/nutrit/nuab102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Moderate alcohol consumption is associated with decreased risk of cardiovascular disease (CVD) and improvement in cardiovascular risk markers, including lipoproteins and lipoprotein subfractions. OBJECTIVE To systematically review the relationship between moderate alcohol intake, lipoprotein subfractions, and related mechanisms. DATA SOURCES Following PRISMA, all human and ex vivo studies with an alcohol intake up to 60 g/d were included from 8 databases. DATA EXTRACTION A total of 17 478 studies were screened, and data were extracted from 37 intervention and 77 observational studies. RESULTS Alcohol intake was positively associated with all HDL subfractions. A few studies found lower levels of small LDLs, increased average LDL particle size, and nonlinear relationships to apolipoprotein B-containing lipoproteins. Cholesterol efflux capacity and paraoxonase activity were consistently increased. Several studies had unclear or high risk of bias, and heterogeneous laboratory methods restricted comparability between studies. CONCLUSIONS Up to 60 g/d alcohol can cause changes in lipoprotein subfractions and related mechanisms that could influence cardiovascular health. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 98955.
Collapse
Affiliation(s)
- Trine L Wilkens
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| | - Kaare Tranæs
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| | - Jane N Eriksen
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|
26
|
Eumkeb G, Hengpratom T, Kupittayanant S, Churproong S. Lipid-lowering effect of Oroxylum indicum (L.) Kurz extract in hyperlipidemic mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.340559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Zeng C, Yan C, Guo S, Zhu H, Chen Y, Zhan X. High-density lipoprotein cholesterol to apolipoprotein A1 ratio and all-cause mortality among incident peritoneal dialysis patients. Nutr Metab Cardiovasc Dis 2021; 31:3457-3463. [PMID: 34656383 DOI: 10.1016/j.numecd.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS The ratio of high-density lipoprotein cholesterol to apolipoprotein A1 (HAR) is associated with all-cause mortality in nonchronic kidney disease patients, but its role in predicting all-cause mortality in patients undergoing peritoneal dialysis (PD) is still unclear. The purpose of this study was to investigate the relationship between HAR and all-cause mortality in patients with PD. METHODS AND RESULTS The medical records of 1199 patients with PD from November 1, 2005, to August 31, 2019, were collected retrospectively. The main outcome was defined as all-cause mortality. The HAR was divided into three groups by X-tile software. The association between HAR and all-cause mortality was evaluated by Cox models. The Kaplan-Meier method was used for the survival curve. The median follow-up period was 35 months (interquartile range: 20-57 months), with a total of 326 deaths recorded. After multiple adjustments, the risk of all-cause mortality in the high HAR group was 1.96-fold higher than that in the low HAR group (hazard ratio: 1.96; 95% CI, 1.22 to 3.15; P = 0.005). The restricted cubic splines showed that the risk of all-cause mortality increased gradually when HAR was >0.37. In the stratified analysis, a high HAR was linked to a high risk of all-cause mortality in males, patients under 55 years old, and patients without diabetes or cardiovascular disease (CVD). CONCLUSION This study suggests that HAR is independently related to all-cause mortality in PD patients, especially in males, patients under 55 years old, and patients without diabetes or CVD.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Caixia Yan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shan Guo
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, China
| | - Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yanbing Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
28
|
Thakkar H, Vincent V, Roy A, Gautam AK, Kutum R, Ramakrishnan L, Singh S, Singh A. Determinants of high-density lipoprotein (HDL) functions beyond proteome in Asian Indians: exploring the fatty acid profile of HDL phospholipids. Mol Cell Biochem 2021; 477:559-570. [PMID: 34843015 DOI: 10.1007/s11010-021-04304-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023]
Abstract
Impaired high-density lipoprotein (HDL) functions are associated with development of coronary artery disease. In this study, we explored the quantitative differences in HDL (i.e. HDL proteome and fatty acid profile of HDL phospholipids) underlying the functional deficits associated with acute coronary syndrome (ACS). The relationship between HDL function and composition was assessed in 65 consecutive ACS patients and 40 healthy controls. Cholesterol efflux capacity (CEC) of HDL and lecithin cholesterol acyl transferase (LCAT) activity were significantly lower in patients with ACS compared to controls. In HDL proteome analysis, HDL isolated from ACS individuals was enriched in apolipoprotein C2 (inhibitor of LCAT), apolipoprotein C4 and serum amyloid A proteins and was deficient in apolipoprotein A-I and A-II. The fatty acid profile of HDL phospholipids analyzed using gas chromatography showed significantly lower percentages of stearic acid (17.4 ± 2.4 vs 15.8 ± 2.8, p = 0.004) and omega-3 fatty acids [eicosapentaenoic acid (1.0 (0.6-1.4) vs 0.7 (0.4-1.0), p = 0.009) and docosahexaenoic acid (1.5 ± 0.7 vs 1.3 ± 0.5, p = 0.03)] in ACS patients compared to controls. Lower percentages of these fatty acids in HDL were associated with higher odds of developing ACS. Our results suggest that distinct phospholipid fatty acid profiles found in HDL from ACS patients could be one of the contributing factors to the deranged HDL functions in these patients apart from the protein content and the inflammatory conditions.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rintu Kutum
