1
|
Hoffrogge R, Karachunskaya A, Heitmann N, Pedreiturria X, Klöster K, Bader V, Winklhofer KF, Hamacher M, Klebl B, Gold R, Dinkel K, Kleiter I, Faissner S. The P2X7R-antagonist AFC-5128 ameliorates chronic experimental autoimmune encephalomyelitis in a preventive and therapeutic paradigm. Front Immunol 2025; 16:1554999. [PMID: 40308584 PMCID: PMC12040686 DOI: 10.3389/fimmu.2025.1554999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Multiple sclerosis (MS) is characterized by chronic inflammation driven by central nervous system (CNS)-resident immune cells such as microglia, especially during the progressive phase of the disease. The P2X7 receptor (P2X7R), a risk protein for MS, is ubiquitously expressed on immune cells. AFC-5128, a CNS-penetrating small molecule inhibitor of P2X7R, is a promising agent for the treatment of autoimmune diseases such as MS. Methods In vitro, the effects on the calcium influx of primary murine microglia were assessed via Fluo-4 calcium imaging. In vivo, MOG35-55 immunized C57BL/6 mice were treated with AFC-5128, fingolimod (FTY) or vehicle in different treatment paradigms. The mice were scored daily. Microglial marker expression, immune cell phenotyping and serum cytokine analyses were performed via flow cytometry. Immune cell infiltration, demyelination and Iba1+/CD3+ cells were detected in spinal cord cross-sections. The effects of MOG35-55 T-cell restimulation were assessed in vitro. Results In vitro, treatment of primary microglia with 10 µM AFC-5128 reduced the influx of calcium following ATP stimulation (p<0.0001). In vivo, treatment of mice with AFC-5128 led to a reduction in overall EAE scores in acute and chronic EAE, with the best effects using 200 mg/kg body weight AFC-5128 (p<0.0001). Peripheral immune cell subsets (B cells, T cells and macrophages) and serum cytokine levels of chronic EAE mice treated in a therapeutic paradigm were not affected. While the expression of homeostasis markers of microglia in AFC-5128-treated mice was not affected, there was a trend toward lower expression of phagocytosis-associated markers. Late therapeutic treatment with AFC-5128 had only mild effects on chronic EAE. Conclusion The treatment of EAE mice with AFC-5128 improved acute and chronic EAE in different treatment paradigms, with positive effects on histological markers and slight modulation of microglial marker expression. Mechanistically, calcium influx of microglia was reduced following AFC-5128 treatment, which implies the ability of AFC-5128 to stabilize calcium homeostasis. Therefore, therapeutic inhibition of P2X7R via AFC-5128 has the potential for translation into a treatment of both relapsing and progressive forms of multiple sclerosis.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Purinergic P2X Receptor Antagonists/pharmacology
- Purinergic P2X Receptor Antagonists/therapeutic use
- Receptors, Purinergic P2X7/metabolism
- Mice, Inbred C57BL
- Female
- Disease Models, Animal
- Multiple Sclerosis/drug therapy
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Cytokines/blood
- Calcium/metabolism
- Cells, Cultured
Collapse
Affiliation(s)
| | | | - Neele Heitmann
- Department of Neurology, St. Josef-Hospital, Bochum, Germany
| | | | | | - Verian Bader
- Molecular Cell Biology, Ruhr-University, Bochum, Germany
| | | | | | - Bert Klebl
- KHAN Technology Transfer Fund I GmbH & Co KG, Dortmund, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Bochum, Germany
| | | | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Bochum, Germany
- Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gemeinnützige GmbH, Berg, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
2
|
Xiang Y, Chen F, Shi R, Yang T, Zhang W, Zhou X, Wang C, Sun C, Fu S, Wang X, Zhang J, Shen Y. Integrating QTL mapping and GWAS to decipher the genetic mechanisms behind the calcium contents of Brassica napus shoots. FRONTIERS IN PLANT SCIENCE 2025; 16:1565329. [PMID: 40276715 PMCID: PMC12018428 DOI: 10.3389/fpls.2025.1565329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Brassica napus is an important oil crop worldwide, and its shoots are rich in vitamin C, calcium, and selenium. Functional oilseed-vegetable-dual-purpose varieties can increase the subsidiary value of B. napus. Consumption of high-calcium B. napus shoots can effectively help provide essential elements to the human body. To investigate the genetic mechanisms underlying the calcium concentrations of B. napus shoots, quantitative trait loci (QTL) mapping, using a population of 189 recombinant inbred lines, and a genome-wide association study, using an association panel of 202 diverse accessions, were performed. A total of 12 QTLs controlling calcium content were identified using the recombinant inbred line population in five environments. Among them, qCaC.22GY-A05-1 was considered the major QTL, with a phenotypic variation of 10.10%. In addition, 228 single nucleotide polymorphisms significantly related to calcium content were identified using the genome-wide association study in six environments, and they were distributed on all of the chromosomes, except A10. Finally, 10 candidate genes involved in regulating calcium absorption and transport in B. napus shoots were identified. However, no overlapping intervals were found through a comprehensive analysis of the two datasets. These results provide valuable information for understanding the genetic control of calcium concentration in B. napus shoots.
