1
|
Wu S, Gao J, Han Y, Zhang W, Li X, Kong D, Wang H, Zuo L. Balancing act: The dual role of claudin-2 in disease. Ann N Y Acad Sci 2025; 1546:75-89. [PMID: 40101185 DOI: 10.1111/nyas.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Claudin-2 (CLDN2), a tight junction protein, is predominantly found in leaky epithelial cell layers where it plays a pivotal role in forming paracellular pores necessary for the efficient transport of cations and water. Its abundance is intricately regulated by upstream signals, modulating its synthesis, transport, and localization to adapt to diverse environmental changes. Aberrant expression levels of CLDN2 are observed in numerous pathological conditions including cancer, inflammation, immune disorders, fibrosis, and kidney and biliary stones. Recent advances have uncovered the mechanisms by which the loss or restoration of CLDN2 affects functions such as epithelial barrier, cell proliferation, renewal, migration, invasion, and tissue regeneration. This exerts a dual-directional influence on the pathogenesis, perpetuation, and progression of diseases, indicating the potential to both accelerate and decelerate the course of disease evolution. Here, we discuss these nuanced bidirectional regulatory effects mediated by CLDN2, and how it may contribute to the progression or regression of disease when it becomes unbalanced.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jia Gao
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiran Han
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xue Li
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Brandauer K, Lorenz A, Schobesberger S, Schuller P, Frauenlob M, Spitz S, Ertl P. Sensor-integrated gut-on-a-chip for monitoring senescence-mediated changes in the intestinal barrier. LAB ON A CHIP 2025; 25:1694-1706. [PMID: 40007323 DOI: 10.1039/d4lc00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The incidence of inflammatory bowel disease among the elderly has significantly risen in recent years, posing a growing socioeconomic burden to aging societies. Moreover, non-gastrointestinal diseases, also prevalent in this demographic, have been linked to intestinal barrier dysfunction, thus highlighting the importance of investigating aged-mediated changes within the human gut. While gastrointestinal pathology often involves an impaired gut barrier, the impact of aging on the human gastrointestinal barrier function remains unclear. To explore the effect of senescence, a key hallmark of aging, on gut barrier integrity, we established and evaluated an in vitro gut-on-a-chip model tailored to investigate barrier changes by the integration of an impedance sensor. Here, a microfluidic gut-on-a-chip system containing integrated membrane-based electrode microarrays is used to non-invasively monitor epithelial barrier formation and senescence-mediated changes in barrier integrity upon treating Caco-2 cells with 0.8 μg mL-1 doxorubicin (DXR), a chemotherapeutic which induces cell cycle arrest. Results of our microfluidic human gut model reveal a DXR-mediated increase in impedance and cell hypertrophy as well as overexpression of p21, and CCL2, indicative of a senescent phenotype. Combined with the integrated electrodes, monitoring ∼57% of the cultivation area in situ and non-invasively, the developed chip-based senescent-gut model is ideally suited to study age-related malfunctions in barrier integrity.
Collapse
Affiliation(s)
- Konstanze Brandauer
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Alexandra Lorenz
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | - Patrick Schuller
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Martin Frauenlob
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Sarah Spitz
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
3
|
Xu J, Qiao H, Gan L, Wang P, Zhao Y, Lei Z, Chou Y, Hou C, Li M, Wang J. Impacts of zinc caproate supplementation on growth performance, intestinal health, anti-inflammatory activity, and Zn homeostasis in weaned piglets challenged with Escherichia coli K88. J Anim Sci Biotechnol 2025; 16:44. [PMID: 40087676 PMCID: PMC11908000 DOI: 10.1186/s40104-025-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is one of the primary causes of diarrhea in piglets, creating substantial economic losses in the swine farming industry worldwide. This study aimed to investigate the impacts of zinc caproate (ZnCA, C12H22O4Zn) on the intestinal health, growth performance, inflammatory status, and Zn homeostasis of weaned piglets challenged with ETEC K88. In total, 48 weaned piglets (Duroc × Landrace × Yorkshire, 7.78 ± 0.19 kg, 28 d) were selected for a 21-d experiment. Each experimental treatment consisted of 6 replicate pens with 2 piglets each. The treatment conditions were as follows: i) a basal diet (CON), ii) a basal diet + ETEC K88 (NC), iii) a basal diet + 2,500 mg/kg of Zn (provided as zinc oxide, ZnO) + ETEC K88 (PC), and iv) a basal diet + 1,600 mg/kg of Zn (provided as ZnCA) + ETEC K88 (ZnCA). RESULTS The addition of 1,600 mg/kg ZnCA to the diet of post-weaning piglets effectively enhanced growth performance and nutrient digestibility and reduced the incidence of diarrhea and inflammatory reactions caused by ETEC K88 infection. These therapeutic effects were comparable to those of pharmacological doses of ZnO. In terms of improving intestinal health and Zn homeostasis in post-weaning piglets challenged with ETEC K88, the effectiveness of 1,600 mg/kg ZnCA surpassed that of pharmacological doses of ZnO. CONCLUSIONS Overall, under the experimental conditions of this study, ZnCA exhibited the potential to reduce the pharmacological dosage of ZnO while improving intestinal health and Zn homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Jilong Xu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Hanzhen Qiao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Liping Gan
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Peng Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yifeng Zhao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Zetian Lei
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yixuan Chou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Chenrui Hou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Mengqi Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Jinrong Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Kilari G, Tran J, Blyth GAD, Cobo ER. Human cathelicidin LL-37 rapidly disrupted colonic epithelial integrity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184410. [PMID: 39837472 DOI: 10.1016/j.bbamem.2025.184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
The intestinal barrier, held together by epithelial cells and intercellular tight junction (TJ) proteins, prevents the penetration of microbial pathogens. Concurrently, intestinal epithelial cells secrete antimicrobial peptides, including cathelicidin. Cathelicidin has direct antibacterial and immunomodulatory functions, although its role in intestinal integrity remains elusive. In this study, we demonstrate that direct stimulation of human colonic epithelial (T84) cells with human cathelicidin, LL-37, resulted in a rapid and transient increase in epithelial cell permeability. This increased permeability was associated with the TJ proteins occludin and claudin-2 degradation, mediated by these specific proteins' endocytosis and lysosomal degradation. While murine cathelicidin (CRAMP) failed to modify T84 cell permeability, LL-37 degraded TJ proteins in murine rectal epithelial (CMT-93) cells. The stimulus of (CMT-93) cells with LL-37 aggravated the cell permeability and furthered TJ degradation provoked by the intestinal pathogen, attaching/effacing (A/E) Citrobacter rodentium (C. rodentium). The number of C. rodentium that colonized CMT-93 cells was not severely impacted by the presence of LL-37. While a temporary disruption of tight junctions by LL-37 may lead to a 'leaky gut,' this study demonstrates that LL-37 increases epithelial cell permeability by degrading TJ proteins occludin and claudin-2 through endocytosis and lysosomal degradation. These immunomodulatory actions occurring at concentrations lower than those microbicidal uncover a new guise for cathelicidin modulating the epithelial barrier against A/E pathogens. Recognizing native cathelicidin's functions in a specified disease setting (e.g., colitis) will help establish it as an anti-infectious immunomodulator.
Collapse
Affiliation(s)
- Geeta Kilari
- Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, Canada
| | | | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
5
|
Qiao CH, Liu TT, Li YY, Wang SD, Chen YX. Exploring the promising potential of alcohol extract from the aerial part of dill in ameliorating DSS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119237. [PMID: 39667686 DOI: 10.1016/j.jep.2024.119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dill (Anethum graveolens L.) is a typical Uyghur medicine. It is traditionally used to treat sticky and stagnant dampness, hiccups and food stagnation, intestinal obstruction, and anorectal diseases. STUDY OBJECTIVE Our study is designed to investigate the potential of alcohol extract from the aerial part of dill in ameliorating ulcerative colitis induced by Dextran Sulfate Sodium Salt (DSS) in mice. MATERIALS AND METHODS In this paper, the chemical composition of the aerial part of dill was speculated from the data obtained by LC-MS and determined by comparing with 10 standards through HPLC. The aerial part of fresh dill was dried, crushed, sieved, and then extracted with 70% ethanol to obtain DE. The lipopolysaccharide (LPS)-induced RAW264.7 cells were used to test the anti-inflammatory activity of DE in vitro. The impact of DE on UC was also studied in vivo. UC was induced by drinking 2.5% DSS to C57BL/6 mice for 6 days. The positive control group received 5-aminosalicylic acid (5-ASA) by gavage, and the low and high-dose treatment groups were respectively given 200 mg/kg and 400 mg/kg of DE by gavage daily for 7 days from the first day. RESULTS DE significantly reduces the disease activity index (DAI) and colon histopathological damage. DE can also alleviate oxidative stress and inflammation in UC mice by reducing IL-6, IL-1β, MDA, and MPO levels and increasing CAT and GSH levels in colonic tissues. DE can protect the integrity of the colonic mucosal barrier by reducing damage to goblet cells, increasing the levels of mucin MUC2, and regulating the expression of tight junction proteins such as ZO-1, Occludin, Claudin-1, and Claudin-2. In addition, DE improves the ratio of beneficial and harmful bacteria, thus further alleviating the imbalance of intestinal flora. CONCLUSION DE has anti-inflammatory activity in vitro and an ameliorative effect on DSS-induced UC in mice by alleviating oxidative stress and inflammation, protecting the integrity of the intestinal barrier, and regulating intestinal flora.
Collapse
Affiliation(s)
- Chen-Huan Qiao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, 430068, Wuhan, China
| | - Tian-Tian Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, 430068, Wuhan, China
| | - Yao-Yao Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, 430068, Wuhan, China
| | - Shi-Dan Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, 430068, Wuhan, China
| | - Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, 430068, Wuhan, China.
| |
Collapse
|
6
|
Smith KM, Francisco SG, Zhu Y, LeRoith T, Davis ML, Crott JW, Barger K, Greenberg AS, Smith DE, Taylor A, Yeruva L, Rowan S. Dietary prevention of antibiotic-induced dysbiosis and mortality upon aging in mice. FASEB J 2024; 38:e70241. [PMID: 39655692 PMCID: PMC11629448 DOI: 10.1096/fj.202402262r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Oral antibiotic use is both widespread and frequent in older adults and has been linked to dysbiosis of the gut microbiota, enteric infection, and chronic diseases. Diet and nutrients, particularly prebiotics, may modify the susceptibility of the gut microbiome to antibiotic-induced dysbiosis. We fed 12-month-old mice a high glycemic (HG) or low glycemic (LG) diet with or without antibiotics (ampicillin and neomycin) for an additional 11 months. The glycemic index was modulated by the ratio of rapidly digested amylopectin starch to slowly digested amylose, a type-2-resistant starch. We observed a significant decrease in survival of mice fed a HG diet containing antibiotics (HGAbx) relative to those fed a LG diet containing antibiotics (LGAbx). HGAbx mice died with an enlarged and hemorrhagic cecum, which is associated with colonic hyperplasia and goblet cell depletion. Gut microbiome analysis revealed a pronounced expansion of Proteobacteria and a near-complete loss of Bacteroidota and Firmicutes commensal bacteria in HGAbx, whereas the LGAbx group maintained a population of Bacteroides and more closely resembled the LG microbiome. The predicted functional capacity for bile salt hydrolase activity was lost in HGAbx mice but retained in LGAbx mice. An LG diet containing amylose may therefore be a potential therapeutic to prevent antibiotic-induced dysbiosis and morbidity.
