1
|
Dupuis B, Pocquet N, Failloux AB. Understanding the role of trehalose in interactions between Wolbachia and Aedes aegypti. Front Cell Infect Microbiol 2025; 15:1547873. [PMID: 40171161 PMCID: PMC11958977 DOI: 10.3389/fcimb.2025.1547873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Mosquito-borne diseases such as chikungunya, dengue, and Zika represent a major burden on global public health. To fight against these arboviruses, vector control strategies are a priority. One existing strategy is based on the use of an endosymbiotic bacterium, Wolbachia, which reduces the transmission of arboviruses by the mosquito Aedes aegypti via a pathogen blocking effect. Wolbachia in Ae. aegypti disrupts several pathways of the host's metabolism. Trehalose is a carbohydrate circulating mainly in insect hemolymph and plays a role in numerous mechanisms as energy source or stress recovery molecule and in chitin synthesis. This study explores the importance of trehalose in the interactions between Wolbachia and Ae. aegypti, and attempts to understand the pathogen blocking effect.
Collapse
Affiliation(s)
- Benjamin Dupuis
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Nicolas Pocquet
- Institut Pasteur de Nouvelle-Calédonie, Unité de Recherche et d'Expertise en Entomologie Médicale (URE-EM), Nouméa, New Caledonia
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| |
Collapse
|
2
|
Dong R, Wang J, Guan R, Sun J, Jin P, Shen J. Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer. Antioxidants (Basel) 2025; 14:104. [PMID: 39857438 PMCID: PMC11760893 DOI: 10.3390/antiox14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is one of the most prevalent cancers worldwide. Recent studies have increasingly emphasized the role of oxidative stress in the initiation and progression of breast cancer. This article reviews how oxidative stress imbalance influences the occurrence and advancement of breast cancer, elucidating the intricate mechanisms through which reactive oxygen species (ROS) operate in this context and their potential therapeutic applications. By highlighting these critical insights, this review aims to enhance our understanding of oxidative stress as a potential target for innovative therapeutic strategies in the management of breast cancer.
Collapse
Affiliation(s)
- Rui Dong
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jing Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Ruiqi Guan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ping Jin
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Junling Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| |
Collapse
|
3
|
Kulow VA, Roegner K, Labes R, Kasim M, Mathia S, Czopek CS, Berndt N, Becker PN, Ter-Avetisyan G, Luft FC, Enghard P, Hinze C, Klocke J, Eckardt KU, Schmidt-Ott KM, Persson PB, Rosenberger C, Fähling M. Beyond hemoglobin: Critical role of 2,3-bisphosphoglycerate mutase in kidney function and injury. Acta Physiol (Oxf) 2025; 241:e14242. [PMID: 39422260 DOI: 10.1111/apha.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
AIM 2,3-bisphosphoglycerate mutase (BPGM) is traditionally recognized for its role in modulating oxygen affinity to hemoglobin in erythrocytes. Recent transcriptomic analyses, however, have indicated a significant upregulation of BPGM in acutely injured murine and human kidneys, suggesting a potential renal function for this enzyme. Here we aim to explore the physiological role of BPGM in the kidney. METHODS A tubular-specific, doxycycline-inducible Bpgm-knockout mouse model was generated. Histological, immunofluorescence, and proteomic analyses were conducted to examine the localization of BPGM expression and the impact of its knockout on kidney structure and function. In vitro studies were performed to investigate the metabolic consequences of Bpgm knockdown under osmotic stress. RESULTS BPGM expression was localized to the distal nephron and was absent in proximal tubules. Inducible knockout of Bpgm resulted in rapid kidney injury within 4 days, characterized by proximal tubular damage and tubulointerstitial fibrosis. Proteomic analyses revealed involvement of BPGM in key metabolic pathways, including glycolysis, oxidative stress response, and inflammation. In vitro, Bpgm knockdown led to enhanced glycolysis, decreased reactive oxygen species elimination capacity under osmotic stress, and increased apoptosis. Furthermore, interactions between nephron segments and immune cells in the kidney suggested a mechanism for propagating stress signals from distal to proximal tubules. CONCLUSION BPGM fulfills critical functions beyond the erythrocyte in maintaining glucose metabolism in the distal nephron. Its absence leads to metabolic imbalances, increased oxidative stress, inflammation, and ultimately kidney injury.
Collapse
Affiliation(s)
- Vera A Kulow
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Kameliya Roegner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Robert Labes
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Mumtaz Kasim
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Susanne Mathia
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Claudia S Czopek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp N Becker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Gohar Ter-Avetisyan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Christian Hinze
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jan Klocke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Kai-Uwe Eckardt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Kai M Schmidt-Ott
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Christian Rosenberger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Michael Fähling
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| |
Collapse
|
4
|
Aleksandrova YR, Nikolaeva NS, Shagina IA, Smirnova KD, Zubishina AA, Khlopotinin AI, Fakhrutdinov AN, Khokhlov AL, Begunov RS, Neganova ME. N-Aryl Benzimidazole and Benzotriazole Derivatives and Their Hybrids as Cytotoxic Agents: Design, Synthesis and Structure-Activity Relationship Studies. Molecules 2024; 29:5360. [PMID: 39598749 PMCID: PMC11596563 DOI: 10.3390/molecules29225360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The era of chemotherapy began in the 1940s, which is the basis of traditional antitumor approaches and, being one of the most high-tech treatment methods, is still widely used to treat various types of cancer. A promising direction in modern medicinal chemistry is currently the creation of hybrid molecules containing several pharmacophore fragments of different structures. This strategy is successfully used to increase the therapeutic efficacy of cytotoxic agents and reduce side effects. In this work, we synthesized 10 1-aryl derivatives of benzimidazole and benzotriazole and 11 hybrids based on them. Among the compounds obtained, the most promising hybrid molecules were diphenylamines, containing an amino group and a benzotriazole cycle in the ortho position to the bridging NH group, which showed significant cytotoxic activity, excellent antioxidant properties and the ability to suppress the migration activity of tumor cells. Taken together, our results demonstrate that substituted diphenylamine-based bipharmacophoric compounds may serve as a promising platform for further optimization to obtain effective antitumor compounds.
