1
|
García-Caparros P, Al-Dakheel AJ, Serret MD, Araus JL. Optimization of cereal productivity and physiological performance under desert conditions: varying irrigation, salinity and planting density levels. FRONTIERS IN PLANT SCIENCE 2025; 16:1488576. [PMID: 40115940 PMCID: PMC11922717 DOI: 10.3389/fpls.2025.1488576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Adequate irrigation with low-quality water, aligned with the specific water requirements of crops, will be critical for the future establishment of cereal crops on marginally fertile soils. This approach is essential to support global food security. To identify suitable cereal species and genotypes for these challenging conditions with the aim of optimizing yield and resilience, three different cereal species were tested under sandy soil conditions at the experimental fields of ICBA (Dubai, UAE). The experimental design employed a factorial combination split-plot arrangement including five primary factors: crop species (barley, triticale and finger millet), genotypes (3 in barley, 3 in triticale and 2 in finger millet), salinity levels (2 and 10 dS m-1), irrigation levels (100%, 150%, and 200% ETo), and planting densities (30 and 50 cm of spacing between rows). Agronomic parameters (e.g. plant height, grain yield, total plant dry weight and harvest index) and physiological parameters [Normalized Difference Vegetation Index (NDVI) readings, together with nitrogen and carbon concentration isotopic composition, chlorophyll, flavonoids, and anthocyanins concentrations in flag leaves and the Nitrogen Balance Index (NBI)] exhibited distinct genotypic responses across the species investigated. Regarding grain yield, salt stress did not impact barley and finger millet, whereas triticale experienced a reduction of nearly one third of its yield. Increased irrigation led to higher grain yields only in barley, while increased planting density significantly improved grain yield across all species examined demonstrating its potential as a simple agronomic intervention. Physiological responses highlighted reduced nitrogen isotope composition under both salt stress and higher planting density in all species. Nevertheless, the response to irrigation varied among species exhibiting significant negative correlations with aerial plant dry matter. In contrast, carbon isotope composition did not display a clear pattern in any of the species studied under different agronomic treatments. These results underscore the importance of selecting salt and drought tolerant species and optimizing planting density to maximize productivity on marginal soils. Future research should focus on refining irrigation strategies and identification of high-performing genotypes to improve cereal cultivation in arid regions, contributing to global food security.
Collapse
Affiliation(s)
- Pedro García-Caparros
- Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Abdullah J Al-Dakheel
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
- Department of Integrative Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria D Serret
- Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
| | - Jose L Araus
- Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
| |
Collapse
|
2
|
Zou J, Shi L, Cheng W, Wang Y, Liao Y, Gu J, Wang T, Zhang Q, Ye J, Wang H, Jia X. Ion Interference Reduces the Uptake and Accumulation of Magnesium Ions in Tea Plants ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2025; 14:643. [PMID: 40094544 PMCID: PMC11901675 DOI: 10.3390/plants14050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Magnesium (Mg) ions play a crucial role in the growth and development of tea plants (Camellia sinensis). In this study, the ion kinetic method was used to analyze the effect of ions from various elements on the Mg ion uptake rate in two tea plant varieties (Rougui and Shuixian). Additionally, Mg ion content and the expression intensity of CsMGT5 gene in the tea plant's root system were measured to further understand how different elemental ions affect Mg ion uptake and accumulation. The results revealed that while the trends in the effects of different elements on Mg ion uptake were similar in both Rougui and Shuixian roots, the magnitude of these effects was lower in Rougui and higher in Shuixian. In the presence of only Mg ions in the solution, the tea plant's root system exhibited the highest intensity of CsMGT5 gene expression, the fastest uptake rate of Mg ion, and the highest Mg content. Conversely, the presence of nitrogen, phosphorus, and potassium ions alone reduced CsMGT5 gene expression, Mg ion uptake rate, and Mg content in the tea plant's root system. However, differences in the impact of these three elements on Mg ion uptake and accumulation were not statistically significant. In addition, with the increase in the types of added ions, the Mg ion uptake rate by tea plants gradually declined, indicating a decreasing demand, with Mg accumulation showing a downward trend. Statistical analysis of correlations showed that CsMGT5 gene expression in the tea plant's root system positively regulated the maximum uptake rate of Mg ion (Imax value, 0.94 **). The Imax value negatively regulated Mg ion content in solution (Cmin value, -0.94 **), and the Cmin value negatively regulated Mg ion content in the tea plant's root system (-0.95 **). In conclusion, the presence of different elemental ions significantly influenced the uptake and accumulation of Mg ions in tea plants, with the magnitude of this effect intensifying as the number of elemental types increased. A positive correlation was observed between the capacity for Mg ion uptake and accumulation capacity in the tea plant's root system and the expression intensity of the CsMGT5 gene within the root system. This study offers valuable insights and serves as an important reference for leveraging Mg to regulate tea plant growth in practical agricultural applications.
