1
|
Lin YT, Tan J, Tao YL, Hu WW, Wang YC, Huang J, Zhou Q, Xiao A. Effect of ranibizumab on diabetic retinopathy via the vascular endothelial growth factor/STAT3/glial fibrillary acidic protein pathway. World J Diabetes 2025; 16:99473. [DOI: 10.4239/wjd.v16.i5.99473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/21/2025] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the leading cause of vision loss in patients with diabetes. The vascular endothelial growth factor (VEGF) pathway plays a critical role in the pathogenesis of DR, and ranibizumab, an anti-VEGF agent, has shown promise in its treatment. Signal transducer and activator of transcription 3 (STAT3) is involved in inflammatory processes and cellular signaling, while glial fibrillary acidic protein (GFAP) is a marker of glial cell activation, both contributing to retinal damage in DR. However, the mechanisms by which ranibizumab affect early-stage DR through the VEGF/STAT3/GFAP pathway are not fully understood.
AIM To investigate the role of ranibizumab in early DR via the VEGF/STAT3/GFAP pathway.
METHODS Adult retinal pigment epithelial 19 (ARPE-19) cells and human retinal microvascular endothelial cells (HRMECs) were cultured under high-glucose conditions to simulate a diabetic environment. The effects of ranibizumab on cytokine mRNA and protein expression were analyzed by quantitative polymerase chain reaction and Western blot analysis. A diabetic rat model was induced with streptozotocin (60 mg/kg). Retinal changes, including retinal ganglion cell (RGC) apoptosis, vascular alterations, and cytokine expression, were evaluated using fundus fluorescein angiography, hematoxylin and eosin and periodic acid Schiff staining, immunofluorescence, confocal imaging, and Western blot analysis.
RESULTS High-glucose conditions significantly increased the mRNA and protein levels of VEGF, STAT3, GFAP, and other cytokines in ARPE-19 and HRMECs. However, these levels were partially suppressed by ranibizumab. RGC apoptosis, vascular leakage, and elevated cytokine expression were observed during early-stage DR in diabetic rats. Ranibizumab treatment in diabetic rats reduced cytokine expression, restored RGCs, and repaired vascular networks.
CONCLUSION Intravitreal ranibizumab modulates the VEGF/STAT3/GFAP pathway, suppresses cytokine expression, and promotes retinal repair, effectively delaying or preventing early DR progression.
Collapse
Affiliation(s)
- Ye-Ting Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian Tan
- Department of Ophthalmology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Yu-Lin Tao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wei-Wen Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Cang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ang Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
2
|
Yang X, Zhang Y, Zhou Y, Liu M, Zhao H, Yang Y, Su J. CaMK2A/CREB pathway activation is associated with enhanced mitophagy and neuronal apoptosis in diabetic retinopathy. Sci Rep 2025; 15:12516. [PMID: 40216954 PMCID: PMC11992012 DOI: 10.1038/s41598-025-97371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus, characterized by progressive neurodegeneration and vision impairment. The Ca2+/calmodulin-dependent protein kinase II alpha (CaMK2A) and cAMP response element-binding protein (CREB) signaling pathway has been implicated in various neurological disorders. However, its role in DR pathogenesis remains elusive. We established a DR mouse model by streptozotocin administration and performed histological, biochemical, and molecular analyses to investigate the involvement of CaMK2A/CREB signaling and its interplay with mitophagy. Additionally, we employed in vitro high-glucose (HG) treatment in primary mouse retinal ganglion cells to dissect the underlying mechanisms. Pharmacological and genetic modulations were utilized to target CaMK2A/CREB pathway and mitophagy. In the DR model, we observed retinal degeneration, increased apoptosis, and reduced neurotransmitter production, accompanied by enhanced mitophagy and activation of the CaMK2A/CREB pathway. HG induction in retinal ganglion cells recapitulated these findings, and autophagy inhibition partially rescued cell death but failed to suppress CaMK2A/CREB activation, suggesting mitophagy as a downstream consequence. CaMK2A knockdown or CREB phosphorylation inhibition attenuated HG-induced mitophagy, apoptosis, and neurotransmitter depletion, while CREB activation exacerbated these effects. CaMK2A silencing mitigated DR progression, oxidative stress, inflammation, and neuronal loss, akin to dopamine/carbidopa administration in DR mouse model. Our findings reveal the involvement of CaMK2A/CREB signaling activation and enhanced mitophagy in DR, suggesting these pathways may be therapeutically relevant targets for DR management.
Collapse
Affiliation(s)
- Xiaochun Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Yuxin Zhang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yikun Zhou
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Mingzhi Liu
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Haiyan Zhao
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yang Yang
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jianyun Su
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| |
Collapse
|
3
|
Łaszczych D, Czernicka A, Łaszczych K. Targeting GABA signaling in type 1 diabetes and its complications- an update on the state of the art. Pharmacol Rep 2025; 77:409-424. [PMID: 39833509 DOI: 10.1007/s43440-025-00697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the progressive destruction of insulin-producing β cells, resulting in lifelong insulin dependence and a range of severe complications. Beyond conventional glycemic control, innovative therapeutic strategies are needed to address the underlying disease mechanisms. Recent research has highlighted gamma-aminobutyric acid (GABA) as a promising therapeutic target for T1D due to its dual role in modulating both β cell survival and immune response within pancreatic islets. GABA signaling supports β cell regeneration, inhibits α cell hyperactivity, and promotes α-to-β cell transdifferentiation, contributing to improved islet function. Moreover, GABA's influence extends to mitigating T1D complications, including nephropathy, neuropathy, and retinopathy, as well as regulating central nervous system pathways involved in glucose metabolism. This review consolidates the latest advances in GABA-related T1D therapies, covering animal preclinical and human clinical studies and examining the therapeutic potential of GABA receptor modulation, combination therapies, and dietary interventions. Emphasis is placed on the translational potential of GABA-based approaches to enhance β cell viability and counteract autoimmune processes in T1D. Our findings underscore the therapeutic promise of GABA signaling modulation as a novel approach for T1D treatment and encourage further investigation into this pathway's role in comprehensive diabetes management.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13, 85-067, Bydgoszcz, Poland.