Collapse
Affiliation(s)
- Yulia R. Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (Y.R.A.); (I.A.S.)
| | - Natalia S. Nikolaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Inna A. Shagina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (Y.R.A.); (I.A.S.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Karina D. Smirnova
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
| | - Alla A. Zubishina
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
| | - Alexander I. Khlopotinin
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
| | - Artem N. Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander L. Khokhlov
- Institute of Pharmacy, Yaroslavl State Medical University of the Ministry of Health of the Russian Federation, Yaroslavl 150000, Russia;
| | - Roman S. Begunov
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
- Institute of Pharmacy, Yaroslavl State Medical University of the Ministry of Health of the Russian Federation, Yaroslavl 150000, Russia;
| | - Margarita E. Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (Y.R.A.); (I.A.S.)
| |
Collapse
|
5
|
Zhang W, Wang Y, Chen L, Chen H, Qi H, Zheng Y, Du Y, Zhang L, Wang T, Li Q. Dihydroartemisinin suppresses glioma growth by repressing ERRα-mediated mitochondrial biogenesis. Mol Cell Biochem 2024; 479:2809-2825. [PMID: 38072894 DOI: 10.1007/s11010-023-04892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 10/06/2024]
Abstract
Malignant gliomas are an exceptionally lethal form of cancer with limited treatment options. Dihydroartemisinin (DHA), a sesquiterpene lactone antimalarial compound, has demonstrated therapeutic effects in various solid tumors. In our study, we aimed to investigate the mechanisms underlying the anticancer effects of DHA in gliomas. To explore the therapeutic and molecular mechanisms of DHA, we employed various assays, including cell viability, flow cytometry, mitochondrial membrane potential, glucose uptake and glioma xenograft models. Our data demonstrated that DHA significantly inhibited glioma cell proliferation in both temozolomide-resistant cells and glioma stem-like cells. We found that DHA-induced apoptosis occurred via the mitochondria-mediated pathway by initiating mitochondrial dysfunction before promoting apoptosis. Moreover, we discovered that DHA treatment substantially reduced the expression of the mitochondrial biogenesis-related gene, ERRα, in glioma cells. And the ERRα pathway is a critical target in treating glioma with DHA. Our results also demonstrated that the combination of DHA and temozolomide synergistically inhibited the proliferation of glioma cells. In vivo, DHA treatment remarkably extended survival time in mice bearing orthotopic glioblastoma xenografts. Thus, our findings suggest that DHA has a novel role in modulating cancer cell metabolism and suppressing glioma progression by activating the ERRα-regulated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Yan Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Yong Zheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yongli Du
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
6
|
Lin H, He K, Zhang S, Chen H, Wang C, Lu J, Ou Y, Chen W, Zhou Y, Li Y, Chen J. Targeting G6PD to mitigate cartilage inflammation in TMJOA: The NOX4-ROS-MAPK axis as a therapeutic avenue. Int Immunopharmacol 2024; 139:112688. [PMID: 39029227 DOI: 10.1016/j.intimp.2024.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Chondrocytes, known for their metabolic adaptability in response to varying stimuli, play a significant role in osteoarthritis (OA) progression. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has recently been found to upregulate in OA chondrocyte. However, the exact role of G6PD in temporomandibular joint osteoarthritis (TMJOA) and its effect on chondrocyte function remains unclear. In present study, we induced OA-like conditions in the rat temporomandibular joint via occlusal disharmony (OD), noting a marked increase in G6PD expression in the condylar cartilage. Our data show that G6PD knockdown in mandibular condylar chondrocytes (MCCs) reduces the expression of catabolic enzymes (e.g., MMP3, MMP13) and inflammatory cytokines (e.g., IL6) induced by IL-1β. G6PD knockdown also mitigates IL-1β-induced upregulation of ERK, JNK, and p38 phosphorylation and reduces reactive oxygen species (ROS) levels by decreasing the nicotinamide adenine dinucleotide phosphate (NADPH) and NADPH oxidases 4 (NOX4) mRNA expression. In summary, G6PD appears to regulate the inflammatory state of condylar chondrocytes via the NOX-ROS-MAPK axis, highlighting its potential as a therapeutic target for TMJOA.
Collapse
Affiliation(s)
- Hanyu Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Kaixun He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Sihui Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Huachen Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Chengchaozi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Jie Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Yanjing Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Wenqian Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Yuwei Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Yang Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
7
|
Bo H, Wu Q, Zhu C, Zheng Y, Cheng G, Cui L. PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/β-catenin axis. Thorac Cancer 2024; 15:1007-1016. [PMID: 38494915 PMCID: PMC11045336 DOI: 10.1111/1759-7714.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND PIEZO1 works differently in different cancers and at different stages of development. The objective of the current study was to explore the function and underlying mechanism of PIEZO1 in lung adenocarcinoma (LUAD) cells. METHODS Different LUAD cell lines were treated with PIEZO1 inhibitor (GsMTx4) and agonist (Yoda1), and the expression of PIEZO1 in LUAD cells was detected using real-time quantitative PCR (RT-qPCR) and western blotting. The effects of PIEZO1 on invasion, migration and epithelial-mesenchymal transition (EMT) markers protein expression of LUAD cells were detected using the MTT assay, flow cytometry, transwell assay, wound-healing assay, and western blotting. Reactive oxygen species (ROS) agonists (BAY 87-2243) and inhibitors (NAC) and Wnt/β-catenin pathway inhibitors (iCRT3) were selected to treat A549 cells to investigate the mechanism of PIEZO1 on ROS production and Wnt/β-catenin expression in A549 cells. RESULTS In A549, NCI-H1395, and NCI-H1975 cells, GsMTx4 promoted cell proliferation, invasion, migration, upregulated EMT-related marker protein expression, and inhibited cell apoptosis, while Yoda1 exerted effects opposite to those of GsMTx4. In A549 cells, GsMTx4 can reduce ROS production, it also inhibited ROS production, apoptosis, and downregulated proapoptotic markers induced by BAY 87-2243. Importantly, BAY 87-2243 blocked the effect of GSMTX4-induced Wnt/β-catenin overexpression. Similarly, Yoda1 can reduce the effect of NAC. In addition, iCRT3 can block the upregulation of EMT-related marker proteins by GsMTx4, and increase apoptosis and decrease cell invasion and migration. CONCLUSION In summary, PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/β-catenin axis, providing a new perspective on the role of mechanosensitive channel proteins in cancer.