Collapse
Affiliation(s)
- Jishuang Zou
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Lihe Shi
- College of Life Science, Longyan University, Longyan 364012, China
| | - Weiting Cheng
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulin Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yankun Liao
- College of Life Science, Longyan University, Longyan 364012, China
| | - Junbin Gu
- College of Life Science, Longyan University, Longyan 364012, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| | - Haibin Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
3
|
He Y, Su R, Wang Y, Li S, Huang Q, Chen X, Zhang W, Yao Z. Environmental impacts and nitrogen-carbon-energy nexus of vegetable production in subtropical plateau lake basins. FRONTIERS IN PLANT SCIENCE 2024; 15:1472978. [PMID: 39502923 PMCID: PMC11534706 DOI: 10.3389/fpls.2024.1472978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Vegetables are important economic crops globally, and their production has approximately doubled over the past 20 years. Globally, vegetables account for 13% of the harvested area but consume 25% of the fertilizer, leading to serious environmental impacts. However, the quantitative evaluation of vegetable production systems in subtropical plateau lake basins and the establishment of optimal management practices to further reduce environmental risks are still lacking. Using the life cycle assessment method, this study quantified the global warming, eutrophication, acidification, and energy depletion potential of vegetable production in a subtropical plateau lake basin in China based on data from 183 farmer surveys. Our results indicated that vegetable production in the study area, the Erhai Lake Basin, was high but came at a high environmental cost, mainly due to low fertilizer efficiency and high nutrient loss. Root vegetables have relatively high environmental costs due to the significant environmental impacts of fertilizer production, transportation, and application. A comprehensive analysis showed that the vegetable production in this region exhibited low economic and net ecosystem economic benefits, with ranges of 7.88-8.91 × 103 and 7.35-8.69 × 103 $ ha-1, respectively. Scenario analysis showed that adopting strategies that comprehensively consider soil, crop, and nutrient conditions for vegetable production can reduce environmental costs (with reductions in global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), and energy depletion potential (EDP) by 10.6-28.2%, 65.1-73.5%, 64.5-71.9%, 47.8-70.4%, respectively) compared with the current practices of farmers. This study highlighted the importance of optimizing nutrient management in vegetable production based on farmers' practices, which can achieve more yield with less environmental impacts and thereby avoid the "trade-off" effect between productivity and environmental sustainability.
Collapse
Affiliation(s)
- Yousheng He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Ruifeng Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuan Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Shunjin Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze Lake Basin, Southwest University, Chongqing, China
| | - Qi Huang
- College of Resources and Environment, China Agricultural University, Beijing, China
| | - Xinping Chen
- College of Resources and Environment, China Agricultural University, Beijing, China
| | - Wei Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze Lake Basin, Southwest University, Chongqing, China
| | - Zhi Yao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze Lake Basin, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Lucas M, Diaz-Espejo A, Romero-Jimenez D, Peinado-Torrubia P, Delgado-Vaquero A, Álvarez R, Colmenero-Flores JM, Rosales MA. Chloride reduces plant nitrate requirement and alleviates low nitrogen stress symptoms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108717. [PMID: 38761542 DOI: 10.1016/j.plaphy.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Chloride (Cl-) is traditionally categorized as an antagonist of nitrate (NO3-) because Cl- hinders plant NO3- transport and accumulation. However, we have recently defined Cl- as a beneficial macronutrient for higher plants, due to specific functions that lead to more efficient use of water, nitrogen (N) and CO2 under optimal N and water supply. When accumulated in leaves at macronutrient levels, Cl- promotes growth through osmotic, physiological, metabolic, anatomical and cellular changes that improve plant performance under optimal NO3- nutrition. Nitrate over-fertilization in agriculture can adversely affect crop yield and nature, while its deficiency limits plant growth. To study the relationship between Cl- nutrition and NO3- availability, we have characterized different physiological responses such as growth and yield, N-use efficiency, water status, photosynthesis, leaf anatomy, pigments and antioxidants in tomato plants treated with or without 5 mM Cl- salts and increasing NO3- treatments (3-15 mM). First, we have demonstrated that 5 mM Cl- application can reduce the use of NO3- in the nutrient solution by up to half without detriment to plant growth and yield in tomato and other horticultural plants. Second, Cl- application reduced stress symptoms and improved plant growth under low-NO3- conditions. The Cl--dependent resistance to low-N stress resulted from: more efficient use of the available NO3-; improved plant osmotic and water status regulation; improved stomatal conductance and photosynthetic rate; and better antioxidant response. We proposed that beneficial Cl- levels increase the crop ability to grow better with lower NO3- requirements and withstand N deficiency, promoting a more sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Marta Lucas
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Antonio Diaz-Espejo
- Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain; Irrigation and Crop Ecophysiology Group, IRNAS, CSIC, 41012, Seville, Spain
| | - David Romero-Jimenez
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Procopio Peinado-Torrubia
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain
| | - Alba Delgado-Vaquero
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41080, Sevilla, Spain
| | - José M Colmenero-Flores
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Miguel A Rosales
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain; Department of Stress, Development and Signaling in Plants, Estación Experimental Del Zaidín (EEZ), CSIC, 18008, Granada, Spain.
