1
|
Liu T, Zhang Y, Gao F, Zhang Z, Wang M, Ma C, Wang Y, Ma D, Wang Z, Yan X, Li Y. Mechanism of hedysari radix praeparata cum melle and curcumae rhizoma herb pair in colitis-associated colorectal cancer through the MAPK/NF-κB signaling pathway: an investigation in vivo and in vitro. Front Chem 2025; 13:1551722. [PMID: 40405896 PMCID: PMC12095293 DOI: 10.3389/fchem.2025.1551722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/16/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction Astragali Radix (AR) - Curcumae Rhizoma (vinegar processed, CR) herb pair was recorded in 'YIXUE ZHONGZHONG CANXILU' to treat colitis-associated colorectal cancer (CAC). Hedysari Radix (HR) was categorized under the AR entry in 'SHENNONG BENCAO JING'. HR is still an alternative to AR paired with CR clinically in northwest China. Hedysari Radix Praeparata Cum Melle (HRPCM) is a product that HR fries with honey to enhance the therapeutic effect. However, the mechanism of HRPCM paired with CR (HRCR) in CAC needs to be further elucidated. Methods HRCR-MIAS were prepared using the eversion intestinal sac method. UHPLC Q-Exactive-MS investigated the compositions in HRCR-MIAS. Then, the mechanism of HRCR in CAC mice was predicted based on network pharmacology analysis in combination with the compositions in HRCR-MIAS. The pharmacodynamic effects of HRCR-MIAS for SW620 colon cancer cells were invested in vitro. The efficacies of HRCR low-, middle-, and high-dose groups (HRCR-L, 3.413 g/kg; HRCR-M, 6.825 g/kg; HRCR-H, 13.650 g/kg) in CAC mice were explored. Enzyme-linked immunosorbent assay (ELISA) kits were employed to assay The inflammatory factors levels, like IL-1β, IL-6, IL-10, and TNF-α in serum. The expressions of the intestinal permeability proteins, such as Claudin-1, Occludin, and ZO-1, were detected via immunohistochemical (IHC) analysis. Finally, the predicted signalling was verified by Western blot (WB). Results 855 common components were identified in HRCR and HRCR-MIAS, and 25 specific components in HRCR-MIAS were pointed out. Based on network pharmacology analysis, the inflammatory response and the cross-linked MAPK signalling and NF-kB signalling were predicted to be the main reasons for HRCR in CAC. HRCR-MIAS inhibited the proliferation, induced apoptosis, regulated the cell cycle progression, and restrained the SW620 cells' ability to migrate and invade in vitro. The outcomes of the WB experiment exhibited that HRCR-MIAS inhibited the expression of key proteins such as MEKK1, RAS, ERK, IKB and NF-kB in the MAPK/NF-kB signalling pathway of SW620 cells. The study in vivo found that the different doses of HRCR recovered the loss of body weight, the shortened colon length, the increased tumour counts, the abnormal changes in spleen and thymus indices, the colonic lesions, the unbalanced inflammatory factors levels like IL-10, IL-6, IL-1β, and TNF-α in serum, and the down-regulated intestinal permeability proteins such as Claudin-1, Occludin, and ZO-1. Experimental validation by WB confirmed that HRCR inhibited the expression of the key proteins, including MEKK1 RAS, ERK, IKB, and NF-kB, in the MAPK/NF-kB signalling in CAC mice. Discussion HRCR not only suppresses the process of colonic inflammation and improves intestinal permeability but also relieves CAC by inhibiting the activated MAPK/NF-kB signalling cascade to alleviate CAC.
Collapse
Affiliation(s)
- Ting Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yugui Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Feiyun Gao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhuanhong Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Maomao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanjun Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingcai Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhe Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuefeng Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Santerre A, Huizar-López MDR, Coronilla-Martínez J, Ortiz-Lazareno PC, Casas-Solís J. Lacticaseibacillus casei 393 modulates KRAS and APC expression and cytokine levels in colitis-associated colon cancer. J Gastrointest Oncol 2025; 16:568-579. [PMID: 40386603 PMCID: PMC12078812 DOI: 10.21037/jgo-24-667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/26/2025] [Indexed: 05/20/2025] Open
Abstract
Background Colitis-associated colon cancer (CAC) is a specific subset of colorectal cancer (CRC) affecting patients with inflammatory bowel diseases (IBDs). Chronic colon inflammation orchestrates immune surveillance or escape and may drive neoplastic initiation and progression. Lacticaseibacillus casei 393 (L. casei 393) is a lactic acid microorganism that, beyond its nutritional value, provides health benefits. To explore the therapeutic potential of this probiotic against CAC, we evaluated colon histopathology, circulating cytokines, and the expression of the Kristen rat viral sarcoma oncogene homolog (KRAS) and the adenomatosis polyposis coli (APC) tumor-suppressing gene in the murine model of CAC induced with azoxymethane (AOM) and dextran sodium sulfate (DSS). Methods BALB/c mice (n=7/group) received two doses of AOM (10 mg/kg body weight) followed by three 5-day cycles of 2% DSS. L. casei 393 was administered orally [1×106 colony forming units (CFU)/100 µL/mouse/twice a week/6 months] either alone, before AOM-DSS, or starting at the same time as AOM-DSS. Colon histopathology was assessed by hematoxylin-eosin staining, circulating cytokines by flow cytometry, and the expression of colonic KRAS and APC by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results AOM-DSS induced CAC in BALB/c mice, which presented severe colon damage, high cytokine levels, and altered KRAS and APC expression. Conversely, L. casei 393 ingestions, starting at the same time as CAC induction, restored colon architecture and modulated cytokine levels and gene expression. Conclusions The present experimental work supports the therapeutic potential of L. casei 393 against CAC, as it shows that its ingestion restored the damaging effect of AOM-DSS through its anti-inflammatory properties that helped modulate KRAS and APC mRNA expression.
Collapse
Affiliation(s)
- Anne Santerre
- Cellular and Molecular Biology Department, University of Guadalajara, Zapopan, Mexico
| | | | | | - Pablo Cesar Ortiz-Lazareno
- Immunology Unit, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Mexico
| | - Josefina Casas-Solís
- Cellular and Molecular Biology Department, University of Guadalajara, Zapopan, Mexico
| |
Collapse
|
3
|
Swain J, Preeti, Mohanty C, Bajoria AA, Patnaik S, Ward Gahlawat A, Nikhil K, Mohapatra SR. Deciphering the metabolic landscape of colorectal cancer through the lens of AhR-mediated intestinal inflammation. Discov Oncol 2025; 16:275. [PMID: 40053174 DOI: 10.1007/s12672-025-01949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer worldwide, with its incidence steadily increasing due to an aging demographic and various lifestyle-related risk factors, including poor nutrition, tobacco use, sedentary behaviour and obesity. These factors promote the risk of colorectal cancer by inducing chronic colonic inflammation, a principal catalyst of carcinogenesis. This review delves into evidence that suggests that metabolic abnormalities mediated through inflammatory responses are fundamental in the progression of CRC. This dysregulation of essential metabolic pathways in colorectal cancer, facilitates tumor proliferation, immune evasion, and metastasis. Additionally, this review explores how inflammatory mediators, and dietary carcinogens induce metabolic alterations, fostering a pro-tumorigenic milieu. Special focus is placed on the aryl hydrocarbon receptor (AhR) as a pivotal metabolic regulator that links inflammation and tumor metabolism, elucidating its function in the reconfiguration of cellular energetics and the inflammatory microenvironment. Furthermore, this review also focuses on clarifying the relationship between inflammation, metabolic dysregulation, and the progression of CRC, so as to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jasmine Swain
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Preeti
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Chandana Mohanty
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Atul Anand Bajoria
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aoife Ward Gahlawat
- German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Kumar Nikhil
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Soumya R Mohapatra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
4
|
Wu H, Zhang W, Chang J, Wu J, Zhang X, Jia F, Li L, Liu M, Zhu J. Comprehensive analysis of mitochondrial-related gene signature for prognosis, tumor immune microenvironment evaluation, and candidate drug development in colon cancer. Sci Rep 2025; 15:6173. [PMID: 39979377 PMCID: PMC11842742 DOI: 10.1038/s41598-024-85035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Colon adenocarcinoma (COAD), a common digestive system malignancy, involves crucial alterations in mitochondria-related genes influencing tumor growth, metastasis, and immune evasion. Despite limited studies on prognostic models for these genes in COAD, we established a mitochondrial-related risk prognostic model, including nine genes based on available TCGA and MitoCarta 3.0 databases, and validated its predictive power. We investigated the tumor microenvironment (TME), immune cell infiltration, complex cell communication, tumor mutation burden, and drug sensitivity of COAD patients using R language, CellChat, and additional bioinformatic tools from single-cell and bulk-tissue sequencing data. The risk model revealed significant differences in immune cell infiltration between high-risk and low-risk groups, with the strongest correlation found between tissue stem cells and macrophages in COAD. The risk score exhibited a robust correlation with TME signature genes and immune checkpoint molecules. Integrating the risk score with the immune score, microsatellite status, or TMB through TIDE analysis enhanced the accuracy of predicting immunotherapy benefits. Predicted drug efficacy offered options for both high- and low-risk group patients. Our study established a novel mitochondrial-related nine-gene prognostic signature, providing insights for prognostic assessment and clinical decision-making in COAD patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjia Chang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Wu
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xintong Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, 030006, China
| | - Li Li
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Ming Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianjun Zhu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Liang SJ, Wang K, Mao DB, Xie LW, Zhu DJ. Inhibition of the Wnt/β‑catenin signaling pathway and SOX9 by XAV939 did not alleviate inflammation in a dextran sulfate sodium‑induced ulcerative colitis model. Exp Ther Med 2025; 29:24. [PMID: 39650775 PMCID: PMC11619566 DOI: 10.3892/etm.2024.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway has been reported to be hyperactivated during the pathogenesis of ulcerative colitis (UC). The present study aimed to explore the therapeutic efficacy of the Wnt/β-catenin signaling inhibitor XAV939 in mitigating UC symptoms. Utilizing a dextran sulfate sodium (DSS)-induced UC mouse model, the present study aimed to evaluate the impact of XAV939 on intestinal morphology through hematoxylin and eosin staining and to measure the expression levels of critical proteins in the Wnt/β-catenin signaling cascade. XAV939 did not exert a significant influence on the morphological features and inflammatory status of the intestinal epithelium. However, XAV939 was found to effectively suppress the Wnt/β-catenin signaling pathway and its downstream target SOX9. This suppression implied a reduction in the differentiation of intestinal stem cells into secretory cell progenitor cells. Additionally, XAV939 was ineffective at reversing the DSS-induced decrease in expression levels of Villin and peroxisome proliferator-activated receptor γ, which suggested that it did not facilitate the differentiation of intestinal absorptive cells. The present findings indicated that the Wnt/β-catenin signaling pathway may not be the predominant mechanism in the pathogenesis of DSS-induced UC.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Da-Bin Mao
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510075, P.R. China
| | - Da-Jian Zhu
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| |
Collapse
|
6
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
8
|
Liang S, Wang K, Mao D, Ouyang Q, Lv X, Xie L, Zhu D. Curcumin alleviated dextran sulfate sodium-induced ulcerative colitis via inhibition of the Wnt/β-catenin signaling pathway and regulation of the differentiation of intestinal stem cells. Toxicol Appl Pharmacol 2025; 494:117175. [PMID: 39608729 DOI: 10.1016/j.taap.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
In this study, we investigated the regulatory role of curcumin in the differentiation of intestinal stem cells (ISCs) in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) model mice and explored whether this effect was mediated by the Wnt/β-catenin signaling pathway. We conducted experiments in DSS-induced UC model mice to observe changes in intestinal morphology through HE staining and detect the expression of key proteins in the Wnt/β-catenin signaling pathway. According to these findings, curcumin was found to have a significant impact on the differentiation of ISCs. These results indicated that curcumin inhibited the Wnt/β-catenin signaling pathway and restored ISC differentiation. The effects of curcumin on the Wnt/β-catenin signaling pathway were further confirmed using Wnt/β-catenin agonists. These findings provide a new perspective for understanding the behavior of ISCs in the context of inflammation and offer new insights into the development of novel therapeutic strategies and drugs for UC.
