1
|
Aitella E, Romano C, Ginaldi L, Cozzolino D. Mast Cells at the Crossroads of Hypersensitivity Reactions and Neurogenic Inflammation. Int J Mol Sci 2025; 26:927. [PMID: 39940696 PMCID: PMC11817554 DOI: 10.3390/ijms26030927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Although mast cells have long been known, they are not yet fully understood. They are traditionally recognized for their role in allergic reactions through the IgE/FcεRI axis, but different groups of surface receptors have since been characterized, which appear to be involved in the manifestation of peculiar clinical features. In particular, MRGPRX2 has emerged as a crucial receptor involved in degranulating human skin mast cells. Because of mast cells' close proximity to peripheral nerve endings, it may play a key role in neuroimmune interactions. This paper provides an overview of mast cell contributions to hypersensitivity and so-called "pseudoallergic" reactions, as well as an update on neuroinflammatory implications in the main models of airway and skin allergic diseases. In particular, the main cellular characteristics and the most relevant surface receptors involved in MC pathophysiology have been reappraised in light of recent advancements in MC research. Molecular and clinical aspects related to MC degranulation induced by IgE or MRGPRX2 have been analyzed and compared, along with their possible repercussions and limitations on future therapeutic perspectives.
Collapse
Affiliation(s)
- Ernesto Aitella
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (L.G.)
- Allergy and Clinical Immunology Unit, “G. Mazzini” Hospital, ASL Teramo, 64100 Teramo, Italy
| | - Ciro Romano
- Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy;
| | - Lia Ginaldi
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (L.G.)
- Allergy and Clinical Immunology Unit, “G. Mazzini” Hospital, ASL Teramo, 64100 Teramo, Italy
| | - Domenico Cozzolino
- Division of Internal Medicine, Department of Precision Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy
| |
Collapse
|
2
|
Costanzo G, Marchetti M, Ledda AG, Sambugaro G, Bullita M, Paoletti G, Heffler E, Firinu D, Costanzo GAML. Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower. Int J Mol Sci 2024; 25:12615. [PMID: 39684326 DOI: 10.3390/ijms252312615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Mast cells are immune system cells with the most disparate functions, but are also among the least understood. Mast cells are implicated in several known pathological processes, tissue homeostasis, and wound repair. However, they owe their notoriety to allergic diseases, of which they represent the effector cell par excellence. In both allergic and not upper airway pathologies, mast cells play a key role. Exploring the mechanisms through which these cells carry out their physiological and pathological function may help us give a new perspective on existing therapies and identify new ones. A focus will be placed on non-allergic rhinitis, a poorly recognized and often neglected condition with complex management, where the role of the mast cell is crucial in the pathogenetic, clinical, and prognostic aspects.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Marta Marchetti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Andrea Giovanni Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Giada Sambugaro
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Martina Bullita
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Monserrato, Italy
| | | |
Collapse
|
3
|
Liu X, Li D, Zhang Y, Liu H, Chen P, Zhao Y, Ruscitti P, Zhao W, Dong G. Identifying Common Genetic Etiologies Between Inflammatory Bowel Disease and Related Immune-Mediated Diseases. Biomedicines 2024; 12:2562. [PMID: 39595128 PMCID: PMC11592296 DOI: 10.3390/biomedicines12112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have an increased risk of developing immune-mediated diseases. However, the genetic basis of IBD is complex, and an integrated approach should be used to elucidate the complex genetic relationship between IBD and immune-mediated diseases. METHODS The genetic relationship between IBD and 16 immune-mediated diseases was examined using linkage disequilibrium score regression. GWAS data were synthesized from two IBD databases using the METAL, and multi-trait analysis of genome-wide association studies was performed to enhance statistical robustness and identify novel genetic associations. Independent risk loci were meticulously examined using conditional and joint genome-wide multi-trait analysis, multi-marker analysis of genomic annotation, and functional mapping and annotation of significant genetic loci, integrating the information of quantitative trait loci and different methodologies to identify risk-related genes and proteins. RESULTS The results revealed four immune-mediated diseases (AS, psoriasis, iridocyclitis, and PsA) with a significant relationship with IBD. The multi-trait analysis revealed 909 gene loci of statistical significance. Of these loci, 28 genetic variants were closely related to IBD, and 7 single-nucleotide polymorphisms represented novel independent risk loci. In addition, 14 genes and 514 proteins were found to be associated with susceptibility to immune-mediated diseases. Notably, IL1RL1 emerged as a key player, present within pleiotropic genes across multiple protein databases, highlighting its potential as a therapeutic target. CONCLUSIONS This study suggests that the common polygenic determinants between IBD and immune-mediated diseases are widely distributed across the genome. The findings not only support a shared genetic relationship between IBD and immune-mediated diseases but also provide novel therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yue Zhang
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
4
|
Shaban SF, Abdel-Fattah EA, Ali MM, Dessouky AA. The therapeutic efficacy of adipose mesenchymal stem cell-derived microvesicles versus infliximab in a dextran sodium sulfate induced ulcerative colitis rat model. Ultrastruct Pathol 2024; 48:526-549. [PMID: 39545690 DOI: 10.1080/01913123.2024.2426566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic relapsing intestinal inflammation that is becoming of increasing incidence worldwide and has insufficient treatment. Therefore, finding effective therapies remains a priority. A dextran sodium sulfate colitis model was established to elucidate colonic layers alterations and compare adipose mesenchymal stem cell-derived microvesicles (MSC-MVs) versus infliximab (IFX) efficacy through biochemical, light, and electron microscope studies. Fifty-four rats were allocated to 4 groups: Control (Con), UC, UC+IFX, and UC+MSC-MVs groups. End body weights (BW) and serum malondialdehyde (MDA) levels were recorded. Colitis severity was estimated by disease activity index (DAI). Colonic specimens were processed to evaluate the histological structure, collagen content, surface mucous and goblet cells, CD44, TNF-α, and GFAP immune expression. Morphometric and statistical analyses were performed. The UC group revealed congested, stenosed colons, a significant decline in end BW, and a significant increase in serum MDA and DAI. Furthermore, disturbed histoarchitecture, inflammatory infiltration, depletion of surface mucous and goblet cells, increased collagen, and TNF-α expression and decreased GFAP expression were observed. Alterations were partially attenuated by IFX therapy, whereas MSC-MVs significantly improved all parameters. In conclusion, MSC-MVs were a superior therapeutic option, via attenuating oxidative stress and inflammatory infiltration, in addition to restoring intestinal epithelial integrity and mucosal barrier.
Collapse
Affiliation(s)
- Sahar F Shaban
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Eman A Abdel-Fattah
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Manar M Ali
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| |
Collapse
|
5
|
Li Z, Schneikert J, Tripathi SR, Jin M, Bal G, Zuberbier T, Babina M. CREB Is Critically Implicated in Skin Mast Cell Degranulation Elicited via FcεRI and MRGPRX2. Cells 2024; 13:1681. [PMID: 39451199 PMCID: PMC11506305 DOI: 10.3390/cells13201681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Skin mast cells (MCs) mediate acute allergic reactions in the cutaneous environment and contribute to chronic dermatoses, including urticaria, and atopic or contact dermatitis. The cAMP response element binding protein (CREB), an evolutionarily well conserved transcription factor (TF) with over 4,000 binding sites in the genome, was recently found to form a feedforward loop with KIT, maintaining MC survival. The most selective MC function is degranulation with its acute release of prestored mediators. Herein, we asked whether CREB contributes to the expression and function of the degranulation-competent receptors FcεRI and MRGPRX2. Interference with CREB by pharmacological inhibition (CREBi, 666-15) or RNA interference only slightly affected the expression of these receptors, while KIT was strongly attenuated. Interestingly, MRGPRX2 surface expression moderately increased following CREB-knockdown, whereas MRGPRX2-dependent exocytosis simultaneously decreased. FcεRI expression and function were regulated consistently, although the effect was stronger at the functional level. Preformed MC mediators (tryptase, histamine, β-hexosaminidase) remained comparable following CREB attenuation, suggesting that granule synthesis did not rely on CREB function. Collectively, in contrast to KIT, FcεRI and MRGPRX2 moderately depend on unperturbed CREB function. Nevertheless, CREB is required to maintain MC releasability irrespective of stimulus, insinuating that CREB may operate by safeguarding the degranulation machinery. To our knowledge, CREB is the first factor identified to regulate MRGPRX2 expression and function in opposite direction. Overall, the ancient TF is an indispensable component of skin MCs, orchestrating not only survival and proliferation but also their secretory competence.