| | | | - Katarzyna Łaszczych
- Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Jedności 8, Sosnowiec, 41-200, Poland
- Ziko Pharmacy, Plebiscytowa 39, Katowice, Poland
| |
Collapse
|
4
|
Lin CR, Ablordeppey RK, Benavente-Perez A. Sustained Experimental Myopia Exacerbates the Effect of Eye Growth on Retinal Ganglion Cell Density and Function. Int J Mol Sci 2025; 26:2824. [PMID: 40141465 PMCID: PMC11943290 DOI: 10.3390/ijms26062824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study is to describe the effect that sustained myopic eye growth has on the cellular distribution and function of retinal ganglion cells as myopia progresses over time. Ganglion cell density and the photopic negative response (PhNR) were assessed using immunochemistry and electroretinography (ERG), respectively, on twelve common marmoset eyes (Callithrix jacchus). Myopia was induced in six eyes using negative defocus (three eyes from 2 to 6 months of age, 6-month-old myopes; three eyes from 2 to 12 months of age, 12-month-old myopes). These six treated eyes were compared to six age-matched control eyes. Marmosets induced with myopia for four months showed a reduced pan-retinal ganglion cell density, which continued to decrease in the peripapillary area of marmosets induced with sustained myopia for ten months. Ganglion cell density decreased as a function of axial length. Full-field ERGs revealed a dampening of the PhNR in the 12-month-old, but not 6-month-old myopes. The myopic changes observed in ganglion cell density and retinal function suggest a reorganization of the ganglion cell template during myopia development and progression that increases over time with sustained myopic eye growth and translates into functional alterations at later stages of myopia development in the absence of degenerative changes. It remains unknown whether these changes positively or negatively impact retinal function and health.
Collapse
Affiliation(s)
| | | | - Alexandra Benavente-Perez
- Department of Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; (C.R.L.); (R.K.A.)
| |
Collapse
|
5
|
Alfarhan M, Liu F, Matani BR, Somanath PR, Narayanan SP. SMOX Inhibition Preserved Visual Acuity, Contrast Sensitivity, and Retinal Function and Reduced Neuro-Glial Injury in Mice During Prolonged Diabetes. Cells 2024; 13:2049. [PMID: 39768141 PMCID: PMC11674681 DOI: 10.3390/cells13242049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice. Utilizing the streptozotocin-induced diabetic mouse model and MDL 72527, the current study investigated the effectiveness of SMOX inhibition on the measures of vision impairment and neuro-glial injury following 24 weeks of diabetes. Reductions in visual acuity, contrast sensitivity, and inner retinal function in diabetic mice were improved by MDL 72527 treatment. Diabetes-induced changes in neuronal-specific class III tubulin (Tuj-1), synaptophysin, glutamine synthetase, and vimentin were attenuated in response to SMOX inhibition. In conclusion, our findings show that SMOX inhibition improved visual acuity, contrast sensitivity, and inner retinal function and mitigated diabetes-induced neuroglial damage during long-term diabetes. Targeting SMOX signaling may provide a potential strategy for reducing retinal neuronal damage and preserving vision in diabetes.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
- Department of Clinical Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Bayan R. Matani
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
6
|
Starr CR, Mobley JA, Gorbatyuk MS. Comparative proteomic study of retinal ganglion cells undergoing various types of cellular stressors. Exp Eye Res 2024; 247:110032. [PMID: 39127235 DOI: 10.1016/j.exer.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Retinal ganglion cell (RGC) damage serves as a key indicator of various retinal degenerative diseases, including diabetic retinopathy (DR), glaucoma, retinal arterial and retinal vein occlusions, as well as inflammatory and traumatic optic neuropathies. Despite the growing body of data on the RGC proteomics associated with these conditions, there has been no dedicated study conducted to compare the molecular signaling pathways involved in the mechanism of neuronal cell death. Therefore, we launched the study using two different insults leading to RGC death: glutamate excitotoxicity and optic nerve crush (ONC). C57BL/6 mice were used for the study and underwent NMDA- and ONC-induced damage. Twenty-four hours after ONC and 1 h after NMDA injection, we collected RGCs using CD90.2 coupled magnetic beads, prepared protein extracts, and employed LC-MS for the global proteomic analysis of RGCs. Statistically significant changes in proteins were analyzed to identify changes to cellular signaling resulting from the treatment. We identified unique and common alterations in protein profiles in RGCs undergoing different types of cellular stresses. Our study not only identified both unique and shared proteomic changes but also laid the groundwork for the future development of a therapeutic platform for testing gene candidates for DR and glaucoma.
Collapse
Affiliation(s)
- Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - James A Mobley
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA, 35233
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA, 35233.
| |
Collapse
|
7
|
Peng H, Li H, Ma B, Sun X, Chen B. DJ-1 regulates mitochondrial function and promotes retinal ganglion cell survival under high glucose-induced oxidative stress. Front Pharmacol 2024; 15:1455439. [PMID: 39323632 PMCID: PMC11422208 DOI: 10.3389/fphar.2024.1455439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose This study aimed to investigate the antioxidative and neuroprotective effects of DJ-1 in mitigating retinal ganglion cell (RGC) damage induced by high glucose (HG). Methods A diabetic mouse model and an HG-induced R28 cell model were employed for loss- and gain-of-function experiments. The expression levels of apoptosis and oxidative stress-related factors, including Bax, Bcl-2, caspase3, Catalase, MnSOD, GCLC, Cyto c, and GPx-1/2, were assessed in both animal and cell models using Western blotting. Retinal structure and function were evaluated through HE staining, electroretinogram, and RGC counting. Mitochondrial function and apoptosis were determined using JC-1 and TUNEL staining, and reactive oxygen species (ROS) measurement. Results In the mouse model, hyperglycemia resulted in reduced retinal DJ-1 expression, retinal structural and functional damage, disrupted redox protein profiles, and mitochondrial dysfunction. Elevated glucose levels induced mitochondrial impairment, ROS generation, abnormal protein expression, and apoptosis in R28 cells. Augmenting DJ-1 expression demonstrated a restoration of mitochondrial homeostasis and alleviated diabetes-induced morphological and functional impairments both in vivo and in vitro. Conclusion This study provides novel insights into the regulatory role of DJ-1 in mitochondrial dynamics, suggesting a potential avenue for enhancing RGC survival in diabetic retinopathy.