Collapse
Affiliation(s)
- Shaojie Liang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Dabin Mao
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510075, China.
| | - Dajian Zhu
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China.
| |
Collapse
|
9
|
Xiao J, Liang J, Zhou T, Zhou M, Zhang D, Feng H, Tang C, Zhou Q, Yang W, Tan X, Zhang W, Xu Y. Analysis of diagnostic genes and molecular mechanisms of Crohn's disease and colon cancer based on machine learning algorithms. Sci Rep 2024; 14:31736. [PMID: 39738398 PMCID: PMC11686071 DOI: 10.1038/s41598-024-82319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel condition, and colon adenocarcinoma (COAD), as one of the most prevalent malignant tumors of the digestive tract, has been indicated by research to have a close association with CD. This study employs bioinformatics techniques to uncover the potential molecular links between CD and COAD. In this study, two data series related to CD were identified from the Gene Expression Omnibus (GEO) database under specific criteria, and relevant COAD gene data were obtained from The Cancer Genome Atlas (TCGA). Weighted Gene Co-expression Network Analysis (WGCNA), differentially expressed genes (DEGs), and protein-protein interaction (PPI) network analysis were conducted. A diagnostic model was established using machine learning. The accuracy of the diagnosis was validated using methods such as the construction of Receiver Operating Characteristic (ROC) curves and nomograms. Gene Set Enrichment Analysis (GSEA) was also employed to enrich the relevant pathways and biological processes. This study identified three genes through machine learning selection: DPEP1, MMP3, and MMP13. The ROC curves demonstrated that the machine learning model constructed with these three genes has a high level of accuracy, confirming their potential as biomarkers. Furthermore, GSEA elucidated that the pathways associated with these three key genes are closely related to cytokines and other factors. This study has identified key biomarker genes for CD and COAD: DPEP1, MMP3, and MMP13, providing additional molecular mechanism associations between the two diseases. It also offers more connections and pathways for reference regarding the progression of CD to COAD.
Collapse
Affiliation(s)
- Jie Xiao
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Junyao Liang
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Tao Zhou
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Man Zhou
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Dexu Zhang
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Hui Feng
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Chusen Tang
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Qian Zhou
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Weiqing Yang
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xiaoqin Tan
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Wanjia Zhang
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China
| | - Yin Xu
- First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
10
|
Xu Y, Cai Q, Zhao C, Zhang W, Xu X, Lin H, Lin Y, Chen D, Lin S, Jia P, Wang M, Zhang L, Lin W. Gegen Qinlian Decoction Attenuates Colitis-Associated Colorectal Cancer via Suppressing TLR4 Signaling Pathway Based on Network Pharmacology and In Vivo/In Vitro Experimental Validation. Pharmaceuticals (Basel) 2024; 18:12. [PMID: 39861077 PMCID: PMC11768880 DOI: 10.3390/ph18010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. Methods: Use network pharmacology to identify targets and pathways of GQD. In vivo (azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colitis-associated colorectal cancer (CAC) mouse model) and in vitro (lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages) experiments were conducted to explore GQD's anti-inflammatory and anti-tumor effects. We monitored mouse body weight and disease activity index (DAI), and evaluated colon cancer tissues using hematoxylin and eosin staining. Expression of Ki67 and F4/80 was determined by immunohistochemistry analysis. The protein levels of TLR4 signaling pathway were assessed by western blotting analysis. Enzyme-linked immunosorbent assay measured IL-1β, IL-6, and TNF-α levels. Immunofluorescence (IF) staining visualized NF-κB and IRF3 translocation. Results: There were 18, 9, 24 and 77 active ingredients in the four herbs of GQD, respectively, targeting 435, 156, 485 and 691 genes. Through data platform analysis, it was concluded that there were 1104 target genes of GQD and 2022 target genes of CAC. Moreover, there were 99 intersecting genes between GQD and CAC. The core targets of GQD contained NFKB1, IL1B, IL6, TLR4, and TNF, and GQD reduced inflammation by inhibiting the TLR4 signaling pathway. In vivo experiment, GQD increased mouse body weight, lowered DAI scores, while also alleviating histopathological changes in the colon and decreasing the expressions of Ki67 and F4/80 in the AOM/DSS-induced mice. GQD reduced IL-1β, IL-6, and TNF-α levels in the serum and downregulated TLR4, MyD88, and phosphorylation of IκBα, P65, and IRF3 in the colon tissue from AOM/DSS-induced mice. In vitro, GQD suppressed pro-inflammatory cytokines and TLR4 signaling pathway in the LPS-induced RAW264.7 cells, and combined with TAK242, it further reduced the phosphorylation of IκBα, P65. Conclusions: GQD mitigated CAC by inhibiting the TLR4 signaling pathway, offering a potential therapeutic approach for CAC management.
Collapse
Affiliation(s)
- Yaoyao Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chunyu Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Weixiang Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Xinting Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Haowei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Yuxing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Daxin Chen
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Peizhi Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Meiling Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wei Lin
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| |
Collapse
|
11
|
Wen J, Wang S, Sun K, Wang H, Yuan Z, Deng W. Chang-Wei-Qing Combined with PD-1 Inhibitor Alleviates Colitis-Associated Colorectal Tumorigenesis by Modulating the Gut Microbiota and Restoring Intestinal Barrier. Biol Proced Online 2024; 26:32. [PMID: 39701930 DOI: 10.1186/s12575-024-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Chang-Wei-Qing (CWQ) is a widely recognized Traditional Chinese Medicine (TCM) formulation composed of Astragalus, Codonopsis, Atractylodes, Poria, Coix seed, Akebia trifoliata Koidz, Sargentodoxa cuneata, and Vitis quinquangularis Rehd. This formulation has garnered significant interest for its positive effects in mitigating colorectal cancer, and when combined with PD-1, it affects some gut microbiota associated with tumor infiltrating lymphocytes cells. However, the biological rationale underlying the suppression of colitis-associated colorectal cancer (CAC) in AOM/DSS-treated mice by CWQ combined with PD-1 inhibitor remains to be explored. Our aim is to explore the chemopreventive effect of CWQ combined with PD-1 inhibitor on CAC, with a focus on modulating the gut microbiota. A mouse model of CAC was established using azoxymethane (AOM) and dextran sulfate sodium (DSS) treatment. Pathological evaluation of tissue samples included immunohistochemistry and hematoxylin and eosin staining. Intestinal barrier function was assessed by transmission electron microscopy. Fecal microbiota and metabolites were analyzed through 16 S rRNA gene sequencing and liquid chromatography-mass spectrometry, respectively. Mice treated with antibiotics served as models for fecal microbiota transplantation. CWQ combined with PD-1 inhibitor suppressed CAC in AOM/DSS-treated mice. This combined therapy effectively alleviated gut dysbiosis in the CAC model by increasing microbial diversity, enriching probiotic populations such as Limosilactobacillus and Bifidobacterium, and reducing pathogenic bacteria like Desulfovibrio. Additionally, CWQ combined with PD-1 inhibitor downregulated metabolites associated with the NF-kappa B signaling pathway. The combined treatment also significantly improved intestinal barrier function in CAC mice. Transmission electron microscopy of the CWQ combined with PD-1 inhibitor group showed enhanced cellular integrity, a relatively normal mitochondrial structure with intact membranes, and a more abundant, unexpanded endoplasmic reticulum, underscoring the protective effects of this combination on intestinal barrier integrity. Transcriptomic analysis further demonstrated that the combined therapy upregulated genes involved in tight and adherens junctions, while downregulating genes linked to innate immune responses. CWQ combined with PD-1 inhibitor can ameliorate dysbiosis in the AOM/DSS mouse model, with the metabolites of the gut microbiome potentially possessing anti-inflammatory activity. Moreover, CWQ combined with PD-1 inhibitor improves intestinal barrier function, thereby effectively inhibiting the occurrence and development of CAC.