Collapse
Affiliation(s)
- Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jean Schneikert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Shiva Raj Tripathi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Manqiu Jin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
6
|
Wollam J, Solomon M, Villescaz C, Lanier M, Evans S, Bacon C, Freeman D, Vasquez A, Vest A, Napora J, Charlot B, Cavarlez C, Kim A, Dvorak L, Selfridge B, Huang L, Nevarez A, Dedman H, Brooks J, Frischbutter S, Metz M, Serhan N, Gaudenzio N, Timony G, Martinborough E, Boehm MF, Viswanath V. Inhibition of mast cell degranulation by novel small molecule MRGPRX2 antagonists. J Allergy Clin Immunol 2024; 154:1033-1043. [PMID: 38971540 DOI: 10.1016/j.jaci.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Vest
- Escient Pharmaceuticals, San Diego, Calif
| | - Jim Napora
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | - Andrew Kim
- Escient Pharmaceuticals, San Diego, Calif
| | | | | | | | | | | | | | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology and Allergology, Berlin, Germany
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)-University Toulouse III, Toulouse, France; Genoskin SAS, Toulouse, France
| | | | | | | | | |
Collapse
|
7
|
Yin Y, Hu Y, Li Y, Peng X, Liao H, Shen W, Li L. Prevalence and Clinical Relevance of Anti-FcεRI Autoantibody in Crohn's Disease. J Asthma Allergy 2024; 17:833-845. [PMID: 39281094 PMCID: PMC11402341 DOI: 10.2147/jaa.s476501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024] Open
Abstract
Background Mast cells can be activated in various ways and were shown to be involved in the development of Crohn's disease (CD). The diagnosis of CD is still challenging, and seeking novel biomarkers is a worthwhile endeavor. Methods An indirect enzyme-linked immunosorbent assay (ELISA) was successfully established for semi-quantitative detection of IgG anti-FcεRI in serum using human FcεRIα coated microplates and an enzyme-labeled anti-human IgG as secondary antibodies. The optimal working conditions were explored, followed by conducting the method evaluation. The serum samples and clinical data of 117 CD patients and 75 healthy controls were collected. IgE was measured by the rate turbidity turbidimetry; IgG anti-IgE and IgG anti-FcεRI were detected by ELISA. IgG anti-pancreatic antibody (PAB) and anti-Saccharomyces cerevisiae antibody (ASCA) were determined by indirect immunofluorescence assay. Data were analyzed concerning the clinical characteristics. Results IgG anti-FcεRI was an effective marker for CD (P < 0.001), but IgE and IgG anti-IgE (P = 0.089, 0.219, respectively) were not. There was a positive correlation between anti-IgE and anti-FcεRI (R = 0.380, P < 0.001). Anti-FcεRI positive patients behaved with higher disease activity [OR: 1.478 (1.200~1.821), P < 0.001], but were less likely to be located in L4 among Montreal classification [OR: 0.253 (0.077~0.837), P = 0.024]. Existing indicators, PAB and ASCA, behaved with high specificity (both > 95%) with low sensitivity (both < 30%). The combination of anti-FcεRI with existing markers significantly improved the diagnostic efficiency [AUC: 0.879 (0.831~0.928)]. Conclusion An ELISA for the detection of anti-FcεRI was established and validated, which may contribute to facilitating research on Crohn's diseases. Anti-FcεRI positive CD patients were associated with higher disease activity indices, suggesting its potential value in the diagnosis and management of CD.
Collapse
Affiliation(s)
- Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Yusen Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Huanjin Liao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, People's Republic of China
| | - Wei Shen
- Department of Laboratory Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, People's Republic of China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Van Remoortel S, Lambeets L, De Winter B, Dong X, Rodriguez Ruiz JP, Kumar-Singh S, Martinez SI, Timmermans JP. Mrgprb2-dependent Mast Cell Activation Plays a Crucial Role in Acute Colitis. Cell Mol Gastroenterol Hepatol 2024; 18:101391. [PMID: 39179175 PMCID: PMC11462171 DOI: 10.1016/j.jcmgh.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND & AIMS Mast cells (MCs) are typically found at mucosal surfaces, where their immunoglobulin E (IgE)-dependent activation plays a central role in allergic diseases. Over the past years, signaling through Mas-related G protein-coupled receptor b2 (Mrgprb2) in mice and MRGPRX2 in humans has gained a lot of interest as an alternative MC activation pathway with high therapeutic potential. The aim of this study was to explore the relevance of such IgE-independent, Mrgprb2-mediated signaling in colonic MCs in the healthy and acutely inflamed mouse colon. METHODS Mrgprb2 expression and functionality was studied using a genetic labeling strategy combined with advanced microscopic imaging. Furthermore, Mrgprb2 knockout (Mrgprb2-/-) mice were used to determine the role of this pathway in a preclinical dextran sodium sulphate (DSS) colitis model. RESULTS We found that Mrgprb2 acts as a novel MC degranulation pathway in a large subset of connective tissue MCs in the mouse distal colon. Acute DSS colitis induced a pronounced increase of Mrgprb2-expressing MCs, which were found in close association with Substance P-positive nerve fibers. Loss of Mrgprb2-mediated signaling impaired DSS-induced neutrophil influx and significantly impacted on acute colitis progression. CONCLUSIONS Our findings uncover a novel, IgE-independent MC degranulation pathway in the mouse colon that plays a central role in acute colitis pathophysiology, mainly by safeguarding acute colitis progression and severity in mice. This pseudo allergic, Mrgprb2-induced signaling is part of a hitherto unconsidered colonic neuro-immune pathway and might have significant potential for the further development of effective therapeutic treatment strategies for gastrointestinal disorders, such as ulcerative colitis.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Lana Lambeets
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan Pablo Rodriguez Ruiz
- Laboratory of Medical Microbiology, University of Antwerp and Member of the VAXINFECTIO Centre of Excellence, Wilrijk, Belgium
| | - Samir Kumar-Singh
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Laboratory of Medical Microbiology, University of Antwerp and Member of the VAXINFECTIO Centre of Excellence, Wilrijk, Belgium
| | - Sales Ibiza Martinez
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
10
|
Singh P, Sayuk GS, Rosenbaum DP, Edelstein S, Kozuka K, Chang L. An Overview of the Effects of Tenapanor on Visceral Hypersensitivity in the Treatment of Irritable Bowel Syndrome with Constipation. Clin Exp Gastroenterol 2024; 17:87-96. [PMID: 38617992 PMCID: PMC11016248 DOI: 10.2147/ceg.s454526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
Background Patients with irritable bowel syndrome with constipation (IBS-C) experience persistent abdominal pain, a common symptom leading to greater healthcare utilization and reports of treatment non-response. Clinically significant improvements in abdominal pain were observed in clinical trials of tenapanor, a first-in-class inhibitor of sodium/hydrogen exchanger isoform 3 (NHE3), for the treatment of IBS-C in adults. Aim This narrative review reports the current knowledge about visceral hypersensitivity as a mechanism for abdominal pain in patients with IBS-C and explores the published evidence for hypothesized mechanisms by which tenapanor may reduce visceral hypersensitivity leading to the observed clinical response of decreased abdominal pain. Findings Abdominal pain is experienced through activation and signaling of nociceptive dorsal root ganglia that innervate the gut. These sensory afferent neurons may become hypersensitized through signaling of transient receptor potential cation channel subfamily V member 1 (TRPV1), resulting in reduced action potential thresholds. TRPV1 signaling is also a key component of the proinflammatory cascade involving mast cell responses to macromolecule exposure following permeation through the intestinal epithelium. Indirect evidence of this pathway is supported by observations of higher pain in association with increased intestinal permeability in patients with IBS. Tenapanor reduces intestinal sodium absorption, leading to increased water retention in the intestinal lumen, thereby improving gastrointestinal motility. In animal models of visceral hypersensitivity, tenapanor normalized visceromotor responses and normalized TRPV1-mediated nociceptive signaling. Conclusion By improving gastrointestinal motility, decreasing intestinal permeability and inflammation, and normalizing nociception through decreased TRPV1 signaling, tenapanor may reduce visceral hypersensitivity, leading to less abdominal pain in patients with IBS-C. Therapies that have demonstrated effects on visceral hypersensitivity may be the future direction for meaningful abdominal pain relief for patients with IBS-C.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gregory S Sayuk
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Lin Chang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
11
|
Doulberis M, Papaefthymiou A, Polyzos SA, Boziki M, Kazakos E, Tzitiridou-Chatzopoulou M, Vardaka E, Hammrich C, Kulaksiz H, Riva D, Kiosses C, Linas I, Touloumtzi M, Stogianni A, Kountouras J. Impact of Helicobacter pylori and metabolic syndrome-related mast cell activation on cardiovascular diseases. FRONTIERS IN GASTROENTEROLOGY 2024; 3. [DOI: 10.3389/fgstr.2024.1331330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Helicobacter pylori, a widely renowned bacterium, has recently gained attention owing to its potential impact on extragastric health. The emergence of research linking H. pylori infection with metabolic syndrome (MetS)-related cardiovascular diseases (CVDs) has raised intriguing questions about the pathogenic linkage and its translational implications for clinicians. MetS encompasses a collection of metabolic abnormalities that considerably elevate the risk of CVDs and cerebrovascular diseases. Emerging evidence supports a potential pathogenetic role of H. pylori for MetS-related disorders through mechanisms implicating chronic smoldering inflammation, insulin resistance (IR), and modulation of immune responses. One intriguing aspect of this possible connection is the role of mast cells (MCs), a subset of immune cells representing innate immune system effector cells. They play a fundamental role in innate immune responses and the modulation of adaptive immunity. Activated MCs are commonly found in patients with MetS-related CVD. Recent studies have also suggested that H. pylori infection may activate MCs, triggering the release of pro-inflammatory mediators that contribute to IR and atherosclerosis. Understanding these intricate interactions at the cellular level provides new insights into the development of therapeutic strategies targeting both H. pylori infection and MetS-related MCs activation. This review investigates the current state of research regarding the potential impact of H. pylori infection and MetS-related MCs activation on the pathophysiology of CVD, thereby opening up new avenues for related research and paving the way for innovative approaches to prevention and treatment in clinical practice
Collapse
|
12
|
Alda S, Ceausu RA, Gaje PN, Raica M, Cosoroaba RM. Mast Cell: A Mysterious Character in Skin Cancer. In Vivo 2024; 38:58-68. [PMID: 38148067 PMCID: PMC10756458 DOI: 10.21873/invivo.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 12/28/2023]
Abstract
Cutaneous malignancies represent a real concern and burden for the healthcare system, not only due to their increased frequency, but also due to the significant number of deaths attributed to these types of cancer. The genesis of tumors, their progression and metastasis are highly complex and researched subjects; apparently, mast cells (MCs) constitute an important piece in the complicated jigsaw puzzle of cancer. This article reviews the current knowledge of the roles MCs might play in the development of cutaneous malignancies. Besides their well-known and studied role in allergic reactions, MCs are linked to multiple and various disorders, including cancer. MCs exhibit incredible heterogeneity, being able to secrete numerous mediators that influence the tumor microenvironment and tumor cells. They are involved in many physiological and pathological processes, such as inflammation and angiogenesis. In this context, it is paramount to explore the advancements made so far in elucidating the roles that MCs have in skin cancer because they might provide valuable therapeutic targets in the future. Controversial and conflicting results were obtained across the studies examined.