- Informatics and Big Data Unit, Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Singh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
29
|
Tverdal A, Høiseth G, Magnus P, Næss Ø, Selmer R, Knudsen GP, Mørland J. Alcohol Consumption, HDL-Cholesterol and Incidence of Colon and Rectal Cancer: A Prospective Cohort Study Including 250,010 Participants. Alcohol Alcohol 2021; 56:718-725. [PMID: 33604595 PMCID: PMC8557640 DOI: 10.1093/alcalc/agab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
Aims Alcohol consumption has been linked to colorectal cancer (CRC) and also to the high-density lipoprotein cholesterol level (HDL-C). HDL-C has been associated with the incidence of CRC. The aim of this study was to investigate the association between self-reported alcohol consumption, HDL-C and incidence of CRC, separately for the two sites. Methods Altogether, 250,010 participants in Norwegian surveys have been followed-up for an average of 18 years with respect to a first-time outcome of colon or rectal cancer. During follow-up, 3023 and 1439 colon and rectal cancers were registered. Results For men, the HR per 1 drink per day was 1.05 with 95% confidence interval (0.98–1.12) for colon and 1.08 (1.02–1.15) for rectal cancer. The corresponding figures for women were 1.03 (0.97–1.10) and 1.05 (1.00–1.10). There was a positive association between alcohol consumption and HDL-C. HDL-C was inversely associated with colon cancer in men (0.74 (0.62–0.89) per 1 mmol/l) and positively associated with rectal cancer, although not statistically significant (1.15 (0.92–1.44). A robust regression that assigned weights to each observation and exclusion of weights ≤ 0.1 increased the HRs per 1 drink per day and decreased the HR per 1 mmol/l for colon cancer. The associations with rectal cancer remained unchanged. Conclusion Our results support a positive association between alcohol consumption and colon and rectal cancer, most pronounced for rectal cancer. Considering the positive relation between alcohol consumption and HDL-C, the inverse association between HDL-C and colon cancer in men remains unsettled.
Collapse
Affiliation(s)
- Aage Tverdal
- Norwegian Institute of Public Health, Centre for Fertility and Health, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Gudrun Høiseth
- Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway.,Department of Forensic Sciences, Oslo University Hospital, Pb 4950 Nydalen, 0424 Oslo.,Center for Psychopharmacology, Diakonhjemmet Hospital, Forskningsveien 13, 0373 Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Centre for Fertility and Health, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Øyvind Næss
- Institute of Health and Society, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway
| | - Randi Selmer
- Norwegian Institute of Public Health, Division of Chronic Diseases and Aging, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Gun Peggy Knudsen
- Norwegian Institute of Public Health, Division of health data and digitalization, Pb 222 Skøyen, 0213 Oslo, Norway
| | - Jørg Mørland
- Norwegian Centre for Addiction Research (SERAF), Institute of Clinical Medicine, University of Oslo, Pb 1171 Blinderen, 0318 Oslo, Norway.,Norwegian Institute of Public Health, Division of health data and digitalization, Pb 222 Skøyen, 0213 Oslo, Norway
| |
Collapse
|
30
|
He D, Lu X, Li W, Wang Y, Li N, Chen Y, Zhang L, Niu W, Zhang Q. Vitamin D Receptor Is a Sepsis-Susceptibility Gene in Chinese Children. Med Sci Monit 2021; 27:e932518. [PMID: 34689148 PMCID: PMC8552509 DOI: 10.12659/msm.932518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background We designed an association study among 267 cases of children with sepsis and 283 healthy controls, by genotyping 9 variants in the VDR gene. Material/Methods This was a hospital-based, case-control, genetic association study. In addition to 3 genetic modes of inheritance, haplotype and interaction analyses were employed to examine the prediction of VDR gene for pediatric sepsis. Effect-size estimates are expressed as odds ratio (OR) and 95% confidence interval (CI). Results Two variants in the VDR gene, rs2107301 and rs2189480, were found to play a leading role in susceptibility to sepsis in children. The mutant homozygotes of rs2107301 (CC) and rs2189480 (CC) were associated with a reduced risk of sepsis compared with the corresponding wild homozygotes (OR: 0.44 and 0.43, 95% CI: 0.21–0.92 and 0.23–0.81, p: 0.03 and 0.009, respectively). The mutations of rs2107301-C and rs2189480-C alleles were associated with reduced sepsis risk. Haplotype C-C-C-C-C-T-C-A-G in the VDR gene was significantly associated with a 0.59-fold decreased risk of sepsis (95% CI: 0.12–0.76, p: 0.02). In the haplotype–phenotype analysis, significant association was noted for high-density lipoprotein, even after simulation correction (psim <0.05). Conclusions Taken together, our findings indicate that the VDR gene may be a sepsis-susceptibility gene in Chinese Han children.