Collapse
Affiliation(s)
- Junkai Wen
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Shunyun Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Kexiang Sun
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Haoyue Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| | - Wanli Deng
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
12
|
Pedrosa LDF, de Vos P, Fabi JP. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients 2024; 16:4286. [PMID: 39770907 PMCID: PMC11678351 DOI: 10.3390/nu16244286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The microbiota stability, diversity, and composition are pillars for an efficient and beneficial symbiotic relationship between its host and itself. Microbial dysbiosis, a condition where a homeostatic bacterial community is disturbed by acute or chronic events, is a predisposition for many diseases, including local and systemic inflammation that leads to metabolic syndrome, diabetes, and some types of cancers. Classical dysbiosis occurs in the large intestine. During this period, pathogenic strains can multiply, taking advantage of the compromised environment. This overgrowth triggers an exaggerated inflammatory response from the human immune system due to the weakened integrity of the intestinal barrier. Such inflammation can also directly influence higher polyp formation and/or tumorigenesis. Prebiotics can be instrumental in preventing or correcting dysbiosis. Prebiotics are molecules capable of serving as substrates for fermentation processes by gut microorganisms. This can promote returning the intestinal environment to homeostasis. Effective prebiotics are generally specific oligo- and polysaccharides, such as FOS or inulin. However, the direct effects of prebiotics on intestinal epithelial and immune cells must also be taken into consideration. This interaction happens with diverse prebiotic nondigestible carbohydrates, and they can inhibit or decrease the inflammatory response. The present work aims to elucidate and describe the different types of prebiotics, their influence, and their functionalities for health, primarily focusing on their ability to reduce and control inflammation in the intestinal epithelial barrier, gut, and systemic environments.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation, and Dissemination Centers), São Paulo 05508-080, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
13
|
Zhang G, Yao Y, Zhang Z, Xiao J, Yu H, Zhao J, Yao C, Wang Y, Luo H. Regulation of NLRP3 inflammasome and Caspase-3/4/11 by 2',4'-dihydroxychalcone contributes to anti-colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156194. [PMID: 39520954 DOI: 10.1016/j.phymed.2024.156194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chronic inflammation is closely related to the occurrence and progression of many cancers, especially colorectal cancer (CRC), which can be triggered by repeated and sustained induction of colitis in mice. CRC is a typical type of cancer that can be caused by inflammation and NLRP3 inflammasome dysregulation plays a certain role in the pathogenesis of CRC. PURPOSE As an edible Chinese medicine, Abrus cantoniensis Hance (ACH) has both anti-inflammatory and anti-tumor activities. However, most research has focused on inflammation-related diseases, and less research has been done on its active ingredients and targets and its application in CRC. Here, this study deeply explored the target of 2',4'-DHC and its pharmacological mechanism in anti-colon cancer, and provided a new strategy for its drug development and treatment of colon cancer. METHODS The cytotoxicity of ACH's active ingredient in HT29 and CT26 cells was measured by CCK-8, clone formation, apoptosis, and cell cycle assay. The metastasis inhibition of CRC cells was determined by wound-healing assay. Western blotting was used to detect the NLRP3 inflammasome activation, pyroptosis, and apoptosis activation. Finally, the in vivo efficacy of 2',4'-DHC was verified by establishing CT26 and HT29 tumor transplant models in mice. RESULTS Here, our study firstly demonstrated that 2',4'-DHC inhibited the growth of CRC cells mainly by increasing CRC cell death and ameliorating tumor immunosuppressive environment, which is verified by inducing apoptosis and pyroptosis by regulating caspase-3/4/11, arresting cell cycle in G2/M phase, suppressing the migration of CRC cells, and inhibiting NLRP3 inflammasome activation through inhibiting the NF-κB pathway, enhancing the anticancer immune response by increasing the infiltration of T cells and function of CD8+ cytotoxic T cells but decreasing the infiltration of CD11b+ CD206+ macrophages and function. Importantly, the administration of 2',4'-DHC decreased liver and spleen indexs to mice's normal levels and reduced the burden of CT26 and HT29 tumor-bearing in mice without pathological changes in the major organs. CONCLUSION 2',4'-DHC inhibited CRC growth through various mechanisms, mainly by regulating NLRP3 inflammasome and caspase-3/4/11 activation. Considering the anti-tumor and immunomodulation roles of 2',4'-DHC, it might be a new direction for the development of new strategies to treat colorectal cancer.
Collapse
Affiliation(s)
- Guohui Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhongyu Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jian Xiao
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Hua Yu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning 530001, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
14
|
Cang X, Li N, Qi J, Chen H, Xing H, Qiu J, Tian Y, Huang S, Deng P, Gao F, Chaulagain RP, Ullah U, Wang C, Liu L, Jin S. Identification of immune-associated genes for the diagnosis of ulcerative colitis-associated carcinogenesis via integrated bioinformatics analysis. Front Oncol 2024; 14:1475189. [PMID: 39582536 PMCID: PMC11581968 DOI: 10.3389/fonc.2024.1475189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background UC patients suffer more from colorectal cancer (CRC) than the general population, which increases with disease duration. Early colonoscopy is difficult because ulcerative colitis-associated colorectal cancer (UCAC) lesions are flat and multifocal. Our study aimed to identify promising UCAC biomarkers that are complementary endoscopy strategies in the early stages. Methods The datasets may be accessed from the Gene Expression Omnibus and The Cancer Genome Atlas databases. The co-expressed modules of UC and CRC were determined via weighted co-expression network analysis (WGCNA). The biological mechanisms of the shared genes were exported for analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. To identify protein interactions and hub genes, a protein-protein interaction network and CytoHubba analysis were conducted. To evaluate gene expression, external datasets and experimental validation of human colon tissues were utilized. The diagnostic value of core genes was examined through receiver operating characteristic (ROC) curves. Immune infiltration analysis was employed to investigate the associations between immune cell populations and hub genes. Results Three crucial modules were identified from the WGCNA of UC and CRC tissues, and 33 coexpressed genes that were predominantly enriched in the NF-κB pathway were identified. Two biomarkers (CXCL1 and BCL6) were identified via Cytoscape and validated in external datasets and human colon tissues. CRC patients expressed CXCL1 at the highest level, whereas UC and CRC patients showed higher levels than the controls. The UC cohort expressed BCL6 at the highest level, whereas the UC and CRC cohorts expressed it more highly than the controls. The hub genes exhibited significant diagnostic potential (ROC curve > 0.7). The immune infiltration results revealed a correlation among the hub genes and macrophages, neutrophils and B cells. Conclusions The findings of our research suggest that BCL6 and CXCL1 could serve as effective biomarkers for UCAC surveillance. Additionally, they demonstrated a robust correlation with immune cell populations within the CRC tumour microenvironment (TME). Our findings provide a valuable insight about diagnosis and therapy of UCAC.
Collapse
Affiliation(s)
- Xueyu Cang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jihan Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongliang Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Xing
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Qiu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Tian
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiling Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengchao Deng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feiyang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ram Prasad Chaulagain
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ubaid Ullah
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunjing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Liu
- Department of Endoscopic Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
16
|
Li Q, Zhang S, Zhou Q, Gu C, Liu Y, Zhang J, Zhang J. Tocotrienol suppresses colitis-associated cancer progression through TLR4 signaling in a mouse model of colorectal cancer. Curr Res Toxicol 2024; 7:100196. [PMID: 39411685 PMCID: PMC11474223 DOI: 10.1016/j.crtox.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
This study aimed to evaluate the preventive efficacy of tocotrienol in inhibiting the nuclear factor-kappa B (NF-κB) mediated inflammation pathways in colorectal cancer. We utilized the azoxymethane (AOM) and dextran sulfate sodium salt (DSS) to induce colitis-associated colorectal cancer (CAC) mice model. In generating a CAC model, mice were intraperitoneally injected with AOM at a concentration of 10 mg/kg body weight. Seven days after the AOM injection, mice drinking water containing 3 % DSS for 1 week, followed by a 2-week period of regular water. This cycle of DSS treatment (1-week 3 % DSS+2-week water) was repeated for two additional cycles. Mice were randomly divided into five groups (n = 20/group), including Blank group, Model group, three different dosages tocotrienol groups (Low dose group [50 mg/kg], Medium dose group [75 mg/kg], and High dose group [100 mg/kg]). The protective effects of tocotrienol were assessed using histological, flow cytometry, western blot and mouse Luminex assay. Compared with the blank group, expressions of toll-like receptor 4 (TLR4), myeloid differentiation protein 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF-6), NF-κB, Interleukin (IL)-6 and tumor necrosis factor (TNF) -α were increased in model group, while IL-4 and IL-10 were decreased in model group (P<0.05). Tocotrienol prevented carcinogenesis and decreased the IL-6, TNF-α, MyD88, TLR4, TRAF-6 and NF-κB expression levels, compared with the model group (P<0.05). Compared with the model group, the expression of IL-10 was increased in medium dose group and high dose group (P<0.05). The protective effects of tocotrienol may be related to the inhibition of TLR4 /MyD88 /NF-κB mediated inflammatory signaling pathways. Therefore, the use of tocotrienol can improve the abnormal expression of cytokines in a mouse model of colorectal cancer and inhibit the occurrence and development of colorectal cancer.
Collapse
Affiliation(s)
- Qian Li
- School of Public Health, Qilu Medical University, Shandong 255300, China
| | - Shujing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tianjin 300011, China
| | - Qinghong Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tianjin 300011, China
| | - Chenxi Gu
- Disease Prevention and Control Center of Binhu District, Wuxi City, Jiangsu 214100, China
| | - Yinghua Liu
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tianjin 300011, China
| | - Jing Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Tianjin 300011, China
| | - Jingshu Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Sztolsztener K, Harasim-Symbor E, Chabowski A, Konstantynowicz-Nowicka K. Cannabigerol as an anti-inflammatory agent altering the level of arachidonic acid derivatives in the colon tissue of rats subjected to a high-fat high-sucrose diet. Biomed Pharmacother 2024; 178:117286. [PMID: 39128189 DOI: 10.1016/j.biopha.2024.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
Fat and sugar overconsumption is the cause of increasing worldwide incidence of gastrointestinal tract in inflammatory conditions. The intestinal pre-inflammatory alterations are partially reversible, simultaneously inhibiting the predisposition to colitis. Searching for an effective pharmacotherapy for treating inflammatory conditions in the intestine is essential. This study aimed to investigate the effect of cannabigerol (CBG) on the inflammation state in the colon tissue of rats subjected to high-caloric diet. The experiment was conducted on male Wistar rats subjected to a standard or a high-fat high-sucrose diets for six weeks. For the last 14 days, half of rats from both groups received intragastrically cannabigerol solution (30 mg/kg of body mass). The ratio of n-6/n-3 PUFA, the activity of n-6 and n-3 PUFA, and arachidonic acid (AA) content in selected lipid fractions were determined by gas-liquid chromatography. Immunoblotting examined the expression of proteins involved in inflammation development. ELISA kits measured the content of arachidonic acid derivatives. CBG treatment reduced the n-6/n-3 PUFA ratio in TAG fraction and increased the n-3 PUFA pathway activity in almost all lipid fractions. Cannabigerol supplementation decreased AA concentration in PL and TAG. CBG also caused diminishments in the expression of cPLA2, COX-1, COX-2, and 12/15-LOX, which was indirectly correlated with a decreased LTB4 level and an increased LXA4 level. We concluded that cannabigerol has a protective influence on the development of inflammation in the colon tissue under lipid and sugar overload condition, thereby favoring cancer initiation and progression.