Collapse
Affiliation(s)
- Silvia Alda
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | - Pusa Nela Gaje
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Mioara Cosoroaba
- Department of Management, Legislation and Communication in Dental Medicine, First Department of Dentistry, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
13
|
Franke K, Li Z, Bal G, Zuberbier T, Babina M. Synergism between IL-33 and MRGPRX2/FcεRI Is Primarily Due to the Complementation of Signaling Modules, and Only Modestly Supplemented by Prolonged Activation of Selected Kinases. Cells 2023; 12:2700. [PMID: 38067128 PMCID: PMC10705352 DOI: 10.3390/cells12232700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Skin mast cells (MCs) express high levels of MRGPRX2, FcεRI, and ST2, and vigorously respond to their ligands when triggered individually. IL-33/ST2 also potently synergizes with other receptors, but the molecular underpinnings are poorly understood. Human skin-derived MCs were stimulated via different receptors individually or jointly in the presence/absence of selective inhibitors. TNF was quantified by ELISA. Signaling cascades were studied by immunoblot. TNF was stimulated by FcεRI ≈ ST2 > MRGPRX2. Surprisingly, neither FcεRI nor MRGPRX2 stimulation elicited NF-κB activation (IκB degradation, p65 phosphorylation) in stark contrast to IL-33. Accordingly, TNF production did not depend on NF-κB in FcεRI- or MRGPRX2-stimulated MCs, but did well so downstream of ST2. Conversely, ERK1/2 and PI3K were the crucial modules upon FcεRI/MRGPRX2 stimulation, while p38 was key to the IL-33-elicited route. The different signaling prerequisites were mirrored by their activation patterns with potent pERK/pAKT after FcεRI/MRGPRX2, but preferential induction of pp38/NF-κB downstream of ST2. FcεRI/MRGPRX2 strongly synergized with IL-33, and some synergy was still observed upon inhibition of each module (ERK1/2, JNK, p38, PI3K, NF-κB). IL-33's contribution to synergism was owed to p38 > JNK > NF-κB, while the partner receptor contributed through ERK > PI3K ≈ JNK. Concurrent IL-33 led to slightly prolonged pERK (downstream of MRGPRX2) or pAKT (activated by FcεRI), while the IL-33-elicited modules (pp38/NF-κB) remained unaffected by co-stimulation of FcεRI/MRGPRX2. Collectively, the strong synergistic activity of IL-33 primarily results from the complementation of highly distinct modules following co-activation of the partner receptor rather than by altered signal strength of the same modules.
Collapse
Affiliation(s)
- Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
14
|
O'Sullivan JA, Youngblood BA, Schleimer RP, Bochner BS. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin Immunol 2023; 69:101799. [PMID: 37413923 PMCID: PMC10528103 DOI: 10.1016/j.smim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Huang R, Wang W, Chen Z, Chai J, Qi Q, Zheng H, Chen B, Wu H, Liu H. Identifying immune cell infiltration and effective diagnostic biomarkers in Crohn's disease by bioinformatics analysis. Front Immunol 2023; 14:1162473. [PMID: 37622114 PMCID: PMC10445157 DOI: 10.3389/fimmu.2023.1162473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background Crohn's disease (CD) has an increasing incidence and prevalence worldwide. It is currently believed that both the onset and progression of the disease are closely related to immune system imbalance and the infiltration of immune cells. The aim of this study was to investigate the molecular immune mechanisms associated with CD and its fibrosis through bioinformatics analysis. Methods Three datasets from the Gene Expression Omnibus data base (GEO) were downloaded for data analysis and validation. Single sample gene enrichment analysis (ssGSEA) was used to evaluate the infiltration of immune cells in CD samples. Immune cell types with significant differences were identified by Wilcoxon test and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Differentially expressed genes (DEGs) were screened and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional correlation analysis, as well as protein-protein interaction (PPI) network analysis. The cytoHubba program and the GSE75214 dataset were used to screen for hub genes and plot Receiver operating characteristic (ROC)curves to screen for possible biomarkers of CD based on diagnostic efficacy. The hub genes of CD were correlated with five significantly different immune cells. In addition, validation was performed by real time quantitative PCR (RT-qPCR) experiments in colonic tissue of CD intestinal fibrosis rats to further identify hub genes that are more related to CD intestinal fibrosis. Results The DEGs were analyzed separately by 10 algorithms and narrowed down to 9 DEGs after taking the intersection. 4 hub genes were further screened by the GSE75214 validation set, namely COL1A1, CXCL10, MMP2 and FGF2. COL1A1 has the highest specificity and sensitivity for the diagnosis of CD and is considered to have the potential to diagnose CD. Five immune cells with significant differences were screened between CD and health controls (HC). Through the correlation analysis between five kinds of immune cells and four biomarkers, it was found that CXCL10 was positively correlated with activated dendritic cells, effector memory CD8+ T cells. MMP2 was positively correlated with activated dendritic cells, gamma delta T cells (γδ T) and mast cells. MMP2 and COL1A1 were significantly increased in colon tissue of CD fibrosis rats. Conclusion MMP2, COL1A1, CXCL10 and FGF2 can be used as hub genes for CD. Among them, COL1A1 can be used as a biomarker for the diagnosis of CD. MMP2 and CXCL10 may be involved in the development and progression of CD by regulating activated dendritic cell, effector memory CD8+ T cell, γδ T cell and mast cell. In addition, MMP2 and COL1A1 may be more closely related to CD intestinal fibrosis.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjia Wang
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyi Chen
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Chai
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingli Chen
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
17
|
Zhao D, Qin D, Yin L, Yang Q. Integrated Bioinformatics Analysis and Experimental Verification of Immune Cell Infiltration and the Related Core Genes in Ulcerative Colitis. Pharmgenomics Pers Med 2023; 16:629-643. [PMID: 37383675 PMCID: PMC10296601 DOI: 10.2147/pgpm.s406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Background Ulcerative colitis is a recurrent autoimmune disease. At present, the pathogenesis of UC is not completely clear. Hence, the etiology and underlying molecular mechanism need to be further investigated. Methods Three sets of microarray datasets were included from the Gene Expression Omnibus database. The differentially expressed genes in two sets of datasets were analyzed using the R software, and the core genes of UC were screened using machine learning. The sensitivity and specificity of the core genes were evaluated with the receiver operating characteristic curve in another microarray dataset. Subsequently, the CIBERSORT tool was used to analyze the relationship between UC and its core genes and immune cell infiltration. To verify the relationship between UC and core genes and the relationship between core genes and immune cell infiltration in vivo. Results A total of 36 DEGs were identified. AQP8, HMGCS2, and VNN1 were determined to be the core genes of UC. These genes had high sensitivity and specificity in receiver operating characteristic curve analysis. According to the analysis of immune cell infiltration, neutrophils, monocytes, and macrophages were positively correlated with UC. AQP8, HMGCS2, and VNN1 were also correlated with immune cell infiltration to varying degrees. In vivo experiments verified that the expressions of neutrophils, monocytes, and macrophages increased in the UC colon. Furthermore, the expressions of AQP8 and HMGCS2 decreased, whereas that of VNN1 increased. Azathioprine treatment improved all the indicators to different degrees. Conclusion AQP8, HMGCS2, and VNN1 are the core genes of UC and exhibit different degrees of correlation with immune cells. These genes are expected to become new therapeutic targets for UC. Moreover, the occurrence and development of UC are influenced by immune cell infiltration.