Collapse
Affiliation(s)
- Haimei Bo
- Tianjin Medical University General HospitalTianjinChina
- North China University of Science and TechnologyTangshanChina
| | - Qi Wu
- Tianjin Medical University General HospitalTianjinChina
| | - Chaonan Zhu
- North China University of Science and TechnologyTangshanChina
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Yang Zheng
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Guang Cheng
- North China University of Science and TechnologyTangshanChina
| | - Lihua Cui
- North China University of Science and TechnologyTangshanChina
| |
Collapse
|
8
|
La Monica S, Vacondio F, Eltayeb K, Lodola A, Volta F, Viglioli M, Ferlenghi F, Galvani F, Galetti M, Bonelli M, Fumarola C, Cavazzoni A, Flammini L, Verzè M, Minari R, Petronini PG, Tiseo M, Mor M, Alfieri R. Targeting glucosylceramide synthase induces antiproliferative and proapoptotic effects in osimertinib-resistant NSCLC cell models. Sci Rep 2024; 14:6491. [PMID: 38499619 PMCID: PMC10948837 DOI: 10.1038/s41598-024-57028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
The EGFR tyrosine kinase inhibitor osimertinib has been approved for the first-line treatment of EGFR-mutated Non-Small Cell Lung Cancer (NSCLC) patients. Despite its efficacy, patients develop resistance. Mechanisms of resistance are heterogeneous and not fully understood, and their characterization is essential to find new strategies to overcome resistance. Ceramides are well-known regulators of apoptosis and are converted into glucosylceramides (GlcCer) by glucosylceramide synthase (GCS). A higher content of GlcCers was observed in lung pleural effusions from NSCLC patients and their role in osimertinib-resistance has not been documented. The aim of this study was to determine the therapeutic potential of inhibiting GCS in NSCLC EGFR-mutant models resistant to osimertinib in vitro and in vivo. Lipidomic analysis showed a significant increase in the intracellular levels of glycosylceramides, including GlcCers in osimertinib resistant clones compared to sensitive cells. In resistant cells, the GCS inhibitor PDMP caused cell cycle arrest, inhibition of 2D and 3D cell proliferation, colony formation and migration capability, and apoptosis induction. The intratumoral injection of PDMP completely suppressed the growth of OR xenograft models. This study demonstrated that dysregulation of ceramide metabolism is involved in osimertinib-resistance and targeting GCS may be a promising therapeutic strategy for patients progressed to osimertinib.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Martina Viglioli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, 00078, Monte Porzio Catone, Rome, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Lisa Flammini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy.
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| |
Collapse
|
9
|
Wei R, Fu G, Li Z, Liu Y, Xue M. Engineering Iron-Based Nanomaterials for Breast Cancer Therapy Associated with Ferroptosis. Nanomedicine (Lond) 2024; 19:537-555. [PMID: 38293902 DOI: 10.2217/nnm-2023-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Ferroptosis has received increasing attention as a novel nonapoptotic programmed death. Recently, iron-based nanomaterials have been extensively exploited for efficient tumor ferroptosis therapy, as they directly release high concentrations of iron and increase intracellular reactive oxygen species levels. Breast cancer is one of the commonest malignant tumors in women; inhibiting breast cancer cell proliferation through activating the ferroptosis pathway could be a potential new target for patient treatment. Here, we briefly introduce the background of ferroptosis and systematically review the current cancer therapeutic strategies based on iron-based ferroptosis inducers. Finally, we summarize the advantages of these various ferroptosis inducers and shed light on future perspectives. This review aims to provide better guidance for the development of iron-based nanomaterial ferroptosis inducers.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites & Applications, Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou, 450006, Henan, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
10
|
Zhang L, Zhang J, Ye ZW, Muhammad A, Li L, Culpepper JW, Townsend DM, Tew KD. Adaptive changes in tumor cells in response to reductive stress. Biochem Pharmacol 2024; 219:115929. [PMID: 38000559 PMCID: PMC10895707 DOI: 10.1016/j.bcp.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Reductive stress is characterized by an excess of cellular electron donors and can be linked with various human pathologies including cancer. We developed melanoma cell lines resistant to reductive stress agents: rotenone (ROTR), n-acetyl-L-cysteine, (NACR), or dithiothreitol (DTTR). Resistant cells divided more rapidly and had intracellular homeostatic redox-couple ratios that were shifted towards the reduced state. Resistance caused alterations in general cell morphology, but only ROTR cells had significant changes in mitochondrial morphology with higher numbers that were more isolated, fragmented and swollen, with greater membrane depolarization and decreased numbers of networks. These changes were accompanied by lower basal oxygen consumption and maximal respiration rates. Whole cell flux analyses and mitochondrial function assays showed that NACR and DTTR preferentially utilized tricarboxylic acid (TCA) cycle intermediates, while ROTR used ketone body substrates such as D, L-β-hydroxybutyric acid. NACR and DTTR cells had constitutively decreased levels of reactive oxygen species (ROS), although this was accompanied by activation of nuclear factor erythroid 2-related factor 2 (Nrf2), with concomitant increased expression of the downstream gene products such as glutathione S-transferase P (GSTP). Further adaptations included enhanced expression of endoplasmic reticulum proteins controlling the unfolded protein response (UPR). Although expression patterns of these UPR proteins were distinct between the resistant cells, a trend implied that resistance to reductive stress is accompanied by a constitutively increased UPR phenotype in each line. Overall, tumor cells, although tolerant of oxidative stress, can adapt their energy and survival mechanisms in lethal reductive stress conditions.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Aslam Muhammad
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - John W Culpepper
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
11
|
Wang Y, Harada‐Shoji N, Kitamura N, Yamazaki Y, Ebata A, Amari M, Watanabe M, Miyashita M, Tada H, Abe T, Suzuki T, Gonda K, Ishida T. Mitochondrial dynamics as a novel treatment strategy for triple-negative breast cancer. Cancer Med 2024; 13:e6987. [PMID: 38334464 PMCID: PMC10854452 DOI: 10.1002/cam4.6987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC), recognized as the most heterogeneous type of breast cancer (BC), exhibits a worse prognosis than other subtypes. Mitochondria dynamics play a vital role as mediators in tumorigenesis by adjusting to the cell microenvironments. However, the relationship between mitochondrial dynamics and metabophenotype exhibits discrepancies and divergence across various research and BC models. Therefore, this study aims to explore the role of mitochondrial dynamics in TNBC drug resistance and tumorigenesis. METHODS The Wst-8 test was conducted to assess doxorubicin sensitivity in HCC38, MDA-MB-231 (TNBC), and MCF-7 (luminal). Confocal microscopy and FACS were used to quantify the mitochondrial membrane potential (ΔφM), mitophagy, and reactive oxygen species (ROS) production. Agilent Seahorse XF Analyzer was utilized to measure metabolic characteristics. Dynamin-related protein-1 (DRP1), Parkin, and p62 immunohistochemistry staining were performed using samples from 107 primary patients with BC before and after neoadjuvant chemotherapy (NAC). RESULTS MDA-MB-231, a TNBC cell line with reduced sensitivity to doxorubicin, reduced ΔφM, and enhanced mitophagy to maintain ROS production through oxidative phosphorylation (OXPHOS)-based metabolism. HCC38, a doxorubicin-sensitive cell line, exhibited no alterations in ΔφM or mitophagy. However, it demonstrated an increase in ROS production and glycolysis. Clinicopathological studies revealed that pretreatment (before NAC) expression of DRP1 was significant in TNBC, as was pretreatment expression of Parkin in the hormone receptor-negative group. Furthermore, low p62 levels seem to be a risk factor for recurrence-free survival. CONCLUSION Our findings indicated that the interplay between mitophagy, linked to a worse clinical prognosis, and OXPHOS metabolism promoted chemotherapy resistance in TNBC. Mitochondrial fission is prevalent in TNBC. These findings suggest that targeting the unique mitochondrial metabolism and dynamics in TNBC may offer a novel therapeutic strategy for patients with TNBC.