Collapse
Affiliation(s)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | |
Collapse
|
18
|
Liu W, Huang J, Hu J, Bu Z, Zhou Z, Yu J, Wang H, Wu X, Wu P. The dual role of CCND1 in heterotopic ossification: A Non-canonical Pathway for Celecoxib treatment. Heliyon 2024; 10:e34936. [PMID: 39157338 PMCID: PMC11327559 DOI: 10.1016/j.heliyon.2024.e34936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Objective To explore the effective targets of Celecoxib in the treatment of heterotopic ossification using network pharmacology methods. Methods Potential molecules related to heterotopic ossification were obtained by retrieving the GEO and CTD databases and intersecting them. Potential binding targets of Celecoxib were acquired from the STITCH database. A protein-protein interaction network was constructed between potential binding targets of Celecoxib and potential related molecules of heterotopic ossification using the STRING database. Molecules in the protein-protein interaction network were further analyzed using GO and KEGG enrichment analysis in R software, followed by enrichment analysis of active molecules in the Celecoxib-heterotopic ossification target dataset. Hub genes were selected based on the "degree" value and enrichment within the protein-protein interaction network. The binding affinity of hub genes to Celecoxib was observed using molecular docking techniques. Finally, in vitro experiments were conducted to validate the effectiveness of hub genes and explore their regulatory role in the progression of heterotopic ossification. Additionally, the therapeutic effect of Celecoxib, which modulates the expression of the hub genes, was investigated in the treatment of heterotopic ossification. Results 568 potential molecules related to heterotopic ossification and 76 potential binding targets of Celecoxib were identified. After intersection, 13 potential functional molecules in Celecoxib's treatment of heterotopic ossification were obtained. KEGG analysis suggested pathways such as Rheumatoid arthritis, NF-kappa B signaling pathway, Pathways in cancer, Antifolate resistance, MicroRNAs in cancer play a role in the treatment of heterotopic ossification by Celecoxib. Further enrichment analysis of the 13 potential functional molecules identified 5 hub genes: IL6, CCND1, PTGS2, IGFBP3, CDH1. Molecular docking results indicated that Celecoxib displayed excellent binding affinity with CCND1 among the 5 hub genes. Experimental validation found that CCND1 is highly expressed in the progression of heterotopic ossification, promoting heterotopic ossification in the early stages and inhibiting it in the later stages, with Celecoxib's treatment of heterotopic ossification depending on CCND1. Conclusion In the process of treating heterotopic ossification with Celecoxib, immune and inflammatory signaling pathways play a significant role. The therapeutic effect of Celecoxib on heterotopic ossification depends on the hub gene CCND1, which plays different roles at different stages of the progression of heterotopic ossification, ultimately inhibiting the occurrence of heterotopic ossification.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, Guangzhou, 510630, China
| | - Xinbo Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
19
|
Wei W, Lu Y, Zhang M, Guo J, Zhang H. Identifying polyamine related biomarkers in diagnosis and treatment of ulcerative colitis by integrating bulk and single-cell sequencing data. Sci Rep 2024; 14:18094. [PMID: 39103474 PMCID: PMC11300856 DOI: 10.1038/s41598-024-69322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.
Collapse
Affiliation(s)
- Wanhui Wei
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JinKun Guo
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Liu T, Wang C, Xia Z. Overexpressed FKBP5 mediates colorectal cancer progression and sensitivity to FK506 treatment via the NF-κB signaling pathway. FEBS J 2024; 291:3128-3146. [PMID: 38602236 DOI: 10.1111/febs.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly tumor. FK506-binding protein 5 (FKBP5) is associated with some cancers, but the role of FKBP5 in CRC is not clear. The present study aimed to reveal the relationship between FKBP5 and CRC and to uncover the roles of FK506 in CRC. In total, 96 CRC patients were recruited. Survival analysis was conducted using the Kaplan-Meier method and COX regression analyses. Bioinformatics analyses were performed to explore the functions of FKBP5. The mechanisms of FKBP5 and the roles of FK506 in CRC progression were clarified by immunohistochemistry, MTS, scratch assay, transwell and flow cytometric analyses via in vitro and in vivo experiments. FKBP5 was overexpressed in 77 cancer tissues compared to that in matched normal tissues, and the overall survival rate of these patients was relatively shorter. Bioinformatics analyses showed that FKBP5 regulates proliferation, invasion, migration, epithelial-mesenchymal transition and nuclear factor-kappa B (NF-κB) signaling. The upregulation or downregulation of FKBP5 dramatically increases or decreases the proliferation, invasion and migration abilities of CRC cells. The expression of NF-κB, inhibitor B kinase α, matrix metalloproteinase-2 and metalloproteinase-9 positively correlated with FKBP5. FK506 inhibits the progression of CRC via the FKBP5/NF-κB signaling pathway. Our study identified a regulatory role for FKBP5 in CRC progression. Therefore, targeting FKBP5 may provide a novel treatment approach for CRC. FK506 can inhibit the progression of CRC by restraining the FKBP5/NF-κB signaling pathway and is expected to become a new drug for the treatment of CRC.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province, Judicial Authentication Center, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, China
| | - Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Li R, Chi H, Liao X, Cen S, Zou Y. The Glabridin from Huangqin Decoction Prevents the Development of Ulcerative Colitis into Colitis-Associated Colorectal Cancer by Modulating MMP1/MMP3 Activity. Int Immunopharmacol 2024; 135:112262. [PMID: 38805906 DOI: 10.1016/j.intimp.2024.112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND AND AIM Huangqin decoction (HQD) is a Chinese medicine used to treat colitis and colorectal cancer (CRC). However, the specific compounds and mechanisms of HQD remain unclear despite its good curative clinical results. Through bioinformatics, network pharmacology, and experiments, this study aims to explore the progressive mechanisms of colitis-associated colorectal cancer (CAC) from ulcerative colitis (UC) while examining the protective effects of HQD and its compounds against this. METHODS Bioinformatics was utilized to identify the hub genes between UC and CRC, and their clinical predictive significance, function, and expression were validated. Employing network pharmacology in combination with hub genes, key targets of HQD for preventing the development of UC into CAC were identified. Molecular docking and molecular dynamics (MD) were utilized to procure compounds that effectively bind to these targets and their transcription factors (TFs). Finally, the expression and mechanism of key targets were demonstrated in mice with UC or CAC. RESULTS (1) Joint analysis of UC and CRC gene sets resulted in 14 hub genes, mainly related to extracellular matrix receptor binding, biological processes in the extracellular matrix, focal adhesion and neutrophil migration; (2) Network pharmacology results show HQD has 133 core targets for treating UC and CRC, acting on extracellular matrix, inflammatory bowel disease, chemical carcinogen receptor activation and other pathways; (3) The intersection of hub genes and core targets yielded two key targets, MMP1 and MMP3; (4) STAT3 is a shared TF of MMP1 and MMP3. (5) Molecular docking and MD verified that the dockings between Glabridin and STAT3/MMP1/MMP3 are stable and reliable; (6) In murine vivo experiments verified that Glabridin reduces inflammation, extracellular matrix degradation, and the occurrence of epithelial-mesenchymal transition to prevent UC transforming into CAC by inhibiting the phosphorylation of STAT3 and regulating the activity of MMP1/3.
Collapse
Affiliation(s)
- Roude Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Xiaoxia Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Shuimei Cen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China.
| | - Ying Zou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523000, China; The second school of clinical medicine, Guangdong Medical University, Dongguan 523000, China; Department of Traditional Chinese Medicine, Dongguan Liaobu Hospital, Dongguan 523000, China.
| |
Collapse
|
22
|
Guan R, Li C, Gu F, Li W, Wei D, Cao S, Chang F, Lei D. Single-cell transcriptomic landscape and the microenvironment of normal adjacent tissues in hypopharyngeal carcinoma. BMC Genomics 2024; 25:489. [PMID: 38760729 PMCID: PMC11100249 DOI: 10.1186/s12864-024-10321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The cellular origin of hypopharyngeal diseases is crucial for further diagnosis and treatment, and the microenvironment in tissues may also be associated with specific cell types at the same time. Normal adjacent tissues (NATs) of hypopharyngeal carcinoma differ from non-tumor-bearing tissues, and can influenced by the tumor. However, the heterogeneity in kinds of disease samples remains little known, and the transcriptomic profile about biological information associated with disease occurrence and clinical outcome contained in it has yet to be fully evaluated. For these reasons, we should quickly investigate the taxonomic and transcriptomic information of NATs in human hypopharynx. RESULTS Single-cell suspensions of normal adjacent tissues (NATs) of hypopharyngeal carcinoma were obtained and single-cell RNA sequencing (scRNA-seq) was performed. We present scRNA-seq data from 39,315 high-quality cells in the hypopharyngeal from five human donors, nine clusters of normal adjacent human hypopharyngeal cells were presented, including epithelial cells, endothelial cells (ECs), mononuclear phagocyte system cells (MPs), fibroblasts, T cells, plasma cells, B cells, mural cells and mast cells. Nonimmune components in the microenvironment, including epithelial cells, endothelial cells, fibroblasts and the subpopulations of them were performed. CONCLUSIONS Our data provide a solid basis for the study of single-cell landscape in human normal adjacent hypopharyngeal tissues biology and related diseases.