Collapse
Affiliation(s)
- Yanan Xiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Feng Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Rui Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Tinghai Yang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xiaoying Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Chunyun Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Chengming Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xiaodong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiefu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yue Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
3
|
Wachtler N, O’Brien R, Ehrlich BE, McGuone D. Exploring Calcium Channels as Potential Therapeutic Targets in Blast Traumatic Brain Injury. Pharmaceuticals (Basel) 2025; 18:223. [PMID: 40006037 PMCID: PMC11859800 DOI: 10.3390/ph18020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Repeat low-level blast exposure has emerged as a significant concern for military populations exposed to explosive events. Blast-Related Traumatic Brain Injury (bTBI) is a unique form of brain trauma with poorly understood molecular mechanisms. Loss of calcium homeostasis has emerged as a mediator of early neuronal dysfunction after blast injury. This review aims to examine the role of calcium signaling in bTBI, focusing on the dual function of calcium channels as mediators and modulators of injury, and to explore therapeutic strategies targeting calcium homeostasis. Methods: We conducted a review of peer-reviewed articles published between 2000 and 2024, using the databases PubMed, Scopus, and EBSCO. Search terms included "blast traumatic brain injury", "calcium channels", and "calcium". Studies investigating intracellular calcium dynamics after bTBI were included. Exclusion criteria included studies lacking evaluation of calcium signaling, biomarker studies, and studies on extracellular calcium. Results: We identified 13 relevant studies, primarily using preclinical models. Dysregulated calcium signaling was consistently linked to cellular dysfunction, including plasma membrane abnormalities, cytoskeletal destabilization, mitochondrial dysfunction, and proteolytic enzyme activation. Studies highlighted spatially compartmentalized vulnerabilities across neurons and astrocytes, suggesting that targeting specific cellular regions, such as the neuronal soma or axons, could enhance the therapeutic outcome. Therapeutic strategies included pharmacological inhibitors, plasma membrane stabilizers, and modulators of secondary injury. Conclusions: Calcium signaling is implicated in the pathophysiology of bTBI. Standardized experimental approaches would reduce variability in findings and improve the understanding of the relationship between calcium channel dynamics and bTBI and help guide the development of neuroprotective interventions that mitigate injury and promote recovery.
Collapse
Affiliation(s)
- Noemi Wachtler
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany;
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rory O’Brien
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Leisz S, Fritzsche S, Strauss C, Scheller C. The Protective Effect of Nimodipine in Schwann Cells Is Related to the Upregulation of LMO4 and SERCA3 Accompanied by the Fine-Tuning of Intracellular Calcium Levels. Int J Mol Sci 2025; 26:864. [PMID: 39859578 PMCID: PMC11765607 DOI: 10.3390/ijms26020864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery. However, the molecular mode of action of nimodipine pre-treatment has not been well investigated. In the present study, using real-time cell death assays, we demonstrated that nimodipine not only reduces cell death induced by osmotic and oxidative stress but also protects cells directly at the time of stress induction in Schwann cells. Nimodipine counteracts stress-induced calcium overload and the overexpression of the Cav1.2 calcium channel. In addition, we found nimodipine-dependent upregulation of sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (SERCA3) and LIM domain only 4 (LMO4) protein. Analysis of anti-apoptotic cell signaling showed an inhibition of the pro-apoptotic protein glycogen synthase kinase 3 beta (GSK3β). Nimodipine-treated Schwann cells exhibited higher levels of phosphorylated GSK3β at serine residue 9 during osmotic and oxidative stress. In conclusion, nimodipine prevents cell death by protecting cells from calcium overload by fine-tuning intracellular calcium signaling and gene expression.
Collapse
Affiliation(s)
- Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
5
|
Pang J, Cen C, Tian Y, Cao X, Hao L, Tao X, Cao Z. Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases. Transl Psychiatry 2025; 15:6. [PMID: 39794316 PMCID: PMC11724000 DOI: 10.1038/s41398-024-03222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs. As a member of the tyrosine phosphatase family, the role of Shp2 has been studied in tumors, but the research in the nervous system is still in a sporadic state. It can be phosphorylated by tyrosine kinases and then positively regulate tyrosine kinase-dependent signaling pathways. It could also be used as an adaptor protein to mediate downstream signaling pathways. Most of the existing studies have shown that Shp2 may be a potential molecular "checkpoint" against NDs, but its role in promoting degenerative lesions is difficult to ignore as well, and its two-way effect of both activation and inhibition is very distinctive. Shp2 is closely related to NDs-related pathogenic factors such as oxidative stress, mitochondrial dysfunction, excitatory toxicity, immune inflammation, apoptosis, and autophagy. Its bidirectional effects interfere with these pathogenic factors, making it a core component of the feedback and crosstalk network between multiple signaling pathways. Therefore, this article reviews the molecular mechanism of Shp2 regulation in NDs and its regulatory role in various pathogenic factors, providing evidence for the treatment of NDs by targeting Shp2 and the development of molecular targeted drugs.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
- Department of Pathology and pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, PR China
- College of Life Science, Northwest University, Xi'an City, Shaanxi Province, PR China
| | - Changqian Cen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yuan Tian
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Xingrui Cao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
6
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
7
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
8
|
Frank R, Szarvas PA, Pesti I, Zsigmond A, Berkecz R, Menyhárt Á, Bari F, Farkas E. Nimodipine inhibits spreading depolarization, ischemic injury, and neuroinflammation in mouse live brain slice preparations. Eur J Pharmacol 2024; 977:176718. [PMID: 38849040 DOI: 10.1016/j.ejphar.2024.176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Nimodipine is used to prevent delayed ischemic deficit in patients with aneurysmal subarachnoid hemorrhage (aSAH). Spreading depolarization (SD) is recognized as a factor in the pathomechanism of aSAH and other acute brain injuries. Although nimodipine is primarily known as a cerebral vasodilator, it may have a more complex mechanism of action due to the expression of its target, the L-type voltage-gated calcium channels (LVGCCs) in various cells in neural tissue. This study was designed to investigate the direct effect of nimodipine on SD, ischemic tissue injury, and neuroinflammation. SD in control or nimodipine-treated live mouse brain slices was induced under physiological conditions using electrical stimulation, or by subjecting the slices to hypo-osmotic stress or mild oxygen-glucose deprivation (mOGD). SD was recorded applying local field potential recording or intrinsic optical signal imaging. Histological analysis was used to estimate tissue injury, the number of reactive astrocytes, and the degree of microglia activation. Nimodipine did not prevent SD occurrence in mOGD, but it did reduce the rate of SD propagation and the cortical area affected by SD. In contrast, nimodipine blocked SD occurrence in hypo-osmotic stress, but had no effect on SD propagation. Furthermore, nimodipine prevented ischemic injury associated with SD in mOGD. Nimodipine also exhibited anti-inflammatory effects in mOGD by reducing reactive astrogliosis and microglial activation. The results demonstrate that nimodipine directly inhibits SD, independent of nimodipine's vascular effects. Therefore, the use of nimodipine may be extended to treat acute brain injuries where SD plays a central role in injury progression.