Collapse
Affiliation(s)
- Yuechen Wang
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narumi Harada‐Shoji
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yuto Yamazaki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masakazu Amari
- Department of Breast SurgeryTohoku Kosai HospitalSendaiJapan
| | - Mika Watanabe
- Department of PathologyTohoku Kosai HospitalSendaiJapan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Medical ScienceTohoku University Graduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Suzuki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
- International Center for Synchrotron Radiation Innovation Smart (SRIS)Tohoku UniversitySendaiJapan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
12
|
Lee YS, Kim HS, Kim HJ, Kang HW, Lee DE, Kim MJ, Hong WC, Kim JH, Kim M, Cheong JH, Park JS. The role of LOXL2 induced by glucose metabolism-activated NF-κB in maintaining drug resistance through EMT and cancer stemness in gemcitabine-resistant PDAC. J Mol Med (Berl) 2023; 101:1449-1464. [PMID: 37737908 PMCID: PMC10663195 DOI: 10.1007/s00109-023-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Gemcitabine is considered a standard treatment for pancreatic cancer, but developing drug resistance greatly limits the effectiveness of chemotherapy and increases the rate of recurrence. Lysyl oxide-like 2 (LOXL2) is highly expressed in pancreatic cancer and is involved in carcinogenesis and EMT regulation. However, studies on the role of LOXL2 in drug resistance are limited. Here, we investigated the mechanism of LOXL2 induction and the effect of LOXL2 on EMT and CSC in gemcitabine-resistant pancreatic cancer. Glucose metabolism was activated in gemcitabine-resistant pancreatic cancer cells, and NF-κB signaling was regulated accordingly. Activated NF-κB directly induces transcription by binding to the promoters of LOXL2 and ZEB1. The EMT process was significantly inhibited by the coregulation of ZEB1 and LOXL2. In addition, LOXL2 inhibition reduced the expression of cancer stemness markers and stemness by regulating MAPK signaling activity. LOXL2 inhibits tumor growth of gemcitabine-resistant pancreatic cancer cells and increases the sensitivity to gemcitabine in mouse models. KEY MESSAGES: We identified a specific mechanism for inducing LOXL2 overexpression in gemcitabine-resistant pancreatic cancer. Taken together, our results suggest LOXL2 has an important regulatory role in maintaining gemcitabine resistance and may be an effective therapeutic target to treat pancreatic cancer.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Myeong Jin Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosol Chris Hong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minsoo Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Department of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Aramouni K, Assaf R, Shaito A, Fardoun M, Al-Asmakh M, Sahebkar A, Eid AH. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J Cell Physiol 2023; 238:1951-1963. [PMID: 37436042 DOI: 10.1002/jcp.31071] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Cellular oxidation-reduction (redox) systems, which encompass pro- and antioxidant molecules, are integral components of a plethora of essential cellular processes. Any dysregulation of these systems can cause molecular imbalances between the pro- and antioxidant moieties, leading to a state of oxidative stress. Long-lasting oxidative stress can manifest clinically as a variety of chronic illnesses including cancers, neurodegenerative disorders, cardiovascular disease, and metabolic diseases like diabetes. As such, this review investigates the impact of oxidative stress on the human body with emphasis on the underlying oxidants, mechanisms, and pathways. It also discusses the available antioxidant defense mechanisms. The cellular monitoring and regulatory systems that ensure a balanced oxidative cellular environment are detailed. We critically discuss the notion of oxidants as a double-edged sword, being signaling messengers at low physiological concentrations but causative agents of oxidative stress when overproduced. In this regard, the review also presents strategies employed by oxidants including redox signaling and activation of transcriptional programs such as those mediated by the Nrf2/Keap1 and NFk signaling. Likewise, redox molecular switches of peroxiredoxin and DJ-1 and the proteins they regulate are presented. The review concludes that a thorough comprehension of cellular redox systems is essential to develop the evolving field of redox medicine.
Collapse
Affiliation(s)
- Karl Aramouni
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Roland Assaf
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Wu X, Li F, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L. A novel oxidative stress-related genes signature associated with clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 2023; 13:1184841. [PMID: 37601683 PMCID: PMC10435754 DOI: 10.3389/fonc.2023.1184841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Oxidative stress plays a significant role in the tumorigenesis and progression of tumors. We aimed to develop a prognostic signature using oxidative stress-related genes (ORGs) to predict clinical outcome and provide light on the immunotherapy responses of clear cell renal cell carcinoma (ccRCC). Methods The information of ccRCC patients were collected from the TCGA and the E-MTAB-1980 datasets. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) were conducted to screen out overall survival (OS)-related genes. Then, an ORGs risk signature was built by multivariate Cox regression analyses. The performance of the risk signature was evaluated with Kaplan-Meier (K-M) survival. The ssGSEA and CIBERSORT algorithms were performed to evaluate immune infiltration status. Finally, immunotherapy responses was analyzed based on expression of several immune checkpoints. Results A prognostic 9-gene signature with ABCB1, AGER, E2F1, FOXM1, HADH, ISG15, KCNMA1, PLG, and TEK. The patients in the high risk group had apparently poor survival (TCGA: p < 0.001; E-MTAB-1980: p < 0.001). The AUC of the signature was 0.81 at 1 year, 0.76 at 3 years, and 0.78 at 5 years in the TCGA, respectively, and was 0.8 at 1 year, 0.82 at 3 years, and 0.83 at 5 years in the E-MTAB-1980, respectively. Independent prognostic analysis proved the stable clinical prognostic value of the signature (TCGA cohort: HR = 1.188, 95% CI =1.142-1.236, p < 0.001; E-MTAB-1980 cohort: HR =1.877, 95% CI= 1.377-2.588, p < 0.001). Clinical features correlation analysis proved that patients in the high risk group were more likely to have a larger range of clinical tumor progression. The ssGSEA and CIBERSORT analysis indicated that immune infiltration status were significantly different between two risk groups. Finally, we found that patients in the high risk group tended to respond more actively to immunotherapy. Conclusion We developed a robust prognostic signature based on ORGs, which may contribute to predict survival and guide personalize immunotherapy of individuals with ccRCC.