Collapse
Affiliation(s)
- Kelsey M. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Sarah G. Francisco
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Ying Zhu
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Tanya LeRoith
- Department of Biomedical Sciences and PathobiologyVA‐MD College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - Meredith L. Davis
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Jimmy W. Crott
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- Department of Pathology & Laboratory MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Donald E. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Laxmi Yeruva
- USDA‐ARS, Microbiome and Metabolism Research UnitArkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Sheldon Rowan
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
7
|
Ji Y, Xiao Y, Li S, Fan Y, Cai Y, Yang B, Chen H, Hu S. Protective effect and mechanism of Xiaoyu Xiezhuo decoction on ischemia-reperfusion induced acute kidney injury based on gut-kidney crosstalk. Ren Fail 2024; 46:2365982. [PMID: 39010816 PMCID: PMC11740681 DOI: 10.1080/0886022x.2024.2365982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
This study aimed to explore the mechanism of Xiaoyu Xiezhuo decoction (XXD) on ischemia-reperfusion-induced acute kidney injury (IRI-AKI) using network pharmacology methods and gut microbiota analysis. A total of 1778 AKI-related targets were obtained, including 140 targets possibly regulated by AKI in XXD, indicating that the core targets were mainly enriched in inflammatory-related pathways, such as the IL-17 signaling pathway and TNF signaling pathway. The unilateral IRI-AKI animal model was established and randomly divided into four groups: the sham group, the AKI group, the sham + XXD group, and the AKI + XXD group. Compared with the rats in the AKI group, XXD improved not only renal function, urinary enzymes, and biomarkers of renal damage such as Kim-1, cystatin C, and serum inflammatory factors such as IL-17, TNF-α, IL-6, and IL 1-β, but also intestinal metabolites including lipopolysaccharides, d-lactic acid, indoxyl sulfate, p-cresyl sulfate, and short-chain fatty acids. XXD ameliorated renal and colonic pathological injury as well as inflammation and chemokine gene abundance, such as IL-17, TNF-α, IL-6, IL-1β, ICAM-1, and MCP-1, in AKI rats via the TLR4/NF-κB/NLRP3 pathway, reducing the AKI score, renal pathological damage, and improving the intestinal mucosa's inflammatory infiltration. It also repaired markers of the mucosal barrier, including claudin-1, occludin, and ZO-1. Compared with the rats in the AKI group, the α diversity was significantly increased, and the Chao1 index was significantly enhanced after XXD treatment in both the sham group and the AKI group. The treatment group significantly reversed this change in microbiota.
Collapse
Affiliation(s)
- Yue Ji
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yunming Xiao
- Department of Nephrology, Medical School of Chinese PLA, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Shipian Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yihua Fan
- Department of Rheumatism and Immunity, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuzi Cai
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| | - Shouci Hu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| |
Collapse
|
8
|
Cherubini A, Rusconi F, Piras R, Wächtershäuser KN, Dossena M, Barilani M, Mei C, Hof L, Sordi V, Pampaloni F, Dolo V, Piemonti L, Lazzari L. Exploring human pancreatic organoid modelling through single-cell RNA sequencing analysis. Commun Biol 2024; 7:1527. [PMID: 39558019 PMCID: PMC11574267 DOI: 10.1038/s42003-024-07193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Human organoids have been proposed to be powerful tools mimicking the physiopathological processes of the organs of origin. Recently, human pancreatic organoids (hPOs) have gained increasing attention due to potential theragnostic and regenerative medicine applications. However, the cellular components of hPOs have not been defined precisely. In this work, we finely characterized these structures, focusing first on morphology and identity-defining molecular features under long-term culture conditions. Next, we focused our attention on hPOs cell type composition using single-cell RNA sequencing founding a complex heterogeneity in ductal components, ranging from progenitor components to terminally differentiated ducts. Furthermore, an extensive comparison of human pancreatic organoids with previously reported transcriptomics signature of human and mouse pancreatic ductal populations, confirmed the functional pancreatic duct subpopulation heterogeneity. Finally, we showed that pancreatic organoid cells follow a precise developmental trajectory and utilize diverse signalling mechanisms, including EGF and SPP1, to facilitate cell-cell communication and maturation. Together our results offer an in-depth description of human pancreatic organoids providing a strong foundation for future in vitro diagnostic and translational studies of pancreatic health and disease.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine Lab - Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesco Rusconi
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Piras
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kaja Nicole Wächtershäuser
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Marta Dossena
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Barilani
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Mei
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lotta Hof
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Valeria Sordi
- IRCCS Ospedale San Raffaele, San Raffaele Diabetes Research Institute, Milan, Italy
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, San Raffaele Diabetes Research Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
9
|
Peng K, Xiao S, Xia S, Li C, Yu H, Yu Q. Butyrate Inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 Expression and Improve the Intestinal Epithelial Barrier to Relieve Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24400-24416. [PMID: 39440960 DOI: 10.1021/acs.jafc.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dietary fiber is known to promote the production of short-chain fatty acids (SCFAs) by gut bacteria, which can enhance intestinal epithelial barrier function and ameliorate intestinal inflammation in patients with inflammatory bowel disease (IBD). Interestingly, some IBD patients show reduced expression of solute carrier family member 3 (Slc26a3) in intestinal epithelial cells. The objective of this research was to investigate the interaction between SCFAs and Slc26a3 during colitis and assess how this interaction affects intestinal epithelial barrier function. We showed that butyrate alleviated colonic inflammation in a dose-dependent manner in a dextran sulfate sodium salt (DSS)-induced colitis model. Consistent with this, butyrate increased Slc26a3 and tight junction protein levels. In addition, butyrate inhibited histone deacetylase (HDAC) levels and significantly increased the expression of Slc26a3 by the acetylation of histones in Caco-2BBe cells. The utilization of a pan-HDAC inhibitor or inhibitors specific to certain classes of HDACs revealed that butyrate primarily suppressed HDAC8 to blunt the NF-κB pathways and enhance the expression of Slc26a3. Notably, we demonstrated that HDAC8 activation counteracted the beneficial effect of butyrate in DSS-induced colitis. Therefore, we concluded that butyrate improves the expression of Slc26a3 via inhibition of the HDAC8/NF-κB pathway, leading to increased intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66160, Kansas, United States
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver V6H 3N1, British Columbia, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
10
|
Gentili M, Sabbatini S, Nunzi E, Lusenti E, Cari L, Mencacci A, Ballet N, Migliorati G, Riccardi C, Ronchetti S, Monari C. Glucocorticoid-Induced Leucine Zipper Protein and Yeast-Extracted Compound Alleviate Colitis and Reduce Fungal Dysbiosis. Biomolecules 2024; 14:1321. [PMID: 39456254 PMCID: PMC11506796 DOI: 10.3390/biom14101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)", known for its protective role in gut mucosa, and a yeast extract (Py) with prebiotic properties, either alone or combined, in DSS-induced colitis. Both treatments alleviated symptoms via overlapping or distinct mechanisms. In particular, they reduced the transcription levels of pro-inflammatory cytokines IL-1β and TNF-α, as well as the expression of the tight junction protein Claudin-2. Additionally, GILZp increased MUC2 transcription, while Py reduced IL-12p40 and IL-6 levels. Notably, both treatments were effective in restoring the intestinal burden of clinically important Candida and related species. Intestinal mycobiome analysis revealed that they were able to reduce colitis-associated fungal dysbiosis, and this effect was mainly the result of a decreased abundance of the Meyerozima genus, which was dominant in colitic mice. Overall, our results suggest that combined treatment regimens with GILZp and Py could represent a new strategy for the treatment of IBD by targeting multiple mechanisms, including the fungal dysbiosis.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Eleonora Lusenti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Luigi Cari
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Antonella Mencacci
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Nathalie Ballet
- Lesaffre Institute of Science & Technology, Lesaffre International, 59700 Marcq-en-Baroeul, France;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| |
Collapse
|
11
|
Zhang Q, Wang X, Chao Y, Liu L. Focus on oliguria during renal replacement therapy. J Anesth 2024; 38:681-691. [PMID: 38777933 PMCID: PMC11415420 DOI: 10.1007/s00540-024-03342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Oliguria is a clinical symptom characterized by decreased urine output, which can occur at any stage of acute kidney injury and also during renal replacement therapy. In some cases, oliguria may resolve with adjustment of blood purification dose or fluid management, while in others, it may suggest a need for further evaluation and intervention. It is important to determine the underlying cause of oliguria during renal replacement therapy and to develop an appropriate treatment plan. This review looks into the mechanisms of urine production to investigate the mechanism of oliguria during renal replacement therapy from two aspects: diminished glomerular filtration rate and tubular abnormalities. The above conditions all implying a renal oxygen supply-demand imbalance, which is the signal of worsening kidney injury. It also proposes a viable clinical pathway for the treatment and management of patients with acute kidney injury receiving renal replacement therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Intensive Care Unit (ICU), The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xiaoting Wang
- Department of Intensive Care Unit (ICU), Peking Union Medical College Hospital, Beijing, 100005, People's Republic of China
| | - Yangong Chao
- Department of Intensive Care Unit (ICU), The First Affiliated Hospital of Tsinghua University, Beijing, 100016, People's Republic of China
| | - Lixia Liu
- Department of Intensive Care Unit (ICU), The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People's Republic of China.
| |
Collapse
|
12
|
Jing L, Zhang Y, Zhang Q, Zhao H. Polystyrene microplastics disrupted physical barriers, microbiota composition and immune responses in the cecum of developmental Japanese quails. J Environ Sci (China) 2024; 144:225-235. [PMID: 38802233 DOI: 10.1016/j.jes.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 05/29/2024]
Abstract
Microplastics, a new type of emerging pollutant, is ubiquitous in terrestrial and water environments. Microplastics have become a growing concern due to their impacts on the environment, animal, and human health. Birds also suffer from microplastics contamination. In this study, we examined the toxic effects of polystyrene microplastics (PS-MPs) exposure on physical barrier, microbial community, and immune function in the cecum of a model bird species-Japanese quail (Coturnix japonica). The one-week-old birds were fed on environmentally relevant concentrations of 20 µg/kg, 400 µg/kg, and 8 mg/kg PS-MPs in the diet for 5 weeks. The results showed that microplastics could cause microstructural damages characterized by lamina propria damage and epithelial cell vacuolation and ultrastructural injuries including microvilli breakage and disarrangement as well as mitochondrial vacuolation in the cecum of quails. In particular, blurry tight junctions, wider desmosomes spacing, and gene expression alteration indicated cecal tight junction malfunction. Moreover, mucous layer breakdown and mucin decrease indicated that chemical barrier was disturbed by PS-MPs. PS-MPs also changed cecal microbial diversity. In addition, structural deformation of cecal tonsils and increasing proinflammatory cytokines suggested cecal immune disorder and inflammation responses by PS-MPs exposure. Our results suggested that microplastics negatively affected digestive system and might pose great health risks to terrestrial birds.