| |
Collapse
|
5
|
Goren AY, Eskisoy DN, Genisoglu S, Okten HE. Microbial desalination cell treated spent geothermal brine as a nutrient medium in hydroponic lettuce cultivation: Health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167778. [PMID: 37863224 DOI: 10.1016/j.scitotenv.2023.167778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The scarcity and contamination of freshwater resources are extremely critical issues today, and the expansion of water reuse has been considered as an option to decrease its impact. Therefore, the reuse of microbial desalination (MDC)-treated spent geothermal brine for agricultural purposes arises as a good solution to prevent water contamination and provide sustainable water usage. In this study, the potential of treated spent geothermal water from MDC system as a nutrient solution for the hydroponic cultivation of lettuce was evaluated. The effects of different water samples (Hoagland solution (R1) as a control, MDC-treated water (R2), 1:1, v/v mixture of MDC-treated water and Hoagland solution (R3), 4:1, v/v mixture of MDC-treated water and Hoagland solution (R4), and tap water (R5)) on lettuce growth were considered. The application of R3 and R4 samples for hydroponic lettuce cultivation was promising since the lettuce plants uptake sufficient nutrients for their growth and productivity with low toxic metal concentrations. In addition, the chlorophyll-a, chlorophyll-b, and carotene contents of lettuce were in the range of 1.045-2.391 mg/g, 0.761-1.986 mg/g, and 0.296-0.423 mg/g in different water samples, respectively. The content of chlorophyll-a was highest in R1 (2.391 mg/g), followed by R3 (2.371 mg/g). Furthermore, the health risk assessment of heavy metal accumulations in the lettuce plants cultivated in the various water samples was determined. Results showed that heavy metal exposure via lettuce consumption is unlikely to suffer noticeable adverse health problems with values below the permissible limit value.
Collapse
Affiliation(s)
- A Y Goren
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey
| | - D N Eskisoy
- Izmir Institute of Technology, Department of Bioengineering, İzmir, Turkey
| | - S Genisoglu
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey
| | - H E Okten
- Izmir Institute of Technology, Department of Environmental Engineering, İzmir, Turkey; Environmental Development Application and Research Center, İzmir, Turkey.
| |
Collapse
|
6
|
Khatib M, Cecchi L, Bellumori M, Zonfrillo B, Mulinacci N. Polysaccharides and Phenolic Compounds Recovered from Red Bell Pepper, Tomato and Basil By-Products Using a Green Extraction by Extractor Timatic ®. Int J Mol Sci 2023; 24:16653. [PMID: 38068976 PMCID: PMC10706253 DOI: 10.3390/ijms242316653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Fruits and vegetables processing produces significant amounts of by-products rich in valuable bioactive compounds such as polyphenols and dietary fiber. Food by-product re-use promotes the eco-sustainability of several crops. This study aimed to apply green extractions of bioactive compounds from by-products of basil, tomato, and red bell pepper production. Tests were performed by applying extraction procedures both at laboratory scale and using the Timatic® extractor. Water and ethanol 10% and 20% were used for extraction of red bell pepper and tomato, testing different temperatures (30, 50, and 90 °C; water at 90 °C and ethanol 20% were applied for basil. The obtained phenolic extracts were analyzed by HPLC-DAD-MS. Polysaccharides of tomato and red bell pepper were extracted at laboratory scale and chemically characterized using 1H-NMR to define the methylation and acylation degree, and DLS to estimate the hydrodynamic volume. Laboratory extraction tests allowed efficient scaling-up of the process on the Timatic® extractor. Phenolic content in the dried extracts (DE) ranged 8.0-11.2 mg/g for tomato and red bell pepper and reached 240 mg/g for basil extracts. Polysaccharide yields (w/w on DM) reached 6.0 and 10.4% for dried tomato and red bell pepper, respectively. Dry extracts obtained using the Timatic® extractor and water can be useful sources of bioactive phenols. The study provided new data on tomato and red bell pepper polysaccharides that may be useful for future applications.
Collapse
Affiliation(s)
- Mohamad Khatib
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
- National Interuniversity Consortium of Materials Science & Technology, Via Giusti 9, 50121 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy;
| | - Maria Bellumori
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Beatrice Zonfrillo
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| |
Collapse
|
7
|
Caspersen S, Oskarsson C, Asp H. Nutrient challenges with solid-phase anaerobic digestate as a peat substitute - Storage decreased ammonium toxicity but increased phosphorus availability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:128-139. [PMID: 37121051 DOI: 10.1016/j.wasman.2023.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
The solid fraction (SD) obtained after liquid - solid separation of anaerobic digestate is interesting as a potential fertilizer as well as a peat substitute in horticultural growing substrates. We investigated the effect of incubation of the SD obtained by screw-press separation of digestate produced from food waste and plant residues on potentially plant available mineral nutrients and plant growth. The NH4-N concentration was initially > 1000 mg L-1 but rapidly decreased, probably due to NH3 emission promoted by a high initial pH. No nitrate was detected during the first four weeks of incubation. The concentrations of potentially available P and Mg were closely related and strongly increased during incubation. The effect of adding 20 or 30 vol% of SD to a peat-based growing substrate on the growth of basil and lettuce was investigated before and after the incubation period. With the unincubated SD, the initial substrate NH4-N of 200-300 mg L-1 was potentially phytotoxic. Plant growth response ranged from inhibition to stimulation, probably reflecting variation in substrate ammonium status. After 96 days of incubation, ammonium concentrations had decreased with > 50% and basil growth was generally positively affected by addition of incubated SD. However, available P concentrations of 140-210 mg L-1 in the incubated substrates posed a high risk of P leakage. In conclusion, storage greatly reduced NH4-N concentrations and phytotoxicity when the SD was used as a partial substituent for peat in a horticultural growing substrate. Measures are needed, however, to limit available P concentrations in high-P solid digestate fractions.