Collapse
Affiliation(s)
- Danni He
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China (mainland).,Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Xiuxiu Lu
- Intensive Care Unit, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Wei Li
- Intensive Care Unit, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Yuanyuan Wang
- Department of Respiratory Intervention, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ning Li
- Intensive Care Unit, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Lipeng Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland).,Graduate School of Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (mainland)
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China (mainland)
| |
Collapse
|
31
|
Hunjadi M, Sieder C, Beierfuß A, Kremser C, Moriggl B, Welte R, Kastner C, Mern DS, Ritsch A. Matcha Green Tea Powder does not Prevent Diet-Induced Arteriosclerosis in New Zealand White Rabbits Due to Impaired Reverse Cholesterol Transport. Mol Nutr Food Res 2021; 65:e2100371. [PMID: 34391214 PMCID: PMC11475671 DOI: 10.1002/mnfr.202100371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Green tea is associated with decreased risk for cardiovascular disease and stroke. Matcha is a special kind of powdered green tea known for its use in the Japanese tea ceremony. Due to its influence on lipoprotein parameters, it has been postulated to exert antiatherogenic effects. This study investigates whether it modulates the high-density lipoprotein (HDL) function and thereby influences the atherogenic process in an animal model with a strong influence on humans' situation. METHODS AND RESULTS After a pretreatment phase based on a standard diet, 10 female New Zealand White (NZW) rabbits are fed a high-fat diet for 20 weeks. The treatment group is additionally administered 1% matcha during the whole experiment. Long-term matcha treatment leads to lowered HDL cholesterol, impaired cholesterol transport manifested by reduced in vitro cholesterol efflux capacity, reduced cholesteryl ester transfer protein (CETP)-mediated cholesterol ester (CE) transfer between HDL and triglyceride-rich particles, and reduced macrophage-specific in vivo transfer, where ian increased absorption of cholesterol in the liver but a decreased secretion into bile is observed. Pulse wave velocity, assessed by nuclear magnetic resonance, is increased in matcha-treated animals, and a similar trend is observed for atherosclerotic lesion formation. CONCLUSION Long-term matcha green tea treatment of hypercholesterolemic rabbits cause impaired reverse cholesterol transport and increased vascular stiffness, and susceptibility for atherosclerotic lesion development.
Collapse
Affiliation(s)
- Monika Hunjadi
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| | - Claudia Sieder
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| | - Anja Beierfuß
- Central Laboratory Animal FacilityMedical University of InnsbruckInnsbruckAustria
| | - Christian Kremser
- Department of RadiologyMedical University of InnsbruckInnsbruckAustria
| | - Bernhard Moriggl
- Division Clinical and Functional AnatomyMedical University of InnsbruckInnsbruckAustria
| | - René Welte
- Clinical Pharmacokinetics UnitDivision of Intensive Care and Emergency MedicineDepartment of Internal Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Christine Kastner
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| | | | - Andreas Ritsch
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
32
|
Finamore F, Nieddu G, Rocchiccioli S, Spirito R, Guarino A, Formato M, Lepedda AJ. Apolipoprotein Signature of HDL and LDL from Atherosclerotic Patients in Relation with Carotid Plaque Typology: A Preliminary Report. Biomedicines 2021; 9:biomedicines9091156. [PMID: 34572342 PMCID: PMC8465382 DOI: 10.3390/biomedicines9091156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
In the past years, it has become increasingly clear that the protein cargo of the different lipoprotein classes is largely responsible for carrying out their various functions, also in relation to pathological conditions, including atherosclerosis. Accordingly, detailed information about their apolipoprotein composition and structure may contribute to the revelation of their role in atherogenesis and the understanding of the mechanisms that lead to atherosclerotic degeneration and toward vulnerable plaque formation. With this aim, shotgun proteomics was applied to identify the apolipoprotein signatures of both high-density and low-density lipoproteins (HDL and LDL) plasma fractions purified from healthy volunteers and atherosclerotic patients with different plaque typologies who underwent carotid endarterectomy. By this approach, two proteins with potential implications in inflammatory, immune, and hemostatic pathways, namely, integrin beta-2 (P05107) and secretoglobin family 3A member 2 (Q96PL1), have been confirmed to belong to the HDL proteome. Similarly, the list of LDL-associated proteins has been enriched with 21 proteins involved in complement and coagulation cascades and the acute-phase response, which potentially double the protein species of LDL cargo. Moreover, differential expression analysis has shown protein signatures specific for patients with “hard” or “soft” plaques.
Collapse
Affiliation(s)
- Francesco Finamore
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.F.); (S.R.)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.F.); (S.R.)
| | - Rita Spirito
- Centro Cardiologico Monzino, IRCCS, via Parea 4, 20138 Milano, Italy; (R.S.); (A.G.)
| | - Anna Guarino
- Centro Cardiologico Monzino, IRCCS, via Parea 4, 20138 Milano, Italy; (R.S.); (A.G.)
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
| | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy; (G.N.); (M.F.)
- Correspondence:
| |
Collapse
|
33
|
Schoch L, Badimon L, Vilahur G. Unraveling the Complexity of HDL Remodeling: On the Hunt to Restore HDL Quality. Biomedicines 2021; 9:805. [PMID: 34356869 PMCID: PMC8301317 DOI: 10.3390/biomedicines9070805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence has cast doubt over the HDL-cholesterol hypothesis. The complexity of the HDL particle and its proven susceptibility to remodel has paved the way for intense molecular investigation. This state-of-the-art review discusses the molecular changes in HDL particles that help to explain the failure of large clinical trials intending to interfere with HDL metabolism, and details the chemical modifications and compositional changes in HDL-forming components, as well as miRNA cargo, that render HDL particles ineffective. Finally, the paper discusses the challenges that need to be overcome to shed a light of hope on HDL-targeted approaches.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.S.); (L.B.)