Collapse
Affiliation(s)
- Hanhan Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Benteng Ma
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Xinyue Sun
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| |
Collapse
|
8
|
Jiang W, Xiao D, Wu C, Yang J, Peng X, Chen L, Zhang J, Zha G, Li W, Ju R, Xiang M, Xie Z. Circular RNA-based therapy provides sustained and robust neuroprotection for retinal ganglion cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102258. [PMID: 39045516 PMCID: PMC11264179 DOI: 10.1016/j.omtn.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024]
Abstract
Ocular neurodegenerative diseases like glaucoma lead to progressive retinal ganglion cell (RGC) loss, causing irreversible vision impairment. Neuroprotection is needed to preserve RGCs across debilitating conditions. Nerve growth factor (NGF) protein therapy shows efficacy, but struggles with limited bioavailability and a short half-life. Here we explore a novel approach to address this deficiency by utilizing circular RNA (circRNA)-based therapy. We show that circRNAs exhibit an exceptional capacity for prolonged protein expression and circRNA-expressed NGF protects cells from glucose deprivation. In a mouse optic nerve crush model, lipid nanoparticle (LNP)-formulated circNGF administered intravitreally protects RGCs and axons from injury-induced degeneration. It also significantly outperforms NGF protein therapy without detectable retinal toxicity. Furthermore, single-cell transcriptomics revealed LNP-circNGF's multifaceted therapeutic effects, enhancing genes related to visual perception while reducing trauma-associated changes. This study signifies the promise of circRNA-based therapies for treating ocular neurodegenerative diseases and provides an innovative intervention platform for other ocular diseases.
Collapse
Affiliation(s)
- Wenbing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xinghua Peng
- Research and Development Center, Shenzhen MagicRNA Biotech, Shenzhen 518107, China
| | - Linfeng Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiamin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Gaofeng Zha
- Scientific Research Center, The Seventh Affiliated Hospital. Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
9
|
Liu K, Yang Y, Wu Z, Sun C, Su Y, Huang N, Wu H, Yi C, Ye J, Xiao L, Niu J. Remyelination-oriented clemastine treatment attenuates neuropathies of optic nerve and retina in glaucoma. Glia 2024; 72:1555-1571. [PMID: 38829008 DOI: 10.1002/glia.24543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.
Collapse
Affiliation(s)
- Kun Liu
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yujian Yang
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Zhonghao Wu
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chunhui Sun
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nanxin Huang
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Haoqian Wu
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jian Ye
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Starr CR, Mobley JA, Gorbatyuk MS. Comparative Proteomic Study of Retinal Ganglion Cells Undergoing Various Types of Cellular Stressors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561236. [PMID: 37873477 PMCID: PMC10592614 DOI: 10.1101/2023.10.06.561236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Retinal ganglion cell (RGC) damage serves as a key indicator of various retinal degenerative diseases, including diabetic retinopathy (DR), glaucoma, retinal arterial and retinal vein occlusions, as well as inflammatory and traumatic optic neuropathies. Despite the growing body of data on the RGC proteomics associated with these conditions, there has been no dedicated study conducted to compare the molecular signaling pathways involved in the mechanism of neuronal cell death. Therefore, we launched the study using two different insults leading to RGC death: glutamate excitotoxicity and optic nerve crush (ONC). C57BL/6 mice were used for the study and underwent NMDA- and ONC-induced damage. Twenty-four hours after ONC and 1 hour after NMDA injection, we collected RGCs using CD90.2 coupled magnetic beads, prepared protein extracts, and employed LC-MS for the global proteomic analysis of RGCs. Statistically significant changes in proteins were analyzed to identify changes to cellular signaling resulting from the treatment. We identified unique and common alterations in protein profiles in RGCs undergoing different types of cellular stresses. Our study not only identified both unique and shared proteomic changes but also laid the groundwork for the future development of a therapeutic platform for testing gene candidates for DR and glaucoma.
Collapse
Affiliation(s)
- Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35233
| | - James A Mobley
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35233
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35233
| |
Collapse
|
11
|
Costello SM, Schultz A, Smith D, Horan D, Chaverra M, Tripet B, George L, Bothner B, Lefcort F, Copié V. Metabolic Deficits in the Retina of a Familial Dysautonomia Mouse Model. Metabolites 2024; 14:423. [PMID: 39195519 PMCID: PMC11356057 DOI: 10.3390/metabo14080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber's hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) impairments, increased oxidative stress, and reduced energy (ATP) production. These cellular mechanisms associated with progressive optic nerve atrophy have been similarly observed in familial dysautonomia (FD) patients, who experience gradual loss of visual acuity due to the degeneration of RGCs, which is thought to be caused by a breakdown of mitochondrial structures, and a disruption in ETC function. Retinal metabolism plays a crucial role in meeting the elevated energetic demands of this tissue, and recent characterizations of FD patients' serum and stool metabolomes have indicated alterations in central metabolic processes and potential systemic deficits of taurine, a small molecule essential for retina and overall eye health. The present study sought to elucidate metabolic alterations that contribute to the progressive degeneration of RGCs observed in FD. Additionally, a critical subpopulation of retinal interneurons, the dopaminergic amacrine cells, mediate the integration and modulation of visual information in a time-dependent manner to RGCs. As these cells have been associated with RGC loss in the neurodegenerative disease Parkinson's, which shares hallmarks with FD, a targeted analysis of the dopaminergic amacrine cells and their product, dopamine, was also undertaken. One dimensional (1D) proton (1H) nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and retinal histology methods were employed to characterize retinae from the retina-specific Elp1 conditional knockout (CKO) FD mouse model (Pax6-Cre; Elp1LoxP/LoxP). Metabolite alterations correlated temporally with progressive RGC degeneration and were associated with reduced mitochondrial function, alterations in ATP production through the Cahill and mini-Krebs cycles, and phospholipid metabolism. Dopaminergic amacrine cell populations were reduced at timepoints P30-P90, and dopamine levels were 25-35% lower in CKO retinae compared to control retinae at P60. Overall, this study has expanded upon our current understanding of retina pathology in FD. This knowledge may apply to other retinal diseases that share hallmark features with FD and may help guide new avenues for novel non-invasive therapeutics to mitigate the progressive optic neuropathy in FD.