Collapse
Affiliation(s)
- Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Yu N, Su M, Wang J, Liu Y, Yang J, Zhang J, Wang M. Long-Term Exposure of Fresh and Aged Nano Zinc Oxide Promotes Hepatocellular Carcinoma Malignancy by Up-Regulating Claudin-2. Int J Nanomedicine 2024; 19:9989-10008. [PMID: 39371475 PMCID: PMC11453161 DOI: 10.2147/ijn.s478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Background Tumor development and progression is a long and complex process influenced by a combination of intrinsic (eg, gene mutation) and extrinsic (eg, environmental pollution) factors. As a detoxification organ, the liver plays an important role in human exposure and response to various environmental pollutants including nanomaterials (NMs). Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and remains a serious threat to human health. Whether NMs promote liver cancer progression remains elusive and assessing long-term exposure to subtoxic doses of nanoparticles (NPs) remains a challenge. In this study, we focused on the promotional effects of nano zinc oxide (nZnO) on the malignant progression of human HCC cells HepG2, especially aged nZnO that has undergone physicochemical transformation. Methods In in vitro experiments, we performed colony forming efficiency, soft agar colony formation, and cell migration/invasion assays on HepG2 cells that had been exposed to a low dose of nZnO (1.5 μg/mL) for 3 or 4 months. In in vivo experiments, we subcutaneously inoculated HepG2 cells that had undergone long-term exposure to nZnO for 4 months into BALB/c athymic nude mice and observed tumor formation. ZnCl2 was administered to determine the role of zinc ions. Results Chronic low-dose exposure to nZnO significantly intensified the malignant progression of HCC cells, whereas aged nZnO may exacerbate the severity of malignant progression. Furthermore, through transcriptome sequencing analysis and in vitro cellular rescue experiments, we demonstrated that the mechanism of nZnO-induced malignant progression of HCC could be linked to the activation of Claudin-2 (CLDN2), one of the components of cellular tight junctions, and the dysregulation of its downstream signaling pathways. Conclusion Long-term exposure of fresh and aged nZnO promotes hepatocellular carcinoma malignancy by up-regulating CLDN2. The implications of this work can be profound for cancer patients, as the use of various nanoproducts and unintentional exposure to environmentally transformed NMs may unknowingly hasten the progression of their cancers.
Collapse
Affiliation(s)
- Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingya Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
14
|
Justin Margret J, Jain SK. The Protective Role of L-Cysteine in the Regulation of Blood-Testis Barrier Functions-A Brief Review. Genes (Basel) 2024; 15:1201. [PMID: 39336792 PMCID: PMC11430845 DOI: 10.3390/genes15091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Blood-testis barrier (BTB) genes are crucial for the cellular mechanisms of spermatogenesis as they protect against detrimental cytotoxic agents, chemicals, and pathogens, thereby maintaining a sterile environment necessary for sperm development. BTB proteins predominantly consist of extensive tight and gap junctions formed between Sertoli cells. These junctions form a crucial immunological barrier restricting the intercellular movement of substances and molecules within the adluminal compartment. Epithelial tight junctions are complex membrane structures composed of various integral membrane proteins, including claudins, zonula occludens-1, and occludin. Inter-testicular cell junction proteins undergo a constant process of degradation and renewal. In addition, the downregulation of genes crucial to the development and preservation of cell junctions could disrupt the functionality of the BTB, potentially leading to male infertility. Oxidative stress and inflammation may contribute to disrupted spermatogenesis, resulting in male infertility. L-cysteine is a precursor to glutathione, a crucial antioxidant that helps mitigate damage and inflammation resulting from oxidative stress. Preclinical research indicates that L-cysteine may offer protective benefits against testicular injury and promote the expression of BTB genes. This review emphasizes various BTB genes essential for preserving its structural integrity and facilitating spermatogenesis and male fertility. Furthermore, it consolidates various research findings suggesting that L-cysteine may promote the expression of BTB-associated genes, thereby aiding in the maintenance of testicular functions.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
15
|
Pan Q, Lv T, Xu H, Fang H, Li M, Zhu J, Wang Y, Fan X, Xu P, Wang X, Wang Q, Matsumoto H, Wang M. Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100415. [PMID: 38577706 PMCID: PMC10992726 DOI: 10.1016/j.ese.2024.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
Emerging evidence suggests a link between alterations in the gut microbiome and adverse health outcomes in the hosts exposed to environmental pollutants. Yet, the causal relationships and underlying mechanisms remain largely undefined. Here we show that exposure to biotoxins can affect gut pathobiome assembly in amphibians, which in turn triggers the toxicity of exogenous pollutants. We used Xenopus laevis as a model in this study. Tadpoles exposed to tropolone demonstrated notable developmental impairments and increased locomotor activity, with a reduction in total length by 4.37%-22.48% and an increase in swimming speed by 49.96%-84.83%. Fusobacterium and Cetobacterium are predominant taxa in the gut pathobiome of tropolone-exposed tadpoles. The tropolone-induced developmental and behavioral disorders in the host were mediated by assembly of the gut pathobiome, leading to transcriptome reprogramming. This study not only advances our understanding of the intricate interactions between environmental pollutants, the gut pathobiome, and host health but also emphasizes the potential of the gut pathobiome in mediating the toxicological effects of environmental contaminants.
Collapse
Affiliation(s)
- Qianqian Pan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tianxing Lv
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haorong Xu
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Fang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Fan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xu
- Institution of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuguo Wang
- The Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qiangwei Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haruna Matsumoto
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Gioeva ZV, Mikhalev AI, Midiber KY, Pechnikova VV, Biryukov AE. Exploring the Role of the Gut Microbiota in Modulating Colorectal Cancer Immunity. Cells 2024; 13:1437. [PMID: 39273009 PMCID: PMC11394638 DOI: 10.3390/cells13171437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota plays an essential role in maintaining immune homeostasis and influencing the immune landscape within the tumor microenvironment. This review aims to elucidate the interactions between gut microbiota and tumor immune dynamics, with a focus on colorectal cancer (CRC). The review spans foundational concepts of immuno-microbial interplay, factors influencing microbiome composition, and evidence linking gut microbiota to cancer immunotherapy outcomes. Gut microbiota modulates anti-cancer immunity through several mechanisms, including enhancement of immune surveillance and modulation of inflammatory responses. Specific microbial species and their metabolic byproducts can significantly influence the efficacy of cancer immunotherapies. Furthermore, microbial diversity within the gut microbiota correlates with clinical outcomes in CRC, suggesting potential as a valuable biomarker for predicting response to immunotherapy. Conclusions: Understanding the relationship between gut microbiota and tumor immune responses offers potential for novel therapeutic strategies and biomarker development. The gut microbiota not only influences the natural history and treatment response of CRC but also serves as a critical modulator of immune homeostasis and anti-cancer activity. Further exploration into the microbiome's role could enhance the effectiveness of existing treatments and guide the development of new therapeutic modalities.
Collapse
Affiliation(s)
- Nikolay K. Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Liudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Arkady L. Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina V. Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Alexander I. Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Konstantin Y. Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
- Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Valentina V. Pechnikova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Andrey E. Biryukov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| |
Collapse
|
17
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
18
|
Santos EA, Silva JL, Leocádio PCL, Andrade MER, Queiroz-Junior CM, Oliveira NSS, Alves JL, Oliveira JS, Aguilar EC, Boujour K, Cogliati B, Cardoso VN, Fernandes SO, Faria AMC, Alvarez-Leite JI. Cutaneous Application of Capsaicin Cream Reduces Clinical Signs of Experimental Colitis and Repairs Intestinal Barrier Integrity by Modulating the Gut Microbiota and Tight Junction Proteins. ACS Pharmacol Transl Sci 2024; 7:2143-2153. [PMID: 39022369 PMCID: PMC11249629 DOI: 10.1021/acsptsci.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Capsaicin, a pungent compound in chili peppers, is described as having potent anti-inflammatory, antioxidant, and antimicrobial properties. It is also described as a potential modulator of the immune system and intestinal microbiota. Oral or rectal administration of capsaicin has been studied to treat or prevent colitis. However, those vias are often not well accepted due to the burning sensation that capsaicin can cause. Our objective was to evaluate whether the application of capsaicin skin creams (0.075%) would be effective in improving inflammation and epithelial barrier function as well as the composition of the gut microbiota in a model of mild colitis induced by dextran sulfate sodium (1.5%). The results showed that the cutaneous application of capsaicin reversed weight loss and decreased colon shortening and diarrhea, all typical signs of colitis. There was also an improvement in the intestinal epithelial barrier, preserving proteins from tight junctions. We also evaluated the biodistribution of 99mtechnetium-radiolabeled capsaicin (99mTc-CAPS) applied to the back skin of the animals. We found significant concentrations of 99 mTc-Cap in the colon and small intestine after 2 and 4 h of administration. In addition, there was an increased expression of capsaicin receptor TRPV1 in the colon. Moreover, animals with colitis receiving cutaneous capsaicin presented a better short-chain fatty acid profile and increased levels of SIgA, suggesting increased microbiota diversity. In conclusion, our work opens avenues for further studies to better understand capsaicin's potential benefits and mechanisms in addressing colitis through cutaneous application.