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.S.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.S.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| |
Collapse
|
34
|
Le Lay JE, Du Q, Mehta MB, Bhagroo N, Hummer BT, Falloon J, Carlson G, Rosenbaum AI, Jin C, Kimko H, Tsai LF, Novick S, Cook B, Han D, Han CY, Vaisar T, Chait A, Karathanasis SK, Rhodes CJ, Hirshberg B, Damschroder MM, Hsia J, Grimsby JS. Blocking endothelial lipase with monoclonal antibody MEDI5884 durably increases high density lipoprotein in nonhuman primates and in a phase 1 trial. Sci Transl Med 2021; 13:13/590/eabb0602. [PMID: 33883272 DOI: 10.1126/scitranslmed.abb0602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.
Collapse
Affiliation(s)
- John E Le Lay
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Qun Du
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Minal B Mehta
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicholas Bhagroo
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - B Timothy Hummer
- CVRM Safety, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Falloon
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Glenn Carlson
- Clinical CV, Late Stage Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - ChaoYu Jin
- Clinical Immunology and Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Holly Kimko
- Clinical Pharmacology and DMPK, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Lan-Feng Tsai
- CVRM Biometrics, Data Sciences and AI, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bill Cook
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - David Han
- Parexel International, Glendale, CA 91206, USA
| | - Chang Yeop Han
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Sotirios K Karathanasis
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Boaz Hirshberg
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Melissa M Damschroder
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Hsia
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph S Grimsby
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
35
|
Giammanco A, Noto D, Barbagallo CM, Nardi E, Caldarella R, Ciaccio M, Averna MR, Cefalù AB. Hyperalphalipoproteinemia and Beyond: The Role of HDL in Cardiovascular Diseases. Life (Basel) 2021; 11:life11060581. [PMID: 34207236 PMCID: PMC8235218 DOI: 10.3390/life11060581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperalphalipoproteinemia (HALP) is a lipid disorder characterized by elevated plasma high-density lipoprotein cholesterol (HDL-C) levels above the 90th percentile of the distribution of HDL-C values in the general population. Secondary non-genetic factors such as drugs, pregnancy, alcohol intake, and liver diseases might induce HDL increases. Primary forms of HALP are caused by mutations in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (HL), apolipoprotein C-III (apo C-III), scavenger receptor class B type I (SR-BI) and endothelial lipase (EL). However, in the last decades, genome-wide association studies (GWAS) have also suggested a polygenic inheritance of hyperalphalipoproteinemia. Epidemiological studies have suggested that HDL-C is inversely correlated with cardiovascular (CV) risk, but recent Mendelian randomization data have shown a lack of atheroprotective causal effects of HDL-C. This review will focus on primary forms of HALP, the role of polygenic inheritance on HDL-C, associated risk for cardiovascular diseases and possible treatment options.
Collapse
Affiliation(s)
- Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Carlo Maria Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Emilio Nardi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Rosalia Caldarella
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Marcello Ciaccio
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Maurizio Rocco Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
- Correspondence:
| |
Collapse
|
36
|
Clément AA, Desgagné V, Légaré C, Guay SP, Boyer M, Hutchins E, Corbin F, Keuren-Jensen KV, Arsenault BJ, Guérin R, Bouchard L. HDL-enriched miR-30a-5p is associated with HDL-cholesterol levels and glucose metabolism in healthy men and women. Epigenomics 2021; 13:985-994. [PMID: 33993731 DOI: 10.2217/epi-2020-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the associations between high-density lipoprotein (HDL)-enriched miRNAs and the cardiometabolic profile of healthy men and women. Patients & methods: miRNAs were quantified using next-generation sequencing of miRNAs extracted from purified HDL and plasma from 17 healthy men and women couples. Results: Among the HDL-enriched miRNAs, miR-30a-5p correlated positively with HDL-cholesterol levels, whereas miR-144-5p and miR-30a-5p were negatively associated with fasting insulin levels and Homeostasis model assessment of insulin resistance index. Overall, miR-30a-5p, miR-150-5p and sex contributed to 45% of HDL-cholesterol variance. A model containing only miR-30a-5p, age and sex explained 41% of fasting glucose variance. Conclusion: HDL-enriched miRNAs, notably miR-30a-5p, are associated with cardiometabolic markers. These miRNAs could play a role in HDL's protective functions, particularly regarding glucose-insulin homeostasis.