Collapse
Affiliation(s)
- Xin Wu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fenghua Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weimin Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Libo Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lianmin Luo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Zhou Z, Zhang Y, Li J, Weng S, Li J, Chen S, Lv J, Xu N, Zhang Y, Yang S, Wang Z, Han X, Liu Z, Wen J. Crosstalk between regulated cell death and immunity in redox dyshomeostasis for pancreatic cancer. Cell Signal 2023:110774. [PMID: 37331416 DOI: 10.1016/j.cellsig.2023.110774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
The insidious clinical symptoms of pancreatic cancer (PACA), extensive tolerance to radiotherapy and chemotherapy, and insensitivity to immunotherapy result in an inferior prognosis. Redox dyshomeostasis could trigger programmed cell death and contribute to functional changes in immune cells, which is strongly associated with tumorigenesis and tumor development. Therefore, it is warranted to decipher the crosstalk between regulated cell death and immunity in the context of redox dyshomeostasis for PACA. Herein, four redox-related subtypes of PACA were identified: C1 and C2 displayed malignant phenotypes with dismal clinical outcomes, conspicuous enrichment in cell death pathways, high redox score, low immune activation, and "immune-desert" tumor immune microenvironment (TIME); C3, an immune-rejection/excluded subtype, with abundant immune cells, high co-stimulatory, co-inhibitory, and MHC molecules, and potential response to immunotherapy; C4, with the best prognosis, low redox pattern, high level of autophagy, low enrichment of most cell death-related pathways, and "immune-hot" TIME. Overall, this study found an attractive platform from the perspective of redox-related pathways, which would propose insights into the intricate and elaborate molecular mechanisms of PACA and offer more effective and tailored intervention protocols.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China; Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China; Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Nuo Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanping Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Shuai Yang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Zhan Wang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| | - Jianguo Wen
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China.
| |
Collapse
|
16
|
Jiang L, Xu F, Li C, Liu T, Zhao Q, Liu Y, Zhao Y, Li Y, Zhang Z, Tang X, Zhang J. Sulfotransferase 1C2 promotes hepatocellular carcinoma progression by enhancing glycolysis and fatty acid metabolism. Cancer Med 2023; 12:10738-10754. [PMID: 36880364 PMCID: PMC10225225 DOI: 10.1002/cam4.5759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.
Collapse
Affiliation(s)
- Liya Jiang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Chenglong Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ting Liu
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yamei Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhendong Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary MedicineLong Island UniversityBrookvilleNew YorkUSA
- Division of Regenerative Medicine, Department of Medicine, Department of Basic Science, School of MedicineLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
17
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
18
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|
19
|
Wang Q, Liu Z, Wang R, Li R, Lian X, Yang Y, Yan J, Yin Z, Wang G, Sun J, Peng Y. Effect of Ginkgo biloba extract on pharmacology and pharmacokinetics of atorvastatin in rats with hyperlipidaemia. Food Funct 2023; 14:3051-3066. [PMID: 36916480 DOI: 10.1039/d2fo03238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ginkgo biloba extract (GBE) is a common dietary supplement used by people with dyslipidaemia worldwide to reduce the risk of cardiovascular disease. Many studies have found that GBE itself has a variety of pharmacological activities. However, the role of GBE as an adjunct to conventional therapy with chemical drugs remains controversial. Therefore, this study explored the additional benefits of GBE in the treatment of hyperlipidaemia with statins in terms of both pharmacodynamics and pharmacokinetics. A hyperlipidaemia model was established by feeding rats a high-fat diet for a long time. The animals were treated with atorvastatin only, GBE only, or a combination of atorvastatin and GBE. The results showed that statins combined with GBE could significantly improve the blood lipid parameters, reduce the liver fat content, and reduce the size of adipocytes in abdominal fat. The effect was superior to statin therapy alone. In addition, the combination has shown additional liver protection against possible pathological liver injury or statin-induced liver injury. A lipidomic study showed that GBE could regulate the abnormal lipid metabolism of the liver in hyperlipemia. When statins are combined with GBE, this callback effect introduced by GBE on endogenous metabolism has important implications for resistance to disease progression and statin resistance. Finally, in the presence of GBE, there was a significant increase in plasma statin exposure. These results all confirmed that GBE has incremental benefits as a dietary supplement of statin therapy for dyslipidaemia.
Collapse
Affiliation(s)
- Qingqing Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zihou Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Rui Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Run Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Xiaoru Lian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Yanquan Yang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jiao Yan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Ying Peng
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| |
Collapse
|
20
|
Castelli S, Ciccarone F, De Falco P, Ciriolo MR. Adaptive antioxidant response to mitochondrial fatty acid oxidation determines the proliferative outcome of cancer cells. Cancer Lett 2023; 554:216010. [PMID: 36402229 DOI: 10.1016/j.canlet.2022.216010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Alterations in lipid catabolism have been broadly described in cancer cells and show tumor-type specific effects on proliferation and cell survival. The factor(s) responsible for this heterogeneity is currently unknown and represents the main limitation in the development of therapeutic interventions that impair lipid metabolism. In this study, we focused on hexanoic acid, a medium-chain fatty acid, that can quickly boost oxidative metabolism by passively crossing mitochondrial membranes. We demonstrated that the antioxidant adaptation of cancer cells to increased fatty acid oxidation is predictive of the proliferative outcome. By interfering with SOD1 expression and glutathione homeostasis, we verified that mitochondrial fatty acid oxidation has antitumor effects in cancer cells that efficiently buffer ROS. In contrast, increased ROS levels promote proliferation in cells with an imbalanced antioxidant response. In addition, an increase in mitochondrial mass and mitophagy activation were observed, respectively. Overall, these data demonstrate that the capacity to manage ROS from mitochondrial oxidative metabolism determines whether lipid catabolism is advantageous or detrimental for cancer cells.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy
| | - Pamela De Falco
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy.
| |
Collapse
|
21
|
Chen TC, Huang CW, Lo CY, Chen CN, Chang SF, Chen YY. Suppression of SREBP-1 Expression by Simvastatin Decreases Visfatin-Induced Chemoresistance to Sunitinib in Human Renal Carcinoma 786-O Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111890. [PMID: 36431025 PMCID: PMC9695258 DOI: 10.3390/life12111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The resistance of renal cell carcinoma (RCC) to sunitinib impedes the success of chemotherapy in cancer treatment. Although several sunitinib resistance mechanisms have been proposed, little is known concerning the impact of obesity and adipokines in RCC cells. The upregulation of sterol-regulatory element-binding protein-1 (SREBP-1) has been reported to modulate the progression of tumor cells. The present study investigated the effect of visfatin on sunitinib-induced cytotoxicity in RCC cells through SREBP-1 expression. We found that visfatin-induced Akt and p70S6K activation increased SREBP-1 expression in 786-O cells. The visfatin-induced SREBP-1 mRNA and protein levels were attenuated through the inactivation of Akt and p70S6K by pharmacological inhibitors. In addition, the SREBP-1 knockdown using siRNA enhanced the cytotoxic effects of sunitinib. Our results also revealed the roles of simvastatin in attenuating the effects of visfatin on 786-O cells by inhibiting the production of reactive oxygen species. In particular, simvastatin co-treatment increased the cell cytotoxicity of sunitinib in visfatin-treated 786-O cells, which were associated with down-regulation of SREBP-1 expression. Our results suggest an important role of SREBP-1 in visfatin-induced drug resistance of RCC cells to sunitinib. The cytotoxic mechanism of simvastatin on RCC cells may provide a new strategy to improve therapeutic outcomes for the RCC treatment.