Collapse
Affiliation(s)
- Siri Caspersen
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Camilla Oskarsson
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Håkan Asp
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
8
|
Modarelli GC, Vanacore L, Rouphael Y, Langellotti AL, Masi P, De Pascale S, Cirillo C. Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:1355. [PMID: 36987043 PMCID: PMC10053589 DOI: 10.3390/plants12061355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Basil crops are appreciated for their distinct flavour and appeal to various cuisines globally. Basil production is mainly implemented in controlled environment agriculture (CEA) systems. Soil-less cultivation (e.g., hydroponic) is optimal for producing basil, while aquaponics is another technique suitable for leafy crops such as basil. Shortening the production chain through efficient cultivation techniques reduces basil production's carbon footprint. While the organoleptic quality of basil demonstrably benefits from successive cuts, no studies have compared the impact of this practice under hydroponic and aquaponic CEA conditions. Hence, the present study evaluated the eco-physiological, nutritional, and productive performance of Genovese basil cv. Sanremo grown in hydroponic and aquaponic systems (combined with tilapia) and harvested consecutively. The two systems showed similar eco-physiological behaviour and photosynthetic capacity, which were on average 2.99 µmol of CO2 m-2 s-1, equal numbers of leaves, and fresh yields of on average 41.69 and 38.38 g, respectively. Aquaponics yielded greater dry biomass (+58%) and dry matter content (+37%), while the nutrient profiles varied between the systems. The number of cuts did not influence yield; however, it improved dry matter partitioning and elicited a differential nutrient uptake. Our results bear practical and scientific relevance by providing useful eco-physiological and productive feedback on basil CEA cultivation. Aquaponics is a promising technique that reduces chemical fertiliser input and increases the overall sustainability of basil production.
Collapse
Affiliation(s)
- Giuseppe Carlo Modarelli
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Lucia Vanacore
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Antonio Luca Langellotti
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
9
|
An Appraisal of Critical Factors Configuring the Composition of Basil in Minerals, Bioactive Secondary Metabolites, Micronutrients and Volatile Aromatic Compounds. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Ćavar Zeljković S, Aucique-Perez CE, Štefelová N, De Diego N. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem 2021; 375:131845. [PMID: 34923398 DOI: 10.1016/j.foodchem.2021.131845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/04/2022]
Abstract
This work presents a pipeline for optimizing semi-hydroponic growth conditions and analyzes the impact on the growth and metabolism in three Mentha species (M. arvensis, M. x piperita, or M. spicata) and three Ocimum basilicum genotypes (́Chládek červená́, ́Litrá, or ́Máneś). The plant growth and the content- of nitrogen-containing compounds, phenolics, and terpenoids were determined under different nitrate concentrations and salt stress. Different responses were observed among genotypes for both species. ́Chládek červená́ had the best growth under low nitrate, with lower histamine and higher flavonoid levels. Mentha x piperita was the best mint species performing under low nitrate and salt stress. Altogether, we demonstrate that a combination of phenomics and metabolomics is ideal to identify the optimal growth conditions for these plants and the chemical markers associated with these conditions. Besides, we showed that both primary and secondary metabolites can be good markers for classifying both species.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic.
| | - Carlos Eduardo Aucique-Perez
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Nikola Štefelová
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
11
|
Unraveling the Modulation of Controlled Salinity Stress on Morphometric Traits, Mineral Profile, and Bioactive Metabolome Equilibrium in Hydroponic Basil. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is a major concern in several ecosystems and has a significant impact on global agriculture. To increase the sustainability of horticultural food systems, better management and usage of saline water and soils need to be supported by knowledge of the crop-specific responses to tolerable levels of salinity. The aim of this work was to study the effects of mild salinity on morphological growth and development, leaf color, mineral composition, antioxidant activities, and phenolic profile of sweet basil (Ocimum basilicum L.). Plants grew in hydroponics and were exposed to three nutrient solutions (NSs) differing in the NaCl concentration (either 0, 20, or 40 mM). Inhibitory effects on leaf area, fresh yield, and shoot biomass were evident starting from the lowest NaCl concentration, and they became more severe and wide-ranging at 40 mM, also affecting height and root-to-shoot ratio. Salinity increased the nutritional quality in terms of antioxidant activity and polyphenols in leaves, with a reduction in macroelements at 40 mM NaCl. Moreover, the two mild NaCl concentrations specifically modified the concentration of various phenolic acids in leaves. Overall, the use of a slightly saline (20 mM) NS could be tolerated by basil in hydroponics, strongly ameliorating the nutritional profile in the face of relative yield loss. Considering the significantly higher accumulation of bioactive compounds, our work implies that the use of low-salinity water can sustainably increase the nutritional value and the health-promoting features of basil leaves.