Collapse
Affiliation(s)
- Elandia A. Santos
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Janayne L. Silva
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Paola C. L. Leocádio
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Maria Emilia R. Andrade
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade de Farmácia da UFMG, Belo Horizonte 31270-901, Brazil
| | - Celso M. Queiroz-Junior
- Departamento
de Morfologia, Instituto de Ciências
Biológicas—(UFMG), Belo Horizonte 31270-901, Brazil
| | - Nathan S. S. Oliveira
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Juliana L. Alves
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Jamil S. Oliveira
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Edenil C. Aguilar
- Icahn School
of Medicine at Mount Sinai, New
York, New York 10029, United States
| | - Kennedy Boujour
- Departamento
de Patologia Animal, Universidade de São
Paulo (USP), São Paulo 05508-220, Brazil
- Department
of Cellular Biology and Infection, Unity of Biochemistry Membrane
and Transport, Institut Pasteur, Paris 75724, France
| | - Bruno Cogliati
- Departamento
de Patologia Animal, Universidade de São
Paulo (USP), São Paulo 05508-220, Brazil
| | - Valbert N. Cardoso
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade de Farmácia da UFMG, Belo Horizonte 31270-901, Brazil
| | - Simone Odilia
A. Fernandes
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade de Farmácia da UFMG, Belo Horizonte 31270-901, Brazil
| | - Ana Maria C. Faria
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Jacqueline I. Alvarez-Leite
- Departamento
de Bioquímica e Imunologia—Instituto de Ciências
Biológicas, Universidade Federal
de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| |
Collapse
|
19
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
20
|
Rini DM, Nakamichi Y, Morita T, Inoue H, Mizukami Y, Yamamoto Y, Suzuki T. Xylobiose treatment strengthens intestinal barrier function by regulating claudin 2 and heat shock protein 27 expression in human Caco-2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2518-2525. [PMID: 37938188 DOI: 10.1002/jsfa.13111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Xylobiose, a non-digestible disaccharide, largely contributes to the beneficial physiological effects of xylooligosaccharides. However, there is insufficient evidence to assess the direct effect of xylobiose on intestinal barrier function. Here, we investigated the intestinal barrier function in human intestinal Caco-2 cells treated with xylobiose. RESULTS In total, 283 genes were upregulated and 256 genes were downregulated in xylobiose-treated Caco-2 cells relative to the controls. We focused on genes related to intestinal barrier function, such as tight junction (TJ) and heat shock protein (HSP). Xylobiose decreased the expression of the TJ gene Claudin 2 (CLDN2) and increased the expression of the cytoprotective HSP genes HSPB1 and HSPA1A, which encode HSP27 and HSP70, respectively. Immunoblot analysis confirmed that xylobiose suppressed CLDN2 expression and enhanced HSP27 and HSP70 expression. A quantitative reverse transcription-PCR and promoter assays indicated that xylobiose post-transcriptionally regulated CLDN2 and HSPB1 levels. Additionally, selective inhibition of phosphatidyl-3-inositol kinase (PI3K) inhibited xylobiose-mediated CLDN2 expression, whereas HSP27 expression induced by xylobiose was sensitive to the inhibition of PI3K, mitogen-activated protein kinase kinase and Src. CONCLUSION The results of the present study reveal that xylobiose suppresses CLDN2 and increases HSP27 expression in intestinal Caco-2 cells via post-transcriptional regulation, potentially strengthening intestinal barrier integrity; however, these effects seem to occur via different signaling pathways. Our findings may help to assess the physiological role of xylobiose. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya, Indonesia
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Japan
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube, Japan
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
21
|
Nath SC, Babaei-Abraki S, Meng G, Heale KA, Hsu CYM, Rancourt DE. A retinoid analogue, TTNPB, promotes clonal expansion of human pluripotent stem cells by upregulating CLDN2 and HoxA1. Commun Biol 2024; 7:190. [PMID: 38365890 PMCID: PMC10873380 DOI: 10.1038/s42003-024-05812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor, Y-27632 can enhance hPSC survival and proliferation at high seeding density, dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory. As a result, colonies tend to contain heterogeneous mixtures of both modified and unmodified cells, making it difficult to isolate the desired clone buried within the colony. In this study, we report improved clonal expansion of hPSCs using a retinoic acid analogue, TTNPB. When combined with Y-27632, TTNPB synergistically increased hPSC cloning efficiency by more than 2 orders of magnitude (0.2% to 20%), whereas TTNPB itself increased more than double cell number expansion compared to Y-27632. Furthermore, TTNPB-treated cells showed two times higher aggregate formation and cell proliferation compared to Y-27632 in suspension culture. TTNPB-treated cells displayed a normal karyotype, pluripotency and were able to stochastically differentiate into all three germ layers both in vitro and in vivo. TTNBP acts, in part, by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1. By promoting clonal expansion, TTNPB provides a new approach for isolating and expanding pure hPSCs for future cell therapy applications.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Shahnaz Babaei-Abraki
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Guoliang Meng
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kali A Heale
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Charlie Y M Hsu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.
| |
Collapse
|
22
|
Songtao Y, Fangyu L, Jie C, Li Y. Identification of claudin-2 as a promising biomarker for early diagnosis of pre-diabetes. Front Pharmacol 2024; 15:1370708. [PMID: 38425650 PMCID: PMC10902111 DOI: 10.3389/fphar.2024.1370708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: Pre-diabetes, a high-risk metabolic state, is situated between normal glucose homeostasis and diabetes. Early identification of pre-diabetes offers opportunities for intervention and diabetes reversal, highlighting the crucial need to investigate reliable biomarkers for this condition. Methods: We conducted an in-depth bioinformatics analysis of clinical samples from non-diabetic (ND), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM) categories within the GSE164416 dataset. Thereafter the HFD and STZ treated mice were used for validation. Results: This analysis identified several codifferentially expressed genes (Co-DEGs) for IGT and T2DM, including CFB, TSHR, VNN2, APOC1, CLDN2, SLPI, LCN2, CXCL17, FAIM2, and REG3A. Validation of these genes and the determination of ROC curves were performed using the GSE76895 dataset. Thereafter, CLDN2 was selected for further verification. Gene expression analysis and immunofluorescence analysis revealed a significant upregulation of CLDN2 expression in the pancreas islets of mice in the high-fat diet and T2DM groups compared to the control group. Similarly, serum level of CLDN2 in patients with IGT and T2DM were significantly higher than those in the healthy group. Discussion: These results suggest that CLDN2 can serve as a novel biomarker for pre-diabetes, providing a new direction for future research in the prevention of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | - Yuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Pitaraki E, Jagirdar RM, Rouka E, Bartosova M, Sinis SI, Gourgoulianis KI, Eleftheriadis T, Stefanidis I, Liakopoulos V, Hatzoglou C, Schmitt CP, Zarogiannis SG. 2-Deoxy-glucose ameliorates the peritoneal mesothelial and endothelial barrier function perturbation occurring due to Peritoneal Dialysis fluids exposure. Biochem Biophys Res Commun 2024; 693:149376. [PMID: 38104523 DOI: 10.1016/j.bbrc.2023.149376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Peritoneal dialysis (PD) and prolonged exposure to PD fluids (PDF) induce peritoneal membrane (PM) fibrosis and hypervascularity, leading to functional PM degeneration. 2-deoxy-glucose (2-DG) has shown potential as PM antifibrotic by inhibiting hyper-glycolysis induced mesothelial-to-mesenchymal transition (MMT). We investigated whether administration of 2-DG with several PDF affects the permeability of mesothelial and endothelial barrier of the PM. The antifibrotic effect of 2-DG was confirmed by the gel contraction assay with embedded mesothelial (MeT-5A) or endothelial (EA.hy926) cells cultured in Dianeal® 2.5 % (CPDF), BicaVera® 2.3 % (BPDF), Balance® 2.3 % (LPDF) with/without 2-DG addition (0.2 mM), and qPCR for αSMA, CDH2 genes. Moreover, 2-DG effect was tested on the permeability of monolayers of mesothelial and endothelial cells by monitoring the transmembrane resistance (RTM), FITC-dextran (10, 70 kDa) diffusion and mRNA expression levels of CLDN-1 to -5, ZO1, SGLT1, and SGLT2 genes. Contractility of MeT-5A cells in CPDF/2-DG was decreased, accompanied by αSMA (0.17 ± 0.03) and CDH2 (2.92 ± 0.29) gene expression fold changes. Changes in αSMA, CDH2 were found in EA.hy926 cells, though αSMA also decreased under LPDF/2-DG incubation (0.42 ± 0.02). Overall, 2-DG mitigated the PDF-induced alterations in mesothelial and endothelial barrier function as shown by RTM, dextran transport and expression levels of the CLDN-1 to -5, ZO1, and SGLT2. Thus, supplementation of PDF with 2-DG not only reduces MMT but also improves functional permeability characteristics of the PM mesothelial and endothelial barrier.
Collapse
Affiliation(s)
- Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Erasmia Rouka
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500, Larissa, Greece
| | - Maria Bartosova
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece; Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Vassilios Liakopoulos
- 2(nd) Department of Nephrology, AHEPA Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| |
Collapse
|
24
|
Liu Y, Li S, Huang Z, Dai H, Shi F, Lv Z. Dietary collagen peptide-chelated trace elements supplementation for breeder hens improves the intestinal health of chick offspring. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:174-183. [PMID: 37612258 DOI: 10.1002/jsfa.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Dietary supplementation with trace elements zinc (Zn), iron (Fe) and manganese (Mn) could promote intestinal development and improve intestinal health. There are, however, few studies examining the possibility that maternal original Zn, Fe and Mn could regulate intestinal development and barrier function in the offspring. This study aimed to investigate how the intestinal growth and barrier function of breeder offspring were affected by collagen peptide-chelated trace elements (PTE; Zn, Fe, Mn). RESULTS PTE supplementation in the diet of breeder hens increased the concentrations of Zn, Fe and Mn in egg yolk. Maternal PTE supplementation improved morphological parameters of the intestine (villi height, crypt depth and villi height/crypt depth) and upregulated the mRNA expression level of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the ileum of chick embryos. Furthermore, maternal PTE effect improved villi height/crypt depth of offspring at 1 and 14 days of age, and upregulated Lgr5, Claudin-3 and E-cadherin mRNA expression in the broiler ileum. Additionally, PTE treatment could enhance the intestinal microbial diversity of offspring. Maternal PTE supplementation increased the relative abundance of Clostridiales at the genus level and decreased the relative abundance of Enterococcus in newborn offspring. Moreover, maternal PTE supplementation ameliorated the elevated nuclear factor kappa B, toll-like receptor 4 and interleukin 1β mRNA expression in the ileum of offspring caused by LPS challenge. CONCLUSION Maternal PTE supplementation could promote intestinal development and enhance the intestinal barrier function of chicken offspring. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Simeng Li
- Aksu Vocational and Technical College, Aksu, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Kamal MM, El-Abhar HS, Abdallah DM, Ahmed KA, Aly NES, Rabie MA. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. Int Immunopharmacol 2024; 126:111289. [PMID: 38016347 DOI: 10.1016/j.intimp.2023.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The β3-adrenergic receptor (β3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the β3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of β3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the β3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.