Collapse
Affiliation(s)
- Te-Chuan Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chen-Wei Huang
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Chih-Yu Lo
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 613, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
- Correspondence:
| |
Collapse
|
22
|
Jiang R, Cao M, Mei S, Guo S, Zhang W, Ji N, Zhao Z. Trends in metabolic signaling pathways of tumor drug resistance: A scientometric analysis. Front Oncol 2022; 12:981406. [DOI: 10.3389/fonc.2022.981406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundCancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. Since Warburg O first observed alterations in cancer metabolism in the 1950s, people gradually found tumor metabolism pathways play a fundamental role in regulating the response to chemotherapeutic drugs, and the attempts of targeting tumor energetics have shown promising preclinical outcomes in recent years. This study aimed to summarize the knowledge structure and identify emerging trends and potential hotspots in metabolic signaling pathways of tumor drug resistance research.MethodsPublications related to metabolic signaling pathways of tumor drug resistance published from 1992 to 2022 were retrieved from the Web of Science Core Collection database. The document type was set to articles or reviews with language restriction to English. Two different scientometric software including Citespace and VOS viewer were used to conduct this scientometric analysis.ResultsA total of 2,537 publications including 1,704 articles and 833 reviews were retrieved in the final analysis. The USA made the most contributions to this field. The leading institution was the University of Texas MD Anderson Cancer Center. Avan A was the most productive author, and Hanahan D was the key researcher with the most co-citations, but there is no leader in this field yet. Cancers was the most influential academic journal, and Oncology was the most popular research field. Based on keywords occurrence analysis, these selected keywords could be roughly divided into five main topics: cluster 1 (study of cancer cell apoptosis pathway); cluster 2 (study of resistance mechanisms of different cancer types); cluster 3 (study of cancer stem cells); cluster 4 (study of tumor oxidative stress and inflammation signaling pathways); and cluster 5 (study of autophagy). The keywords burst detection identified several keywords as new research hotspots, including “tumor microenvironment,” “invasion,” and “target”.ConclusionTumor metabolic reprogramming of drug resistance research is advancing rapidly. This study serves as a starting point, providing a thorough overview, the development landscape, and future opportunities in this field.
Collapse
|
23
|
da Silva FA, Rodrigues-Ribeiro L, Melo-Braga MN, Passos-Silva DG, Sampaio WO, Gorshkov V, Kjeldsen F, Verano-Braga T, Santos RAS. Phosphoproteomic studies of alamandine signaling in CHO-MrgD and human pancreatic carcinoma cells: An antiproliferative effect is unveiled. Proteomics 2022; 22:e2100255. [PMID: 35652611 DOI: 10.1002/pmic.202100255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Alamandine is a heptapeptide from the renin-angiotensin system (RAS) with similar structure/function to angiotensin-(1-7) [ang-(1-7)], but they act via different receptors. It remains elusive whether alamandine is an antiproliferative agent like ang-(1-7). The goal of this study was to evaluate the potential antiproliferative activity of alamandine and the underlying cellular signaling. We evaluated alamandine effect in the tumoral cell lines Mia PaCa-2 and A549, and in the nontumoral cell lines HaCaT, CHO and CHO transfected with the alamandine receptor MrgD (CHO-MrgD). Alamandine was able to reduce the proliferation of the tumoral cell lines in a MrgD-dependent fashion. We did not observe any effect in the nontumoral cell lines tested. We also performed proteomics and phosphoproteomics to study the alamandine signaling in Mia PaCa-2 and CHO-MrgD. Data suggest that alamandine induces a shift from anaerobic to aerobic metabolism in the tumoral cells, induces a negative regulation of PI3K/AKT/mTOR pathway and activates the transcriptional factor FoxO1; events that could explain, at least partially, the observed antiproliferative effect of alamandine. This study provides for the first time a comprehensive investigation of the alamandine signaling in tumoral (Mia PaCa-2) and nontumoral (CHO-MrgD) cells, highlighting the antiproliferative activity of alamandine/MrgD and its possible antitumoral effect.
Collapse
Affiliation(s)
- Filipe Alex da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella Nunes Melo-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle Gomes Passos-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Walkyria Oliveira Sampaio
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
24
|
Decreased Levels of GSH Are Associated with Platinum Resistance in High-Grade Serous Ovarian Cancer. Antioxidants (Basel) 2022; 11:antiox11081544. [PMID: 36009263 PMCID: PMC9404763 DOI: 10.3390/antiox11081544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive OC histotype. Although initially sensitive to standard platinum-based chemotherapy, most HGSOC patients relapse and become chemoresistant. We have previously demonstrated that platinum resistance is driven by a metabolic shift toward oxidative phosphorylation via activation of an inflammatory response, accompanied by reduced cholesterol biosynthesis and increased uptake of exogenous cholesterol. To better understand metabolic remodeling in OC, herein we performed an untargeted metabolomic analysis, which surprisingly showed decreased reduced glutathione (GSH) levels in resistant cells. Accordingly, we found reduced levels of enzymes involved in GSH synthesis and recycling, and compensatory increased expression of thioredoxin reductase. Cisplatin treatment caused an increase of reduced GSH, possibly due to direct binding hindering its oxidation, and consequent accumulation of reactive oxygen species. Notably, expression of the cysteine-glutamate antiporter xCT, which is crucial for GSH synthesis, directly correlates with post-progression survival of HGSOC patients, and is significantly reduced in patients not responding to platinum-based therapy. Overall, our data suggest that cisplatin treatment could positively select cancer cells which are independent from GSH for the maintenance of redox balance, and thus less sensitive to cisplatin-induced oxidative stress, opening new scenarios for the GSH pathway as a therapeutic target in HGSOC.