Collapse
Affiliation(s)
- Stephanann M. Costello
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University—Bozeman, Bozeman, MT 59717, USA
| | - Donald Smith
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Danielle Horan
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Martha Chaverra
- Department of Microbiology and Cell Biology, Montana State University—Bozeman, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University—Billings, Billings, MT 59102, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University—Bozeman, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| |
Collapse
|
12
|
Bosnyak I, Farkas N, Molitor D, Meresz B, Patko E, Atlasz T, Vaczy A, Reglodi D. Optimization of an Ischemic Retinopathy Mouse Model and the Consequences of Hypoxia in a Time-Dependent Manner. Int J Mol Sci 2024; 25:8008. [PMID: 39125579 PMCID: PMC11311598 DOI: 10.3390/ijms25158008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The retina is one of the highest metabolically active tissues with a high oxygen consumption, so insufficient blood supply leads to visual impairment. The incidence of related conditions is increasing; however, no effective treatment without side effects is available. Furthermore, the pathomechanism of these diseases is not fully understood. Our aim was to develop an optimal ischemic retinopathy mouse model to investigate the retinal damage in a time-dependent manner. Retinal ischemia was induced by bilateral common carotid artery occlusion (BCCAO) for 10, 13, 15 or 20 min, or by right permanent unilateral common carotid artery occlusion (UCCAO). Optical coherence tomography was used to follow the changes in retinal thickness 3, 7, 14, 21 and 28 days after surgery. The number of ganglion cells was evaluated in the central and peripheral regions on whole-mount retina preparations. Expression of glial fibrillary acidic protein (GFAP) was analyzed with immunohistochemistry and Western blot. Retinal degeneration and ganglion cell loss was observed in multiple groups. Our results suggest that the 20 min BCCAO is a good model to investigate the consequences of ischemia and reperfusion in the retina in a time-dependent manner, while the UCCAO causes more severe damage in a short time, so it can be used for testing new drugs.
Collapse
Affiliation(s)
- Inez Bosnyak
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Dorottya Molitor
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Balazs Meresz
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Evelin Patko
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Tamas Atlasz
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
- Department of Sportbiology, Faculty of Sciences, University of Pecs, 7624 Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Dora Reglodi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| |
Collapse
|
13
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
14
|
de Lemos L, Antas P, Ferreira IS, Santos IP, Felgueiras B, Gomes CM, Brito C, Seabra MC, Tenreiro S. Modelling neurodegeneration and inflammation in early diabetic retinopathy using 3D human retinal organoids. IN VITRO MODELS 2024; 3:33-48. [PMID: 39872068 PMCID: PMC11756505 DOI: 10.1007/s44164-024-00068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 01/29/2025]
Abstract
Purpose Diabetic retinopathy (DR) is a complication of diabetes and a primary cause of visual impairment amongst working-age individuals. DR is a degenerative condition in which hyperglycaemia results in morphological and functional changes in certain retinal cells. Existing treatments mainly address the advanced stages of the disease, which involve vascular defects or neovascularization. However, it is now known that retinal neurodegeneration and inflammation precede these vascular changes as early events of DR. Therefore, there is a pressing need to develop a reliable human in vitro model that mimics the early stage of DR to identify new therapeutic approaches to prevent and delay its progression. Methods Here, we used human-induced pluripotent stem cells (hiPSCs) differentiated into three-dimensional (3D) retinal organoids, which resemble the complexity of the retinal tissue. Retinal organoids were subjected to high-glucose conditions to generate a model of early DR. Results Our model showed well-established molecular and cellular features of early DR, such as (i) loss of retinal ganglion and amacrine cells; (ii) glial reactivity and inflammation, with increased expression of the vascular endothelial-derived growth factor (VEGF) and interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1) secretion; and (iii) increased levels of reactive oxygen species accompanied by activation of key enzymes involved in antioxidative stress response. Conclusion The data provided highlight the utility of retinal organoid technology in modelling early-stage DR. This offers new avenues for the development of targeted therapeutic interventions on neurodegeneration and inflammation in the initial phase of DR, potentially slowing the disease's progression. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00068-1.
Collapse
Affiliation(s)
- Luisa de Lemos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
| | - Pedro Antas
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
| | - Inês S. Ferreira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
| | - Inês Paz Santos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
| | - Beatriz Felgueiras
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
| | - Catarina M. Gomes
- iBET, Instituto de Biologia Experimental E Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental E Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
- UCL Institute of Ophthalmology, London, UK
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Rua Camara Pestana, 6, Lisbon, Portugal
| |
Collapse
|
15
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
16
|
Yoshida T, Yokoi T, Tanaka T, Matsuzaka E, Saida Y, Nishina S, Takada S, Shimizu S, Azuma N. Modeling of Retina and Optic Nerve Ischemia-Reperfusion Injury through Hypoxia-Reoxygenation in Human Induced Pluripotent Stem Cell-Derived Retinal Ganglion Cells. Cells 2024; 13:130. [PMID: 38247823 PMCID: PMC10814087 DOI: 10.3390/cells13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Retinal ganglion cells (RGCs) are specialized projection neurons that constitute part of the retina, and the death of RGCs causes various eye diseases, but the mechanism of RGC death is still unclear. Here, we induced cell death in human induced pluripotent stem cell (hiPSC)-derived RGC-rich retinal tissues using hypoxia-reoxygenation in vitro. Flow cytometry, immunochemistry, and Western blotting showed the apoptosis and necrosis of RGCs under hypoxia-reoxygenation, and they were rescued by an apoptosis inhibitor but not by a necrosis inhibitor. This revealed that the cell death induced in our model was mainly due to apoptosis. To our knowledge, this is the first model to reproduce ischemia-reperfusion in hiPSC-derived RGCs. Thus, the efficacy of apoptosis inhibitors and neuroprotective agents can be evaluated using this model, bringing us closer to clinical applications.
Collapse
Affiliation(s)
- Tomoyo Yoshida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Tadashi Yokoi
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of ophthalmology, Kyorin University, 6-20-2, Arakawa, Mitaka, Tokyo 1818611, Japan
| | - Taku Tanaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Emiko Matsuzaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Yuki Saida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Sachiko Nishina
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shuji Takada
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Noriyuki Azuma
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| |
Collapse
|
17
|
Gnanasambandam B, Prince J, Limaye S, Moran E, Lee B, Huynh J, Irudayaraj J, Tsipursky M. Addressing retinal hypoxia: pathophysiology, therapeutic innovations, and future prospects. Ther Adv Ophthalmol 2024; 16:25158414241280187. [PMID: 39376745 PMCID: PMC11457288 DOI: 10.1177/25158414241280187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/30/2024] [Indexed: 10/09/2024] Open
Abstract
Retinal hypoxia stands as a pivotal yet often underappreciated factor in the etiology and progression of many retinal disorders such as glaucoma, hypertensive retinopathy, diabetic retinopathy, retinal vein occlusions, and retinal artery occlusions. Current treatment methodologies fail to directly address the underlying pathophysiology of hypoxia and aim to improve ischemia through alternative methods. In this review, we discuss the critical role of retinal hypoxia in the pathogenesis of various retinal diseases and highlight the need for innovative therapeutic strategies that address the root cause of these conditions. As our understanding of retinal hypoxia continues to evolve, the emergence of new technologies holds the promise of more effective treatments, offering hope to patients at risk of vision loss.