Collapse
Affiliation(s)
- Andrée-Anne Clément
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Véronique Desgagné
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Biologie Médicale, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Cécilia Légaré
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Simon-Pierre Guay
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Médecine, Programme de Formation Médicale à Saguenay (PFMS), Université de Sherbrooke, Sherbrooke, Québec, G7H 2B1, Canada.,Department of Medical Genetics, MUHC, McGill University, Montreal, Québec, H4A 3J1, Canada
| | - Marjorie Boyer
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Québec, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - François Corbin
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Québec, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Renée Guérin
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Biologie Médicale, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Luigi Bouchard
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Département de Biologie Médicale, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| |
Collapse
|
37
|
B Uribe K, Benito-Vicente A, Martin C, Blanco-Vaca F, Rotllan N. (r)HDL in theranostics: how do we apply HDL's biology for precision medicine in atherosclerosis management? Biomater Sci 2021; 9:3185-3208. [PMID: 33949389 DOI: 10.1039/d0bm01838d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are key players in cholesterol metabolism homeostasis since they are responsible for transporting excess cholesterol from peripheral tissues to the liver. Imbalance in this process, due to either excessive accumulation or impaired clearance, results in net cholesterol accumulation and increases the risk of cardiovascular disease (CVD). Therefore, significant effort has been focused on the development of therapeutic tools capable of either directly or indirectly enhancing HDL-guided reverse cholesterol transport (RCT). More recently, in light of the emergence of precision nanomedicine, there has been renewed research interest in attempting to take advantage of the development of advanced recombinant HDL (rHDL) for both therapeutic and diagnostic purposes. In this review, we provide an update on the different approaches that have been developed using rHDL, focusing on the rHDL production methodology and rHDL applications in theranostics. We also compile a series of examples highlighting potential future perspectives in the field.
Collapse
Affiliation(s)
- Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain. and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| | - Noemi Rotllan
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| |
Collapse
|
38
|
High-density lipoprotein's vascular protective functions in metabolic and cardiovascular disease - could extracellular vesicles be at play? Clin Sci (Lond) 2021; 134:2977-2986. [PMID: 33210708 DOI: 10.1042/cs20200892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
High-density lipoprotein (HDL) is a circulating complex of lipids and proteins known primarily for its role in reverse cholesterol transport and consequent protection from atheroma. In spite of this, therapies aimed at increasing HDL concentration do not reduce the risk of cardiovascular disease (CVD), and as such focus has shifted towards other HDL functions protective of vascular health - including vasodilatory, anti-inflammatory, antioxidant and anti-thrombotic actions. It has been demonstrated that in disease states such as CVD and conditions of insulin resistance such as Type 2 diabetes mellitus (T2DM), HDL function is impaired owing to changes in the abundance and function of HDL-associated lipids and proteins, resulting in reduced vascular protection. However, the gold standard density ultracentrifugation technique used in the isolation of HDL also co-isolates extracellular vesicles (EVs). EVs are ubiquitous cell-derived particles with lipid bilayers that carry a number of lipids, proteins and DNA/RNA/miRNAs involved in cell-to-cell communication. EVs transfer their bioactive load through interaction with cell surface receptors, membrane fusion and endocytic pathways, and have been implicated in both cardiovascular and metabolic diseases - both as protective and pathogenic mediators. Given that studies using density ultracentrifugation to isolate HDL also co-isolate EVs, biological effects attributed to HDL may be confounded by EVs. We hypothesise that some of HDL's vascular protective functions in cardiovascular and metabolic disease may be mediated by EVs. Elucidating the contribution of EVs to HDL functions will provide better understanding of vascular protection and function in conditions of insulin resistance and potentially provide novel therapeutic targets for such diseases.
Collapse
|
39
|
Extremely low HDL and residual cardiovascular risk—a case report. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-020-00907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
41
|
Hunjadi M, Lamina C, Kahler P, Bernscherer T, Viikari J, Lehtimäki T, Kähönen M, Hurme M, Juonala M, Taittonen L, Laitinen T, Jokinen E, Tossavainen P, Hutri-Kähönen N, Raitakari O, Ritsch A. HDL cholesterol efflux capacity is inversely associated with subclinical cardiovascular risk markers in young adults: The cardiovascular risk in Young Finns study. Sci Rep 2020; 10:19223. [PMID: 33154477 PMCID: PMC7645719 DOI: 10.1038/s41598-020-76146-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The atherogenic process begins already in childhood and progresses to symptomatic condition with age. We investigated the association of cholesterol efflux capacity (CEC) and vascular markers of subclinical atherosclerosis in healthy, young adults. CEC was determined in 2282 participants of the Young Finns study using cAMP treated 3H-cholesterol-labeled J774 cells. The CEC was correlated to baseline and 6-year follow-up data of cardiovascular risk factors and ultrasound measurements of arterial structure and function. CEC was higher in women, correlated with total cholesterol, HDL-C, and apolipoprotein A-I, but not with LDL-C or apolipoprotein B. Compared to the lowest CEC quartile, the highest CEC quartile was significantly associated with high CRP levels and inversely associated with adiponectin. At baseline, high CEC was associated with decreased flow-mediated dilation (FMD) and carotid artery distensibility, as well as an increased Young's modulus of elasticity, indicating adverse changes in arterial structure, and function. The association reversed with follow-up FMD data, indicating the interaction of preclinical parameters over time. A higher CEC was directly associated with a lower risk of subclinical atherosclerosis at follow-up. In young and healthy subjects, CEC was associated with important lipid risk parameters at baseline, as in older patients and CAD patients, but inversely with early risk markers for subclinical atherosclerosis.