Collapse
Affiliation(s)
- Danya Zhao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Danping Qin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Liming Yin
- Institute of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qiang Yang
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
18
|
Costanzo G, Costanzo GAML, Del Moro L, Nappi E, Pelaia C, Puggioni F, Canonica GW, Heffler E, Paoletti G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int J Mol Sci 2023; 24:ijms24119771. [PMID: 37298721 DOI: 10.3390/ijms24119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells (MCs) are fascinating cells of the innate immune system involved not only in allergic reaction but also in tissue homeostasis, response to infection, wound healing, protection against kidney injury, the effects of pollution and, in some circumstances, cancer. Indeed, exploring their role in respiratory allergic diseases would give us, perhaps, novel therapy targets. Based on this, there is currently a great demand for therapeutic regimens to enfeeble the damaging impact of MCs in these pathological conditions. Several strategies can accomplish this at different levels in response to MC activation, including targeting individual mediators released by MCs, blockade of receptors for MC-released compounds, inhibition of MC activation, limiting mast cell growth, or inducing mast cell apoptosis. The current work focuses on and summarizes the mast cells' role in pathogenesis and as a personalized treatment target in allergic rhinitis and asthma; even these supposed treatments are still at the preclinical stage.
Collapse
Affiliation(s)
- Giovanni Costanzo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
19
|
Zhou X, Hu Y, Liu L, Liu L, Chen H, Huang D, Ju M, Luan C, Chen K, Zhang J. IL-33-mediated activation of mast cells is involved in the progression of imiquimod-induced psoriasis-like dermatitis. Cell Commun Signal 2023; 21:52. [PMID: 36894987 PMCID: PMC9996901 DOI: 10.1186/s12964-023-01075-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/11/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory dermatosis with an unclear pathogenesis. Mast cells (MCs) can serve as a bridge between innate and adaptive immunity and are involved in the regulation of the inflammatory state and immune homeostasis in diseases. MCs constitutively express interleukin-33 receptor T1/ST2 (IL-33R). IL-33 is a potent MCs activator that is actively secreted by keratinocytes in psoriasis. However, the regulatory role of MCs in psoriasis remains uncertain. Therefore, we hypothesised that IL-33 could promote MC activation to regulate psoriasis development. METHODS We performed experiments on wild-type (WT) and MC-deficient (Kit Wsh/Wsh) mice, established psoriasis-like mouse models using imiquimod (IMQ), and performed RNA sequencing and transcriptomic analysis of skin lesions. Exogenous administration was performed using recombinant IL-33. Validation and evaluation were performed using PSI scoring, immunofluorescence, immunohistochemistry, and qPCR. RESULTS We observed an upregulation in the number and activation of MCs in patients with psoriasis and in IMQ-induced psoriasis-like dermatitis. Deficiency of MCs ameliorates IMQ-induced psoriatic dermatitis at an early stage. IL-33 is increased and co-localized with MCs in the dermis of psoriasis-like lesions using immunofluorescence. Compared to WT mice, IMQ-induced KitWsh/Wsh mice demonstrated a delayed response to exogenous IL-33. CONCLUSIONS MCs are activated by IL-33 in the early stages of psoriasis and exacerbate psoriasis-associated skin inflammation. The regulation of MC homeostasis may be a potential therapeutic strategy for psoriasis. Video Abstract.
Collapse
Affiliation(s)
- Xuyue Zhou
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Lingxi Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Lihao Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Hongying Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.
| | - Kun Chen
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.
| | - Jiaan Zhang
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
20
|
Burgess Robinson L. Exchanges between the gastrointestinal system and the brain. INTRODUCTION TO QUANTITATIVE EEG AND NEUROFEEDBACK 2023:413-425. [DOI: 10.1016/b978-0-323-89827-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Shao M, Liu J, Luo H. Colitis aggravated by Mrgprb2 knockout is associated with altered immune response, intestinal barrier function and gut microbiota. Exp Physiol 2023; 108:63-75. [PMID: 36440681 PMCID: PMC10103767 DOI: 10.1113/ep090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of mas-related G protein-coupled receptor X2 (MRGPRX2/Mrgprb2) in ulcerative colitis in relation to the intestinal flora, intestinal barrier and immune response? What is the main finding and its importance? Knockout of mouse Mrgprb2 aggravates dextran sulfate sodium (DSS)-induced colitis, which is associated with altered gut microbiota and immune response and disruption of the intestinal barrier. MRGPRB2 may have a protective effect on DSS-induced colitis. ABSTRACT Ulcerative colitis (UC) is a chronic immune-related disease, and changes in the intestinal microbiota and damage to the intestinal barrier contribute to its pathogenesis. Mast cells (MCs) are widely distributed in the gastrointestinal tract and are thought to be related to the pathogenesis of UC. Human mas-related G protein-coupled receptor X2 (MRGPRX2) and its mouse homologue, Mrgprb2, are selectively expressed on MCs to recruit immune cells and modulate host defence against microbial infection. To investigate the role of Mrgprb2 in UC in mice, we compared the differences between Mrgprb2 knockout (b2KO) male mice and wild-type (WT) male mice with dextran sulfate sodium (DSS)-induced colitis in the severity of clinical symptoms, inflammatory cell infiltration, degree of intestinal barrier damage and composition of the intestinal flora. The results showed that weight loss, disease activity index score, colon shortening and colonic pathological damage were significantly increased in b2KO mice while MC activation, cytokine and chemokine secretion, and inflammatory cell infiltration were decreased. In addition, the abundance and diversity of the intestinal microbiota were reduced in b2KO mice. B2KO mice also exhibited a reduction of probiotics such as norank_f_Muribaculaceae and Lactobacillus and increase of harmful bacteria like Escherichia-Shigella. Intestinal mucosal barrier damage of b2KO mice was more severe than that of WT mice due to the attenuated expression of mucin-2 and occludin. These results demonstrated that MRGPRB2 may have a protective effect on DSS-induced colitis by altering the intestinal flora, participating in barrier repair and recruiting inflammatory cells to eliminate pathogens.
Collapse
Affiliation(s)
- Ming Shao
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
- Department of GastroenterologyHubei Key Laboratory of Digestive DiseasesWuhanChina
| | - Jingwen Liu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
- Department of GastroenterologyHubei Key Laboratory of Digestive DiseasesWuhanChina
| | - Hesheng Luo
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
22
|
Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Wounds under diabetic milieu: The role of immune cellar components and signaling pathways. Biomed Pharmacother 2023; 157:114052. [PMID: 36462313 DOI: 10.1016/j.biopha.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A major challenge in the field of diabetic wound healing is to confirm the body's intrinsic mechanism that could sense the immune system damage promptly and protect the wound from non-healing. Accumulating literature indicates that macrophage, a contributor to prolonged inflammation occurring at the wound site, might play such a role in hindering wound healing. Likewise, other immune cell dysfunctions, such as persistent neutrophils and T cell infection, may also lead to persistent oxidative stress and inflammatory reaction during diabetic wound healing. In this article, we discuss recent advances in the immune cellular components in wounds under the diabetic milieu, and the role of key signaling mechanisms that compromise the function of immune cells leading to persistent wound non-healing.
Collapse
Affiliation(s)
- Siyuan Lin
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
23
|
Akin C, Al-Hosni M, Khokar DS. Mast Cells and Mast Cell Disorders. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
Irandoost E, Najibi S, Talebbeigi S, Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: a review on molecular mechanisms and possible medical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:621-631. [PMID: 36542122 DOI: 10.1007/s00210-022-02365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Endometriosis (EMS) is a gynecological disease that leads to pathological conditions, which are connected to the initiation of pro-inflammatory cytokine production. Inflammation plays a vital role in the pathogenesis of EMS. The activation and formation of cytoplasmic inflammasome complexes is considered an important step of inflammation and a key regulator of pyroptosis, a form of cell death. NLR family pyrin domain containing 3 (NLRP3) inflammasome complex modulates innate immune activity and inflammation. The NLRP3 inflammasome activates cysteine protease caspase-1, which produces active pro-inflammatory interleukins (ILs), including IL-1β and IL-18. The aim of this review article was to discuss the involvement of NLRP3 inflammasome assembly and its activation in the pathophysiology of EMS and target related pathways in designing appropriate therapeutic approaches. Dysregulation of sex hormone signaling pathways was associated with over-activation of the NLPR3 inflammasome. In this study, we demonstrated the involvement of NLRP3 inflammasome signaling pathways in the pathophysiology of EMS. The manuscript also discusses the beneficial effects of targeted therapy through synthetic inhibitors of NLRP3 signaling pathways to control EMS lesions.
Collapse
Affiliation(s)
- Elnaz Irandoost
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaparak Najibi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Talebbeigi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saina Nassiri
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review will present what is known from recent research on the involvement of mast cells in eosinophilic esophagitis and identify questions requiring further investigation. RECENT FINDINGS In the adults and children with eosinophilic esophagitis, there is increasing evidence that mastocytosis can persist, despite resolution of eosinophilia and is associated with persistent mucosal abnormalities and symptoms. Despite, treatment mast cells have an activated transcriptome. Mast cells likely contribute to epithelial barrier dysfunction, smooth muscle hypertrophy and contraction, and subepithelial fibrosis. It remains unclear whether targeting MCs alone has therapeutic efficacy to improve tissue damage. SUMMARY Mast cells appear to play a key role in eosinophilic esophagitis and serve as a biomarker of mucosal healing in conjunction with eosinophils. Excessive mast cell activation likely contributes to tissue damage in eosinophilic esophagitis and need to be considered as a target of therapy along with eosinophils.