Collapse
Affiliation(s)
- Rui Guan
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
- Cheeloo College of Medicine, Shandong University, Jinan , Shandong, 250012, China
| | - Ce Li
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Fangmeng Gu
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Wenming Li
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Shengda Cao
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Fen Chang
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Shandong, 250012, China.
- Cheeloo College of Medicine, Shandong University, Jinan , Shandong, 250012, China.
| |
Collapse
|
23
|
Tamraz M, Al Ghossaini N, Temraz S. The Role of Wheatgrass in Colorectal Cancer: A Review of the Current Evidence. Int J Mol Sci 2024; 25:5166. [PMID: 38791211 PMCID: PMC11121291 DOI: 10.3390/ijms25105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of colon cancer is either genetic in nature or results from inflammatory bowel diseases such as ulcerative colitis and Crohn's disease; nevertheless, dietary habits play a crucial role in the disease. Wheatgrass is a dietary supplement that is rich in vitamins, minerals, and antioxidants which contribute to health promotion in cardiovascular diseases, liver disease, blood diseases, diabetes, and inflammatory bowel diseases, as well as in several types of cancers, such as oral squamous cell cancer, cervical cancer, and breast cancer. In colorectal cancer (CRC), the prospect that wheatgrass possesses anti-inflammatory, antioxidant, and anticancer properties, and its use as an adjunctive therapy, have been minimally investigated and evidence is still limited. In this review, we compiled the available evidence pertaining to wheatgrass and its likely impact on CRC, described the pathways of inflammation in which wheatgrass could possibly play a role, and identified future research needs on the subject.
Collapse
Affiliation(s)
- Magie Tamraz
- Department of Nutrition and Public Health, Holy Spirit University of Kaslik, Jounieh P.O. BOX 446, Mount Lebanon, Lebanon;
| | - Najib Al Ghossaini
- Department of Internal Medicine, Ain Wazein Medical Village, Chouf P.O. Box 1503-210/02, Mount Lebanon, Lebanon;
| | - Sally Temraz
- Department of Internal Medicine, Oncology/Hematology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
24
|
Uchino M, Ikeuchi H, Noguchi T, Okabayashi K, Futami K, Tanaka S, Ohge H, Watanabe K, Itabashi M, Okamoto K, Okita Y, Mizushima T, Mizuuchi Y, Yamada K, Shimada Y, Sato Y, Kimura H, Takahashi K, Hida K, Kinugasa Y, Okuda J, Daito K, Koyama F, Ueno H, Yamamoto T, Hanai T, Kono T, Kobayashi H, Ajioka Y, Sugihara K, Ishihara S. Histological differentiation between sporadic and colitis-associated intestinal cancer in a nationwide study: A propensity-score-matched analysis. J Gastroenterol Hepatol 2024; 39:893-901. [PMID: 38273469 DOI: 10.1111/jgh.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIM Colitis-associated intestinal cancer (CAC) can develop in patients with inflammatory bowel disease; however, the malignant grade of CAC may differ from that of sporadic colorectal cancer (CRC). Therefore, we compared histological findings distinct from cancer stage between CAC and sporadic CRC to evaluate the features of CAC. METHODS We reviewed the clinical and histological data collected from a nationwide database in Japan between 1983 and 2020. Patient characteristics were compared to distinguish ulcerative colitis (UC), Crohn's disease (CD), and sporadic CRC. Comparisons were performed by using all collected data and propensity score-matched data. RESULTS A total of 1077 patients with UC-CAC, 297 with CD-CAC, and 136 927 with sporadic CRC were included. Although the prevalence of well or moderately differentiated adenocarcinoma (Tub1 and Tub2) decreased according to tumor progression for all diseases (P < 0.01), the prevalence of other histological findings, including signet ring cell carcinoma, mucinous carcinoma, poorly differentiated adenocarcinoma, or squamous cell carcinoma, was significantly higher in CAC than in sporadic CRC. Based on propensity score-matched data for 982 patients with UC and 268 with CD, the prevalence of histological findings other than Tub1 and Tub2 was also significantly higher in those with CAC. At pT4, mucinous carcinoma occurred at a significantly higher rate in patients with CD (45/86 [52.3%]) than in those with sporadic CRC (13/88 [14.8%]) (P < 0.01). CONCLUSION CAC, including early-stage CAC, has a higher malignant grade than sporadic CRC, and this difference increases in significance with tumor progression.
Collapse
MESH Headings
- Humans
- Propensity Score
- Male
- Female
- Middle Aged
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/epidemiology
- Aged
- Japan/epidemiology
- Crohn Disease/pathology
- Crohn Disease/epidemiology
- Crohn Disease/complications
- Colitis-Associated Neoplasms/pathology
- Colitis-Associated Neoplasms/etiology
- Colitis-Associated Neoplasms/epidemiology
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/epidemiology
- Colorectal Neoplasms/etiology
- Adult
- Adenocarcinoma/pathology
- Adenocarcinoma/epidemiology
- Adenocarcinoma/etiology
- Neoplasm Staging
- Neoplasm Grading
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/epidemiology
- Adenocarcinoma, Mucinous/etiology
- Carcinoma, Signet Ring Cell/pathology
- Carcinoma, Signet Ring Cell/epidemiology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/epidemiology
- Carcinoma, Squamous Cell/etiology
- Diagnosis, Differential
- Prevalence
Collapse
Affiliation(s)
- Motoi Uchino
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Hiroki Ikeuchi
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease, Hyogo Medical University, Nishinomiya, Japan
| | - Tatsuki Noguchi
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kitaro Futami
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuhiro Watanabe
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michio Itabashi
- Department of Surgery, Division of Inflammatory Bowel Disease Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kinya Okamoto
- Department of Coloproctology, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutaka Yamada
- Department of Surgery, Coloproctology Center Takano Hospital, Kumamoto, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yu Sato
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Hideaki Kimura
- Inflammatory Bowel Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kenichi Takahashi
- Department of Colorectal Surgery, Tohoku Rosai Hospital, Sendai, Japan
| | - Koya Hida
- Department of Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Okuda
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Koji Daito
- Department of Surgery, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Fumikazu Koyama
- Department of Surgery, Nara Medical University, Kashihara, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Takayuki Yamamoto
- Inflammatory Bowel Disease Center, Yokkaichi Hazu Medical Center, Yokkaichi, Japan
| | - Tsunekazu Hanai
- Department of Surgery, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Toru Kono
- Advanced Surgery Center, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hirotoshi Kobayashi
- Department of Surgery, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
Tao Y, Wang L, Ye X, Qian X, Pan D, Dong X, Jiang Q, Hu P. Huang Qin decoction increases SLC6A4 expression and blocks the NFκB-mediated NLRP3/Caspase1/GSDMD pathway to disrupt colitis-associated carcinogenesis. Funct Integr Genomics 2024; 24:55. [PMID: 38467948 PMCID: PMC10927794 DOI: 10.1007/s10142-024-01334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.
Collapse
Affiliation(s)
- Yili Tao
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Lai Wang
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaofeng Ye
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xin Qian
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Danye Pan
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Xiaoyu Dong
- Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Qian Jiang
- Digestive Disease Diagnosis and Treatment Center of Integrated Traditional Chinese and Western Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China
| | - Po Hu
- Department of Pulmonary Diseases, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, Jiangsu, P.R. China.
| |
Collapse
|
27
|
Lv H, Mu Y, Zhang C, Zhao M, Jiang P, Xiao S, Sun H, Wu N, Sun D, Jin Y. Comparative analysis of single-cell transcriptome reveals heterogeneity and commonality in the immune microenvironment of colorectal cancer and inflammatory bowel disease. Front Immunol 2024; 15:1356075. [PMID: 38529274 PMCID: PMC10961339 DOI: 10.3389/fimmu.2024.1356075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Background During aging, chronic inflammation can promote tumor development and metastasis. Patients with chronic inflammatory bowel diseases (IBD) are at an increased risk of developing colorectal cancer (CRC). However, the molecular mechanism underlying is still unclear. Methods We conducted a large-scale single-cell sequencing analysis comprising 432,314 single cells from 92 CRC and 24 IBD patients. The analysis focused on the heterogeneity and commonality of CRC and IBD with respect to immune cell landscape, cellular communication, aging and inflammatory response, and Meta programs. Results The CRC and IBD had significantly different propensities in terms of cell proportions, differential genes and their functions, and cellular communication. The progression of CRC was mainly associated with epithelial cells, fibroblasts, and monocyte-macrophages, which displayed pronounced metabolic functions. In particular, monocyte-macrophages were enriched for the aging and inflammation-associated NF-κB pathway. And IBD was enriched in immune-related functions with B cells and T cells. Cellular communication analysis in CRC samples displayed an increase in MIF signaling from epithelial cells to T cells, and an increase in the efferent signal of senescence-associated SPP1 signaling from monocyte-macrophages. Notably, we also found some commonalities between CRC and IBD. The efferent and afferent signals showed that the pro-inflammatory cytokine played an important role. And the activity of aging and inflammatory response with AUCell analysis also showed a high degree of commonality. Furthermore, using the Meta programs (MPs) with the NMF algorithm, we found that the CRC non-malignant cells shared a substantial proportion of the MP genes with CRC malignant cells (68% overlap) and IBD epithelial cells (52% overlap), respectively. And it was extensively involved in functions of cell cycle and immune response, revealing its dual properties of inflammation and cancer. In addition, CRC malignant and non-malignant cells were enriched for the senescence-related cell cycle G2M phase transition and the p53 signaling pathway. Conclusion Our study highlights the characteristics of aging, inflammation and tumor in CRC and IBD at the single-cell level, and the dual property of inflammation-cancer in CRC non-malignant cells may provide a more up-to-date understanding of disease transformation.