Collapse
Affiliation(s)
- Bhargavee Gnanasambandam
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Ave Urbana, Urbana, IL 61801, USA
| | - Jacob Prince
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Siddharth Limaye
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Moran
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ben Lee
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin Huynh
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Revive Biotechnology, Inc., Champaign, IL, USA
| | - Michael Tsipursky
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Revive Biotechnology, Inc., Champaign, IL, USA
- Department of Ophthalmology, Carle Foundation Hospital, Urbana, IL, USA
| |
Collapse
|
18
|
Ural Fatihoglu O, Fatihoglu SG. The ganglion cell complex damage in coronary artery disease. Photodiagnosis Photodyn Ther 2023; 44:103789. [PMID: 37666380 DOI: 10.1016/j.pdpdt.2023.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE This study aims to investigate the correlation between macular thickness, retinal nerve fiber layer thickness, ganglion cell complex thickness, and Gensini scores in patients who have undergone coronary angiography, using spectral-domain optical coherence tomography. METHODS We retrospectively evaluated optical coherence tomography results from patients who had undergone coronary angiography between January 2019 and January 2021 due to coronary artery disease, with angiography performed within one month of the optical coherence tomography examination. Based on their Gensini scores, patients were classified into two groups: mild coronary artery disease (Gensini score ≤ 20, Group 1) and severe coronary artery disease (Gensini score > 20, Group 2). RESULTS Group 1 comprised 28 patients with an average age of 61.3 ± 10.2, while Group 2 consisted of 25 patients with an average age of 65.4 ± 9.6. While there was no statistically significant difference found in retinal nerve fiber layer and macular thickness between the groups, the ganglion cell complex thickness was significantly thinner in Group 2 in the inner superior temporal (112.55 ± 34.12 µm vs. 99.68 ± 37.81 µm, p = 0.026), inner superior nasal (121.14 ± 32.92 µm vs. 108.36±24.53 µm, p = 0.012), inner inferior nasal (120.81 ± 32.34 µm vs. 108.45 ± 12.53 µm, p = 0.048), and superior (99.11 ± 25.91 µm vs. 88.77 ± 16.75 µm, p = 0.020) regions. Furthermore, a significant negative correlation was observed between the Gensini score and the ganglion cell complex thickness in both the inner superior nasal and superior regions. CONCLUSION Compared to patients with mild coronary artery disease, those with severe disease exhibited a significant decrease in ganglion cell complex thickness in the superior and inner superior nasal regions.
Collapse
Affiliation(s)
- Ozlem Ural Fatihoglu
- Department of Ophthalmology, Akhisar Mustafa Kirazoglu State Hospital, P.O: 45200, Manisa, Turkey.
| | | |
Collapse
|
19
|
Perisset S, Potilinski MC, Gallo JE. Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy. Int J Mol Sci 2023; 24:13947. [PMID: 37762249 PMCID: PMC10531058 DOI: 10.3390/ijms241813947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine.
Collapse
Affiliation(s)
- Sofia Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
| | - M. Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
| | - Juan E. Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
- Departamento de Oftalmología, Hospital Universitario Austral, Pilar B1629, Buenos Aires, Argentina
| |
Collapse
|
20
|
Dumanska H, Telka M, Veselovsky N. Inhibition of high-voltage-activated calcium currents by acute hypoxia in cultured retinal ganglion cells. Front Cell Neurosci 2023; 17:1202083. [PMID: 37465211 PMCID: PMC10351036 DOI: 10.3389/fncel.2023.1202083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Hypoxia is a common factor of numerous ocular diseases that lead to dysfunctions and loss of retinal ganglion cells (RGCs) with subsequent vision loss. High-voltage-activated calcium channels are the main source of calcium entry into neurons. Their activity plays a central role in different signaling processes in health and diseases, such as enzyme activation, gene transcription, synaptic transmission, or the onset of cell death. This study aims to establish and evaluate the initial effect of the early stage of acute hypoxia on somatic HVA calcium currents in cultured RGCs. HVA calcium currents were recorded in RGCs using the whole-cell patch-clamp technique in the voltage-clamp mode. The fast local superfusion was used for a brief (up to 270 s) application of the hypoxic solution (pO2 < 5 mmHg). The switch from normoxic to hypoxic solutions and vice versa was less than 1 s. The HVA calcium channel activity was inhibited by acute hypoxia in 79% of RGCs (30 of 38 RGCs) in a strong voltage-dependent manner. The level of inhibition was independent of the duration of hypoxia or repeated applications. The hypoxia-induced inhibition of calcium currents had a strong correlation with the duration of hypoxia and showed the transition from reversible to irreversible at 75 s of hypoxia and longer. The results obtained are the first demonstration of the phenomena of HVA calcium current inhibition by acute hypoxia in RGCs and provide a conceptual framework for further research.
Collapse
|
21
|
Han N, Zhang L, Guo M, Yu L. Knockdown of Krüppel-Like Factor 9 Inhibits Aberrant Retinal Angiogenesis and Mitigates Proliferative Diabetic Retinopathy. Mol Biotechnol 2023; 65:612-623. [PMID: 36109428 DOI: 10.1007/s12033-022-00559-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Advanced proliferative diabetic retinopathy (PDR) characterized by aberrant retinal angiogenesis is a leading cause of retinal detachment and blindness. Krüppel-like factor 9 (KLF9), a member of the zinc-finger family of transcription factors, participates in the development of diabetic nephropathy and the promotion of angiogenesis of human umbilical vein endothelial cells. Therefore, we speculate that KLF9 may exert a crucial role in PDR. The current study revealed that KLF9 was highly expressed in the high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs) and the retinas of oxygen-induced retinopathy (OIR) rats. Knockdown of KLF9 inhibited the proliferation, migratory capability, invasiveness and tube formation of HG-treated HRMECs. Besides, knockdown of KLF9 decreased the expression of yes-associated protein 1 (YAP1) in HG-treated HRMECs. Dual-luciferase reporter assays confirmed that KLF9 transcriptionally upregulated YAP1 expression. Overexpression of YAP1 reversed the KLF9 silencing-induced repression of HRMEC proliferation and tube formation. Further in vivo evidence demonstrated that knockdown of KLF9 reduced the expression of Ki67, CD31 and vascular endothelial growth factor A (VEGFA) in the retinas of OIR rats. Collectively, KLF9 silencing might mitigate the progression of PDR by inhibiting angiogenesis via blocking YAP1 transcription.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No.218, Ziqiang Street, Changchun, Jilin, China
| | - Lihong Zhang
- Department of Ophthalmology, Songyuan Derun Tongxin Hospital, Songyuan, Jilin, China
| | - Mi Guo
- Department of Ophthalmology, Baotou Eye Hospital, Baotou, Inner Mongolia Autonomous Region, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No.218, Ziqiang Street, Changchun, Jilin, China.