Collapse
|
26
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
27
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
28
|
Donskow-Łysoniewska K, Maruszewska-Cheruiyot M, Krawczak-Wójcik K, Gonzalez JF, Hernández JN, Stear MJ. Nematode galectin binds IgE and modulates mast cell activity. Vet Parasitol 2022; 311:109807. [PMID: 36155863 DOI: 10.1016/j.vetpar.2022.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/15/2022]
Abstract
Mast cell degranulation is the major mechanism influencing establishment and survival of the abomasal nematode Teladorsagia circumcincta and probably many other gastrointestinal nematodes. Host galectins-3 and -9 have been shown to bind IgE and positively and negatively influence mast cell degranulation. As incoming nematodes produce large amounts of galectin, we hypothesised that nematode galectin competes with host galectin and inhibits mast cell degranulation. ELISA was used to show that nematode galectin reduced total IgE activity. Galectin also reduced the binding of sheep IgE to the surface of a mast cell line and decreased the release of LCT-4 and Beta hexosaminidase but not MMP-9. These results indicate that nematode galectin influences mast cell degranulation and identify a potential immunomodulatory mechanism used by nematodes to enhance their establishment and survival.
Collapse
Affiliation(s)
- Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Katarzyna Krawczak-Wójcik
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Jorge F Gonzalez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Veterinary Faculty, Universidad de Las Palmas de Gran Canaria, Trasmontaña S/N, Arucas, Spain
| | - Julia N Hernández
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Veterinary Faculty, Universidad de Las Palmas de Gran Canaria, Trasmontaña S/N, Arucas, Spain
| | - Michael J Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
29
|
Szukiewicz D, Wojdasiewicz P, Watroba M, Szewczyk G. Mast Cell Activation Syndrome in COVID-19 and Female Reproductive Function: Theoretical Background vs. Accumulating Clinical Evidence. J Immunol Res 2022; 2022:9534163. [PMID: 35785029 PMCID: PMC9242765 DOI: 10.1155/2022/9534163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, can affect almost all systems and organs of the human body, including those responsible for reproductive function in women. The multisystem inflammatory response in COVID-19 shows many analogies with mast cell activation syndrome (MCAS), and MCAS may be an important component in the course of COVID-19. Of note, the female sex hormones estradiol (E2) and progesterone (P4) significantly influence mast cell (MC) behavior. This review presents the importance of MCs and the mediators from their granules in the female reproductive system, including pregnancy, and discusses the mechanism of potential disorders related to MCAS. Then, the available data on COVID-19 in the context of hormonal disorders, the course of endometriosis, female fertility, and the course of pregnancy were compiled to verify intuitively predicted threats. Surprisingly, although COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in MCAS, the available clinical data do not provide grounds for treating this mechanism as significantly increasing the risk of abnormal female reproductive function, including pregnancy. Further studies in the context of post COVID-19 condition (long COVID), where inflammation and a procoagulative state resemble many aspects of MCAS, are needed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Wojdasiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Watroba
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Connecting the Dots in Emerging Mast Cell Research: Do Factors Affecting Mast Cell Activation Provide a Missing Link between Adverse COVID-19 Outcomes and the Social Determinants of Health? Med Sci (Basel) 2022; 10:medsci10020029. [PMID: 35736349 PMCID: PMC9228930 DOI: 10.3390/medsci10020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence continues to emerge that the social determinants of health play a role in adverse outcomes related to COVID-19, including increased morbidity and mortality, increased risk of long COVID, and vaccine adverse effects. Therefore, a more nuanced understanding of the biochemical and cellular pathways of illnesses commonly associated with adverse social determinants of health is urgently needed. We contend that a commitment to understanding adverse outcomes in historically marginalized communities will increase community-level confidence in public health measures. Here, we synthesize emerging literature on mast cell disease, and the role of mast cells in chronic illness, alongside emerging research on mechanisms of COVID illness and vaccines. We propose that a focus on aberrant and/or hyperactive mast cell behavior associated with chronic underlying health conditions can elucidate adverse COVID-related outcomes and contribute to the pandemic recovery. Standards of care for mast cell activation syndrome (MCAS), as well as clinical reviews, experimental research, and case reports, suggest that effective and cost-efficient remedies are available, including antihistamines, vitamin C, and quercetin, among others. Primary care physicians, specialists, and public health workers should consider new and emerging evidence from the biomedical literature in tackling COVID-19. Specialists and researchers note that MCAS is likely grossly under-diagnosed; therefore, public health agencies and policy makers should urgently attend to community-based experiences of adverse COVID outcomes. It is essential that we extract and examine experiential evidence of marginalized communities from the broader political–ideological discourse.
Collapse
|
31
|
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int J Mol Sci 2022; 23:ijms23105414. [PMID: 35628223 PMCID: PMC9142086 DOI: 10.3390/ijms23105414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
32
|
Rigo R, Chelbi R, Agopian J, Letard S, Griffon A, Ghamlouch H, Vernerey J, Ladopoulos V, Voisset E, De Sepulveda P, Guittard G, Nunès JA, Bidaut G, Göttgens B, Weber M, Bernard OA, Dubreuil P, Soucie E. TET2 regulates immune tolerance in chronically activated mast cells. JCI Insight 2022; 7:154191. [PMID: 35393954 PMCID: PMC9057605 DOI: 10.1172/jci.insight.154191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Mutation of the TET2 DNA-hydroxymethylase has been associated with a number of immune pathologies. The disparity in phenotype and clinical presentation among these pathologies leads to questions regarding the role of TET2 mutation in promoting disease evolution in different immune cell types. Here we show that, in primary mast cells, Tet2 expression is induced in response to chronic and acute activation signals. In TET2-deficient mast cells, chronic activation via the oncogenic KITD816V allele associated with mastocytosis, selects for a specific epigenetic signature characterized by hypermethylated DNA regions (HMR) at immune response genes. H3K27ac and transcription factor binding is consistent with priming or more open chromatin at both HMR and non-HMR in proximity to immune genes in these cells, and this signature coincides with increased pathological inflammation signals. HMR are also associated with a subset of immune genes that are direct targets of TET2 and repressed in TET2-deficient cells. Repression of these genes results in immune tolerance to acute stimulation that can be rescued with vitamin C treatment or reiterated with a Tet inhibitor. Overall, our data support a model where TET2 plays a direct role in preventing immune tolerance in chronically activated mast cells, supporting TET2 as a viable target to reprogram the innate immune response for innovative therapies.
Collapse
Affiliation(s)
- Riccardo Rigo
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Rabie Chelbi
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France.,Inovarion, Paris, France
| | - Julie Agopian
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Sebastien Letard
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Aurélien Griffon
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Hussein Ghamlouch
- INSERM, Mixed Research Unit (UMR) 1170, Institut Gustave Roussy, Facility of Medicine, Paris-Sud University, Paris-Saclay University, Equipe Labélisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Julien Vernerey
- CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Vasileios Ladopoulos
- Department of Haematology, Cambridge Institute for Medical Research, and.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Edwige Voisset
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Paulo De Sepulveda
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Geoffrey Guittard
- CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Jacques A Nunès
- CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Ghislain Bidaut
- CRCM, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille University, Marseille, France
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, and.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael Weber
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, Illkirch, France
| | - Olivier A Bernard
- INSERM, Mixed Research Unit (UMR) 1170, Institut Gustave Roussy, Facility of Medicine, Paris-Sud University, Paris-Saclay University, Equipe Labélisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Patrice Dubreuil
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| | - Erinn Soucie
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue Nationale Contre le Cancer, Marseille, France
| |
Collapse
|
33
|
Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the Microbiome, Environment, and Genetics to Mucosal Type 2 Immunity and Anaphylaxis in a Murine Food Allergy Model. FRONTIERS IN ALLERGY 2022; 3:851993. [PMID: 35769569 PMCID: PMC9234882 DOI: 10.3389/falgy.2022.851993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
There is heterogeneity inherent in the immune responses of individual mice in murine models of food allergy, including anaphylaxis, similar to the clinical heterogeneity observed in humans with food allergies to a defined food. One major driver of this heterogeneity may be differences in the microbiome between sensitized individuals. Our laboratory and others have reported that disruption of the microbiome (dysbiosis) by broad spectrum antibiotics and/or yeast colonization can alter systemic immunity and favor the development of mucosal Type 2 immunity to aeroallergens. Our objective was to use a well-characterized murine model (Balb/c mice) of food allergies (chicken egg ovalbumin, OVA) and determine if antibiotic-mediated dysbiosis (including C. albicans colonization) could enhance the manifestation of food allergies. Furthermore, we sought to identify elements of the microbiome and host response that were associated with this heterogeneity in the anaphylactic reaction between individual food allergen-sensitized mice. In our dataset, the intensity of the anaphylactic reactions was most strongly associated with a disrupted microbiome that included colonization by C. albicans, loss of a specific Lachnoclostridium species (tentatively, Lachnoclostridium YL32), development of a highly polarized Type 2 response in the intestinal mucosa and underlying tissue, and activation of mucosal mast cells. Serum levels of allergen-specific IgE were not predictive of the response and a complete absence of a microbiome did not fully recapitulate the response. Conventionalization of germ-free mice resulted in Akkermansia muciniphila outgrowth and a higher degree of heterogeneity in the allergic response. C57BL/6 mice remained resistant even under the same dysbiosis-inducing antibiotic regimens, while changes in the microbiome markedly altered the reactivity of Balb/c mice to OVA, as noted above. Strikingly, we also observed that genetically identical mice from different rooms in our vivarium develop different levels of a Type 2 response, as well as anaphylactic reactions. The intestinal microbiome in these mice also differed between rooms. Thus, our data recapitulate the heterogeneity in anaphylactic reactions, ranging from severe to none, seen in patients that have circulating levels of food allergen-reactive IgE and support the concept that alterations in the microbiome can be one factor underlying this heterogeneity.