Collapse
Affiliation(s)
- Hongchao Lv
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Mu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meiqi Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Ping Jiang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Shan Xiao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
29
|
Wan Z, Zheng G, Zhang Z, Ruan Q, Wu B, Wei G. Material basis and core chemical structure of Dendrobium officinale polysaccharides against colitis-associated cancer based on anti-inflammatory activity. Int J Biol Macromol 2024; 262:130056. [PMID: 38365160 DOI: 10.1016/j.ijbiomac.2024.130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
It has been claimed that Dendrobium officinale polysaccharides (PSs) can degrade into oligosaccharide and then transform into short-chain fatty acids in the intestine after oral administration, and play an anti-colitis-associated cancer (CAC) effect by inhibiting intestinal inflammation. However, the material basis and core chemical structure underlying the anti-colon cancer properties of PSs have not yet been elucidated. In this study, PSs were degraded into enzymatic oligosaccharides (OSs) using β-mannanase. The results of in vivo experiments revealed that PSs and OSs administered by gastric lavage had similar antitumor effects in CAC mice. OS-1 (Oligosaccharide compounds 1) and OS-2 (Oligosaccharide compounds 2) were further purified and characterized from OSs, and it was found that OS-1, OS-2, OSs, and PSs had similar and consistent anti-inflammatory activities in vitro. Chemical structure comparison and evaluation revealed that the chemical structure of β-D-Manp-(1 → 4)-β-D-Glcp corresponding to OS-1 was the least common PS structure with anti-colitic activity. Therefore, our findings suggest that OSs are the material basis for PSs to exert anti-CAC activity and that the chemical structure of β-D-Manp-(1 → 4)-β-D-Glcp corresponding to OS-1 is the core chemical structure of PSs against CAC.
Collapse
Affiliation(s)
- Zhongxian Wan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Wai Huan Dong Road, Higher Education Mega Center, Panyu District, Guangzhou 511400, China; The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China
| | - Guoyao Zheng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China
| | - Qingfeng Ruan
- Department of Pharmacy, Wuhan No.1 Hospital, No. 215 Zhongshan Dadao, Qiaokou District, Wuhan, Hubei 430022, China
| | - Bo Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China.
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Wai Huan Dong Road, Higher Education Mega Center, Panyu District, Guangzhou 511400, China.
| |
Collapse
|
30
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Ozawa N, Yokobori T, Osone K, Bilguun EO, Okami H, Shimoda Y, Shiraishi T, Okada T, Sano A, Sakai M, Sohda M, Miyazaki T, Ide M, Ogawa H, Yao T, Oyama T, Shirabe K, Saeki H. MAdCAM-1 targeting strategy can prevent colitic cancer carcinogenesis and progression via suppression of immune cell infiltration and inflammatory signals. Int J Cancer 2024; 154:359-371. [PMID: 37676657 DOI: 10.1002/ijc.34722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 09/08/2023]
Abstract
Chronic inflammation caused by infiltrating immune cells can promote colitis-associated dysplasia/colitic cancer in ulcerative colitis (UC) by activating inflammatory cytokine signalling through the IL-6/p-STAT3 and TNFα/NF-κB pathways. Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) expressed on high endothelial venules promotes the migration of immune cells from the bloodstream to the gut via interaction with α4β7 integrin expressed on the immune cells. MAdCAM-1, has therefore drawn interest as a novel therapeutic target for treating active UC. However, the role of MAdCAM-1-positive endothelial cells in immune cell infiltration in dysplasia/colitic cancers remains unclear. We evaluated the expression of MAdCAM-1, CD31 and immune cell markers (CD8, CD68, CD163 and FOXP3) in samples surgically resected from 11 UC patients with dysplasia/colitic cancer and 17 patients with sporadic colorectal cancer (SCRC), using immunohistochemical staining. We used an azoxymethane/dextran sodium sulphate mouse model (AOM/DSS mouse) to evaluate whether dysplasia/colitic cancer could be suppressed with an anti-MAdCAM-1 blocking antibody by preventing immune cell infiltration. The number of MAdCAM-1-positive vessels and infiltrating CD8+ , CD68+ and CD163+ immune cells was significantly higher in dysplasia/colitic cancer than in normal, SCRC and UC mucosa. In AOM/DSS mice, the anti-MAdCAM-1 antibody reduced the number, mean diameter, depth of tumours, Ki67 positivity, number of CD8+ , CD68+ and CD163+ immune cells and the IL-6/p-STAT3 and TNF-α/NF-κB signalling. Our results indicate that targeting MAdCAM-1 is a promising strategy for controlling not only UC severity but also carcinogenesis and tumour progression by regulating inflammation/immune cell infiltration in patients with UC.
Collapse
Affiliation(s)
- Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Erkhem-Ochir Bilguun
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Yuki Shimoda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Tatsuya Miyazaki
- Department of Gastroenterological Surgery, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Munenori Ide
- Department of Pathology Diagnosis, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyouku, Tokyo, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
32
|
Zhang J, Chen C, Yan W, Fu Y. New sights of immunometabolism and agent progress in colitis associated colorectal cancer. Front Pharmacol 2024; 14:1303913. [PMID: 38273841 PMCID: PMC10808433 DOI: 10.3389/fphar.2023.1303913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Colitis associated colorectal cancer is a disease with a high incidence and complex course that develops from chronic inflammation and deteriorates after various immune responses and inflammation-induced attacks. Colitis associated colorectal cancer has the characteristics of both immune diseases and cancer, and the similarity of treatment models contributes to the similar treatment dilemma. Immunometabolism contributes to the basis of life and is the core of many immune diseases. Manipulating metabolic signal transduction can be an effective way to control the immune process, which is expected to become a new target for colitis associated colorectal cancer therapy. Immune cells participate in the whole process of colitis associated colorectal cancer development by transforming their functional condition via changing their metabolic ways, such as glucose, lipid, and amino acid metabolism. The same immune and metabolic processes may play different roles in inflammation, dysplasia, and carcinoma, so anti-inflammation agents, immunomodulators, and agents targeting special metabolism should be used in combination to prevent and inhibit the development of colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Jingyue Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Mao X, Shen J. Potential roles of enteric glial cells in Crohn's disease: A critical review. Cell Prolif 2024; 57:e13536. [PMID: 37551711 PMCID: PMC10771111 DOI: 10.1111/cpr.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Enteric glial cells in the enteric nervous system are critical for the regulation of gastrointestinal homeostasis. Increasing evidence suggests two-way communication between enteric glial cells and both enteric neurons and immune cells. These interactions may be important in the pathogenesis of Crohn's disease (CD), a chronic relapsing disease characterized by a dysregulated immune response. Structural abnormalities in glial cells have been identified in CD. Furthermore, classical inflammatory pathways associated with CD (e.g., the nuclear factor kappa-B pathway) function in enteric glial cells. However, the specific mechanisms by which enteric glial cells contribute to CD have not been summarized in detail. In this review, we describe the possible roles of enteric glial cells in the pathogenesis of CD, including the roles of glia-immune interactions, neuronal modulation, neural plasticity, and barrier integrity. Additionally, the implications for the development of therapeutic strategies for CD based on enteric glial cell-mediated pathogenic processes are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- Division of Gastroenterology and HepatologyBaoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyBaoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
34
|
Han W, Li C, Wang Y, Huo B, Li W, Shi W. Heme Metabolism-Related Gene TENT5C is a Prognostic Marker and Investigating Its Immunological Role in Colon Cancer. Pharmgenomics Pers Med 2023; 16:1127-1143. [PMID: 38152411 PMCID: PMC10752234 DOI: 10.2147/pgpm.s433790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
Background There is a strong correlation between consuming high amounts of heme and an elevated risk of developing various types of cancer, including colorectal cancer. However, the role of heme metabolism-related genes (HRGs) in colorectal cancer remains unclear. Our study aimed to identify prognostic markers for colorectal cancer patients based on these genes. Methods The heme metabolism score was assessed using gene set variation analysis (GSVA). Potential prognostic HRGs were identified from the TCGA-COAD dataset using LASSO and COX regression analyses. The expression level of TENT5C was validated in the GEO database and clinical samples. To explore the association between TENT5C expression and immune cell infiltrations, we performed ESTIMATE and single-sample gene set enrichment analysis (ssGSEA). Results The low level of heme metabolism score was associated with a poor prognosis in colorectal cancer patients. TENT5C is a prognostic gene and an independent prognostic biomarker for overall survival. Its expression was confirmed in multiple datasets and clinical samples, showing a positive correlation with immune cells and immune score. GSEA results suggested TENT5C's significant role in regulating immune and inflammatory responses in colorectal cancer. Conclusion TENT5C can be used as a biomarker in colorectal cancer. Additionally, TENT5C is associated with both prognosis and immune infiltration. These findings lay a strong groundwork for future research to delve into the specific role of TENT5C in the development and advancement of colorectal cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Cheng Li
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Yongheng Wang
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Binliang Huo
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, People’s Republic of China
| | - Wen Shi
- Department of Gastroenterology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
35
|