Collapse
Affiliation(s)
- Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 11835 Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Mostafa A Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), 19346, Egypt
| |
Collapse
|
26
|
Guo C, Jiao M, Cui Y, Li P, Yao J, Dong J, Liao L. Claudin-2 Mediates the Proximal Tubular Epithelial Cell-Fibroblast Crosstalk via Paracrine CTGF. Diabetes Metab Syndr Obes 2024; 17:55-73. [PMID: 38192494 PMCID: PMC10771729 DOI: 10.2147/dmso.s432173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Proximal tubular epithelial cell (PTEC) is vulnerable to injury in diabetic kidney disease (DKD) due to high energy expenditure. The injured PTECs-derived profibrotic factors are thought to be driving forces in tubulointerstitial fibrosis (TIF) as they activate surrounding fibroblasts. However, the mechanisms remain unclear. Methods The diabetes with uninephrectomy (DKD) rats were used to evaluated renal histological changes and the expression of Claudin-2 by immunofluorescence staining. Then, Claudin-2 expression in PTECs were modulated and subsequently determined the proliferation and activation of fibroblasts by building a transwell co-culture system in normal glucose (NG)or high glucose (HG) condition. Results Decreased expression of Claudin-2 in PTECs accompanied by tight junction disruption and increased interstitial fibrosis, were detected in DKD rats. In vitro, downregulated Claudin-2 in PTECs promoted proliferation and activation of fibroblasts, which coincided with elevated expression of profibrotic connective tissue growth factor (CTGF) in PTECs. Silenced CTGF inhibited the profibrotic of PTECs via Claudin-2 inhibition. Fibroblasts co-cultured with PTECs transitioned more to myofibroblasts and generated extracellular matrix (ECM) significantly in response to high glucose (HG) stimulation whereas overexpression of Claudin-2 in PTECs reversed the above results. Upregulating CTGF disrupted the beneficial anti-fibrosis effects obtained by overexpression of Claudin-2 in HG condition. Conclusion Our study suggested that Claudin-2 in PTECs, a key mediator of paracellular cation and water transport, promotes the activation and proliferation of surrounding fibroblasts significantly via CTGF in a paracrine manner.
Collapse
Affiliation(s)
- Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
| | - Yuying Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Pingjiang Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jinming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, Shandong, People’s Republic of China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
27
|
Eguchi H, Yu Y, Yoshino Y, Hara H, Tanaka H, Ikari A. Plasma-activated medium ameliorates the chemoresistance of human lung adenocarcinoma cells mediated via downregulation of claudin-2 expression. Arch Biochem Biophys 2024; 751:109846. [PMID: 38056686 DOI: 10.1016/j.abb.2023.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Plasma-activated medium (PAM) has various biological activities including anticancer and antimicrobial. However, the effect on chemoresistance in cancer cells has not been clarified in detail. Solid cancer cells form a microenvironment in the body and acquire resistance against anticancer drugs. So far, we reported that claudin-2 (CLDN2), a component of tight junctions, suppresses the anticancer drug-induced cytotoxicity of spheroids that mimic in vivo tumors. Here, we found that the protein level of CLDN2 is downregulated by the sublethal concentration of PAM in human lung adenocarcinoma-derived A549 and PC-3 cells. A cycloheximide pulse-chase assay showed that PAM accelerates the degradation of CLDN2 protein. The PAM-induced reduction of CLDN2 protein was inhibited by a lysosome inhibitor, indicating PAM may enhance the lysosomal degradation of CLDN2. The paracellular permeability to doxorubicin (DXR), an anthracycline antitumor drug, was enhanced by PAM. In the spheroids, the accumulation and toxicity of DXR were enhanced by PAM. In addition, oxidative stress and the expression of nuclear factor erythroid 2-related factor 2, one of the key factors for the acquisition of chemoresistance, were attenuated by PAM. The improvement effect of PAM on chemoresistance was suppressed by the exogenous CLDN2 overexpression. These results indicate that PAM has the ability to downregulate CLDN2 expression and may become an adjuvant drug against lung adenocarcinoma.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yaqing Yu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
28
|
Korczak M, Roszkowski P, Skowrońska W, Żołdak KM, Popowski D, Granica S, Piwowarski JP. Urolithin A conjugation with NSAIDs inhibits its glucuronidation and maintains improvement of Caco-2 monolayers' barrier function. Biomed Pharmacother 2023; 169:115932. [PMID: 38000358 DOI: 10.1016/j.biopha.2023.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Urolithin A (UA) is an ellagitannin-derived postbiotic metabolite which emerged as a promising health-boosting agent, promoting mitophagy, improving skeletal muscle function, and suppressing the inflammatory response. However, phase II intestinal metabolism severely limits its biopotency, leading to the formation of nonactive glucuronides. To address this constraint, a set of new UA derivatives (UADs), conjugated with nonsteroidal anti-inflammatory drugs (NSAIDs), was synthesized. The bioavailability and inhibitory activity of UADs against UA-glucuronidation were evaluated using differentiated Caco-2 cell monolayers. Parallelly, after the administration of tested substances, the transepithelial electrical resistance (TEER) of the cell monolayers was continuously monitored using the CellZscope device. Though investigated UADs did not penetrate Caco-2 monolayers, all of them significantly suppressed the glucuronidation rate of UA, while conjugates with diclofenac increased the concentration of free molecule on the basolateral side. Moreover, esters of UA with diclofenac (DicloUA) and aspirin (AspUA) positively influenced cell membrane integrity. Western blot analysis revealed that some UADs, including DicloUA, increased the expression of pore-sealing tight junction proteins and decreased the level of pore-forming claudin-2, which may contribute to their beneficial activity towards the barrier function. To provide comprehensive insight into the mechanism of action of DicloUA, Caco-2 cells were subjected to transcriptomic analysis. Next-generation sequencing (NGS) uncovered substantial changes in the expression of genes involved, for instance, in multivesicular body organization and zinc ion homeostasis. The results presented in this study offer new perspectives on the beneficial effects of modifying UA's structure on its intestinal metabolism and bioactivity in vitro.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Medical University of Warsaw, Warsaw, Poland
| | | | - Weronika Skowrońska
- Department of Pharmaceutical Biology, Medical University of Warsaw, Warsaw, Poland
| | | | - Dominik Popowski
- Microbiota Lab, Medical University of Warsaw, Warsaw, Poland; Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Sebastian Granica
- Department of Pharmaceutical Biology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
29
|
Arabi TZ, Fawzy NA, Sabbah BN, Ouban A. Claudins in genitourinary tract neoplasms: mechanisms, prognosis, and therapeutic prospects. Front Cell Dev Biol 2023; 11:1308082. [PMID: 38188015 PMCID: PMC10771851 DOI: 10.3389/fcell.2023.1308082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Genitourinary (GU) cancers are among the most prevalent neoplasms in the world, with bladder cancers constituting 3% of global cancer diagnoses. However, several pathogenetic mechanisms remain controversial and unclear. Claudins, for example, have been shown to play a significant role in several cancers of the human body. Their role in GU cancers has not been extensively studied. Aberrant expression of claudins -1, -2, -3, -4, -7, and -11 has been expressed in urothelial cell carcinomas. In prostate cancers, altered levels of claudins -1, -2, -3, -4, and -5 have been reported. Furthermore, the levels of claudins -1, -2, -3, -4, -6, -7, -8, and -10 have been studied in renal cell carcinomas. Specifically, claudins -7 and -8 have proven especially useful in differentiating between chromophobe renal cell carcinomas and oncocytomas. Several of these claudins also correlate with clinicopathologic parameters and prognosis in GU cancers. Although mechanisms underpinning aberrant expression of claudins in GU cancers are unclear, epigenetic changes, tumor necrosis factor-ɑ, and the p63 protein have been implicated. Claudins also provide therapeutic value through tailored immunotherapy via molecular subtyping and providing therapeutic targets, which have shown positive outcomes in preclinical studies. In this review, we aim to summarize the literature describing aberrant expression of claudins in urothelial, prostatic, and renal cell carcinomas. Then, we describe the mechanisms underlying these changes and the therapeutic value of claudins. Understanding the scope of claudins in GU cancers paves the way for several diagnostic, prognostic, and therapeutic innovations.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
31
|
Xiao L, Dou W, Wang Y, Deng H, Xu H, Pan Y. Treatment with S-adenosylmethionine ameliorates irinotecan-induced intestinal barrier dysfunction and intestinal microbial disorder in mice. Biochem Pharmacol 2023; 216:115752. [PMID: 37634598 DOI: 10.1016/j.bcp.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the protective effects of S-adenosylmethionine (SAM) on irinotecan-induced intestinal barrier dysfunction and microbial ecological dysregulation in both mice and human colon cell line Caco-2, which is widely used for studying intestinal epithelial barrier function. Specifically, this study utilized Caco-2 monolayers incubated with 7-ethyl-10-hydroxycamptothecin (SN-38) as well as an irinotecan-induced diarrhea model in mice. Our study found that SAM pretreatment significantly reduced body weight loss and diarrhea induced by irinotecan in mice. Furthermore, SAM inhibited the increase of intestinal permeability in irinotecan-treated mice and ameliorated the decrease of Zonula occludens-1(ZO-1), Occludin, and Claudin-1 expression. Additionally, irinotecan treatment increased the relative abundance of Proteobacteria compared to the control group, an effect that was reversed by SAM administration. In Caco-2 monolayers, SAM reduced the expression of reactive oxygen species (ROS) and ameliorated the decrease in transepithelial electrical resistance (TER) and increase in fluorescein isothiocyanate-dextran 4000 Da (FD-4) flux caused by SN-38. Moreover, SAM attenuated changes in the localization and distribution of ZO-1and Occludin in Caco-2 monolayers induced by SN-38 and protected barrier function by inhibiting activation of the p38 MAPK/p65 NF-κB/MLCK/MLC signaling pathway. These findings provide preliminary evidence for the potential use of SAM in treating diarrhea caused by irinotecan.