Collapse
Affiliation(s)
- Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher A. Brown
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute for Research on Innovation and Science (IRIS), Institute for Social Research (ISR), University of Michigan, Ann Arbor, MI, United States
| | - Roderick A. McDonald
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Gary B. Huffnagle
| |
Collapse
|
34
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
36
|
Seyed Toutounchi N, Braber S, van’t Land B, Thijssen S, Garssen J, Kraneveld AD, Folkerts G, Hogenkamp A. Exposure to Deoxynivalenol During Pregnancy and Lactation Enhances Food Allergy and Reduces Vaccine Responsiveness in the Offspring in a Mouse Model. Front Immunol 2021; 12:797152. [PMID: 34975906 PMCID: PMC8718709 DOI: 10.3389/fimmu.2021.797152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Deoxynivalenol (DON), a highly prevalent contaminant of grain-based products, is known to induce reproductive- and immunotoxicities. Considering the importance of immune development in early life, the present study investigated the effects of perinatal DON exposure on allergy development and vaccine responsiveness in the offspring. Pregnant mice received control or DON-contaminated diets (12.5 mg/kg diet) during pregnancy and lactation. After weaning, female offspring were sensitized to ovalbumin (OVA) by oral administration of OVA with cholera toxin (CT). Male offspring were injected with Influvac vaccine. OVA-specific acute allergic skin response (ASR) in females and vaccine-specific delayed-type hypersensitivity (DTH) in males were measured upon intradermal antigen challenge. Immune cell populations in spleen and antigen-specific plasma immunoglobulins were analyzed. In female CT+OVA-sensitized offspring of DON-exposed mothers ASR and OVA-specific plasma immunoglobulins were significantly higher, compared to the female offspring of control mothers. In vaccinated male offspring of DON-exposed mothers DTH and vaccine-specific antibody levels were significantly lower, compared to the male offspring of control mothers. In both models a significant reduction in regulatory T cells, Tbet+ Th1 cells and Th1-related cytokine production of the offspring of DON-exposed mothers was observed. In conclusion, early life dietary exposure to DON can adversely influence immune development in the offspring. Consequently, the immune system of the offspring may be skewed towards an imbalanced state, resulting in an increased allergic immune response to food allergens and a decreased immune response to vaccination against influenza virus in these models.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Belinda van’t Land
- Danone Nutricia Research, Utrecht, Netherlands
- Center of Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
37
|
Cho KA, Choi DW, Park M, Kim YH, Woo SY. Toll-Like Receptor 7 (TLR7) Mediated Transcriptomic Changes on Human Mast Cells. Ann Dermatol 2021; 33:402-408. [PMID: 34616120 PMCID: PMC8460485 DOI: 10.5021/ad.2021.33.5.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 11/08/2022] Open
Abstract
Background Mast cells are skin immune sentinels located in the upper dermis, where wheal formation and sensory nerve stimulation take place. Skin inflammation is occasionally accompanied by mast cell-driven responses with wheals, angioedema, or both. Immunoglobulin E (IgE) antibodies are regarded as typical stimuli to drive mast cell activation. However, various causative factors, including microbial infections, can drive IgE-independent mast cell response. When infected, the innate immunity orchestrates an immune response by activating receptor signaling via Toll-like receptors (TLRs). Objective In this study, we determined the effect of TLR7 stimulation on mast cells to investigate the possible mechanism of IgE-independent inflammatory response. Methods Human mast cell (HMC) line, HMC-1 cells were treated with TLR7 agonist and the morphologic alteration was observed in transmission electron microscopy. Further, TLR7 agonist treated HMC-1 cells were conducted to RNA sequencing to compare transcriptomic features. Results HMC-1 cells treated with TLR7 agonist reveals increase of intracellular vesicles, lipid droplets, and ribosomes. Also, genes involved in pro-inflammatory responses such as angiogenesis are highly expressed, and Il12rb2 was the most highly upregulated gene. Conclusion Our data suggest that TLR7 signaling on mast cells might be a potential therapeutic target for mast cell-driven, IgE-independent skin inflammation.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Da-Won Choi
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
38
|
Guo X, Xu X, Li T, Yu Q, Wang J, Chen Y, Ding S, Zhu L, Zou G, Zhang X. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front Immunol 2021; 12:749979. [PMID: 34630429 PMCID: PMC8494307 DOI: 10.3389/fimmu.2021.749979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease. The pathogenesis of endometriosis remains controversial, although it is generally accepted that the inflammatory immune response plays a crucial role in this process. Mast cells (MCs) are multifunctional innate immune cells that accumulate in endometriotic lesions. However, the molecular mechanism by which estrogen modulates MCs in the development of endometriosis is not well understood. Here we report that estrogen can induce the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) through estrogen receptor (ER)-α via the estrogen responsive element (ERE) in MCs. Such transcriptional regulation is necessary for the activation of NLRP3 inflammasome and the production of mature interleukin (IL)-1β in MCs. Targeted inhibition of NLRP3 significantly restrained lesion progression and fibrogenesis in a mouse model of endometriosis. Collectively, these findings suggest that MCs contribute to the development of endometriosis through NLRP3 inflammasome activation mediated by nuclear-initiated estrogen signaling pathway.
Collapse
Affiliation(s)
- Xinyue Guo
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinxin Xu
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tiantian Li
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Yu
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianzhang Wang
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yichen Chen
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacology, Ningbo Institution of Medical and Science, Ningbo, China
| | - Shaojie Ding
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libo Zhu
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gen Zou
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinmei Zhang
- Department of Gynecology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Buelow LM, Hoji A, Tat K, Schroeder-Carter LM, Carroll DJ, Cook-Mills JM. Mechanisms for Alternaria alternata Function in the Skin During Induction of Peanut Allergy in Neonatal Mice With Skin Barrier Mutations. FRONTIERS IN ALLERGY 2021; 2:677019. [PMID: 35387035 PMCID: PMC8974772 DOI: 10.3389/falgy.2021.677019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Neonatal mice with heterozygous mutations in genes encoding the skin barrier proteins filaggrin and mattrin (flaky tail mice [FT+/-]) exhibit oral peanut-induced anaphylaxis after skin sensitization. As we have previously reported, sensitization in this model is achieved via skin co- exposure to the environmental allergen Alternaria alternata (Alt), peanut extract (PNE), and detergent. However, the function of Alt in initiation of peanut allergy in this model is little understood. The purpose of this study was to investigate candidate cytokines induced by Alt in the skin and determine the role of these cytokines in the development of food allergy, namely oncostatin M (Osm), amphiregulin (Areg), and IL-33. RT-qPCR analyses demonstrated that skin of FT+/- neonates expressed Il33 and Osm following Alt or Alt/PNE but not PNE exposure. By contrast, expression of Areg was induced by either Alt, PNE, or Alt/PNE sensitization in FT+/- neonates. In scRNAseq analyses, Osm, Areg, and Il33 were expressed by several cell types, including a keratinocyte cluster that was expanded in the skin of Alt/PNE-exposed FT+/- pups as compared to Alt/PNE-exposed WT pups. Areg and OSM were required for oral PNE-induced anaphylaxis since anaphylaxis was inhibited by administration of neutralizing anti-Areg or anti-OSM antibodies prior to each skin sensitization with Alt/PNE. It was then determined if intradermal injection of recombinant IL33 (rIL33), rAreg, or rOSM in the skin could substitute for Alt during skin sensitization to PNE. PNE skin sensitization with intradermal rIL33 was sufficient for oral PNE-induced anaphylaxis, whereas skin sensitization with intradermal rAreg or rOSM during skin exposure to PNE was not sufficient for anaphylaxis to oral PNE challenge. Based on these studies a pathway for IL33, Areg and OSM in Alt/PNE sensitized FT+/- skin was defined for IgE induction and anaphylaxis. Alt stimulated two pathways, an IL33 pathway and a pathway involving OSM and Areg. These two pathways acted in concert with PNE to induce food allergy in pups with skin barrier mutations.