Collapse
Affiliation(s)
- Rita Frank
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Péter Archibald Szarvas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Zsigmond
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos Sgt. 40, Szeged, Hungary
| | - Ákos Menyhárt
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Atabilen B, Akdevelioğlu Y, Acar Özen P, Tuncer A. Examining dietary habits in the context of multiple sclerosis: A comprehensive investigative approach. Mult Scler Relat Disord 2024; 83:105467. [PMID: 38301324 DOI: 10.1016/j.msard.2024.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
AIMS The aim of this study is to evaluate the nutritional status of patients with multiple sclerosis (MS) and to develop suggestions for changing eating habits in a healthy direction. METHODS The study was conducted on 171 participants (80.1 % female; 19.9 % male) diagnosed with MS between the ages of 18-60 who applied to Ankara Hacettepe University Hospital Neurology Outpatient Clinic between June 2021 and March 2023. Body weight, height, body composition, waist circumference, upper mid-arm circumference and hand grip strength were measured in accordance with the technique of anthropometric measurements. A three-day food consumption record was taken to evaluate the energy, macro, and micronutrient content of the diet. Mediterranean Diet Assessment Tool was used to assess adherence to diet. RESULTS Mean age of the participants was recorded as 35.2 ± 10.81 years. According to the body mass index (BMI) classification, 59.9 % of females were in normal limits, while 61.8 % of males were classified as overweight and obese. However, when evaluated in terms of body composition, body fat percentage was found to be above of normal limits in both genders. Also, 70.8 % of participants were sedentary. The percentage of patients who met their daily energy requirements in women with light and moderate activity was higher than in men, but it was not statistically significant. In participants with high activity level, the percentage of patients meeting energy requirements was below 50 % for both genders. Dietary fat and saturated fat intake were higher than the recommendations, while monounsaturated fatty acids and dietary fiber intake were less. The percentages of patients meeting their calcium requirement was below 50 % in both genders. Mean intake amounts of vegetables, fruits, legumes, nuts, and dairy products were below the Türkiye Nutrition Guideline recommendations. CONCLUSION This study shows the nutritional characteristic of patients with MS in detail with different aspects. Although most of the patients were in normal limits in terms of BMI, body fat percentages were found to be above normal limits in both genders. Total fat and saturated fat intakes were found to be high according to scientific recommendations while the intake of food groups required for a fibre-based diet and intake of dairy products were low.
Collapse
Affiliation(s)
- Büşra Atabilen
- Karamanoğlu Mehmetbey University Faculty of Health Sciences Department of Nutrition and Dietetics, Karaman, Türkiye.
| | - Yasemin Akdevelioğlu
- Gazi University Faculty of Health Sciences Department of Nutrition and Dietetics, Ankara, Türkiye
| | - Pınar Acar Özen
- Hacettepe University Faculty of Medicine Department of Neurology, Ankara, Türkiye
| | - Aslı Tuncer
- Hacettepe University Faculty of Medicine Department of Neurology, Ankara, Türkiye
| |
Collapse
|
10
|
Mwema A, Muccioli GG, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. J Control Release 2023; 364:435-457. [PMID: 37926243 DOI: 10.1016/j.jconrel.2023.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Disorders of the central nervous system (CNS), such as multiple sclerosis (MS) represent a great emotional, financial and social burden. Despite intense efforts, great unmet medical needs remain in that field. MS is an autoimmune, chronic inflammatory demyelinating disease with no curative treatment up to date. The current therapies mostly act in the periphery and seek to modulate aberrant immune responses as well as slow down the progression of the disease. Some of these therapies are associated with adverse effects related partly to their administration route and show some limitations due to their rapid clearance and inability to reach the CNS. The scientific community have recently focused their research on developing MS therapies targeting different processes within the CNS. However, delivery of therapeutics to the CNS is mainly limited by the presence of the blood-brain barrier (BBB). Therefore, there is a pressing need to develop new drug delivery strategies that ensure CNS availability to capitalize on identified therapeutic targets. Several approaches have been developed to overcome or bypass the BBB and increase delivery of therapeutics to the CNS. Among these strategies, the use of alternative routes of administration, such as the nose-to-brain (N2B) pathway, offers a promising non-invasive option in the scope of MS, as it would allow a direct transport of the drugs from the nasal cavity to the brain. Moreover, the combination of bioactive molecules within nanocarriers bring forth new opportunities for MS therapies, allowing and/or increasing their transport to the CNS. Here we will review and discuss these alternative administration routes as well as the nanocarrier approaches useful to deliver drugs for MS.