Collapse
|
25
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
26
|
Braun JL, Messner HN, Cleverdon REG, Baranowski RW, Hamstra SI, Geromella MS, Stuart JA, Fajardo VA. Heterozygous SOD2 deletion selectively impairs SERCA function in the soleus of female mice. Physiol Rep 2022; 10:e15285. [PMID: 35581738 PMCID: PMC9114654 DOI: 10.14814/phy2.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) restores intracellular Ca2+ ([Ca2+ ]i ) to resting levels after muscle contraction, ultimately eliciting relaxation. SERCA pumps are highly susceptible to tyrosine (T)-nitration, impairing their ability to take up Ca2+ resulting in reduced muscle function and increased [Ca2+ ]i and cellular damage. The mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2), converts superoxide radicals into less reactive H2 O2 . Heterozygous deletion of SOD2 (Sod2+/- ) in mice increases mitochondrial oxidative stress; however, the consequences of reduced SOD2 expression in skeletal and cardiac muscle, specifically the effect on SERCA pumps, has yet to be investigated. We obtained soleus, extensor digitorum longus (EDL), and left ventricle (LV) muscles from 6 to 7 month-old wild-type (WT) and Sod2+/- female C57BL/6J mice. Ca2+ -dependent SERCA activity assays were performed to assess SERCA function. Western blotting was conducted to examine the protein content of SERCA, phospholamban, and sarcolipin; and immunoprecipitation experiments were done to assess SERCA2a- and SERCA1a-specific T-nitration. Heterozygous SOD2 deletion did not alter SERCA1a or SERCA2a expression in the soleus or LV but reduced SERCA2a in the EDL compared with WT, though this was not statistically significant. Soleus muscles from Sod2+/- mice showed a significant reduction in SERCA's apparent affinity for Ca2+ when compared to WT, corresponding with significantly elevated SERCA2a T-nitration in the soleus. No effect was seen in the EDL or the LV. This is the first study to investigate the effects of SOD2 deficiency on muscle SERCA function and shows that it selectively impairs SERCA function in the soleus.
Collapse
Affiliation(s)
- Jessica L. Braun
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Holt N. Messner
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Riley E. G. Cleverdon
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Ryan W. Baranowski
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Sophie I. Hamstra
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Mia S. Geromella
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Jeffrey A. Stuart
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Val A. Fajardo
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
27
|
Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Karaca C, Tokatli A, Tokatli A, Karadag A, Calibasi-Kocal G. Warburg and pasteur phenotypes modulate cancer behavior and therapy. Anticancer Drugs 2022; 33:e69-e75. [PMID: 34538862 DOI: 10.1097/cad.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Energetic pathways combine in the heart of metabolism. These essential routes supply energy for biochemical processes through glycolysis and oxidative phosphorylation. Moreover, they support the synthesis of various biomolecules employed in growth and survival over branching pathways. Yet, cellular energetics are often misguided in cancers as a result of the mutations and altered signaling. As nontransformed and Pasteur-like cells metabolize glucose through oxidative respiration when only oxygen is sufficient, some cancer cells bypass this metabolic switch and run glycolysis at higher rates even in the presence of oxygen. The phenomenon is called aerobic glycolysis or the Warburg effect. An increasing number of studies indicate that both Warburg and Pasteur phenotypes are recognized in the cancer microenvironment and take vital roles in the regulation of drug resistance mechanisms such as redox homeostasis, apoptosis and autophagy. Therefore, the different phenotypes call for different therapeutic approaches. Combined therapies targeting energy metabolism grant new opportunities to overcome the challenges. Nevertheless, new biomarkers emerge to classify the energetic subtypes, thereby the cancer therapy, as our knowledge in coupling energy metabolism with cancer behavior grows.
Collapse
Affiliation(s)
- Caner Karaca
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University
| | - Atilla Tokatli
- Student Research Group, Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University
| | - Anja Tokatli
- Student Research Group, Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University
| | - Aslihan Karadag
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
29
|
Castelli S, De Falco P, Ciccarone F, Desideri E, Ciriolo MR. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel) 2021; 13:cancers13215484. [PMID: 34771647 PMCID: PMC8583096 DOI: 10.3390/cancers13215484] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Although cancer cell metabolism was mainly considered to rely on glycolysis, with the concomitant impairment of mitochondrial metabolism, it has recently been demonstrated that several tumor types are sustained by oxidative phosphorylation (OXPHOS). In this context, endogenous fatty acids (FAs) deriving from lipolysis or lipophagy are oxidised into the mitochondrion, and are used as a source of energy through OXPHOS. Because the electron transport chain is the main source of ROS, cancer cells relying on fatty acid oxidation (FAO) need to be equipped with antioxidant systems that maintain the ROS levels under the death threshold. In those conditions, ROS can act as second messengers, favouring proliferation and survival. Herein, we highlight the different responses that tumor cells adopt when lipid catabolism is augmented, taking into account the different ROS fates. Many papers have demonstrated that the pro- or anti-tumoral roles of endogenous FA usage are hugely dependent on the tumor type, and on the capacity of cancer cells to maintain redox homeostasis. In light of this, clinical studies have taken advantage of the boosting of lipid catabolism to increase the efficacy of tumor therapy, whereas, in other contexts, antioxidant compounds are useful to reduce the pro-survival effects of ROS deriving from FAO.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Pamela De Falco
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Enrico Desideri
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
- IRCCS San Raffaele Pisana, Via Della Pisana 235, 00163 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13205058. [PMID: 34680207 PMCID: PMC8534001 DOI: 10.3390/cancers13205058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.
Collapse
|
31
|
βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188607. [PMID: 34364992 DOI: 10.1016/j.bbcan.2021.188607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Class III β-tubulin (βIII-tubulin) is frequently overexpressed in human tumors and is associated with resistance to microtubule-targeting agents, tumor aggressiveness, and poor patient outcome. Understanding the mechanisms regulating βIII-tubulin expression and the varied functions βIII-tubulin may have in different cancers is vital to assess the prognostic value of this protein and to develop strategies to enhance therapeutic benefits in βIII-tubulin overexpressing tumors. Here we gather all the available evidence regarding the clinical implications of βIII-tubulin overexpression in cancer, describe factors that regulate βIII-tubulin expression, and discuss current understanding of the mechanisms underlying βIII-tubulin-mediated resistance to microtubule-targeting agents and tumor aggressiveness. Finally, we provide an overview of emerging therapeutic strategies to target tumors that overexpress βIII-tubulin.
Collapse
|
32
|
Fazli HR, Mohamadkhani A, Godarzi HR, Pourshams A, Jafari Nia M. Dehydroepiandrosterone modulates oxidative DNA damage in pancreatic cancer: A case-control study. JGH Open 2021; 5:902-906. [PMID: 34386598 PMCID: PMC8341181 DOI: 10.1002/jgh3.12604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Dehydroepiandrosterone (DHEA) has a protective role against several types of cancer, although its mechanisms of action are still unknown, it may be related to the antioxidant effect of DHEA. We hypothesized that DHEA has a preventive effect on the formation of the 8-hydroxy-2'-deoxyguanosine (8-OHdG) DNA adduct in pancreatic cancer patients. METHODS Serum DHEAs were quantified by the ELISA method in 50 pancreatic cancer patients with histopathological diagnosis of adenocarcinoma and 50 matched controls. The amount of 8-OHdG was assessed in peripheral blood leukocyte extracted DNA using a 32P-DNA postlabeling technique. RESULTS Pancreatic cancer patients had lower serum DHEA levels than healthy controls, although it did not differ significantly. Instead, the 8-OHdG DNA adduct was significantly higher in the case than in the control (P = <0.001). Remarkably, the negative correlation between 8-OHdG and DHEA was distinguished between cases (P = 0.025, r = -0.315) but not in controls (P = 0.078, r = -0.250). In the crude and corrected estimate for pancreatic cancer risk, a significant protective effect of DHEA against pancreatic cancer was found with increasing DHEA when 8-OHdG is greater than its median (adjusted OR = 0, 79, 95% confidence intervals [CI]: 0.66-0.94). Similarly, a lower risk of pancreatic cancer was observed in the third tertile of DHEA (adjusted OR = 0.05, 95% CI: 0.004-0.69). CONCLUSIONS These results indicate that serum DHEA reduces the risk of pancreatic cancer with an anti-DNA damage effect. Hence, the influence of DHEA to prohibit the accumulation of 8-OHdG may be one of its physiological functions.