Collapse
|
12
|
Comite E, El-Nakhel C, Rouphael Y, Ventorino V, Pepe O, Borzacchiello A, Vinale F, Rigano D, Staropoli A, Lorito M, Woo SL. Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens 2021; 10:pathogens10070870. [PMID: 34358020 PMCID: PMC8308691 DOI: 10.3390/pathogens10070870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing attention is being given to the development of innovative formulations to substitute the use of synthetic chemicals to improve agricultural production and resource use efficiency. Alternatives can include biological products containing beneficial microorganisms and bioactive metabolites able to inhibit plant pathogens, induce systemic resistance and promote plant growth. The efficacy of such bioformulations can be increased by the addition of polymers as adjuvants or carriers. Trichoderma afroharzianum T22, Azotobacter chroococcum 76A and 6-pentyl-α-pyrone (6PP; a Trichoderma secondary metabolite) were administrated singularly or in a consortium, with or without a carboxymethyl cellulose-based biopolymer (BP), and tested on sweet basil (Ocimum basilicum L.) grown in a protected greenhouse. The effect of the treatments on basil yield, photosynthetic activity and secondary metabolites production was assessed. Photosynthetic efficiency was augmented by the applications of the bioformulations. The applications to the rhizosphere with BP + 6PP and BP + T22 + 76A increased the total fresh weight of basil by 26.3% and 23.6%, respectively. Untargeted LC-MS qTOF analysis demonstrated that the plant metabolome was significantly modified by the treatments. Quantification of the profiles for the major phenolic acids indicated that the treatment with the T22 + 76A consortium increased rosmarinic acid content by 110%. The use of innovative bioformulations containing microbes, their metabolites and a biopolymer was found to modulate the cultivation of fresh basil by improving yield and quality, thus providing the opportunity to develop farming systems with minimal impact on the environmental footprint from the agricultural production process.
Collapse
Affiliation(s)
- Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Assunta Borzacchiello
- National Research Council, Institute for Composite Polymers and Biomaterials, 80125 Napoli, Italy;
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Sheridan L. Woo
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
13
|
Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present work aims to explore the potential to improve quality of purslane microgreens by combining water salinity and LED lighting during their cultivation. Purslane plants were grown in a growth chamber with light insulated compartments, under different lighting sources on a 16 h d−1 photoperiod—fluorescent lamps (FL) and two LED treatments, including a red and blue (RB)) spectrum and a red, blue and far red (RB+IR) LED lights spectrum—while providing all of them a light intensity of 150 µmol m−2 s−1. Plants were exposed to two salinity treatments, by adding 0 or 80 mM NaCl. Biomass, cation and anions, total phenolics (TPC) and flavonoids content (TFC), total antioxidant capacity (TAC), total chlorophylls (Chl) and carotenoids content (Car) and fatty acids were determined. The results showed that yield was increased by 21% both in RB and RB+FR lights compared to FL and in salinity compared to non-salinity conditions. The nitrate content was reduced by 81% and 91% when microgreens were grown under RB and RB+FR, respectively, as compared to FL light, and by 9.5% under saline conditions as compared with non-salinity conditions. The lowest oxalate contents were obtained with the combinations of RB or RB+FR lighting and salinity. The content of Cl and Na in the leaves were also reduced when microgreens were grown under RB and RB+FR lights under saline conditions. Microgreens grown under RB light reached the highest TPC, while salinity reduced TFC, Chl and Car. Finally, the fatty acid content was not affected by light or salinity, but these factors slightly influenced their composition. It is concluded that the use of RB and RB+FR lights in saline conditions is of potential use in purslane microgreens production, since it improves the yield and quality of the product, reducing the content of anti-nutritional compounds.