Collapse
Affiliation(s)
- Lin Xiao
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Yajie Wang
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Huan Deng
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Hao Xu
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| | - YiSheng Pan
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| |
Collapse
|
32
|
Teichenné J, Catalán Ú, Mariné-Casadó R, Domenech-Coca C, Mas-Capdevila A, Alcaide-Hidalgo JM, Chomiciute G, Rodríguez-García A, Hernández A, Gutierrez V, Puiggròs F, Del Bas JM, Caimari A. Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal. Eur J Nutr 2023; 62:2649-2659. [PMID: 37249602 DOI: 10.1007/s00394-023-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Bacillus coagulans GBI-30, 6086 (BC30) was previously shown to improve nutrient digestibility and amino acid absorption from milk protein in vitro. However, the effect of supplementation with this probiotic on lactose digestibility has not yet been evaluated in vivo. METHODS Wistar female rats were exposed to an acute high-lactose diet (LD; 35% lactose) meal challenge after 7 days of administration of BC30 (LD-BC; n = 10) or vehicle (LD-C; n = 10). Rats treated with vehicle and exposed to control diet (CD; 35% corn starch) meal were used as controls (CD-C; n = 10). Carbohydrate oxidation (CH_OX) and lipid oxidation (L_OX) were monitored by indirect calorimetry before and after lactose challenge. After the challenge, rats were treated daily with vehicle or probiotic for an additional week and were fed with CD or LD ad libitum to determine the effects of BC30 administration in a lactose-induced diarrhoea and malnutrition model. RESULTS LD-C rats showed lower CH_OX levels than CD rats, while LD-BC rats showed similar CH_OX levels compared to CD rats during the lactose challenge, suggesting a better digestion of lactose in the rats supplemented with BC30. BC30 completely reversed the increase in the small intestine length of LD-C animals. LD-BC rats displayed increased intestinal mRNA Muc2 expression. No significant changes were observed due to BC30 administration in other parameters, such as serum calprotectin, intestinal MPO activity, intestinal A1AT and SGLT1 levels or intestinal mRNA levels of Claudin2 and Occludin. CONCLUSION Treatment with BC30 improved the digestibility of lactose in an acute lactose challenge and ameliorated some of the parameters associated with lactose-induced malnutrition.
Collapse
Affiliation(s)
- Joan Teichenné
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Úrsula Catalán
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Anna Mas-Capdevila
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | | | - Ana Hernández
- Delafruit SLU, 43470, La Selva del Camp, Catalonia, Spain
| | | | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| |
Collapse
|
33
|
Telgenhoff D. Claudin-2 in hyperproliferative migrating keratinocytes and migration inhibition via siRNA knockdown. Anat Histol Embryol 2023; 52:723-731. [PMID: 37147871 DOI: 10.1111/ahe.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Claudin-2 is a tight junction protein found in various tissues including the epidermis of the skin. Intracellular signalling via claudin-2 may have an effect on cell proliferation and migration. While the role of claudin-2 in the epidermis has not been established, here we show an increase in claudin-2 expression in hyperproliferative archival skin samples. To further examine the role of claudin-2 in cell migration we examined its expression in cultured keratinocytes and found it was increased in wound margins in an in vitro scratch test assay. We then used a claudin-2 knockdown assay using small interfering ribonucleic acid (siRNA) with a 77% transfection efficiency and decrease in claudin-2 protein via Western blot analysis to examine cell migration, which was inhibited following claudin-2 knockdown over a 5-day period. Cells transfected with claudin-2 siRNA also showed a decreased size compared to controls and a more diffuse staining pattern. Lastly we examined claudin-2 expression in migrating keratinocytes by Western blot analysis and found a significant decrease in protein staining in scratch-test assay cultures after 4 h, followed by a significant increase in claudin-2 protein after 24 h. Taken together these results indicate a role for claudin-2 signalling in proliferation and cell migration in the epidermis of the skin.
Collapse
Affiliation(s)
- Dale Telgenhoff
- Clinical and Diagnostic Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
34
|
Pandrangi SL, Chittineedi P, Mohiddin GJ, Mosquera JAN, Llaguno SNS. Cell-cell communications: new insights into targeting efficacy of phytochemical adjuvants on tight junctions and pathophysiology of various malignancies. J Cell Commun Signal 2023; 17:457-467. [PMID: 36427132 PMCID: PMC10409985 DOI: 10.1007/s12079-022-00706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer is a cellular impairment disorder characterized by the loss of cell cycle regulation leading to aberrant cell proliferation. Cell-cell communication plays a crucial role in cell signaling which is highly disrupted in various malignancies. Tight junctions (TJs) are major proteins that regulate the proper communication, and the dysregulation of TJ proteins makes these tumor cells more aggressive, leading to tumor invasion and metastasis. Hence targeting TJs might be a novel insight towards addressing these highly invasive, metastatic tumors. Due to the prohibitive costs of treatments, side effects, and development of resistance, herbal medications comprising bioactive ingredients have become more popular for various human ailments. Unfortunately, the importance of natural compounds has significantly reduced due to the development of modern synthetic techniques to formulate drugs. However, the pharmaceutical industry that adopts chemistry-based drug development in combination with high throughput synthesis have not resulted in the expected drug productivity. Hence, the focus was shifted back to natural compounds in search of novel drugs with advanced technology to isolate the biologically active compound from the natural ones. The current review delivers the importance of TJ regulation, promoting it through phytochemicals to target malignant tumor cells.
Collapse
Affiliation(s)
- Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, India.
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Gooty Jaffer Mohiddin
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, 230101, Santo Domingo, Ecuador
| | - Juan Alejandro Neira Mosquera
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, 230101, Santo Domingo, Ecuador
- Faculty of Industry and Production Sciences, Quevedo State Technical University, km 11/2 via, 120301, Santo Domingo, Quevedo, Ecuador
| | | |
Collapse
|
35
|
Nyimanu D, Behm C, Choudhury S, Yu ASL. The role of claudin-2 in kidney function and dysfunction. Biochem Soc Trans 2023; 51:1437-1445. [PMID: 37387353 DOI: 10.1042/bst20220639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Claudin-2 is a tight junction protein expressed in leaky epithelia where it forms paracellular pores permeable to cations and water. The paracellular pore formed by claudin-2 is important in energy-efficient cation and water transport in the proximal tubules of the kidneys. Mounting evidence now suggests that claudin-2 may modulate cellular processes often altered in disease, including cellular proliferation. Also, dysregulation of claudin-2 expression has been linked to various diseases, including kidney stone disease and renal cell carcinoma. However, the mechanisms linking altered claudin-2 expression and function to disease are poorly understood and require further investigation. The aim of this review is to discuss the current understanding of the role of claudin-2 in kidney function and dysfunction. We provide a general overview of the claudins and their organization in the tight junction, the expression, and function of claudin-2 in the kidney, and the evolving evidence for its role in kidney disease.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Christine Behm
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Sonali Choudhury
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Alan S L Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| |
Collapse
|
36
|
Chamignon C, Mallaret G, Rivière J, Vilotte M, Chadi S, de Moreno de LeBlanc A, LeBlanc JG, Carvalho FA, Pane M, Mousset PY, Langella P, Lafay S, Bermúdez-Humarán LG. Beneficial Effects of Lactobacilli Species on Intestinal Homeostasis in Low-Grade Inflammation and Stress Rodent Models and Their Implication in the Modulation of the Adhesive Junctional Complex. Biomolecules 2023; 13:1295. [PMID: 37759696 PMCID: PMC10527021 DOI: 10.3390/biom13091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on intestinal homeostasis is well described and numerous studies suggest the ability of some probiotic strains to protect the intestinal epithelial integrity and host homeostasis. In this work, we aimed to assess the beneficial effects of three Lactobacillus strains (Lacticaseibacillus rhamnosus LR04, Lacticaseibacillus casei LC03, and Lactiplantibacillus plantarum CNCM I-4459) and their mechanism of action in low-grade inflammation or neonatal maternal separation models in mice. We compared the impact of these strains to that of the well-known probiotic Lacticaseibacillus rhamnosus GG. Our results demonstrated that the three strains have the potential to restore the barrier functions by (i) increasing mucus production, (ii) restoring normal permeability, and (iii) modulating colonic hypersensitivity. Moreover, gene expression analysis of junctional proteins revealed the implication of Claudin 2 and Cingulin in the mechanisms that underlie the interactions between the strains and the host. Taken together, our data suggest that LR04, CNCM I-4459, and LC03 restore the functions of an impaired intestinal barrier.
Collapse
Affiliation(s)
- Célia Chamignon
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
- INDIGO Therapeutics, 33000 Bordeaux, France (S.L.)
| | - Geoffroy Mallaret
- INSERM U1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France; (G.M.); (F.A.C.)
| | - Julie Rivière
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | - Marthe Vilotte
- INRAE, GABI, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sead Chadi
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | | | - Jean Guy LeBlanc
- CERELA-CONICET, San Miguel de Tucumán T4000ILC, Tucumán, Argentina; (A.d.M.d.L.); (J.G.L.)
| | - Frédéric Antonio Carvalho
- INSERM U1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France; (G.M.); (F.A.C.)
| | - Marco Pane
- Probiotical Research, 28100 Novara, Italy;
| | | | - Philippe Langella
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | - Sophie Lafay
- INDIGO Therapeutics, 33000 Bordeaux, France (S.L.)
| | - Luis G. Bermúdez-Humarán
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| |
Collapse
|
37
|
Arabi TZ, Algheryafi LA, Alodah NA, Enabi HMK, Alshehry AA, Ouban A. Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review. Cancers (Basel) 2023; 15:4208. [PMID: 37686483 PMCID: PMC10486703 DOI: 10.3390/cancers15174208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck carcinomas have been associated with poor prognosis. Recent studies have highlighted the role of claudins' expression in tumors throughout the body, and their prognostic and therapeutic role. Understanding the role of claudins and how their expression affects the progression of carcinomas in the head and neck region may allow for advances in the prognosis and management of this type of cancer. Several studies have highlighted the aberrant expression of the proteins in carcinomas in this region. Specifically, the overexpression of claudin-1 and downregulation of claudins-4, -7, and -17 have been linked with poor survival in oral squamous cell carcinoma patients. In laryngeal squamous cell carcinoma, increased levels of claudins-1 and reduced levels of claudins-3, -8, and -11 have been linked with poor outcomes. Targeting these proteins has shown promising outcomes as therapeutic in preclinical studies. However, studies remain extremely limited in nasal and hypopharyngeal carcinomas. In this review, we survey the available literature describing the aberrant expression of various claudins in carcinomas in this region, while highlighting their potential prognostic and therapeutic value. Then, we describe some molecular mechanisms involved in the aberrant expression of claudins and how they can be utilized as therapeutic targets.