| |
Collapse
|
22
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
23
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
24
|
Wu S, Mo X. Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. Int J Mol Sci 2023; 24:ijms24021447. [PMID: 36674963 PMCID: PMC9865663 DOI: 10.3390/ijms24021447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular compilation of diabetes, is the leading cause of vision loss and blindness worldwide. Recent studies indicate that retinal neuron impairment occurs before any noticeable vascular changes in DR, and retinal ganglion cell (RGC) degeneration is one of the earliest signs. Axons of RGCs have little capacity to regenerate after injury, clinically leading the visual functional defects to become irreversible. In the past two decades, tremendous progress has been achieved to enable RGC axon regeneration in animal models of optic nerve injury, which holds promise for neural repair and visual restoration in DR. This review summarizes these advances and discusses the potential and challenges for developing optic nerve regeneration strategies treating DR.
Collapse
Affiliation(s)
| | - Xiaofen Mo
- Correspondence: ; Tel.: +86-021-64377134
| |
Collapse
|
25
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
26
|
Sajeev A, Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sil SK, Sethi G, Chen JT, Kunnumakkara AB. Oroxylin A: A Promising Flavonoid for Prevention and Treatment of Chronic Diseases. Biomolecules 2022; 12:1185. [PMID: 36139025 PMCID: PMC9496116 DOI: 10.3390/biom12091185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Center, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samir Kumar Sil
- Cell Physiology and Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar 799022, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
27
|
Fang W, Huang X, Wu K, Zong Y, Yu J, Xu H, Shi J, Wei J, Zhou X, Jiang C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front Mol Neurosci 2022; 15:930599. [PMID: 36017075 PMCID: PMC9396352 DOI: 10.3389/fnmol.2022.930599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe aim of this study was to investigate the role and mechanism of berberine (BBR) in the protection of injured retinal ganglion cells (RGCs) in diabetic retinopathy (DR).MethodsExperimental diabetic retinopathy rat model was successfully induced by a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in male SD rats with sufficient food and water for 8 weeks. Animals were randomly divided into four groups: (1) non-diabetic, (2) diabetic, (3) diabetic + BBR + PBS, and (4) diabetic + BBR + SR95531. BBR (100 mg/kg) was given daily by gavage to rats in the group (3) and group (4) for 8 weeks, and weekly intravitreal injections were conducted to rats in the group (3) with 5 μL of 1×PBS and rats in the group (4) with 5 μL of GABA-alpha receptor antagonist SR95531 to investigate the underlying mechanisms. The survival and apoptosis of RGCs were observed by fluorescence gold labeling technology and TUNEL staining. Visual function was evaluated by visual electrophysiological examination. Western blotting and immunofluorescence staining were used to analyze the expression of GABA-alpha receptors in RGCs.ResultsIn an animal model, BBR can increase the survival of RGCs, reduce RGCs apoptosis, and significantly improve the visual function. The reduction of GABA, PKC-α, and Bcl-2 protein expression caused by DR can be considerably increased by BBR. SR95531 inhibits BBR's protective effect on RGC and visual function, as well as its upregulation of PKC-α and Bcl-2.ConclusionBBR is a promising preventive or adjuvant treatment for DR complications, and its key protective effect may involve the regulation of RGC apoptosis through the GABA-alpha receptor/protein kinase C-alpha (GABAAR/PKC-α) pathway.
Collapse
Affiliation(s)
- Wangyi Fang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Department of Ophthalmology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Xujiao Zhou
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| |
Collapse
|
28
|
Liu Y, Luo X. New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation. Front Med 2022; 16:17-24. [PMID: 35226299 PMCID: PMC8883012 DOI: 10.1007/s11684-021-0873-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, China.
| |
Collapse
|
29
|
Guo Y, Zhang H, Zhao Z, Luo X, Zhang M, Bu J, Liang M, Wu H, Yu J, He H, Zong R, Chen Y, Liu Z, Li W. Hyperglycemia Induces Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:30. [PMID: 35072689 PMCID: PMC8802017 DOI: 10.1167/iovs.63.1.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Patients diagnosed with diabetes are inclined to have abnormalities on stability of tear film and disorder of meibomian gland (MG). This study aims to explore the pathological change of MG induced by diabetes in a rat model. Methods Sprague-Dawley (SD) rats were intraperitoneally injected with streptozotocin (STZ) to establish a diabetic animal model. Lipid accumulation in MG was detected by Oil Red O staining and LipidTox staining. Cell proliferation status was determined by Ki67 and P63 immunostaining, whereas cell apoptosis was confirmed by TUNEL assay. Gene expression of inflammatory cytokines and adhesion molecules IL-1α, IL-1β, ELAM1, ICAM1, and VCAM1 were detected by RT-PCR. Activation of ERK, NF-κB, and AMPK signaling pathways was determined by Western Blot analysis. Oxidative stress-related factors NOX4, 4HNE, Nrf2, HO-1, and SOD2 were detected by immunostaining or Western Blot analysis. Tom20 and Tim23 immunostaining and transmission electron microscopy were performed to evaluate the mitochondria functional and structure change. Results Four months after STZ injection, there was acini dropout in MG of diabetic rats. Evident infiltration of inflammatory cells, increased expression of inflammatory factors, and adhesion molecules, as well as activated ERK and NF-κB signaling pathways were identified. Oxidative stress of MG was evident in 4-month diabetic rats. Phospho-AMPK was downregulated in MG of 2-month diabetic rats and more prominent in 4-month rats. After metformin treatment, phospho-AMPK was upregulated and the morphology of MG was well maintained. Moreover, inflammation and oxidative stress of MG were alleviated after metformin intervention. Conclusions Long-term diabetes may lead to Meibomian gland dysfunction (MGD). AMPK may be a therapeutic target of MGD induced by diabetes.