Collapse
|
14
|
Conversa G, Bonasia A, Lazzizera C, La Rotonda P, Elia A. Reduction of Nitrate Content in Baby-Leaf Lettuce and Cichorium endivia Through the Soilless Cultivation System, Electrical Conductivity and Management of Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2021; 12:645671. [PMID: 33995445 DOI: 10.3390/agronomy11061220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
Soilless cultivation systems are efficient tools to control nitrates by managing nutrient solution (NS) salinity and nitrogen availability, however, these nitrate-lowering strategies require appropriate calibration based on species/genotype-specific responses interacting with climate and growing conditions. Three experiments were carried out on lettuce and Cichorium endivia grown in ebb-and-flow (EF) and floating (FL) systems at two levels of NS salinity (EC = 2.5 and 3.5 dS m-1) (EC2.5, EC3.5, respectively) under autumn and early-spring (lettuce) and winter and late-spring conditions (C. endivia). Nitrogen deprivation (NS withdrawal a few days before the harvest) was tested at EC2.5, in the autumn and winter cycles. The EF-system caused an increase in salinity in the substrate where roots mainly develop so it mimicked the effect of the EC3.5 treatment. In the winter-grown lettuce, the EF-system or EC3.5 treatment was effective in reducing the nitrate level without effects on yield, with the EF baby-leaf showing an improved quality (color, dry matter, chlorophylls, carotenoid, vitamin C, phenol). In both seasons, the EF/EC3.5 treatment resulted in a decline in productivity, despite a further reduction in nitrate content and a rise in product quality occurring. This response was strictly linked to the increasing salt-stress loaded by the EC3.5/EF as highlighted by the concurrent Cl- accumulation. In early-spring, the FL/EC3.5 combination may represent a trade-off between yield, nitrate content and product quality. In contrast, in winter-grown endive/escarole the EC3.5, EF and EC3.5/EF reduced the nitrate level with no effect on yield, product quality or Cl- uptake, thus proving them to be more salt-tolerant than lettuce. High temperatures during the late-spring cycle promoted nitrate and Cl- uptake, overcoming the nitrate-controlling effect of salinity charged by the EF system or EC3.5. The nitrate level decreased after 3 day-long (lettuce) or 6 day-long (C. endivia) NS withdrawal. In C. endivia and EF-grown lettuce, it provoked a decrease in yield, but a concurrent improvement in baby-leaf appearance and nutritional quality. More insights are needed to fine-tune the duration of the NS removal taking into account the soilless system used and species-specific characteristics.
Collapse
Affiliation(s)
- Giulia Conversa
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Anna Bonasia
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Corrado Lazzizera
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Paolo La Rotonda
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Antonio Elia
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
15
|
An Appraisal of Urine Derivatives Integrated in the Nitrogen and Phosphorus Inputs of a Lettuce Soilless Cultivation System. SUSTAINABILITY 2021. [DOI: 10.3390/su13084218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reinforcing and optimizing sustainable food production is an urgent contemporary issue. The depletion of natural mineral resources is a key problem that is addressed by recycling mined potassium and phosphorus, and nitrogen, whose production depends on very high energy input. A closed-loop approach of fertilizer use asserts the necessity for efficient management and practices of organic waste rich in minerals. Human-derived urine is an underutilized yet excellent source for nitrogen fertilizer, and, in this study, processed urine fertilizer was applied to greenhouse soilless cultivation of lettuce (Lactuca sativa L.) cv. Grand Rapids. Biomass increase, biometric parameters, soil plant analysis development (SPAD) index, minerals, and organic acids content of lettuce were analyzed. From eight different urine fertilizer products generated, K-struvite, urine precipitate-CaO, and the liquid electrodialysis (ED) concentrate supported the growth of lettuce similar to that of commercial mineral fertilizer. ED concentrate application led to the accumulation of potassium (+17.2%), calcium (+82.9%), malate (+185.3%), citrate (+114.4%), and isocitrate (+185.7%); K-struvite augmented the accumulation of magnesium (+44.9%); and urine precipitate-CaO induced the highest accumulation of calcium (+100.5%) when compared to the control, which is an added value when supplemented in daily diet. The results underlined the potential of nitrogen- and phosphate-rich human urine as a sustainable source for the fertilization of lettuce in soilless systems.
Collapse
|
16
|
Antonucci G, Croci M, Miras-Moreno B, Fracasso A, Amaducci S. Integration of Gas Exchange With Metabolomics: High-Throughput Phenotyping Methods for Screening Biostimulant-Elicited Beneficial Responses to Short-Term Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 12:678925. [PMID: 34140966 PMCID: PMC8204046 DOI: 10.3389/fpls.2021.678925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Biostimulants are emerging as a feasible tool for counteracting reduction in climate change-related yield and quality under water scarcity. As they are gaining attention, the necessity for accurately assessing phenotypic variables in their evaluation is emerging as a critical issue. In light of this, high-throughput phenotyping techniques have been more widely adopted. The main bottleneck of these techniques is represented by data management, which needs to be tailored to the complex, often multifactorial, data. This calls for the adoption of non-linear regression models capable of capturing dynamic data and also the interaction and effects between multiple factors. In this framework, a commercial glycinebetaine- (GB-) based biostimulant (Vegetal B60, ED&F Man) was tested and distributed at a rate of 6 kg/ha. Exogenous application of GB, a widely accumulated and documented stress adaptor molecule in plants, has been demonstrated to enhance the plant abiotic stress tolerance, including drought. Trials were conducted on tomato plants during the flowering stage in a greenhouse. The experiment was designed as a factorial combination of irrigation (water-stressed and well-watered) and biostimulant treatment (treated and control) and adopted a mixed phenotyping-omics approach. The efficacy of a continuous whole-canopy multichamber system coupled with generalized additive mixed modeling (GAMM) was evaluated to discriminate between water-stressed plants under the biostimulant treatment. Photosynthetic performance was evaluated by using GAMM, and was then correlated to metabolic profile. The results confirmed a higher photosynthetic efficiency of the treated plants, which is correlated to biostimulant-mediated drought tolerance. Furthermore, metabolomic analyses demonstrated the priming effect of the biostimulant for stress tolerance and detoxification and stabilization of photosynthetic machinery. In support of this, the overaccumulation of carotenoids was particularly relevant, given their photoprotective role in preventing the overexcitation of photosystem II. Metabolic profile and photosynthetic performance findings suggest an increased effective use of water (EUW) through the overaccumulation of lipids and leaf thickening. The positive effect of GB on water stress resistance could be attributed to both the delayed onset of stress and the elicitation of stress priming through the induction of H2O2-mediated antioxidant mechanisms. Overall, the mixed approach supported by a GAMM analysis could prove a valuable contribution to high-throughput biostimulant testing.