Collapse
Affiliation(s)
- Ariane Mwema
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Avenue E. Mounier 72, 1200 Brussels, Belgium.
| | - Anne des Rieux
- Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium.
| |
Collapse
|
11
|
O’Day DH. Protein Biomarkers Shared by Multiple Neurodegenerative Diseases Are Calmodulin-Binding Proteins Offering Novel and Potentially Universal Therapeutic Targets. J Clin Med 2023; 12:7045. [PMID: 38002659 PMCID: PMC10672630 DOI: 10.3390/jcm12227045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Seven major neurodegenerative diseases and their variants share many overlapping biomarkers that are calmodulin-binding proteins: Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTD), Huntington's disease (HD), Lewy body disease (LBD), multiple sclerosis (MS), and Parkinson's disease (PD). Calcium dysregulation is an early and persistent event in each of these diseases, with calmodulin serving as an initial and primary target of increased cytosolic calcium. Considering the central role of calcium dysregulation and its downstream impact on calcium signaling, calmodulin has gained interest as a major regulator of neurodegenerative events. Here, we show that calmodulin serves a critical role in neurodegenerative diseases via binding to and regulating an abundance of biomarkers, many of which are involved in multiple neurodegenerative diseases. Of special interest are the shared functions of calmodulin in the generation of protein biomarker aggregates in AD, HD, LBD, and PD, where calmodulin not only binds to amyloid beta, pTau, alpha-synuclein, and mutant huntingtin but also, via its regulation of transglutaminase 2, converts them into toxic protein aggregates. It is suggested that several calmodulin binding proteins could immediately serve as primary drug targets, while combinations of calmodulin binding proteins could provide simultaneous insight into the onset and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
12
|
Doyle WJ, Walters D, Shi X, Hoffman K, Magori K, Roullet JB, Ochoa-Repáraz J. Farnesol brain transcriptomics in CNS inflammatory demyelination. Clin Immunol 2023; 255:109752. [PMID: 37673223 PMCID: PMC10619994 DOI: 10.1016/j.clim.2023.109752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Farnesol (FOL) prevents the onset of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). OBJECTIVE We examined the transcriptomic profile of the brains of EAE mice treated with daily oral FOL using next-generation sequencing (RNA-seq). METHODS Transcriptomics from whole brains of treated and untreated EAE mice at the peak of EAE was performed. RESULTS EAE-induced mice, compared to naïve, healthy mice, overall showed increased expression in pathways for immune response, as well as an increased cytokine signaling pathway, with downregulation of cellular stress proteins. FOL downregulates pro-inflammatory pathways and attenuates the immune response in EAE. FOL downregulated the expression of genes involved in misfolded protein response, MAPK activation/signaling, and pro-inflammatory response. CONCLUSION This study provides insight into the molecular impact of FOL in the brain and identifies potential therapeutic targets of the isoprenoid pathway in MS patients.
Collapse
Affiliation(s)
- William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Dana Walters
- Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xutong Shi
- Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA 99004, USA
| | - Jean-Baptiste Roullet
- Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
13
|
Patra P, Rani A, Sharma N, Mukherjee C, Jha HC. Unraveling the Connection of Epstein-Barr Virus and Its Glycoprotein M 146-157 Peptide with Neurological Ailments. ACS Chem Neurosci 2023. [PMID: 37290090 DOI: 10.1021/acschemneuro.3c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Epstein-Barr virus (EBV) is known to be associated with several cancers along with neurological modalities like Alzheimer's disease (AD) and multiple sclerosis (MS). Previous study from our group revealed that a 12 amino acid peptide fragment (146SYKHVFLSAFVY157) of EBV glycoprotein M (gM) exhibits amyloid-like self-aggregative properties. In the current study, we have investigated its effect on Aβ42 aggregation along with its effect on neural cell immunology and disease markers. EBV virion was also considered for the above-mentioned investigation. An increase in the aggregation of Aβ42 peptide was observed upon incubation with gM146-157. Further, the exposure of EBV and gM146-157 onto neuronal cells indicated the upregulation of inflammatory molecules like IL-1β, IL-6, TNF-α, and TGF-β that suggested neuroinflammation. Besides, host cell factors like mitochondrial potential and calcium ion signaling play a crucial role in cellular homeostasis and alterations in these factors aid in neurodegeneration. Changes in mitochondrial membrane potential manifested a decrease while elevation in the level of total Ca2+ ions was observed. Amelioration of Ca2+ ions triggers excitotoxicity in neurons. Subsequently, neurological disease-associated genes APP, ApoE4, and MBP were found to be increased at the protein level. Additionally, demyelination of neurons is a hallmark of MS and the myelin sheath consists of ∼70% of lipid/cholesterol-associated moieties. Hereby, genes associated with cholesterol metabolism indicated changes at the mRNA level. Enhanced expression of neurotropic factors like NGF and BDNF was discerned postexposure to EBV and gM146-157. Altogether, this study delineates a direct connection of EBV and its peptide gM146-157 with neurological illnesses.