Collapse
Affiliation(s)
- Yuli Guo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Houjian Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Luo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Minjie Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jinghua Bu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Minghui Liang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Han Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jingwen Yu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Hui He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zong
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yongxiong Chen
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| |
Collapse
|
30
|
Meng C, Gu C, He S, Su T, Lhamo T, Draga D, Qiu Q. Pyroptosis in the Retinal Neurovascular Unit: New Insights Into Diabetic Retinopathy. Front Immunol 2021; 12:763092. [PMID: 34737754 PMCID: PMC8560732 DOI: 10.3389/fimmu.2021.763092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is prevalent among people with long-term diabetes mellitus (DM) and remains the leading cause of visual impairment in working-aged people. DR is related to chronic low-level inflammatory reactions. Pyroptosis is an emerging type of inflammatory cell death mediated by gasdermin D (GSDMD), NOD-like receptors and inflammatory caspases that promote interleukin-1β (IL-1β) and IL-18 release. In addition, the retinal neurovascular unit (NVU) is the functional basis of the retina. Recent studies have shown that pyroptosis may participate in the destruction of retinal NVU cells in simulated hyperglycemic DR environments. In this review, we will clarify the importance of pyroptosis in the retinal NVU during the development of DR.
Collapse
Affiliation(s)
- Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| |
Collapse
|
31
|
Nath M, Shan Y, Myers AM, Fort PE. HspB4/αA-Crystallin Modulates Neuroinflammation in the Retina via the Stress-Specific Inflammatory Pathways. J Clin Med 2021; 10:jcm10112384. [PMID: 34071438 PMCID: PMC8198646 DOI: 10.3390/jcm10112384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We have previously demonstrated that HspB4/αA-crystallin, a molecular chaperone, plays an important intrinsic neuroprotective role during diabetes, by its phosphorylation on residue 148. We also reported that HspB4/αA-crystallin is highly expressed by glial cells. There is a growing interest in the potential causative role of low-grade inflammation in diabetic retinopathy pathophysiology and retinal Müller glial cells' (MGCs') participation in the inflammatory response. MGCs indeed play a central role in retinal homeostasis via secreting various cytokines and other mediators. Hence, this study was carried out to delineate and understand the regulatory function of HspB4/αA-crystallin in the inflammatory response associated with metabolic stresses. METHODS Primary MGCs were isolated from knockout HspB4/αA-crystallin mice. These primary cells were then transfected with plasmids encoding either wild-type (WT), phosphomimetic (T148D), or non-phosphorylatable mutants (T148A) of HspB4/αA-crystallin. The cells were exposed to multiple metabolic stresses including serum starvation (SS) or high glucose with TNF-alpha (HG + T) before being further evaluated for the expression of inflammatory markers by qPCR. The total protein expression along with subcellular localization of NF-kB and the NLRP3 component was assessed by Western blot. RESULTS Elevated levels of IL-6, IL-1β, MCP-1, and IL-18 in SS were significantly diminished in MGCs overexpressing WT and further in T148D as compared to EV. The HG + T-induced increase in these inflammatory markers was also dampened by WT and even more significantly by T148D overexpression, whereas T148A was ineffective in either stress. Further analysis revealed that overexpression of WT or the T148D, also led to a significant reduction of Nlrp3, Asc, and caspase-1 transcript expression in serum-deprived MGCs and nearly abolished the NF-kB induction in HG + T diabetes-like stress. This mechanistic effect was further evaluated at the protein level and confirmed the stress-dependent regulation of NLRP3 and NF-kB by αA-crystallin. CONCLUSIONS The data gathered in this study demonstrate the central regulatory role of HspB4/αA-crystallin and its modulation by phosphorylation on T148 in retinal MGCs. For the first time, this study demonstrates that HspB4/αA-crystallin can dampen the stress-induced expression of pro-inflammatory cytokines through the modulation of multiple key inflammatory pathways, therefore, suggesting its potential as a therapeutic target for the modulation of chronic neuroinflammation.
Collapse
Affiliation(s)
- Madhu Nath
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
| | - Yang Shan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
| | - Angela M. Myers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
| | - Patrice Elie Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.N.); (Y.S.); (A.M.M.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
32
|
Tang Y, Tang Q, Wei H, Hu P, Zou D, Liang R, Ling Y. Hub Genes Associated with the Diagnosis of Diabetic Retinopathy. Int J Gen Med 2021; 14:1739-1750. [PMID: 33986612 PMCID: PMC8110263 DOI: 10.2147/ijgm.s311683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to identify genes that may be effective in diagnosing or treating diabetic retinopathy (DR), the most common complication of diabetes mellitus (DM). Methods Differentially expressed genes (DEGs) were identified between DR and DM in GSE146615 dataset. DEGs that were consistently up- or down-regulated under both standard glucose and high glucose conditions were identified as common genes and used to generate a protein-protein interaction network and modules. The module genes were assessed for the area under the receiver operating characteristic curve (AUC), leading to the identification of hub genes. Differentially methylated probes in GSE76169 were also compared with common DEGs to identify specific methylation markers of DR. Enrichment analysis was used to explore the biological characteristics. The Short Time-series Expression Miner algorithm was used to identify genes that were progressively dysregulated in the sequence: healthy controls < DM < DR. Results A total of 1917 common genes were identified for seven modules. The eight genes with AUC > 0.8 under high glucose and standard glucose conditions were considered as hub genes. The module genes were significantly enriched during vascular smooth muscle cell development and regulation of oxygen metabolism, while 92 methylation markers were involved in the similar terms. Among the progressively dysregulated genes, three intersection genes under both standard glucose and high glucose conditions were found to be module genes and were considered as key genes. Conclusion We identified eight potential DR-specific diagnostic and therapeutic genes, whose abnormal expression can cause oxidative stress, thus favoring the course of the disease.