Collapse
Affiliation(s)
- Giulia Antonucci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
- *Correspondence: Giulia Antonucci
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| |
Collapse
|
17
|
Conversa G, Bonasia A, Lazzizera C, La Rotonda P, Elia A. Reduction of Nitrate Content in Baby-Leaf Lettuce and Cichorium endivia Through the Soilless Cultivation System, Electrical Conductivity and Management of Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2021; 12:645671. [PMID: 33995445 PMCID: PMC8117335 DOI: 10.3389/fpls.2021.645671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 05/03/2023]
Abstract
Soilless cultivation systems are efficient tools to control nitrates by managing nutrient solution (NS) salinity and nitrogen availability, however, these nitrate-lowering strategies require appropriate calibration based on species/genotype-specific responses interacting with climate and growing conditions. Three experiments were carried out on lettuce and Cichorium endivia grown in ebb-and-flow (EF) and floating (FL) systems at two levels of NS salinity (EC = 2.5 and 3.5 dS m-1) (EC2.5, EC3.5, respectively) under autumn and early-spring (lettuce) and winter and late-spring conditions (C. endivia). Nitrogen deprivation (NS withdrawal a few days before the harvest) was tested at EC2.5, in the autumn and winter cycles. The EF-system caused an increase in salinity in the substrate where roots mainly develop so it mimicked the effect of the EC3.5 treatment. In the winter-grown lettuce, the EF-system or EC3.5 treatment was effective in reducing the nitrate level without effects on yield, with the EF baby-leaf showing an improved quality (color, dry matter, chlorophylls, carotenoid, vitamin C, phenol). In both seasons, the EF/EC3.5 treatment resulted in a decline in productivity, despite a further reduction in nitrate content and a rise in product quality occurring. This response was strictly linked to the increasing salt-stress loaded by the EC3.5/EF as highlighted by the concurrent Cl- accumulation. In early-spring, the FL/EC3.5 combination may represent a trade-off between yield, nitrate content and product quality. In contrast, in winter-grown endive/escarole the EC3.5, EF and EC3.5/EF reduced the nitrate level with no effect on yield, product quality or Cl- uptake, thus proving them to be more salt-tolerant than lettuce. High temperatures during the late-spring cycle promoted nitrate and Cl- uptake, overcoming the nitrate-controlling effect of salinity charged by the EF system or EC3.5. The nitrate level decreased after 3 day-long (lettuce) or 6 day-long (C. endivia) NS withdrawal. In C. endivia and EF-grown lettuce, it provoked a decrease in yield, but a concurrent improvement in baby-leaf appearance and nutritional quality. More insights are needed to fine-tune the duration of the NS removal taking into account the soilless system used and species-specific characteristics.
Collapse
|
18
|
Miras-Moreno B, Corrado G, Zhang L, Senizza B, Righetti L, Bruni R, El-Nakhel C, Sifola MI, Pannico A, Pascale SD, Rouphael Y, Lucini L. The Metabolic Reprogramming Induced by Sub-Optimal Nutritional and Light Inputs in Soilless Cultivated Green and Red Butterhead Lettuce. Int J Mol Sci 2020; 21:E6381. [PMID: 32887471 PMCID: PMC7503926 DOI: 10.3390/ijms21176381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/27/2023] Open
Abstract
Sub-optimal growing conditions have a major effect on plants; therefore, large efforts are devoted to maximizing the availability of agricultural inputs to crops. To increase the sustainable use of non-renewable inputs, attention is currently given to the study of plants under non-optimal conditions. In this work, we investigated the impact of sub-optimal macrocations availability and light intensity in two lettuce varieties that differ for the accumulation of secondary metabolites (i.e., 'Red Salanova' and 'Green Salanova'). Photosynthesis-related measurements and untargeted metabolomics were used to identify responses and pathways involved in stress resilience. The pigmented ('Red') and the non-pigmented ('Green Salanova') lettuce exhibited distinctive responses to sub-optimal conditions. The cultivar specific metabolomic signatures comprised a broad modulation of metabolism, including secondary metabolites, phytohormones, and membrane lipids signaling cascade. Several stress-related metabolites were altered by either treatment, including polyamines (and other nitrogen-containing compounds), phenylpropanoids, and lipids. The metabolomics and physiological response to macrocations availability and light intensity also implies that the effects of low-input sustainable farming systems should be evaluated considering a range of cultivar-specific positive and disadvantageous metabolic effects in addition to yield and other socio-economic parameters.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (B.M.-M.); (L.Z.); (B.S.); (L.L.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (M.I.S.); (A.P.); (S.D.P.); (Y.R.)