Collapse
Affiliation(s)
- Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Neha Sharma
- Department of Atomic Energy, Optical Coatings Laboratory, High Energy Lasers & Optics Section, Laser Technology Division, Laser Group, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
| | - Chandrachur Mukherjee
- Department of Atomic Energy, Optical Coatings Laboratory, High Energy Lasers & Optics Section, Laser Technology Division, Laser Group, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
14
|
Zhang T, Liu Q, Li Z, Tang S, An Q, Fan D, Xiang Y, Wu X, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. The role of ion channels in immune-related diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:129-140. [PMID: 36417963 DOI: 10.1016/j.pbiomolbio.2022.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Ion channel is an integral membrane protein that allows the permeation of charge ions across hydrophobic phospholipid membranes, including plasma membranes and organelle membranes (such as mitochondria, endoplasmic reticulum and vacuoles), which are widely distributed in various cells and tissues, such as cardiomyocytes, smooth muscle cells, and nerve cells. Ion channels establish membrane potential by regulating ion concentration and membrane potential. Membrane potential plays an important role in cells. Studies have shown that ion channels play a role in a number of immune-related diseases caused by functional defects in ion channels on immune or non-immune cells in major human organs, usually affecting specific organs or multiple organs. The present review discusses the relationship between ion channels and immune diseases in major organs of the human body.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
15
|
Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022; 10:1090765. [PMID: 36601540 PMCID: PMC9806183 DOI: 10.3389/fcell.2022.1090765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca 2+) is an important second messenger in charge of many critical processes in the central nervous system (CNS), including membrane excitability, neurotransmission, learning, memory, cell proliferation, and apoptosis. In this way, the voltage-gated calcium channels (VGCCs) act as a key supply for Ca2+ entry into the cytoplasm and organelles. Importantly, the dysregulation of these channels has been reported in many neurological diseases of young-onset, with associated genetic factors, such as migraine, multiple sclerosis, and Huntington's disease. Notably, the literature has pointed to the role of N-type Ca2+ channels (NTCCs) in controlling a variety of processes, including pain, inflammation, and excitotoxicity. Moreover, several Ca2+ channel blockers that are used for therapeutic purposes have been shown to act on the N-type channels. Therefore, this review provides an overview of the NTCCs in neurological disorders focusing mainly on Huntington's disease, multiple sclerosis, and migraine. It will discuss possible strategies to generate novel therapeutic strategies.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alessandra Hubner De Souza
- Post-Graduate Program of Health Sciences, Faculdade de Ciências Médicas de, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| | - Juliana Figueira
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nancy Scardua Binda
- Pharmacology Department, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Pharmacology Departament, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Faculty Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Alessandra Hubner De Souza, ; Marcus Vinícius Gomez,
| |
Collapse
|
16
|
Zhou X, Baumann R, Gao X, Mendoza M, Singh S, Sand IK, Xia Z, Cox LM, Chitnis T, Yoon H, Moles L, Caillier SJ, Santaniello A, Ackermann G, Harroud A, Lincoln R, Gomez R, Peña AG, Digga E, Hakim DJ, Vazquez-Baeza Y, Soman K, Warto S, Humphrey G, Farez M, Gerdes LA, Oksenberg JR, Zamvil SS, Chandran S, Connick P, Otaegui D, Castillo-Triviño T, Hauser SL, Gelfand JM, Weiner HL, Hohlfeld R, Wekerle H, Graves J, Bar-Or A, Cree BA, Correale J, Knight R, Baranzini SE. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell 2022; 185:3467-3486.e16. [PMID: 36113426 PMCID: PMC10143502 DOI: 10.1016/j.cell.2022.08.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/21/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Changes in gut microbiota have been associated with several diseases. Here, the International Multiple Sclerosis Microbiome Study (iMSMS) studied the gut microbiome of 576 MS patients (36% untreated) and genetically unrelated household healthy controls (1,152 total subjects). We observed a significantly increased proportion of Akkermansia muciniphila, Ruthenibacterium lactatiformans, Hungatella hathewayi, and Eisenbergiella tayi and decreased Faecalibacterium prausnitzii and Blautia species. The phytate degradation pathway was over-represented in untreated MS, while pyruvate-producing carbohydrate metabolism pathways were significantly reduced. Microbiome composition, function, and derived metabolites also differed in response to disease-modifying treatments. The therapeutic activity of interferon-β may in part be associated with upregulation of short-chain fatty acid transporters. Distinct microbial networks were observed in untreated MS and healthy controls. These results strongly support specific gut microbiome associations with MS risk, course and progression, and functional changes in response to treatment.