Collapse
Affiliation(s)
- Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Claudia Lamina
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Kahler
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Tamara Bernscherer
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Jorma Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University and Pirkanmaa Hospital District, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | | | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio, University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Eero Jokinen
- Department of Pediatric Cardiology, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, Oulu University Hospital, PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland
| | - Nina Hutri-Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| |
Collapse
|
42
|
Martinez LO, Ingueneau C, Genoux A. Is it time to reconcile HDL with cardiovascular diseases and beyond? An update on a paradigm shift. Curr Opin Lipidol 2020; 31:302-304. [PMID: 32881754 DOI: 10.1097/mol.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Laurent O Martinez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases
- University of Toulouse, UMR1048, Paul Sabatier University
| | - Cécile Ingueneau
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases
- University of Toulouse, UMR1048, Paul Sabatier University
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Annelise Genoux
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases
- University of Toulouse, UMR1048, Paul Sabatier University
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
43
|
Ben-Aicha S, Casaní L, Muñoz-García N, Joan-Babot O, Peña E, Aržanauskaitė M, Gutierrez M, Mendieta G, Padró T, Badimon L, Vilahur G. HDL (High-Density Lipoprotein) Remodeling and Magnetic Resonance Imaging-Assessed Atherosclerotic Plaque Burden: Study in a Preclinical Experimental Model. Arterioscler Thromb Vasc Biol 2020; 40:2481-2493. [PMID: 32847390 DOI: 10.1161/atvbaha.120.314956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE HDL (high-density lipoprotein) role in atherosclerosis is controversial. Clinical trials with CETP (cholesterylester transfer protein)-inhibitors have not provided benefit. We have shown that HDL remodeling in hypercholesterolemia reduces HDL cardioprotective potential. We aimed to assess whether hypercholesterolemia affects HDL-induced atherosclerotic plaque regression. Approach and Results: Atherosclerosis was induced in New Zealand White rabbits for 3-months by combining a high-fat-diet and double-balloon aortic denudation. Then, animals underwent magnetic resonance imaging (basal plaque) and randomized to receive 4 IV infusions (1 infusion/wk) of HDL isolated from normocholesterolemic (NC-HDL; 75 mg/kg; n=10), hypercholesterolemic (HC-HDL; 75 mg/Kg; n=10), or vehicle (n=10) rabbits. Then, animals underwent a second magnetic resonance imaging (end plaque). Blood, aorta, and liver samples were obtained for analyses. Follow-up magnetic resonance imaging revealed that NC-HDL administration regressed atherosclerotic lesions by 4.3%, whereas, conversely, the administration of HC-HDLs induced a further 6.5% progression (P<0.05 versus basal). Plaque characterization showed that HC-HDL administered animals had a 2-fold higher lipid and cholesterol content versus those infused NC-HDL and vehicle (P<0.05). No differences were observed among groups in CD31 levels, nor in infiltrated macrophages or smooth muscle cells. Plaques from HC-HDL administered animals exhibited higher Casp3 (caspase 3) content (P<0.05 versus vehicle and NC-HDL) whereas plaques from NC-HDL infused animals showed lower expression of Casp3, Cox1 (cyclooxygenase 1), inducible nitric oxide synthase, and MMP (metalloproteinase) activity (P<0.05 versus HC-HDL and vehicle). HDLs isolated from animals administered HC-HDL displayed lower antioxidant potential and cholesterol efflux capacity as compared with HDLs isolated from NC-HDL-infused animal and vehicle or donor HDL (P<0.05). There were no differences in HDL-ApoA1 content, ABCA1 (ATP-binding cassette transporter A1) vascular expression, and SRB1 (scavenger receptor B1) and ABCA1 liver expression. CONCLUSIONS HDL particles isolated from a hypercholesterolemic milieu lose their ability to regress and stabilize atherosclerotic lesions. Our data suggest that HDL remodeling in patients with co-morbidities may lead to the loss of HDL atheroprotective functions.
Collapse
Affiliation(s)
- Soumaya Ben-Aicha
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- School of Medicine, University of Barcelona (UB), Spain (S.B., G.M.)
| | - Laura Casaní
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Oriol Joan-Babot
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Esther Peña
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
| | - Monika Aržanauskaitė
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Manuel Gutierrez
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
| | - Guiomar Mendieta
- School of Medicine, University of Barcelona (UB), Spain (S.B., G.M.)
- Cardiology Department, Hospital Clinico Barcelona Spain (G.M.)
| | - Teresa Padró
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
- Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB), Spain(L.B.)