Collapse
Affiliation(s)
- Tarek Ziad Arabi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | | | - Nora A Alodah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
38
|
Rath T, Atreya R, Neurath MF. A spotlight on intestinal permeability and inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2023; 17:893-902. [PMID: 37606514 DOI: 10.1080/17474124.2023.2242772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The intestinal barrier is a multi-faced structure lining the surface of the intestinal mucosa of the GI tract. To exert its main functions as a physical and immunological defense barrier, several components of the intestinal barrier act in a concerted and cooperative manner. AREAS COVERED Herein, we first introduce to the basic organization of the intestinal barrier and then summarize different methods to assess barrier function in and ex vivo. Finally, we provide an in-depth overview of the relevance of intestinal barrier dysfunction in inflammatory bowel diseases. EXPERT OPINION In parallel to a more fundamental understanding of the intestinal barrier as a key component for intestinal integrity is the notion that intestinal barrier defects are associated with a variety of diseases such as inflammatory bowel diseases. Recent research has fueled and perpetuated the concept that barrier defects are critical components of disease development, disease behavior, and potentially also an area of therapeutic intervention in IBD patients. Although being far away from standard, new technologies can be used to easily assess barrier healing in IBD and to derive clinical consequences from these findings such as more accurate forecasting of future disease behavior or the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Timo Rath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Raja Atreya
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
39
|
Beggs MR, Young K, Plain A, O'Neill DD, Raza A, Flockerzi V, Dimke H, Alexander RT. Maternal Epidermal Growth Factor Promotes Neonatal Claudin-2 Dependent Increases in Small Intestinal Calcium Permeability. FUNCTION 2023; 4:zqad033. [PMID: 37575484 PMCID: PMC10413934 DOI: 10.1093/function/zqad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by μCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allen Plain
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Demark
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
40
|
Kang X, Ng SK, Liu C, Lin Y, Zhou Y, Kwong TNY, Ni Y, Lam TYT, Wu WKK, Wei H, Sung JJY, Yu J, Wong SH. Altered gut microbiota of obesity subjects promotes colorectal carcinogenesis in mice. EBioMedicine 2023; 93:104670. [PMID: 37343363 DOI: 10.1016/j.ebiom.2023.104670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for colorectal cancer (CRC). The role of gut microbiota in mediating the cancer-promoting effect of obesity is unknown. METHODS Azoxymethane (AOM)-treated, ApcMin/+ and germ-free mice were gavaged with feces from obese individuals and control subjects respectively. The colonic tumor load and number were recorded at the endpoint in two carcinogenic models. The gut microbiota composition and colonic transcriptome were assessed by metagenomic sequencing and RNA sequencing, respectively. The anticancer effects of bacteria depleted in fecal samples of obese individuals were validated. FINDINGS Conventional AOM-treated and ApcMin/+ mice receiving feces from obese individuals showed significantly increased colon tumor formation compared with those receiving feces from control subjects. AOM-treated mice receiving feces from obese individuals showed impaired intestinal barrier function and significant upregulation of pro-inflammatory cytokines and activation of oncogenic Wnt signaling pathway. Consistently, transferring feces from obese individuals to germ-free mice led to increased colonic cell proliferation, intestinal barrier function impairment, and induction of oncogenic and proinflammatory gene expression. Moreover, germ-free mice transplanted with feces from obese human donors had increased abundance of potential pathobiont Alistipes finegoldii, and reduced abundance of commensals Bacteroides vulgatus and Akkermansia muciniphila compared with those receiving feces from human donors with normal body mass index (BMI). Validation experiments showed that B. vulgatus and A. muciniphila demonstrated anti-proliferative effects in CRC, while A. finegoldii promoted CRC tumor growth. INTERPRETATION Our results supported the role of obesity-associated microbiota in colorectal carcinogenesis and identified putative bacterial candidates that may mediate its mechanisms. Microbiota modulation in obese individuals may provide new approaches to prevent or treat obesity-related cancers including CRC. FUNDING This work was funded by National Key Research and Development Program of China (2020YFA0509200/2020YFA0509203), National Natural Science Foundation of China (81922082), RGC Theme-based Research Scheme Hong Kong (T21-705/20-N), RGC Research Impact Fund Hong Kong (R4632-21F), RGC-CRF Hong Kong (C4039-19GF and C7065-18GF), RGC-GRF Hong Kong (14110819, 14111621), and NTU Start-Up Grant (021337-00001).
Collapse
Affiliation(s)
- Xing Kang
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siu-Kin Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Changan Liu
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yufeng Lin
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Thomas N Y Kwong
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunbi Ni
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Thomas Y T Lam
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William K K Wu
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China; Department of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Sunny H Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
41
|
Rollins J, Worthington T, Dransfield A, Whitney J, Stanford J, Hooke E, Hobson J, Wengler J, Hope S, Mizrachi D. Expression of Cell-Adhesion Molecules in E. coli: A High Throughput Screening to Identify Paracellular Modulators. Int J Mol Sci 2023; 24:9784. [PMID: 37372932 DOI: 10.3390/ijms24129784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-adhesion molecules (CAMs) are responsible for cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Claudins (CLDNs), occludin (OCLN), and junctional adhesion molecules (JAMs) are CAMs' components of the tight junction (TJ), the single protein structure tasked with safeguarding the paracellular space. The TJ is responsible for controlling paracellular permeability according to size and charge. Currently, there are no therapeutic solutions to modulate the TJ. Here, we describe the expression of CLDN proteins in the outer membrane of E. coli and report its consequences. When the expression is induced, the unicellular behavior of E. coli is replaced with multicellular aggregations that can be quantified using Flow Cytometry (FC). Our method, called iCLASP (inspection of cell-adhesion molecules aggregation through FC protocols), allows high-throughput screening (HTS) of small-molecules for interactions with CAMs. Here, we focused on using iCLASP to identify paracellular modulators for CLDN2. Furthermore, we validated those compounds in the mammalian cell line A549 as a proof-of-concept for the iCLASP method.
Collapse
Affiliation(s)
- Jay Rollins
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Tyler Worthington
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Allison Dransfield
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jordan Whitney
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jordan Stanford
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Emily Hooke
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Joseph Hobson
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jacob Wengler
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Dario Mizrachi
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
42
|
Barekatain R, Chrystal PV, Nowland T, Moss AF, Howarth GS, Hao Van TT, Moore RJ. Negative consequences of reduced protein diets supplemented with synthetic amino acids for performance, intestinal barrier function, and caecal microbiota composition of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:216-228. [PMID: 37388459 PMCID: PMC10300400 DOI: 10.1016/j.aninu.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
The consequences of feeding broiler chickens with reduced protein (RP) diets for gut health and barrier function are not well understood. This study was performed to elucidate the effect of reducing dietary protein and source of protein on gut health and performance parameters. Four experimental diets included 2 control diets with standard protein levels either containing meat and bone meal (CMBM) or an all-vegetable diet (CVEG), a medium RP diet (17.5% in growers and 16.5% in finisher), and a severe RP diet (15.6% in grower and 14.6% in finisher). Off-sex Ross 308 birds were assigned to each of the 4 diets and performance measurements were taken from d 7 to 42 post-hatch. Each diet was replicated 8 times (10 birds per replicate). A challenge study was conducted on additional 96 broilers (24 birds per diet) from d 13 to 21. Half of the birds in each dietary treatment were challenged by dexamethasone (DEX) to induce a leaky gut. Feeding birds with RP diets decreased weight gain (P < 0.0001) and increased feed conversion ratio (P < 0.0001) from d 7 to 42 compared with control diets. There was no difference between CVEG and CMBM control diets for any parameter. The diet containing 15.6% protein increased (P < 0.05) intestinal permeability independent of the DEX challenge. Gene expression of claudin-3 was downregulated (P < 0.05) in birds fed 15.6% protein. There was a significant interaction between diet and DEX (P < 0.05) and both RP diets (17.5% and 15.6%) downregulated claudin-2 expression in DEX-challenged birds. The overall composition of the caecal microbiota was affected in birds fed 15.6% protein having a significantly lower richness of microbiota in both sham and DEX-injected birds. Proteobacteria was the main phylum driving the differences in birds fed 15.6% protein. At the family level, Bifidobacteriaceae, Unclassified Bifidobacteriales, Enterococcaceae, Enterobacteriaceae, and Lachnospiraceae were the main taxa in birds fed 15.6% protein. Despite supplementation of synthetic amino acids, severe reduction of dietary protein compromised performance and intestinal health parameters in broilers, evidenced by differential mRNA expression of tight junction proteins, higher permeability, and changes in caecal microbiota composition.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Peter V. Chrystal
- Complete Feed Solutions, Hornsby, NSW, Australia; Howick, New Zealand
| | - Tanya Nowland
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Amy F. Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| |
Collapse
|
43
|
Lonati E, Sala G, Corbetta P, Pagliari S, Cazzaniga E, Botto L, Rovellini P, Bruni I, Palestini P, Bulbarelli A. Digested Cinnamon ( Cinnamomum verum J. Presl) Bark Extract Modulates Claudin-2 Gene Expression and Protein Levels under TNFα/IL-1β Inflammatory Stimulus. Int J Mol Sci 2023; 24:9201. [PMID: 37298151 PMCID: PMC10253083 DOI: 10.3390/ijms24119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption. Its formulation consists of the addition of a phytoextract enriched in bioactive molecules. A good candidate as an ingredient is the Cinnamon verum aqueous extract. Indeed, this extract, subjected to a process of gastrointestinal digestion simulation (INFOGEST), exhibits beneficial antioxidant and anti-inflammatory properties in an in vitro model of the inflamed intestinal barrier. Here, we deepen the study of the mechanisms related to the effect of digested cinnamon extract pre-treatment, showing a correlation between transepithelial electrical resistance (TEER) decrement and alterations in claudin-2 expression under Tumor necrosis factor-α/Interleukin-1β (TNF-α/IL-1) β cytokine administration. Our results show that pre-treatment with cinnamon extract prevents TEER loss by claudin-2 protein level regulation, influencing both gene transcription and autophagy-mediated degradation. Hence, cinnamon polyphenols and their metabolites probably work as mediators in gene regulation and receptor/pathway activation, leading to an adaptive response against renewed insults.
Collapse
Affiliation(s)
- Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Gessica Sala
- Milan Center for Neuroscience (NeuroMI), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Stefania Pagliari
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Pierangela Rovellini
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milan, Italy
| | - Ilaria Bruni
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca cEnter of Science and Technology for FOOD (BEST4FOOD), University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
44
|
Capaldo CT. Claudin Barriers on the Brink: How Conflicting Tissue and Cellular Priorities Drive IBD Pathogenesis. Int J Mol Sci 2023; 24:8562. [PMID: 37239907 PMCID: PMC10218714 DOI: 10.3390/ijms24108562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by acute or chronic recurring inflammation of the intestinal mucosa, often with increasing severity over time. Life-long morbidities and diminishing quality of life for IBD patients compel a search for a better understanding of the molecular contributors to disease progression. One unifying feature of IBDs is the failure of the gut to form an effective barrier, a core role for intercellular complexes called tight junctions. In this review, the claudin family of tight junction proteins are discussed as they are a fundamental component of intestinal barriers. Importantly, claudin expression and/or protein localization is altered in IBD, leading to the supposition that intestinal barrier dysfunction exacerbates immune hyperactivity and disease. Claudins are a large family of transmembrane structural proteins that constrain the passage of ions, water, or substances between cells. However, growing evidence suggests non-canonical claudin functions during mucosal homeostasis and healing after injury. Therefore, whether claudins participate in adaptive or pathological IBD responses remains an open question. By reviewing current studies, the possibility is assessed that with claudins, a jack-of-all-trades is master of none. Potentially, a robust claudin barrier and wound restitution involve conflicting biophysical phenomena, exposing barrier vulnerabilities and a tissue-wide frailty during healing in IBD.