Collapse
Affiliation(s)
- Xiaoyuan Zhou
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Ryan Baumann
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Xiaohui Gao
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Myra Mendoza
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Sneha Singh
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lau M. Cox
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongsup Yoon
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, and Munich Cluster of Systems Neurology (SyNergy), München, Germany
- Department Neuroimmunology, Max Planck Institute (MPI) of Neurobiology, Munich, Germany
| | - Laura Moles
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Stacy J. Caillier
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam Santaniello
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Adil Harroud
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Robin Lincoln
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Elise Digga
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Joseph Hakim
- Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA
| | - Yoshiki Vazquez-Baeza
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Karthik Soman
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Shannon Warto
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Mauricio Farez
- Department of Neurology, Institute for Neurological Research Dr. Raul Carrea (FLENI), Buenos Aires, Argentina
| | - Lisa Ann Gerdes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Scott S. Zamvil
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Otaegui
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Tamara Castillo-Triviño
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Department of Neurology, Hospital Universitario Donostia and Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Stephen L. Hauser
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Jeffrey M. Gelfand
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard L. Weiner
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, and Munich Cluster of Systems Neurology (SyNergy), München, Germany
| | - Hartmut Wekerle
- Department Neuroimmunology, Max Planck Institute (MPI) of Neurobiology, Munich, Germany
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raul Carrea (FLENI), Buenos Aires, Argentina
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Sergio E. Baranzini
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
17
|
Basic Fibroblast Growth Factor Induces Cholinergic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Tissue Eng Regen Med 2022; 19:1063-1075. [PMID: 35857260 DOI: 10.1007/s13770-022-00474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are considered a potential tool for regenerating damaged tissues due to their great multipotency into various cell types. Here, we attempted to find the appropriate conditions for neuronal differentiation of tonsil-derived MSCs (TMSCs) and expand the potential application of TMSCs for treating neurological diseases. METHODS The TMSCs were differentiated in DMEM/F-12 (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12) supplemented with various neurotrophic factors for 7-28 days to determine the optimal neuronal differentiation condition for the TMSCs. The morphologies as well as the levels of the neural markers and neurotransmitters were assessed to determine neuronal differentiation potentials and the neuronal lineages of the differentiated TMSCs. RESULTS Our initial study demonstrated that DMEM/F12 supplemented with 50 ng/mL basic fibroblast growth factor with 10 μM forskolin was the optimal condition for neuronal differentiation for the TMSCs. TMSCs had higher protein expression of neuronal markers, including neuron-specific enolase (NSE), GAP43, postsynaptic density protein 95 (PSD95), and synaptosomal-associated protein of 25 kDa (SNAP25) compared to the undifferentiated TMSCs. Immunofluorescence staining also validated the increased mature neuron markers, NeuN and synaptophysin, in the differentiated TMSCs. The expression of glial fibrillar acidic protein and ionized calcium-binding adaptor molecule 1 the markers of astrocytes and microglia, were also slightly increased. Additionally, the differentiated TMSCs released a significantly higher level of acetylcholine, the cholinergic neurotransmitter, as analyzed by the liquid chromatography-tandem mass spectrometry and showed an enhanced choline acetyltransferase immunoreactivity compared to the undifferentiated cells. CONCLUSION Our study suggests that the optimized condition favors the TMSCs to differentiate into cholinergic neuron-like phenotype, which could be used as a possible therapeutic tool in treating certain neurological disorders such as Alzheimer's disease.
Collapse
|
18
|
Nimodipine Exerts Beneficial Effects on the Rat Oligodendrocyte Cell Line OLN-93. Brain Sci 2022; 12:brainsci12040476. [PMID: 35448007 PMCID: PMC9029615 DOI: 10.3390/brainsci12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.
Collapse
|
19
|
Satarker S, Bojja SL, Gurram PC, Mudgal J, Arora D, Nampoothiri M. Astrocytic Glutamatergic Transmission and Its Implications in Neurodegenerative Disorders. Cells 2022; 11:cells11071139. [PMID: 35406702 PMCID: PMC8997779 DOI: 10.3390/cells11071139] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders involve impaired neurotransmission, and glutamatergic neurotransmission sets a prototypical example. Glutamate is a predominant excitatory neurotransmitter where the astrocytes play a pivotal role in maintaining the extracellular levels through release and uptake mechanisms. Astrocytes modulate calcium-mediated excitability and release several neurotransmitters and neuromodulators, including glutamate, and significantly modulate neurotransmission. Accumulating evidence supports the concept of excitotoxicity caused by astrocytic glutamatergic release in pathological conditions. Thus, the current review highlights different vesicular and non-vesicular mechanisms of astrocytic glutamate release and their implication in neurodegenerative diseases. As in presynaptic neurons, the vesicular release of astrocytic glutamate is also primarily meditated by calcium-mediated exocytosis. V-ATPase is crucial in the acidification and maintenance of the gradient that facilitates the vesicular storage of glutamate. Along with these, several other components, such as cystine/glutamate antiporter, hemichannels, BEST-1, TREK-1, purinergic receptors and so forth, also contribute to glutamate release under physiological and pathological conditions. Events of hampered glutamate uptake could promote inflamed astrocytes to trigger repetitive release of glutamate. This could be favorable towards the development and worsening of neurodegenerative diseases. Therefore, across neurodegenerative diseases, we review the relations between defective glutamatergic signaling and astrocytic vesicular and non-vesicular events in glutamate homeostasis. The optimum regulation of astrocytic glutamatergic transmission could pave the way for the management of these diseases and add to their therapeutic value.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- Correspondence:
| |
Collapse
|
20
|
ML365 inhibits lipopolysaccharide-induced inflammatory responses via the NF-κB signaling pathway. Immunobiology 2022; 227:152208. [DOI: 10.1016/j.imbio.2022.152208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 01/23/2023]
|
21
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
22
|
Hu Y, Chen G, Huang J, Li Z, Li Z, Xie Y, Chen Y, Li H, Su W, Chen X, Liang D. The Calcium Channel Inhibitor Nimodipine Shapes the Uveitogenic T Cells and Protects Mice from Experimental Autoimmune Uveitis through the p38-MAPK Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 207:2933-2943. [PMID: 34799427 DOI: 10.4049/jimmunol.2100568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023]
Abstract
Autoimmune uveitis (AU) is a sight-threatening ocular inflammatory disorder, characterized by massive retinal vascular leakage and inflamed lesions with infiltration of the uveitogenic T cells in the retina and disorders of the T cell-related immune response in the system. Stimulation of TCRs can trigger calcium release and influx via Ca2+ channels and then transmit signals from the surface to the nucleus, which are important for energy metabolism, proliferation, activation, and differentiation. Inhibition of Ca2+ influx by pharmacological modulation of Ca2+ channels may suppress T cell function, representing a novel anti-inflammatory strategy in the treatment of AU. This study investigated the effects of the l-type voltage-gated calcium channel blocker nimodipine in experimental AU (EAU). Nimodipine was found to not only decrease the clinical and histopathological inflammation score of EAU (C57BL/6J mice) but also dwindle the infiltration of uveitogenic CD4+ T cells into the retina. Moreover, nimodipine decreased the effector T cells and increased the regulatory T cells in the immune system. In vitro, nimodipine reduced the effector T cell differentiation of the IRBP1-20-specific CD4+ T cells of EAU mice and LPS-stimulated PBMCs of uveitis patients. Meanwhile, nimodipine suppressed the energy metabolism, proliferation, activation, and Th1 cell differentiation of T cells. Further studies on RNA sequencing and molecular mechanisms have established that nimodipine alleviates EAU by regulating T cells response through the p38-MAPK pathway signaling. Taken together, our data reveal a novel therapeutic potential of the l-type Ca2+ channels antagonist nimodipine in AU by regulating the balance of T cell subsets.
Collapse
Affiliation(s)
- Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Zhang Z, Wang M, Yuan S, Larsson SC, Liu X. Genetically Predicted Milk Intake and Risk of Neurodegenerative Diseases. Nutrients 2021; 13:nu13082893. [PMID: 34445060 PMCID: PMC8398304 DOI: 10.3390/nu13082893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/07/2023] Open
Abstract
Milk intake has been associated with risk of neurodegenerative diseases in observational studies. Nevertheless, whether the association is causal remains unknown. We adopted Mendelian randomization design to evaluate the potential causal association between milk intake and common neurodegenerative diseases, including multiple sclerosis (MS), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD). Genetic associations for neurodegenerative diseases were obtained from the International Multiple Sclerosis Genetics Consortium (n = 80,094), FinnGen consortium (n = 176,899), AD GWAS (n = 63,926), Web-Based Study of Parkinson’s Disease (n = 308,518), PDGene (n = 108,990), and ALS GWAS (n = 80,610). Lactase persistence variant rs4988235 (LCT-13910 C > T) was used as the instrumental variable for milk intake. Genetically predicted higher milk intake was associated with a decreased risk of MS and AD and with an increased risk of PD. For each additional milk intake increasing allele, the odds ratios were 0.94 (95% confidence intervals [CI]: 0.91–0.97; p = 1.51 × 10−4) for MS, 0.97 (0.94–0.99; p = 0.019) for AD and 1.09 (95%CI: 1.06–1.12, p = 9.30 × 10−9) for PD. Genetically predicted milk intake was not associated with ALS (odds ratio: 0.97, 95%CI: 0.94–1.01, p = 0.135). Our results suggest that genetically predicted milk intake is associated with a decreased risk of MS and AD but with an increased risk of PD. Further investigations are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Mengmeng Wang
- Department of Neurology, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213004, China;
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.Y.); (S.C.L.)
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.Y.); (S.C.L.)
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
- Correspondence:
| |
Collapse
|
24
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
25
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
26
|
Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021; 9:584388. [PMID: 33585474 PMCID: PMC7876282 DOI: 10.3389/fcell.2021.584388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Ji Yeon Lee
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
27
|
Li J, Wu DM, Yu Y, Deng SH, Liu T, Zhang T, He M, Zhao YY, Xu Y. Amifostine ameliorates induction of experimental autoimmune encephalomyelitis: Effect on reactive oxygen species/NLRP3 pathway. Int Immunopharmacol 2020; 88:106998. [PMID: 33182064 DOI: 10.1016/j.intimp.2020.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease for which conventional treatments have limited efficacy or side effects. Free radicals are primarily involved in blood-brain barrier disruption and induce neuronal and axonal damage, thus promoting the development of MS. Amifostine, a radioprotective drug used as a cytoprotective agent, attenuates oxidative stress and improves radiation damage by acting as a direct scavenger of reactive oxygen and nitrogen species. The aim of this study was to evaluate the effects of amifostine on MS in a mouse model of experimental autoimmune encephalomyelitis (EAE), which was developed by immunizing C57BL/6 mice with myelin oligodendrocyte glycoprotein and pertussis toxin. EAE mice received intraperitoneal injections of amifostine prior to onset of clinical symptoms and were monitored up to day 15 post induction. We observed abnormal clinical behavioral scores and a decrease in body weight. Histological analysis showed severe inflammatory infiltration and demyelination in the brain and spinal cord lumbar enlargements where significant upregulation of the mRNA expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8, downregulation of the anti-inflammatory cytokine interleukin-10, and obvious microgliosis were also observed. Amifostine treatment potently reversed these abnormal changes. The anti-inflammatory effect of amifostine was associated with the inhibition of reactive oxygen species generation. Furthermore, the expression of proteins involved in the NLRP3 signaling pathway and pyroptosis was decreased. In conclusion, our study showed that amifostine ameliorates induction of experimental autoimmune encephalomyelitis via anti-inflammatory and anti-pyroptosis effects, providing further insights into the use of amifostine for the treatment of MS.