Collapse
|
40
|
Kaieda S, Fujimoto K, Todoroki K, Abe Y, Kusukawa J, Hoshino T, Ida H. Mast cells can produce transforming growth factor β1 and promote tissue fibrosis during the development of Sjögren's syndrome-related sialadenitis. Mod Rheumatol 2021; 32:761-769. [PMID: 34915577 DOI: 10.1093/mr/roab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES This study investigated the associations of mast cells with immune-mediated inflammation and fibrosis in patients with primary Sjögren's syndrome (pSS); it also explored the underlying pathophysiology of pSS-related sialadenitis. METHODS Twenty-two patients with pSS and 10 patients with sicca (control individuals) underwent labial salivary gland biopsies. Sections were subjected to staining and immunofluorescence analyses. HMC-1 human mast cells were cocultured with fibroblasts in vitro; fibroblasts were also grown in HMC-1 conditioned medium. mRNA levels of collagen Type I (Col1a) and transforming growth factor (TGF)β1 were analysed in cultured cells. RESULTS Mast cell numbers in labial salivary glands were significantly greater in patients with pSS than in control individuals. In salivary glands from patients with pSS, mast cell number was significantly correlated with fibrosis extent; moreover, mast cells were located near fibrous tissue and expressed TGFβ1. Col1a and TGFβ1 mRNAs were upregulated in cocultured fibroblasts and HMC-1 cells, respectively. Fibroblasts cultured in HMC-1 conditioned medium exhibited upregulation of Col1a mRNA; this was abrogated by TGFβ1 neutralizing antibodies. CONCLUSIONS Mast cell numbers were elevated in patients with pSS-related sialadenitis; these cells were located near fibroblasts and expressed TGFβ1. TGFβ1 could induce collagen synthesis in fibroblasts, which might contribute to fibrosis.
Collapse
Affiliation(s)
- Shinjiro Kaieda
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Kyoko Fujimoto
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Keita Todoroki
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Yushi Abe
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Tomoaki Hoshino
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Ida
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
41
|
Masini M, Suleiman M, Novelli M, Marselli L, Marchetti P, De Tata V. Mast Cells and the Pancreas in Human Type 1 and Type 2 Diabetes. Cells 2021; 10:cells10081875. [PMID: 34440644 PMCID: PMC8391487 DOI: 10.3390/cells10081875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Mast cells are highly differentiated, widely distributed cells of the innate immune system, that are currently considered as key regulators of both innate and adaptive immunity. Mast cells play a key role in health and survival mechanisms, especially as sentinel cells that can stimulate protective immune responses. On the other hand, it has been shown that mast cells are involved in the pathogenesis of several diseases, and recently a possible pathogenetic role of mast cells in diabetes has been proposed. In this review we summarize the evidence on the increased presence of mast cells in the pancreas of subjects with type 1 diabetes, which is due to the autoimmune destruction of insulin secreting beta cells, and discuss the differences with type 2 diabetes, the other major form of diabetes. In addition, we describe some of the pathophysiological mechanisms through which mast cells might exert their actions, which could be targeted to potentially protect the beta cells in autoimmune diabetes.
Collapse
Affiliation(s)
- Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, 56124 Pisa, Italy; (M.S.); (L.M.); (P.M.)
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55-Scuola Medica, 56126 Pisa, Italy; (M.M.); (M.N.)
- Centro Interdipartimentale di Microscopia Elettronica (C.I.M.E.), University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
42
|
Liu M, Lu J, Chen Y, Shi X, Li Y, Yang S, Yu J, Guan S. Sodium Sulfite-Induced Mast Cell Pyroptosis and Degranulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7755-7764. [PMID: 34191510 DOI: 10.1021/acs.jafc.1c02436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sodium sulfite, a common food additive, has been proved to cause allergic reaction. Pyroptosis is an inflammatory form of programmed cell death with plasma membrane lysis. In this study, we found that sodium sulfite triggered pyroptosis, which depended on reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3) in RBL-2H3 mast cells. Sodium sulfite increased the generation of ROS and the expression of NLRP3, caspase-1, gasdermin D N-terminal (GSDMD-N), interleukin-1β (IL-1β), and interleukin-18 (IL-18). The ROS scavenger N-acetyl-L-carnosine (NAC) and the NLRP3 inhibitor MCC950 reversed these effects. Furthermore, using a lactate dehydrogenase kit, propidium iodide staining, scanning electron microscopy, colocalization of GSDMD-N with histamine, and neutral red staining, we found that sodium sulfite notably induced cell membrane rupture. Because β-Hexosaminidase and histamine play a key role in allergic reactions, we detected the release of β-Hexosaminidase and histamine. The data showed that the release of β-Hexosaminidase and histamine induced by sodium sulfite was increased with dose independence, which were inhibited after treatment with NAC or MCC950. Overall, evidence suggested that pyroptosis induced by sodium sulfite may rupture the cell membrane and result in degranulation of mast cells. Our study may provide new insights for the mechanism by which sodium sulfite induces mast cell death and sensitization.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiaolei Shi
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - YaZhuo Li
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuting Yang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Yu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
43
|
Xiao Z, Liu L, Jin Y, Pei X, Sun W, Wang M. A Potential Prophylactic Probiotic for Inflammatory Bowel Disease: The Overall Investigation of Clostridium tyrobutyricum ATCC25755 Attenuates LPS-Induced Inflammation via Regulating Intestinal Immune Cells. Mol Nutr Food Res 2021; 65:e2001213. [PMID: 34021704 DOI: 10.1002/mnfr.202001213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Indexed: 12/14/2022]
Abstract
SCOPE This study aims to roundly investigate whether Clostridium tyrobutyricum (Ct) alleviates inflammation via regulating immune cells in the small intestines. METHODS AND RESULTS Mice are pre-treated with different concentrations of Ct follow by LPS stimulation. Ct maintains the mice body weight under inflammation. In response to LPS, 107 CFU mL-1 Ct decreases the mRNA expression of inflammatory cytokines in the duodenum, while 108 CFU mL-1 Ct reduces inflammatory cytokines expression in both duodenum and ileum and protected intestinal morphology. The small intestinal immune cells are analyzed using flow cytometry. Ct decreases the numbers of macrophages and mast cells in the intestines in response to LPS. In the duodenum, Ct enhances dentritic cells (DCs), regulatory T cells (Tregs), and T helper cell 17 (Th17) proportions. Ct decreases DCs and Tregs proportions, while enhances Th17 numbers in the ileum. The underlying mechanism of Ct in preventing inflammation may rely on the physiological immune cell composition of the intestines. In response to LPS, Ct may mainly stimulate Tregs via activating DCs in the duodenum while trigger Th17 cells in the ileum, thereby maintaining the intestinal homeostasis. CONCLUSION Ct alleviates the LPS-induce inflammation via regulating different immune cell types in the small intestines, highlighting that Ct is a potential prophylactic probiotic in intestinal diseases.
Collapse
Affiliation(s)
- Zhiping Xiao
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lujie Liu
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuyue Jin
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xun Pei
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wanjing Sun
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Minqi Wang
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
44
|
Kyritsi K, Kennedy L, Meadows V, Hargrove L, Demieville J, Pham L, Sybenga A, Kundu D, Cerritos K, Meng F, Alpini G, Francis H. Mast Cells Induce Ductular Reaction Mimicking Liver Injury in Mice Through Mast Cell-Derived Transforming Growth Factor Beta 1 Signaling. Hepatology 2021; 73:2397-2410. [PMID: 32761972 PMCID: PMC7864988 DOI: 10.1002/hep.31497] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Following liver injury, mast cells (MCs) migrate into the liver and are activated in patients with cholestasis. Inhibition of MC mediators decreases ductular reaction (DR) and liver fibrosis. Transforming growth factor beta 1 (TGF-β1) contributes to fibrosis and promotes liver disease. Our aim was to demonstrate that reintroduction of MCs induces cholestatic injury through TGF-β1. APPROACH AND RESULTS Wild-type, KitW-sh (MC-deficient), and multidrug resistance transporter 2/ABC transporter B family member 2 knockout mice lacking l-histidine decarboxylase were injected with vehicle or PKH26-tagged murine MCs pretreated with 0.01% dimethyl sulfoxide (DMSO) or the TGF-β1 receptor inhibitor (TGF-βRi), LY2109761 (10 μM) 3 days before sacrifice. Hepatic damage was assessed by hematoxylin and eosin (H&E) and serum chemistry. Injected MCs were detected in liver, spleen, and lung by immunofluorescence (IF). DR was measured by cytokeratin 19 (CK-19) immunohistochemistry and F4/80 staining coupled with real-time quantitative PCR (qPCR) for interleukin (IL)-1β, IL-33, and F4/80; biliary senescence was evaluated by IF or qPCR for p16, p18, and p21. Fibrosis was evaluated by sirius red/fast green staining and IF for synaptophysin 9 (SYP-9), desmin, and alpha smooth muscle actin (α-SMA). TGF-β1 secretion/expression was measured by enzyme immunoassay and qPCR. Angiogenesis was detected by IF for von Willebrand factor and vascular endothelial growth factor C qPCR. In vitro, MC-TGF-β1 expression/secretion were measured after TGF-βRi treatment; conditioned medium was collected. Cholangiocytes and hepatic stellate cells (HSCs) were treated with MC-conditioned medium, and biliary proliferation/senescence was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and qPCR; HSC activation evaluated for α-SMA, SYP-9, and collagen type-1a expression. MC injection recapitulates cholestatic liver injury characterized by increased DR, fibrosis/TGF-β1 secretion, and angiogenesis. Injection of MC-TGF-βRi reversed these parameters. In vitro, MCs induce biliary proliferation/senescence and HSC activation that was reversed with MCs lacking TGF-β1. CONCLUSIONS Our study demonstrates that reintroduction of MCs mimics cholestatic liver injury and that MC-derived TGF-β1 may be a target in chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Vik Meadows
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Laura Hargrove
- Texas A&M University Health Science Center, Texas A&M University-Central Texas
| | | | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | | | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Karla Cerritos
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| |
Collapse
|
45
|
Atiakshin DA, Shishkina VV, Gerasimova OA, Meshkova VY, Samodurova NY, Samoilenko TV, Buchwalow IB, Samoilova VE, Tiemann M. Combined histochemical approach in assessing tryptase expression in the mast cell population. Acta Histochem 2021; 123:151711. [PMID: 33838578 DOI: 10.1016/j.acthis.2021.151711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
To increase the efficiency of interpretation of mast cell's contribution to the state of a specific tissue microenvironment, it is necessary to detail the molecular composition of their secretome and analyze the pathways of degranulation. Developed method of combining immunomorphological and histochemical staining protocols contributes to the most objective detection of the integral level of tryptase expression in the intraorgan population of the skin mast cells. Novel technique for tryptase detection expands the possibilities of morphological analysis, provides researchers with additional data on the structure of the mast cell population and helps visualize the processing and cytological features and structural targets of tryptase during the development of adaptive and pathological reactions. Objective determination of the tryptase profile for organ-specific mast cell populations is in great demand in clinical practice for the interpretation of pathological processes, including inflammation and oncogenesis.