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (S.B., L.C., N.M.-G., O.J.-B., E.P., M.A., M.G., T.P., L.B., G.V.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III (T.P., L.B., G.V., E.P.)
| |
Collapse
|
44
|
Curley S, Gall J, Byrne R, Yvan‐Charvet L, McGillicuddy FC. Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Mol Nutr Food Res 2020; 65:e1900482. [DOI: 10.1002/mnfr.201900482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sean Curley
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Julie Gall
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Rachel Byrne
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Laurent Yvan‐Charvet
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Fiona C. McGillicuddy
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
45
|
Stoye NM, Dos Santos Guilherme M, Endres K. Alzheimer's disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J 2020; 34:11883-11899. [PMID: 32681583 DOI: 10.1096/fj.201903128rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) affects around 33 million people worldwide, which makes it the most prominent form of dementia. The main focus of AD research has been on the central nervous system (CNS) for long, but in recent years, the gut gained more attention. The intestinal tract is innervated by the enteric nervous system (ENS), built of numerous different types of neurons showing great similarity to neurons of the CNS. It already has been demonstrated that the amyloid precursor protein, which plays a major role in AD pathology, is also expressed in these cells. We analyzed gut tissue of AD model mice (5xFAD) and the respective wild-type littermates at different pathological stages: pre-pathological, early pathological and late pathological. Our results show significant difference in function of the intestine of 5xFAD mice as compared to wild-type mice. Using a pathway array detecting 84 AD-related gene products, we found ApoA1 expression significantly altered in colon tissue of 5xFAD mice. Furthermore, we unveil ApoA1's beneficial impact on cell viability and calcium homeostasis of cultured enteric neurons of 5xFAD animals. With this study, we demonstrate that the intestine is altered in AD-like pathology and that ApoA1 might be one key player within the gut.
Collapse
Affiliation(s)
- Nicolai M Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
46
|
Serum level of HDL particles are independently associated with long-term prognosis in patients with coronary artery disease: The GENES study. Sci Rep 2020; 10:8138. [PMID: 32424189 PMCID: PMC7234989 DOI: 10.1038/s41598-020-65100-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
HDL-Cholesterol (HDL-C) is not an accurate surrogate marker to measure the cardioprotective functions of HDL in coronary artery diseases (CAD) patients. Hence, measurement of other HDL-related parameters may have prognostic superiority over HDL-C. In this work, we examined the predictive value of HDL particles profile for long-term mortality in CAD patients and to compare its informative value to that of HDL-C and apoA-I. HDL particles profiles were measured by nuclear magnetic resonance (NMR) spectroscopy in 214 male participants with stable CAD (45-74 years). Median follow up was 12.5 years with a 36.4% mortality rate. Cardiovascular mortality accounted for 64.5%. Mean concentrations of total HDL particles (HDL-P), small-sized HDL (SHDL-P) and apoA-I were lower in deceased than in surviving patients whereas no difference was observed according to HDL-C and large HDL particles. All NMR-HDL measures were correlated between themselves and with other HDL markers (HDL-C, apoA-I and LpA-I). In a multivariate model adjusted for cardiovascular risk factors and bioclinical variables, HDL-P and SHDL-P displayed the strongest inverse association with all-cause and cardiovascular mortality. Weaker associations were recorded for apoA-I. Based on our results, we conclude that HDL particle profile measured by NMR spectroscopy should be considered to better stratify risk in population at high risk or in the setting of pharmacotherapy.
Collapse
|
47
|
Meilhac O, Tanaka S, Couret D. High-Density Lipoproteins Are Bug Scavengers. Biomolecules 2020; 10:biom10040598. [PMID: 32290632 PMCID: PMC7226336 DOI: 10.3390/biom10040598] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Lipoproteins were initially defined according to their composition (lipids and proteins) and classified according to their density (from very low- to high-density lipoproteins—HDLs). Whereas their capacity to transport hydrophobic lipids in a hydrophilic environment (plasma) is not questionable, their primitive function of cholesterol transporter could be challenged. All lipoproteins are reported to bind and potentially neutralize bacterial lipopolysaccharides (LPS); this is particularly true for HDL particles. In addition, HDL levels are drastically decreased under infectious conditions such as sepsis, suggesting a potential role in the clearance of bacterial material and, particularly, LPS. Moreover, "omics" technologies have unveiled significant changes in HDL composition in different inflammatory states, ranging from acute inflammation occurring during septic shock to low-grade inflammation associated with moderate endotoxemia such as periodontal disease or obesity. In this review, we will discuss HDL modifications associated with exposure to pathogens including bacteria, viruses and parasites, with a special focus on sepsis and the potential of HDL therapy in this context. Low-grade inflammation associated with atherosclerosis, periodontitis or metabolic syndrome may also highlight the protective role of HDLs in theses pathologies by other mechanisms than the reverse transport of cholesterol.
Collapse
Affiliation(s)
- Olivier Meilhac
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; (S.T.); (D.C.)
- CHU de La Réunion, Centre d’Investigations Clinique 1410, 97410 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-88-11
| | - Sébastien Tanaka
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; (S.T.); (D.C.)
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 75018 Paris, France
| | - David Couret
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; (S.T.); (D.C.)
- CHU de La Réunion, Neurocritical Care Unit, 97410 Saint-Pierre, France
| |
Collapse
|
48
|
Jomard A, Osto E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med 2020; 7:39. [PMID: 32296714 PMCID: PMC7136892 DOI: 10.3389/fcvm.2020.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
High Density Lipoproteins (HDLs) have long been considered as “good cholesterol,” beneficial to the whole body and, in particular, to cardio-vascular health. However, HDLs are complex particles that undergoes dynamic remodeling through interactions with various enzymes and tissues throughout their life cycle, making the complete understanding of its functions and roles more complicated than initially expected. In this review, we explore the novel understanding of HDLs' behavior in health and disease as a multifaceted class of lipoprotein, with different size subclasses, molecular composition, receptor interactions, and functionality. Further, we report on emergent HDL-based therapeutics tested in small and larger scale clinical trials and their mixed successes.