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (B.M.-M.); (L.Z.); (B.S.); (L.L.)
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (B.M.-M.); (L.Z.); (B.S.); (L.L.)
| | - Laura Righetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (L.R.); (R.B.)
| | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (L.R.); (R.B.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (M.I.S.); (A.P.); (S.D.P.); (Y.R.)
| | - Maria Isabella Sifola
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (M.I.S.); (A.P.); (S.D.P.); (Y.R.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (M.I.S.); (A.P.); (S.D.P.); (Y.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (M.I.S.); (A.P.); (S.D.P.); (Y.R.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (M.I.S.); (A.P.); (S.D.P.); (Y.R.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (B.M.-M.); (L.Z.); (B.S.); (L.L.)
- Research Centre for Nutrigenomics and Proteomics (PRONUTRIGEN), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
19
|
Corrado G, Formisano L, De Micco V, Pannico A, Giordano M, El-Nakhel C, Chiaiese P, Sacchi R, Rouphael Y. Understanding the Morpho-Anatomical, Physiological, and Functional Response of Sweet Basil to Isosmotic Nitrate to Chloride Ratios. BIOLOGY 2020; 9:biology9070158. [PMID: 32650606 PMCID: PMC7407521 DOI: 10.3390/biology9070158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023]
Abstract
Sweet basil (Ocimum basilicum L.) is a leafy green with a short-production cycle that is emerging as a model species among aromatic plants. Modulating the mineral composition of the nutrient solution has proved to be a valuable tool to uncover the mechanisms and responses that higher plants adopt in relation to the availability of mineral nutrients. The aim of this work was to examine the effects on basil of four isosmotic nutrient solutions with different nitrate to chloride ratios. These two anions share uptake and transport mechanisms in plants and are often considered antagonist. To this goal, we analyzed morpho-anatomical and physiological parameters as well as quality-related traits, such as the antioxidant capacity, the leaf color, the mineral composition, and the aromatic profile in relation to the nutrient ratios. Moreover, using a full factorial design, we analyzed leaves in two consecutive harvests. The data indicated a broad, multifaceted plant response to the different nutritional ratios, with almost all the recorded parameters involved. Overall, the effects on basil can be explained by considering an interdependent combination of the nitrate and chloride roles in plant nutrition and physiology. Our work revealed the extent of the modification that can be achieved in basil through the modification of the nutrient solution. It also provided indications for more nutrient efficient growing conditions, because a moderate increase in chloride limits the expected negative impact of a sub-optimal nitrate fertilization.
Collapse
|
20
|
Successive Harvests Affect Yield, Quality and Metabolic Profile of Sweet Basil (Ocimum basilicum L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sweet basil (Ocimum basilicum L.) is an aromatic, tender leafy green cultivated for the fresh market and industrial processing. Like many other leafy vegetables, this species can be harvested more than once to increase productivity. Although the cut-and-come-again (CC) harvest strategy is widespread in basil, not much is known about the effect of the cut. In this work, we examined differences in biomass, physiology, nutrient use efficiency and antioxidant capacity of basil leaves from two successive harvests. Moreover, we also performed an untargeted metabolomics analysis to reveal variations in the leaf metabolite profile. The data indicated that the cut affected many of the parameters under investigation, including a modest reduction of yield (−20%), of nitrogen use efficiency (−21%) and of some quality attributes such as the antioxidant capacity (−16%) and the nitrate content in leaves (+48%). Moreover, leaves of successive cuts displayed a significant variation of the profile of bioactive compounds, characterized by an overall decrease of phenylpropanoids and an increase in terpenoids. Our data revealed the impact of CC harvesting strategy in basil, and that this strategy offers the possibility to yield leaves with different metabolomics profiles and quality attributes.
Collapse
|
21
|
Kolega S, Miras-Moreno B, Buffagni V, Lucini L, Valentinuzzi F, Maver M, Mimmo T, Trevisan M, Pii Y, Cesco S. Nutraceutical Profiles of Two Hydroponically Grown Sweet Basil Cultivars as Affected by the Composition of the Nutrient Solution and the Inoculation With Azospirillum brasilense. FRONTIERS IN PLANT SCIENCE 2020; 11:596000. [PMID: 33224175 PMCID: PMC7674207 DOI: 10.3389/fpls.2020.596000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 05/14/2023]
Abstract
Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO4 2- or NO3 -, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.
Collapse
Affiliation(s)
- Simun Kolega
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Mauro Maver
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- *Correspondence: Youry Pii,
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|