Collapse
Affiliation(s)
- Christopher T Capaldo
- College of Natural and Computer Sciences, Hawai'i Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
45
|
Arai W, Konno T, Kohno T, Kodera Y, Tsujiwaki M, Shindo Y, Chiba H, Miyajima M, Sakuma Y, Watanabe A, Kojima T. Downregulation of angulin-1/LSR induces malignancy via upregulation of EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma A549 cells. Oncotarget 2023; 14:261-275. [PMID: 36961882 PMCID: PMC10038356 DOI: 10.18632/oncotarget.27728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Abnormal expression of bicellular tight junction claudins, including claudin-2 are observed during carcinogenesis in human lung adenocarcinoma. However, little is known about the role of tricellular tight junction molecule angulin-1/lipolysis-stimulated lipoprotein receptor (LSR). In the lung adenocarcinoma tissues examined in the present study, expression of claudin-2 was higher than in normal lung tissues, while angulin-1/LSR was poorly or faintly expressed. We investigated how loss of angulin-1/LSR affects the malignancy of lung adenocarcinoma cell line A549 and normal human lung epithelial (HLE) cells. The EGF receptor tyrosine kinase inhibitor AG1478 prevented the increase of claudin-2 expression induced by EGF in A549 cells. Knockdown of LSR induced expression of claudin-2 at the protein and mRNA levels and AG1478 prevented the upregulation of claudin-2 in A549 cells. Knockdown of LSR induced cell proliferation, cell migration and cell metabolism in A549 cells. Knockdown of claudin-2 inhibited the cell proliferation but did not affect the cell migration or cell metabolism of A549 cells. The TGF-β type I receptor inhibitor EW-7197 prevented the decrease of LSR and claudin-2 induced by TGF-β1 in A549 cells and 2D culture of normal HLE cells. EW-7197 prevented the increase of cell migration and cell metabolism induced by TGF-β1 in A549 cells. EW-7197 prevented the increase of epithelial permeability of FITC-4kD dextran induced by TGF-β1 in 2.5D culture of normal HLE cells. In conclusion, downregulation of angulin-1/LSR induces malignancy via EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Wataru Arai
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Kodera
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuma Shindo
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Miyajima
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
46
|
Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int J Mol Sci 2023; 24:ijms24054716. [PMID: 36902147 PMCID: PMC10003359 DOI: 10.3390/ijms24054716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
This study attempted to evaluate the possible impact and mechanism of leucine (Leu) on fish intestinal barrier function. One hundred and five hybrid Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂ catfish were fed with six diets in graded levels of Leu 10.0 (control group), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g/kg diet for 56 days. Results showed that the intestinal activities of LZM, ACP, and AKP and contents of C3, C4, and IgM had positive linear and/or quadratic responses to dietary Leu levels. The mRNA expressions of itnl1, itnl2, c-LZM, g-LZM, and β-defensin increased linearly and/or quadratically (p < 0.05). The ROS, PC, and MDA contents had a negative linear and/or quadratic response, but GSH content and ASA, AHR, T-SOD, and GR activities had positive quadratic responses to dietary Leu levels (p < 0.05). No significant differences on the CAT and GPX activities were detected among treatments (p > 0.05). Increasing dietary Leu level linearly and/or quadratically increased the mRNA expressions of CuZnSOD, CAT, and GPX1α. The GST mRNA expression decreased linearly while the GCLC and Nrf2 mRNA expressions were not significantly affected by different dietary Leu levels. The Nrf2 protein level quadratically increased, whereas the Keap1 mRNA expression and protein level decreased quadratically (p < 0.05). The translational levels of ZO-1 and occludin increased linearly. No significant differences were indicated in Claudin-2 mRNA expression and protein level. The transcriptional levels of Beclin1, ULK1b, ATG5, ATG7, ATG9a, ATG4b, LC3b, and P62 and translational levels of ULK1, LC3Ⅱ/Ⅰ, and P62 linearly and quadratically decreased. The Beclin1 protein level was quadratically decreased with increasing dietary Leu levels. These results suggested that dietary Leu could improve fish intestinal barrier function by increasing humoral immunity, antioxidative capacities, and tight junction protein levels.
Collapse
|
47
|
Intestinal permeability, microbiota composition and expression of genes related to intestinal barrier function of broiler chickens fed different methionine sources supplemented at varying concentrations. Poult Sci 2023; 102:102656. [PMID: 37043958 PMCID: PMC10140141 DOI: 10.1016/j.psj.2023.102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Intestinal health of broiler chickens is influenced by the concentration of dietary amino acids but data are limited on the role of dietary methionine (Met). Two experiments were conducted to investigate the implications of different Met sources for performance, gut barrier function, and intestinal microbiota in broilers. In the first experiment, Ross 308 off-sex birds (n = 900) were assigned to 10 dietary treatments each replicated 9 times in a 35-day study. Three sources of Met included DL-Met, L-Met, or Met hydroxy analog free acid (MHA-FA), each supplemented at suboptimal (SUB) at 80%, adequate (ADE) at 100% and over-requirement (OVR) at 120% of the specifications against a deficient (DEF) diet with no added Met. The second experiment used 96 Ross 308 broilers in a 2 × 4 factorial arrangement. Four diets included 3 sources of Met supplemented at ADE level plus the DEF treatment. On d 17, 19, and 23, half of the birds in each dietary treatment were injected with dexamethasone (DEX) to induce leaky gut. In the first experiment, without an interaction, from d 0 to 35, birds fed DL-Met and L-Met performed similarly for BWG, feed intake, and FCR but birds fed MHA-FA had less feed intake and BWG (P < 0.05). At d 23, mRNA expression of selected tight junction proteins was not affected except for claudin 2. Ileal microbiota of DEF treatment was different from DL-MET or L-MET supplemented birds (P < 0.05). However, microbiota of MHA-FA treatments was only different at OVR from the DEF group. The abundance of Peptostreptococcus increased in DEF treatment whereas Lactobacillus decreased. In the second experiment, DEX independently increased (P < 0.001) intestinal permeability assayed by fluorescein isothiocyanate dextran, but diet had no effect. DL-Met and L-Met fed birds had a higher level of claudin 3 only in DEX-injected birds (P < 0.05). In conclusion, unlike the level of supplementation, DL-Met, L-Met, and MHA-FA were largely similar in their limited impacts on intestinal barrier function and gut microbiota in broilers.
Collapse
|
48
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Xiao M, Li X, Zhang X, Duan X, Lin H, Liu S, Sui G. Assessment of cancer-related signaling pathways in responses to polystyrene nanoplastics via a kidney-testis microfluidic platform (KTP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159306. [PMID: 36216064 DOI: 10.1016/j.scitotenv.2022.159306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
As a new type of environmental pollutants, micro/nano plastics (MPs/NPs) derived from plastic products are commonly contact in daily life and lead to some serious health issues. The toxicity effects of MPs/NPs on the human body have aroused wide concerns. Although MPs/NPs have been reported to be transmitted into the kidney and reproductive organs, the molecular mechanisms of MPs/NPs toxicity remain unclear due to the lack of a physiologically relevant organ-organ linking platform in vitro. Here, we present a kidney-testis microfluidic platform (KTP) with NPs exposure that enables the communication of kidney and testis chambers and reproduces endothelium-linked chambers to simulate the state in vivo. The function of KTP was assessed by cell counting kit (CCK-8), tight junction protein claudin-2 and glucose consumption. Results revealed that MPs/NPs entered the kidney and testis via endocytosis. Immunofluorescence and ELISA analysis were performed on KTP at 200 μg/mL PS-NP to identify the dysregulated proteins on cancer-related signaling pathways, including the MAPK signaling pathway (RTK, RAS, ERK, JNK, P38, NRF2, TNF-α, and TNF-α-R) and the PI3K-AKT signaling pathway (PI3K, AKT, MDM2, P53, and ΒΑD). This multi-organ platform (KTP) contributes to clarifying cancer pathways triggered by MPs/NPs exposure and provides a promising method for assessing diseases induced by environmental pollutants.
Collapse
Affiliation(s)
- Mingming Xiao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xinran Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Houwei Lin
- Jiaxing University, Department of Pediatric Surgery, Women and Children Hospital, 2468 East Zhonghuan Road, 314050 Jiaxing, China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China.
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China.
| |
Collapse
|
50
|
Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:194-204. [PMID: 36740466 DOI: 10.1016/j.joim.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study was conducted to explore the mechanism of intestinal inflammation and barrier repair in Crohn's disease (CD) regulated by moxibustion through bile acid (BA) enterohepatic circulation and intestinal farnesoid X receptor (FXR). METHODS Sprague-Dawley rats were randomly divided into control group, CD model group, mild moxibustion group and herb-partitioned moxibustion group. CD model rats induced by 2,4,6-trinitrobenzene sulfonic acid were treated with mild moxibustion or herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6). The changes in CD symptoms were rated according to the disease activity index score, the serum and colon tissues of rats were collected, and the pathological changes in colon tissues were observed via histopathology. Western blot, immunohistochemistry (IHC) and immunofluorescence were used to evaluate the improvement of moxibustion on intestinal inflammation and mucosal barrier in CD by the BA-FXR pathway. RESULTS Mild moxibustion and herb-partitioned moxibustion improved the symptoms of CD, inhibited inflammation and repaired mucosal damage to the colon in CD rats. Meanwhile, moxibustion could improve the abnormal expression of BA in the colon, liver and serum, downregulate the expression of interferon-γ and upregulate the expression of FXR mRNA, and inhibit Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA. The IHC results showed that moxibustion could upregulate the expression of FXR and mucin2 and inhibit TLR4 expression. Western blot showed that moxibustion inhibited the protein expression of TLR4 and MyD88 and upregulated the expression of FXR. Immunofluorescence image analysis showed that moxibustion increased the colocalization sites and intensity of FXR with TLR4 or nuclear factor-κB p65. In particular, herb-partitioned moxibustion has more advantages in improving BA and upregulating FXR and TLR4 in the colon. CONCLUSION Mild moxibustion and herb-partitioned moxibustion can improve CD by regulating the enterohepatic circulation stability of BA, activating colonic FXR, regulating the TLR4/MyD88 pathway, inhibiting intestinal inflammation and repairing the intestinal mucosal barrier. Herb-partitioned moxibustion seems to have more advantages in regulating BA enterohepatic circulation and FXR activation. Please cite this article as: Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. J Integr Med. 2023.
Collapse
Affiliation(s)
- Jia-Cheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Qin Qi
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Dong Han
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Yuan Lu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Rong Huang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Lin-Shan Zhang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiu-di Qin
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Fang Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Huan-Gan Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China.
| | - Hui-Rong Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China.
| |
Collapse
|