Collapse
Affiliation(s)
- Jing Li
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Dong-Ming Wu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Ye Yu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Shi-Hua Deng
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Teng Liu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Ting Zhang
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Miao He
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Yang-Yang Zhao
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China
| | - Ying Xu
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Chengdu, Sichuan 610500, PR China; Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Baoguang Road, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
28
|
Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Azadi-Ahmadabadi E, Fakour M, Ghasemi-Tarie R, Jalalzade-Ogvar S, Khodashenas V, Tashakori-Miyanroudi M, Roghani M. Sinomenine Alleviates Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis through Inhibiting NLRP3 Inflammasome. J Mol Neurosci 2020; 71:215-224. [PMID: 32812186 DOI: 10.1007/s12031-020-01637-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is known as a chronic neuroinflammatory disorder typified by an immune-mediated demyelination process with ensuing axonal damage and loss. Sinomenine is a natural alkaloid with different therapeutic benefits, including anti-inflammatory and immunosuppressive activities. In this study, possible beneficial effects of sinomenine in an MOG-induced model of MS were determined. Sinomenine was given to MOG35-55-immunized C57BL/6 mice at doses of 25 or 100 mg/kg/day after onset of MS clinical signs till day 30 post-immunization. Analyzed data showed that sinomenine reduces severity of the clinical signs and to some extent decreases tissue level of pro-inflammatory cytokines IL-1β, IL-6, IL-18, TNFα, IL-17A, and increases level of anti-inflammatory IL-10. In addition, sinomenine successfully attenuated tissue levels of inflammasome NLRP3, ASC, and caspase 1 besides its reduction of intensity of neuroinflammation, demyelination, and axonal damage and loss in lumbar spinal cord specimens. Furthermore, immunoreactivity for MBP decreased and increased for GFAP and Iba1 after MOG-immunization, which was in part reversed upon sinomenine administration. Overall, sinomenine decreases EAE severity, which is attributed to its alleviation of microglial and astrocytic mobilization, demyelination, and axonal damage along with its suppression of neuroinflammation, and its beneficial effect is also associated with its inhibitory effects on inflammasome and pyroptotic pathways; this may be of potential benefit for the primary progressive phenotype of MS.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Body Weight
- Cytokines/analysis
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammasomes/antagonists & inhibitors
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Morphinans/administration & dosage
- Morphinans/pharmacology
- Morphinans/therapeutic use
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Pyroptosis/drug effects
- Random Allocation
- Specific Pathogen-Free Organisms
- Spinal Cord/chemistry
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | - Marzieh Fakour
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | | | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
29
|
Meszlényi V, Patai R, Polgár TF, Nógrádi B, Körmöczy L, Kristóf R, Spisák K, Tripolszki K, Széll M, Obál I, Engelhardt JI, Siklós L. Passive Transfer of Sera from ALS Patients with Identified Mutations Evokes an Increased Synaptic Vesicle Number and Elevation of Calcium Levels in Motor Axon Terminals, Similar to Sera from Sporadic Patients. Int J Mol Sci 2020; 21:ijms21155566. [PMID: 32756522 PMCID: PMC7432249 DOI: 10.3390/ijms21155566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role.
Collapse
Affiliation(s)
- Valéria Meszlényi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 15 Lechner tér, H-6721 Szeged, Hungary
| | - Roland Patai
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Bernát Nógrádi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 15 Lechner tér, H-6721 Szeged, Hungary
| | - Laura Körmöczy
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Rebeka Kristóf
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Krisztina Spisák
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary; (K.T.); (M.S.)
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary; (K.T.); (M.S.)
- Dermatological Research Group, University of Szeged, Hungarian Academy of Sciences, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary
| | - Izabella Obál
- Department of Neurology, Aalborg University Hospital, 15 Skovvej Sdr., DK-9000 Aalborg, Denmark;
- Department of Neurology, University of Szeged, 6 Semmelweis u., H-6725 Szeged, Hungary;
| | - József I. Engelhardt
- Department of Neurology, University of Szeged, 6 Semmelweis u., H-6725 Szeged, Hungary;
| | - László Siklós
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Correspondence: ; Tel.: +36-62-599-611
| |
Collapse
|
30
|
Sancandi M, Uysal-Onganer P, Kraev I, Mercer A, Lange S. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21082743. [PMID: 32326590 PMCID: PMC7215947 DOI: 10.3390/ijms21082743] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of biomarkers for early diagnosis of Parkinson’s disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to “Alzheimer’s disease”, “PD”, “Huntington’s disease”, “prion diseases”, as well as for “oxidative phosphorylation”, “thermogenesis”, “metabolic pathways”, “Staphylococcus aureus infection”, gap junction, “platelet activation”, “apelin signalling”, “retrograde endocannabinoid signalling”, “systemic lupus erythematosus”, and “non-alcoholic fatty liver disease”. Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.
Collapse
Affiliation(s)
- Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (M.S.); (A.M.)
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (M.S.); (A.M.)
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000 (ext. 64832)
| |
Collapse
|