Collapse
Affiliation(s)
- Anne Jomard
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
The Role and Function of HDL in Patients with Chronic Kidney Disease and the Risk of Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21020601. [PMID: 31963445 PMCID: PMC7014265 DOI: 10.3390/ijms21020601] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health problem with steadily increasing occurrence. Significantly elevated cardiovascular morbidity and mortality have been observed in CKD. Cardiovascular diseases are the most important and frequent cause of death of CKD patients globally. The presence of CKD is related to disturbances in lipoprotein metabolism whose consequences are dyslipidemia and the accumulation of atherogenic particles. CKD not only fuels the reduction of high-density lipoprotein (HDL) cholesterol concentration, but also it modifies the composition of this lipoprotein. The key role of HDL is the participation in reverse cholesterol transport from peripheral tissues to the liver. Moreover, HDL prevents the oxidation of low-density lipoprotein (LDL) cholesterol by reactive oxygen species (ROS) and protects against the adverse effects of oxidized LDL (ox-LDL) on the endothelium. Numerous studies have demonstrated the ability of HDL to promote the production of nitric oxide (NO) by endothelial cells (ECs) and to exert antiapoptotic and anti-inflammatory effects. Increasing evidence suggests that in patients with chronic inflammatory disorders, HDLs may lose important antiatherosclerotic properties and become dysfunctional. So far, no therapeutic strategy to raise HDL, or alter the ratio of HDL subfractions, has been successful in slowing the progression of CKD or reducing cardiovascular disease in patients either with or without CKD.
Collapse
|
50
|
Li X, Su T, Xiao H, Gao P, Xiong C, Liu J, Zou H. Association of the HDL-c Level with HsCRP, IL-6, U-NAG, RBP and Cys-C in Type 2 Diabetes Mellitus, Hypertension, and Chronic Kidney Disease: An Epidemiological Survey. Diabetes Metab Syndr Obes 2020; 13:3645-3654. [PMID: 33116716 PMCID: PMC7568590 DOI: 10.2147/dmso.s265735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To explore the association between the anti-inflammatory and renal protective roles of high-density lipoprotein cholesterol (HDL-c) and its different levels in type 2 diabetes mellitus (T2D), hypertension (HTN), and chronic kidney disease (CKD) and to lay a theoretical basis for precise, maximum-benefit HDL-c-raising therapy for patients with these diseases. PATIENTS AND METHODS A total of 2127 participants (195 with T2D, 618 with HTN, 162 with CKD, and 1152 controls) were selected and divided into four groups according to their baseline HDL-c level, namely, low HDL-c (L-HDL-c, ≤1.03 mmol/L), medium HDL-c (M-HDL-c, 1.04-1.55 mmol/L), high HDL-c (H-HDL-c, 1.56-2.05 mmol/L) and extremely high HDL-c (E-HDL-c, ≥ 2.06 mmol/L). Serum and morning urine samples were collected to analyze the correlation between high-sensitivity C-reactive protein (HsCRP), interleukin-6 (IL-6), urine n-acetyl-β-d-glucosidase (U-NAG), retinol binding protein (RBP), and cystatin c (Cys-C) levels with the HDL-c levels. RESULTS The HDL-c levels of patients with T2D, HTN and CKD were universally lower than those in the control group in both sexes (p<0.05), while male patients also manifested a lower level of HDL-c than female patients. However, although they had lower values of the renal impairment index, female patients were found to have anomalously higher amounts of proinflammatory cytokines. In addition, the correlations between HsCRP and RBP levels and HDL-c levels were most significant in patients with HTN (p<0.05), whereas in patients with T2D and CKD, such relevance was less significant. CONCLUSION Existence of substantial differences in HDL-c levels between different types of disease and sex highlighted that a higher HDL level does not always predict a better clinical outcome of patients. Moreover, we found that both HsCRP and RBP correlated negatively with HDL-c in HTN patients, indicating that monitoring HsCRP and RBP may serve as indicators for therapeutic efficacy of HDL-c-raising medications in HTN patients.
Collapse
Affiliation(s)
- Xiaolin Li
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
- Department of Endocrinology, Hunan University of Medicine, Huaihua 418000, Hunan, People’s Republic of China
| | - Ting Su
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of China
| | - Hua Xiao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Peichun Gao
- School of Public Health, Southern Medical University, Guangzhou510080, People’s Republic of China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of China
- Correspondence: Jinghua Liu Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of ChinaTel +86 20 61648392Fax +86 20 61648231 Email
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou510630, People’s Republic of China
- Hequn ZouDepartment of Nephrology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Dadao, Tianhe District, Guangzhou510630, People’s Republic of ChinaTel +86 20 62784393Fax +86 20 62784399 Email
| |
Collapse
|