Collapse
Affiliation(s)
- D A Atiakshin
- Peoples' Friendship University of Russia, Moscow, Russia; Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - V V Shishkina
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - O A Gerasimova
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - V Y Meshkova
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - N Y Samodurova
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - T V Samoilenko
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | | | | | - M Tiemann
- Institute for Hematopathology, Hamburg, Germany
| |
Collapse
|
46
|
The diverse roles of myeloid derived suppressor cells in mucosal immunity. Cell Immunol 2021; 365:104361. [PMID: 33984533 DOI: 10.1016/j.cellimm.2021.104361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The mucosal immune system plays a vital role in protecting the host from the external environment. Its major challenge is to balance immune responses against harmful and harmless agents and serve as a 'homeostatic gate keeper'. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of undifferentiated cells that are characterized by an immunoregulatory and immunosuppressive phenotype. Herein we postulate that MDSCs may be involved in shaping immune responses related to mucosal immunity, due to their immunomodulatory and tissue remodeling functions. Until recently, MDSCs were investigated mainly in cancerous diseases, where they induce and contribute to an immunosuppressive and inflammatory environment that favors tumor development. However, it is now becoming clear that MDSCs participate in non-cancerous conditions such as chronic infections, autoimmune diseases, pregnancy, aging processes and immune tolerance to commensal microbiota at mucosal sites. Since MDSCs are found in the periphery only in small numbers under normal conditions, their role is highlighted during pathologies characterized by acute or chronic inflammation, when they accumulate and become activated. In this review, we describe several aspects of the current knowledge characterizing MDSCs and their involvement in the regulation of the mucosal epithelial barrier, their crosstalk with commensal microbiota and pathogenic microorganisms, and their complex interactions with a variety of surrounding regulatory and effector immune cells. Finally, we discuss the beneficial and harmful outcomes of the MDSC regulatory functions in diseases affecting mucosal tissues. We wish to illuminate the pivotal role of MDSCs in mucosal immunity, the limitations in our understanding of all the players and the intricate challenges stemming from the complex interactions of MDSCs with their environment.
Collapse
|
47
|
Franke K, Wang Z, Zuberbier T, Babina M. Cytokines Stimulated by IL-33 in Human Skin Mast Cells: Involvement of NF-κB and p38 at Distinct Levels and Potent Co-Operation with FcεRI and MRGPRX2. Int J Mol Sci 2021; 22:ijms22073580. [PMID: 33808264 PMCID: PMC8036466 DOI: 10.3390/ijms22073580] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
The IL-1 family cytokine IL-33 activates and re-shapes mast cells (MCs), but whether and by what mechanisms it elicits cytokines in MCs from human skin remains poorly understood. The current study found that IL-33 activates CCL1, CCL2, IL-5, IL-8, IL-13, and TNF-α, while IL-1β, IL-6, IL-31, and VEGFA remain unaffected in cutaneous MCs, highlighting that each MC subset responds to IL-33 with a unique cytokine profile. Mechanistically, IL-33 induced the rapid (1–2 min) and durable (2 h) phosphorylation of p38, whereas the phosphorylation of JNK was weaker and more transient. Moreover, the NF-κB pathway was potently activated, as revealed by IκB degradation, increased nuclear abundance of p50/p65, and vigorous phosphorylation of p65. The activation of NF-κB occurred independently of p38 or JNK. The induced transcription of the cytokines selected for further study (CCL1, CCL2, IL-8, TNF-α) was abolished by interference with NF-κB, while p38/JNK had only some cytokine-selective effects. Surprisingly, at the level of the secreted protein products, p38 was nearly as effective as NF-κB for all entities, suggesting post-transcriptional involvement. IL-33 did not only instruct skin MCs to produce selected cytokines, but it also efficiently co-operated with the allergic and pseudo-allergic/neurogenic activation networks in the production of IL-8, TNF-α, CCL1, and CCL2. Synergism was more pronounced at the protein than at the mRNA level and appeared stronger for MRGPRX2 ligands than for FcεRI. Our results underscore the pro-inflammatory nature of an acute IL-33 stimulus and imply that especially in combination with allergens or MRGPRX2 agonists, IL-33 will efficiently amplify skin inflammation and thereby aggravate inflammatory dermatoses.
Collapse
Affiliation(s)
- Kristin Franke
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Zhao Wang
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Magda Babina
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Correspondence: ; Tel.: +49-175-1649-539; Fax: +49-30-45051-8900
| |
Collapse
|
48
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
49
|
Kornstädt L, Pierre S, Weigert A, Ebersberger S, Schäufele TJ, Kolbinger A, Schmid T, Cohnen J, Thomas D, Ferreirós N, Brüne B, Ebersberger I, Scholich K. Bacterial and Fungal Toll-Like Receptor Activation Elicits Type I IFN Responses in Mast Cells. Front Immunol 2021; 11:607048. [PMID: 33643293 PMCID: PMC7907501 DOI: 10.3389/fimmu.2020.607048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast cells also have antiinflammatory functions. They release pro- as well as antiinflammatory mediators, depending on the biological setting. Here we aimed to better understand the role of mast cells during the resolution phase of a local inflammation induced with the Toll-like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined with a statistical neighborhood analysis showed that mast cells are located in a predominantly antiinflammatory microenvironment during resolution of inflammation and that mast cell-deficiency causes decreased efferocytosis in the resolution phase. Accordingly, FACS analysis showed decreased phagocytosis of zymosan and neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I interferon (IFN) response, which is known to enhance phagocytosis by macrophages. Both, zymosan and lipopolysaccharides (LPS) induced IFN-β synthesis in BMMCs in similar amounts as in bone marrow derived macrophages. IFN-β was expressed by mast cells in paws from naïve mice and during zymosan-induced inflammation. As described for macrophages the release of type I IFNs from mast cells depended on TLR internalization and endosome acidification. In conclusion, mast cells are able to produce several mediators including IFN-β, which are alone or in combination with each other able to regulate the phagocytotic activity of macrophages during resolution of inflammation.
Collapse
Affiliation(s)
- Lisa Kornstädt
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Tim J. Schäufele
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jennifer Cohnen
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, University Hospital Goethe-University Frankfurt, Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
50
|
Xiao Z, Liu L, Jin Y, Pei X, Sun W, Wang M. Clostridium tyrobutyricum Protects against LPS-Induced Colonic Inflammation via IL-22 Signaling in Mice. Nutrients 2021; 13:215. [PMID: 33451114 PMCID: PMC7828631 DOI: 10.3390/nu13010215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of Clostridium tyrobutyricum (C. tyrobutyricum) on colonic immunity and the role of IL-22 in the protective function of C. tyrobutyricum. Mice were supplemented with 108 CFU/mL C. tyrobutyricum daily for 20 days, followed by injecting with LPS for 24 h. In vivo interference of IL-22 via injecting with an adeno-associated virus was conducted to elucidate the role of IL-22 in C. tyrobutyricum attenuating colonic inflammation. The results showed that C. tyrobutyricum decreased the mRNA expression of IL-6 and IL-1β. C. tyrobutyricum enhanced the mRNA expression of IL-22 and the expression of MUC2 in the colon. The in vivo interference results showed that C. tyrobutyricum enhanced the mRNA expression of IL-6 and IL-1β while decreased the expression of MUC2 after knocking down IL-22. The flow cytometric analysis showed that C. tyrobutyricum decreased the proportions of macrophages, DCs, and mast cells and effectively regulated the proportion of Th17 cells, indicating that C. tyrobutyricum may stimulate the expression of IL-22 via regulating Th17 cells. Our study concluded that C. tyrobutyricum protected against LPS-induced colonic barrier dysfunction and inflammation via IL-22 signaling, suggesting that C. tyrobutyricum could be a potential probiotic in regulating colonic health.
Collapse
Affiliation(s)
| | | | | | | | | | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (L.L.); (Y.J.); (X.P.); (W.S.)
| |
Collapse
|