Kong Y, Wang X, Xu H, Liu S, Qie R. A Mendelian randomization study on the causal association of circulating cytokines with colorectal cancer. PLoS One 2023; 18:e0296017. [PMID: 38096329 PMCID: PMC10721084 DOI: 10.1371/journal.pone.0296017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Circulating cytokines have been associated with colorectal cancer (CRC). However, their causal correlation remains undetermined. This investigation uses genetic data to evaluate the mechanism that links circulating cytokines and CRC via Mendelian Randomization (MR). METHODS A two-sample MR evaluation was carried out to investigate the mechanism associating circulating cytokines and CRC in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental SNPs that were significantly related to the circulating cytokines were selected. Multiple MR analysis approaches were carried out, including Simple Mode, inverse variance weighted (IVW), MR-Egger, Weighted Mode, Weighted Median, and MR pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS The evidence supporting the association of genetically predicted circulating levels with the increased risk of CRC was revealed; these included vascular endothelial growth factor (OR = 1.352, 95% CI: 1.019-1.315, P = 0.024), interleukin-12p70 (OR = 1.273, 95% CI: 1.133-1.430, P = 4.68×10-5), interleukin-13 (OR = 1.149, 95% CI: 1.012-1.299, P = 0.028), interleukin-10 (OR = 1.230, 95% CI: 1.013-1.493, P = 0.037), and interleukin-7 (OR = 1.191, 95% CI: 1.023-1.386 P = 0.024). Additionally, MR analysis negative causal association between macrophage colony stimulating factor and CRC (OR = 0.854, 95% CI: 0.764-0.955, P = 0.005). The data from Simple Mode, Weighted Median, MR-Egger, and Weighted Mode analyses were consistent with the IVW estimates. Furthermore, the sensitivity analysis indicated that the presence of no horizontal pleiotropy to bias the causal estimates. CONCLUSION This investigation identified a causal association between circulating cytokines levels risk of CRC and may provide a deeper understanding of the pathogenesis of CRC, as well as offer promising leads for the development of novel therapeutic targets for CRC.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyun Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
36
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
37
|
Zhang W, Huang Z, Xiao Z, Wang H, Liao Q, Deng Z, Wu D, Wang J, Li Y. NF-κB downstream miR-1262 disturbs colon cancer cell malignant behaviors by targeting FGFR1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1819-1832. [PMID: 37867436 PMCID: PMC10686795 DOI: 10.3724/abbs.2023235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/23/2023] [Indexed: 10/24/2023] Open
Abstract
Despite substantial advancements in screening, surgery, and chemotherapy, colorectal cancer remains the second most lethal form of the disease. Nuclear factor kappa B (NF-κB) signaling is a critical driver facilitating the malignant transformation of chronic inflammatory bowel diseases. In this study, deregulated miRNAs that could play a role in colon cancer are analyzed and investigated for specific functions in vitro using cancer cells and in vivo using a subcutaneous xenograft model. miRNA downstream targets are analyzed, and predicted binding and regulation are verified. miR-1262, an antitumor miRNA, is downregulated in colon cancer tissue samples and cell lines. miR-1262 overexpression suppresses colon cancer malignant behaviors in vitro and tumor development and metastasis in a subcutaneous xenograft model and a lung metastasis mouse model in vivo. miR-1262 directly targets fibroblast growth factor receptor 1 (FGFR1) and inhibits FGFR1 expression. FGFR1 overexpression shows oncogenic functions through the regulation of cancer cell proliferation, invasion, and migration; when cotransfected, lv-FGFR1 partially attenuates the antitumor effects of agomir-1262. NF-κB binds to the miR-1262 promoter region and inhibits transcription activity. The NF-κB inhibitor CAPE exerts antitumor effects; miR-1262 inhibition partially reverses CAPE effects on colon cancer cells. Conclusively, miR-1262 serves as an antitumor miRNA in colon cancer by targeting FGFR1. The NF-κB/miR-1262/FGFR1 axis modulates colon cancer cell phenotypes, including proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Weilin Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhongcheng Huang
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhigang Xiao
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Hui Wang
- Department of Cardiovascular MedicineHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Qianchao Liao
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhengru Deng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Deqing Wu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Yong Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
38
|
Chen S, Jin X, He T, Zhang M, Xu H. Identification of ferroptosis-related genes in acute phase of temporal lobe epilepsy based on bioinformatic analysis. BMC Genomics 2023; 24:675. [PMID: 37946105 PMCID: PMC10636915 DOI: 10.1186/s12864-023-09782-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Epilepsy is a prevalent neurological disorder, and while its precise mechanism remains elusive, a connection to ferroptosis has been established. This study investigates the potential clinical diagnostic significance of ferroptosis-related genes (FRGs) during the acute phase of temporal lobe epilepsy. METHODS To identify differentially expressed genes (DEGs), we accessed data from the GEO database and performed an intersection analysis with the FerrDB database to pinpoint FRGs. A protein-protein interaction (PPI) network was constructed. To assess the diagnostic utility of the discovered feature genes for the disease, ROC curve analysis was conducted. Subsequently, qRT-PCR was employed to validate the expression levels of these feature genes. RESULTS This study identified a total of 25 FRGs. PPI network analysis revealed six feature genes: IL6, PTGS2, HMOX1, NFE2L2, TLR4, and JUN. ROC curve analysis demonstrated that the combination of these six feature genes exhibited the highest diagnostic potential. qRT-PCR validation confirmed the expression of these feature genes. CONCLUSION We have identified six feature genes (IL6, PTGS2, HMOX1, NFE2L2, TLR4, and JUN) strongly associated with ferroptosis in epilepsy, suggesting their potential as biomarkers for the diagnosis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
39
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
40
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
41
|
Yin Y, Wan J, Yu J, Wu K. Molecular Pathogenesis of Colitis-associated Colorectal Cancer: Immunity, Genetics, and Intestinal Microecology. Inflamm Bowel Dis 2023; 29:1648-1657. [PMID: 37202830 DOI: 10.1093/ibd/izad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 05/20/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have a high risk for colorectal cancer (CRC). This cancer type, which is strongly associated with chronic inflammation, is called colitis-associated CRC (CAC). Understanding the molecular pathogenesis of CAC is crucial to identify biomarkers necessary for early diagnosis and more effective treatment directions. The accumulation of immune cells and inflammatory factors, which constitute a complex chronic inflammatory environment in the intestinal mucosa, may cause oxidative stress or DNA damage to the epithelial cells, leading to CAC development and progression. An important feature of CAC is genetic instability, which includes chromosome instability, microsatellite instability, hypermethylation, and changes in noncoding RNAs. Furthermore, the intestinal microbiota and metabolites have a great impact on IBD and CAC. By clarifying immune, genetic, intestinal microecology, and other related pathogenesis, CAC may be more predictable and treatable.
Collapse
Affiliation(s)
- Yue Yin
- Medical School, Fourth Military Medical University, Xi'an, China
| | - Jian Wan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jingmin Yu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Tom A, Jacob J, Mathews M, Rajagopal R, Alfarhan A, Barcelo D, Narayanankutty A. Synthesis of Bis-Chalcones and Evaluation of Its Effect on Peroxide-Induced Cell Death and Lipopolysaccharide-Induced Cytokine Production. Molecules 2023; 28:6354. [PMID: 37687181 PMCID: PMC10488834 DOI: 10.3390/molecules28176354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Plant secondary metabolites are important sources of biologically active compounds with wide pharmacological potentials. Among the different classes, the chalcones form integral pharmacologically active agents. Natural chalcones and bis-chalcones exhibit high antioxidant and anti-inflammatory properties in various experiments. Studies are also underway to explore more biologically active bis-chalcones by chemical synthesis of these compounds. In this study, the effects of six synthetic bis-chalcones were evaluated in intestinal epithelial cells (IEC-6); further, the anti-inflammatory potentials were studied in lipopolysaccharide-induced cytokine production in macrophages. The synthesized bis-chalcones differ from each other first of all by the nature of the aromatic cores (functional group substitution, and their position) and by the size of a central alicycle. The exposure of IEC-6 cells to peroxide radicals reduced the cell viability; however, pre-treatment with the bis-chalcones improved the cell viability in these cells. The mechanism of action was observed to be the increased levels of glutathione and antioxidant enzyme activities. Further, these bis-chalcones also inhibited the LPS-stimulation-induced inflammatory cytokine production in RAW 264.7 macrophages. Overall, the present study indicated the cytoprotective and anti-inflammatory abilities of synthetic bis-chalcones.
Collapse
Affiliation(s)
- Alby Tom
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 673008, Kerala, India;
| | - Jisha Jacob
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 680555, Kerala, India;
| | - Manoj Mathews
- PG and Research Department of Chemistry, St. Joseph’s College Devagiri (Autonomous), Calicut 680555, Kerala, India;
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Damia Barcelo
- Water and Soil Research Group, Department of Environmental Chemistry, Idaea-Csic, Jordi Girona 18-26, 08034 Barcelona, Spain;
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College Devagiri (Autonomous), Calicut 673008, Kerala, India;
| |
Collapse
|
43
|
Wu A, Fang D, Liu Y, Shi X, Zhong Z, Zhou B, Ye L, Sun X, Jiang L. Nuclear translocation of thioredoxin-1 promotes colorectal cancer development via modulation of the IL-6/STAT3 signaling axis through interaction with STAT3. Theranostics 2023; 13:4730-4744. [PMID: 37771783 PMCID: PMC10526669 DOI: 10.7150/thno.85460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Thioredoxin 1 (Trx-1) is a small redox protein predominantly localized in the cytoplasm. Its expression is increased in several cancers, including colorectal cancer (CRC). However, the function of Trx-1 translocation to the nucleus in cancer is not clear. In this study, we investigated the role of Trx-1 nuclear translocation in development of CRC. Methods: Expression of Trx-1 and STAT3 was analyzed by Western blot and immunofluorescence. Endogenous interaction of Trx-1, STAT3, and karyopherin α1 in CRC cells was analyzed by co-immunoprecipitation. Trx-1 and pSTAT3 nuclear staining in human CRC tissues was analyzed by immunohistochemistry. A mouse model of AOM/DSS induced colitis-associated cancer (CAC) was utilized to investigate the antitumor effect of PX-12, a Trx-1 inhibitor. A knockin mouse with the Txn1(KK81-82EE) mutation was generated via CRISPR/Cas9, and CAC was induced in knockin and wild-type mice. Results: Nuclear translocation of Trx-1 was induced by IL-6, and inhibition of this translocation reversed IL-6-induced epithelial-to-mesenchymal transition, invasion and metastasis. Karyopherin α1 was found to specifically mediate IL-6-induced translocation of the Trx-1-pSTAT3 complex into the nucleus. Nuclear Trx-1 expression was closely correlated with lymph node metastasis and distant metastasis in human CRC. In addition, nuclear staining of Trx-1 showed significant positive correlation with nuclear staining of pSTAT3 in human CRC tissues. PX-12, an inhibitor of Trx-1, significantly impaired the activation of STAT3 and suppressed the development of AOM/DSS-induced CAC in mice. Moreover, AOM/DSS-induced nuclear Trx-1 expression was suppressed in Txn1(KK81-82EE) mice, which inhibited STAT3 activation and cancer progression. Conclusions: These results provide new insights into the mechanisms of STAT3 activation triggered by IL-6 and identify nuclear translocation of Trx-1 as a potential therapeutic target for the treatment of CRC and CAC.