Collapse
Affiliation(s)
- Yanhui Tang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Qi Tang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Haicheng Wei
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Pinzhang Hu
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Rixiong Liang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Yu Ling
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|
33
|
Potilinski MC, Tate PS, Lorenc VE, Gallo JE. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021; 188:108513. [PMID: 33662390 DOI: 10.1016/j.neuropharm.2021.108513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of age-related macular degeneration (AMD) has increased in the last years. Although anti-VEGF agents have improved the prognosis of exudative AMD, dry AMD has still devastating effects on elderly people vision. Oxidative stress and inflammation are mechanisms involved in AMD pathogenesis and its progression. Molecular pathways involving epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP4) and the nuclear erythroid related factor 2 (Nrf2) are behind oxidative stress in AMD due to their participation in antioxidant cellular pathways. As a consequence of the disbalance produced in the antioxidant mechanisms, there is an activation of innate and adaptative immune response with cell recruitment, changes in complement factors expression, and modification of cellular milieu. Different therapies are being studied to treat dry AMD based on the possible effects on antioxidant molecular pathways or their action on the immune response. There is a wide range of treatments presented in this review, from natural antioxidant compounds to cell and gene therapy, based on their mechanisms. Finally, we hypothesize that alpha-1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory molecule that can also modulate antioxidant cellular defenses, could be a good candidate for testing in AMD. This article is part of the special ssue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- María Constanza Potilinski
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Pablo S Tate
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Valeria E Lorenc
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina
| | - Juan E Gallo
- Nanomedicine & Vision Lab, Instituto de Investigaciones en Medicina Translacional, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina; Departamento de Oftalmología, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Aloe L, Rocco ML, Balzamino BO, Esposito G, Micera A. Retrobulbar administration of purified anti-nerve growth factor in developing rats induces structural and biochemical changes in the retina and cornea. Int J Ophthalmol 2021; 14:209-216. [PMID: 33614448 DOI: 10.18240/ijo.2021.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
AIM To develop an experimental model of endogenous nerve growth factor (NGF) deprivation by retrobulbar administration of purified neutralizing anti-NGF antibodies in young Sprague-Dawley rats and provide further information on NGF expression in the retina and cornea. METHODS Sixty old pathogen-free Sprague Dawley rats (p14, post-natal days) were treated with repeated retrobulbar injections of neutralizing anti-NGF (2 µL, 100 µg/mL, every 3d). After 2wk (p28), retinal and corneal tissues were investigated for morphological, biochemical, and molecular expression of trkANGFR by using Western blotting or immunofluorescence. Rhodopsin as well as protein profile expression were also investigated. RESULTS Chronic retrobulbar neutralizing anti-NGF antibodies changed the distribution of trkANGFR immunoreactivity at retinal level, while no changes were detected for global trkANGFR protein expression. By contrary, the treatment resulted in the increase of corneal trkANGFR expression. Retinal tissues showed a decreased rhodopsin expression as well as reduced number of both rhodopsin expressing and total retinal cells, as observed after single cell extraction. A decreased expression of ICAM-1, IL-17 and IL-13 as well as an increased expression of IL-21 typified retinal extracts. No significant changes were observed for corneal tissues. CONCLUSION The reduced availability of endogenous NGF, as produced by chronic retrobulbar anti-NGF administration, produce a quick response from retinal tissues, with respect to corneal ones, suggesting the presence of early compensatory mechanisms to protect retinal networking.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Lazio 00143, Rome, Italy.,Fondazione IRET, Ozzano Emilia, Bologna 40064, Italy
| | - Maria Luisa Rocco
- Fondazione IRET, Ozzano Emilia, Bologna 40064, Italy.,Institute of Translational Pharmacology, CNR, Lazio 00133, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS, Fondazione Bietti, Rome 00182, Italy
| | - Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS, Fondazione Bietti, Rome 00182, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS, Fondazione Bietti, Rome 00182, Italy
| |
Collapse
|
35
|
Hu L, Lv X, Li D, Zhang W, Ran G, Li Q, Hu J. The anti-angiogenesis role of FBXW7 in diabetic retinopathy by facilitating the ubiquitination degradation of c-Myc to orchestrate the HDAC2. J Cell Mol Med 2021; 25:2190-2202. [PMID: 33369138 PMCID: PMC7882985 DOI: 10.1111/jcmm.16204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
Diabetic retinopathy (DR) is the most prevalently occurring microvascular complication in diabetic patients that triggers severe visual impairments. The anti-angiogenesis role of FBXW7 has been identified in breast cancer. Therefore, this study intends to decipher the mechanism of FBXW7 in angiogenesis of DR. DR model was induced on mice using high-glucose (HG) and high-fat diet, and retinal microvascular endothelial cells (RMECs) isolated from normal mice were induced with HG, followed by evaluation of FBXW7, Ki67, HIF-1α and VEGF expression by immunofluorescence, immunohistochemistry or Western blot analysis. After gain- and loss-of-function assays in normal and DR mice, angiogenesis was assessed by CD31 fluorescence staining and Western blot analysis. After ectopic expression and silencing experiments in HG-induced RMECs, RMEC proliferation, migration and angiogenesis were, respectively, determined by EdU, Transwell and in vitro angiogenesis assays. The impact of FBXW7 on the ubiquitination of c-Myc was studied by cycloheximide chase assay and proteasome inhibition, and the binding of c-Myc to HDAC2 promoter by dual-luciferase reporter gene experiment. DR mice and HG-induced RMECs possessed down-regulated FBXW7 and up-regulated Ki67, HIF-1α and VEGF. Silencing FBXW7 enhanced angiogenesis in normal mouse retinal tissue, but overexpressing FBXW7 or silencing c-Myc diminished angiogenesis in DR mouse retinal tissue. Overexpressing FBXW7 or silencing c-Myc depressed proliferation, migration and angiogenesis in HG-induced RMECs. FBXW7 induced c-Myc ubiquitination degradation, and c-Myc augmented HDAC2 expression by binding to HDAC2 promoter. Conclusively, our data provided a novel sight of anti-angiogenesis role of FBXW7 in DR by modulating the c-Myc/HDAC2 axis.
Collapse
Affiliation(s)
- Lihua Hu
- Aier Eye Hospital of Wuhan UniversityWuhanChina
| | - Xiangyun Lv
- Aier Eye Hospital of Wuhan UniversityWuhanChina
| | - Dai Li
- School of OptometryHubei University of Science and TechnologyXianningChina
| | | | | | - Qingchun Li
- School of OptometryHubei University of Science and TechnologyXianningChina
| | - Jun Hu
- Aier Eye Hospital of Wuhan UniversityWuhanChina
- School of OptometryHubei University of Science and TechnologyXianningChina
| |
Collapse
|