Collapse
Affiliation(s)
- Aihua Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Daoquan Fang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Liu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaomeng Shi
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zuyue Zhong
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Baojian Zhou
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuecheng Sun
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
44
|
Yan Y, Lei Y, Qu Y, Fan Z, Zhang T, Xu Y, Du Q, Brugger D, Chen Y, Zhang K, Zhang E. Bacteroides uniformis-induced perturbations in colonic microbiota and bile acid levels inhibit TH17 differentiation and ameliorate colitis developments. NPJ Biofilms Microbiomes 2023; 9:56. [PMID: 37580334 PMCID: PMC10425470 DOI: 10.1038/s41522-023-00420-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is associated with gut dysbiosis and can lead to colitis-associated malignancies. Bacteroides uniformis (Bu) regulates animal intestinal homeostasis; however, the mechanism by which it alleviates colitis in mice remains unknown. We investigated the effects of B. uniformis JCM5828 and its metabolites on female C57BL/6J mice with dextran sulfate sodium salt (DSS) induced colitis. Treatment with Bu considerably alleviated colitis progression and restored the mechanical and immune barrier protein expression. Additionally, Bu increased the abundance of the symbiotic bacteria Bifidobacterium and Lactobacillus vaginalis while decreasing that of pathogenic Escherichia-Shigella, and modulated intestinal bile acid metabolism. Bu largely regulated the expression of key regulatory proteins of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in colonic tissues and the differentiation of TH17 cells. However, Bu could not directly inhibit TH17 cell differentiation in vitro; it modulated the process in the lamina propria by participating in bile acid metabolism and regulating key metabolites (alpha-muricholic, hyodeoxycholic, and isolithocholic acid), thereby modulating the intestinal immune response. Our findings suggest that Bu or bile acid supplements are potential therapies for colitis and other diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- YiTing Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ying Qu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhen Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Enping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
45
|
Gong D, Adomako-Bonsu AG, Wang M, Li J. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort. PeerJ 2023; 11:e15777. [PMID: 37554340 PMCID: PMC10405800 DOI: 10.7717/peerj.15777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC), which develops from the gradual evolution of tubular adenomas and serrated polyps in the colon and rectum, has a poor prognosis and a high mortality rate. In addition to genetics, lifestyle, and chronic diseases, intestinal integrity and microbiota (which facilitate digestion, metabolism, and immune regulation) could promote CRC development. For example, enterotoxigenic Bacteroides fragilis, genotoxic Escherichia coli (pks+ E. coli), and Fusobacterium nucleatum, members of the intestinal microbiota, are highly correlated in CRC. This review describes the roles and mechanisms of these three bacteria in CRC development. Their interaction during CRC initiation and progression has also been proposed. Our view is that in the precancerous stage of colorectal cancer, ETBF causes inflammation, leading to potential changes in intestinal ecology that may provide the basic conditions for pks+ E. coli colonization and induction of oncogenic mutations, when cancerous intestinal epithelial cells can further recruit F. nucleatum to colonise the lesion site and F. nucleatum may contribute to CRC advancement by primarily the development of cancer cells, stemization, and proliferation, which could create new and tailored preventive, screening and therapeutic interventions. However, there is the most dominant microbiota in each stage of CRC development, not neglecting the possibility that two or even all three bacteria could be engaged at any stage of the disease. The relationship between the associated gut microbiota and CRC development may provide important information for therapeutic strategies to assess the potential use of the associated gut microbiota in CRC studies, antibiotic therapy, and prevention strategies.
Collapse
Affiliation(s)
- Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Maijian Wang
- Gastrointestinal Surgery, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
46
|
Zhou Y, Ji X, Wang D, Guo Y, Zhao J, Yan W. Effect of silkworm pupae ( Bombyx mori) protein on colon cancer in nude mice: inhibition of tumor growth, oxidative stress and inflammatory response. Front Pharmacol 2023; 14:1138742. [PMID: 37538184 PMCID: PMC10394231 DOI: 10.3389/fphar.2023.1138742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Silkworm pupa (bombyx mori) protein (SPP) is a potential therapeutic bioactive substance that has anti-tumor activity against breast, liver, and gastric cancers. The aim of this study was to investigate the antitumor effect of SPP on colon cancer nude mice. Using a subcutaneous tumor formation method, we validated the therapeutic effect of SPP on colon cancer nude mice in vivo. Results showed that SPP was cytotoxic to tumor cells. SPP could protect the liver of the nude mice by lowering hepatic oxidative stress and regulating serum inflammation levels by decreasing TNF-α and IL-2 levels while in-creasing INF-γ levels. In addition, diminished Ki-67 protein, enhanced cleaved caspase-3 protein, di-minished Vimentin, enhanced E-cadherin. These findings suggested that SPP's antitumor activity may be achieved by reducing inflammation, inhibiting tumor proliferation and metastasis, and inducing apoptosis in cancer cells. In the future, SPP could be used as an anticancer drug, potentially providing a new source of drugs for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xiaojiao Ji
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
47
|
Li M, Jiang W, Wang Z, Lu Y, Zhang J. New insights on IL‑36 in intestinal inflammation and colorectal cancer (Review). Exp Ther Med 2023; 25:275. [PMID: 37206554 PMCID: PMC10189745 DOI: 10.3892/etm.2023.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Interleukin (IL)-36 is a member of the IL-1 superfamily, which includes three receptor agonists and one antagonist and exhibits a familial feature of inflammatory regulation. Distributed among various tissues, such as the skin, lung, gut and joints, the mechanism of IL-36 has been most completely investigated in the skin and has been used in clinical treatment of generalized pustular psoriasis. Meanwhile, the role of IL-36 in the intestine has also been under scrutiny and has been shown to be involved in the regulation of various intestinal diseases. Inflammatory bowel disease and colorectal cancer are the most predominant inflammatory and neoplastic diseases of the intestine, and multiple studies have identified a complex role for IL-36 in both of them. Indeed, inhibiting IL-36 signaling is currently regarded as a promising therapeutic approach. Therefore, the present review briefly describes the composition and expression of IL-36 and focuses on the role of IL-36 in intestinal inflammation and colorectal cancer. The targeted therapies that are currently being developed for the IL-36 receptor are also discussed.
Collapse
Affiliation(s)
- Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yihan Lu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
- Correspondence to: Dr Jun Zhang, Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 8th Floor, 8th Building, 68 Changle Road, Qinhuai, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
48
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
49
|
Hou X, Du H, Deng Y, Wang H, Liu J, Qiao J, Liu W, Shu X, Sun B, Liu Y. Gut microbiota mediated the individualized efficacy of Temozolomide via immunomodulation in glioma. J Transl Med 2023; 21:198. [PMID: 36927689 PMCID: PMC10018922 DOI: 10.1186/s12967-023-04042-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the preferred chemotherapy strategy for glioma therapy. As a second-generation alkylating agent, TMZ provides superior oral bio-availability. However, limited response rate (less than 50%) and high incidence of drug resistance seriously restricts TMZ's application, there still lack of strategies to increase the chemotherapy sensitivity. METHODS Luci-GL261 glioma orthotopic xenograft model combined bioluminescence imaging was utilized to evaluate the anti-tumor effect of TMZ and differentiate TMZ sensitive (S)/non-sensitive (NS) individuals. Integrated microbiomics and metabolomics analysis was applied to disentangle the involvement of gut bacteria in TMZ sensitivity. Spearman's correlation analysis was applied to test the association between fecal bacteria levels and pharmacodynamics indices. Antibiotics treatment combined TMZ treatment was used to confirm the involvement of gut microbiota in TMZ response. Flow cytometry analysis, ELISA and histopathology were used to explore the potential role of immunoregulation in gut microbiota mediated TMZ response. RESULTS Firstly, gut bacteria composition was significantly altered during glioma development and TMZ treatment. Meanwhile, in vivo anti-cancer evaluation suggested a remarkable difference in chemotherapy efficacy after TMZ administration. Moreover, 16s rRNA gene sequencing and non-targeted metabolomics analysis revealed distinct different gut microbiota and immune infiltrating state between TMZ sensitive and non-sensitive mice, while abundance of differential gut bacteria and related metabolites was significantly correlated with TMZ pharmacodynamics indices. Further verification suggested that gut microbiota deletion by antibiotics treatment could accelerate glioma development, attenuate TMZ efficacy and inhibit immune cells (macrophage and CD8α+ T cell) recruitment. CONCLUSIONS The current study confirmed the involvement of gut microbiota in glioma development and individualized TMZ efficacy via immunomodulation, hence gut bacteria may serve as a predictive biomarker as well as a therapeutic target for clinical TMZ application.
Collapse
Affiliation(s)
- Xiaoying Hou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yufei Deng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jinmi Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China. .,Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
50
|
Wei X, Leng X, Li G, Wang R, Chi L, Sun D. Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol 2023; 14:1120672. [PMID: 36909166 PMCID: PMC9995472 DOI: 10.3389/fphar.2023.1120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) can progress into colitis-associated colorectal cancer (CAC) through the inflammation-cancer sequence. Although the mechanism of carcinogenesis in IBD has not been fully elucidated, the existing research indicates that CAC may represent a fundamentally different pathogenesis pattern of colorectal cancer. At present, there is no proven safe and effective medication to prevent IBD cancer. In recent years, Chinese medicine extracts and Chinese medicine monomers have been the subject of numerous articles about the prevention and treatment of CAC, but their clinical application is still relatively limited. Traditional Chinese Medicine (TCM) formulas are widely applied in clinical practice. TCM formulas have demonstrated great potential in the prevention and treatment of CAC in recent years, although there is still a lack of review. Our work aimed to summarize the effects and potential mechanisms of TCM formulas for the prevention and treatment of CAC, point out the issues and limitations of the current research, and provide recommendations for the advancement of CAC research in the future. We discovered that TCM formulas regulated many malignant biological processes, such as inflammation-mediated oxidative stress, apoptosis, tumor microenvironment, and intestinal microecology imbalance in CAC, through a review of the articles published in databases such as PubMed, SCOPUS, Web of Science, Embase, and CNKI. Several major signal transduction pathways, including NF-κB, STAT3, Wnt/β-catenin, HIF-1α, and Nrf2, were engaged. TCM formula may be a promising treatment candidate to control the colitis-cancer transformation, however further high-quality research is required.
Collapse
Affiliation(s)
- Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Leng
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Gongyi Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruting Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|