Collapse
Affiliation(s)
- Hamid Reza Fazli
- Department of Genetics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research InstituteShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Hamed Reza Godarzi
- Department of Genetics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research InstituteShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Mojtaba Jafari Nia
- Department of Biology, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
| |
Collapse
|
33
|
Nie C, Wang B, Wang B, Lv N, Yu R, Zhang E. Protopine triggers apoptosis via the intrinsic pathway and regulation of ROS/PI3K/Akt signalling pathway in liver carcinoma. Cancer Cell Int 2021; 21:396. [PMID: 34315493 PMCID: PMC8314675 DOI: 10.1186/s12935-021-02105-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Protopine is an isoquinoline alkaloid that possesses various biological activities including the anti-tumour activity. However, the effects of protopine on liver carcinoma cells are still elusive. The aim of this study is to examine the effects of protopine on liver carcinoma cells both in vitro and in vivo. Methods MTT assay was performed to measure the cell viability. Wound healing and transwell assays were conducted to assess the motility of cells. Cellular apoptosis and ROS levels were measured by the flow cytometry. Western blotting assay was used to measure the change of proteins. The cytotoxicity of protopine was also evaluated in xenograft mice. Results Protopine inhibited viabilities and triggered apoptosis via the intrinsic pathway in a caspase-dependent manner in liver carcinoma cells. Furthermore, protopine also induced accumulation of intracellular ROS which further led to the inhibition of PI3K/Akt signalling pathway. Finally, in vivo study showed that protopine also repressed tumour growth in xenograft mice without noticeable toxicity. Conclusions Protopine might be used as a potential therapeutic agent for the treatment of liver carcinoma.
Collapse
Affiliation(s)
- Chunhui Nie
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Bei Wang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Baoquan Wang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Ning Lv
- Department of Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, No. 818, Fenghua Road, Ningbo, Zhejiang, China.
| | - Enfan Zhang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Hadrava Vanova K, Yang C, Meuter L, Neuzil J, Pacak K. Reactive Oxygen Species: A Promising Therapeutic Target for SDHx-Mutated Pheochromocytoma and Paraganglioma. Cancers (Basel) 2021; 13:cancers13153769. [PMID: 34359671 PMCID: PMC8345159 DOI: 10.3390/cancers13153769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Pheochromocytoma and paraganglioma are rare neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla or their neural crest progenitors located outside the adrenal gland, respectively. About 10–15% of patients develop metastatic disease for whom treatment options and availability are extremely limited. The risk of developing metastatic disease is increased for patients with mutations in succinate dehydrogenase subunit B, which leads to metabolic reprogramming and redox imbalance. From this perspective, we focus on redox imbalance caused by this mutation and explore potential opportunities to therapeutically target reactive oxygen species production in these rare tumors. Abstract Pheochromocytoma (PHEO) and paraganglioma (PGL) are rare neuroendocrine tumors derived from neural crest cells. Germline variants in approximately 20 PHEO/PGL susceptibility genes are found in about 40% of patients, half of which are found in the genes that encode succinate dehydrogenase (SDH). Patients with SDH subunit B (SDHB)-mutated PHEO/PGL exhibit a higher likelihood of developing metastatic disease, which can be partially explained by the metabolic cell reprogramming and redox imbalance caused by the mutation. Reactive oxygen species (ROS) are highly reactive molecules involved in a multitude of important signaling pathways. A moderate level of ROS production can help regulate cellular physiology; however, an excessive level of oxidative stress can lead to tumorigenic processes including stimulation of growth factor-dependent pathways and the induction of genetic instability. Tumor cells effectively exploit antioxidant enzymes in order to protect themselves against harmful intracellular ROS accumulation, which highlights the essential balance between ROS production and scavenging. Exploiting ROS accumulation can be used as a possible therapeutic strategy in ROS-scavenging tumor cells. Here, we focus on the role of ROS production in PHEO and PGL, predominantly in SDHB-mutated cases. We discuss potential strategies and approaches to anticancer therapies by enhancing ROS production in these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.V.); (L.M.)
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, 252 50 Prague West, Czech Republic; or
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Leah Meuter
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.V.); (L.M.)
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, 252 50 Prague West, Czech Republic; or
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.V.); (L.M.)
- Correspondence: ; Tel.: +1-(301)-402-4594
| |
Collapse
|
35
|
Xia Y, Wang G, Jiang M, Liu X, Zhao Y, Song Y, Jiang B, Zhu D, Hu L, Zhang Z, Cao T, Wang JM, Hu J. A Novel Biological Activity of the STAT3 Inhibitor Stattic in Inhibiting Glutathione Reductase and Suppressing the Tumorigenicity of Human Cervical Cancer Cells via a ROS-Dependent Pathway. Onco Targets Ther 2021; 14:4047-4060. [PMID: 34262291 PMCID: PMC8275107 DOI: 10.2147/ott.s313507] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Glutathione reductase (GSR) provides reduced glutathione (GSH) to maintain redox homeostasis. Inhibition of GSR disrupts this balance, resulting in cell damage, which benefits cancer therapy. However, the effect of GSR inhibition on the tumorigenicity of human cervical cancer is not fully understood. Materials and Methods Tissue microarray analysis was employed to determine GSR expression in cervical cancer tissues by immunohistochemical staining. Cell death was measured with PI/FITC-annexin V staining. mRNA levels were measured via quantitative RT-PCR. Protein expression was measured by Western blotting and flow cytometry. STAT3 deletion was performed with CRISPR/Cas9 technology. GSR knockdown was achieved by RNA interference. Reactive oxygen species (ROS) levels were measured by DCF staining. GSR enzymatic activity was measured with a GSR assay kit. The effect of GSR inhibition on the growth of tumors formed by cervical cancer cells was investigated using a xenograft model. Results The expression of GSR was increased in human cervical cancer tissues, as shown by immunohistochemical staining. GSR knockdown by RNA interference in human cervical cancer cell lines resulted in cell death, suggesting the ability of GSR to maintain cancer cell survival. The STAT3 inhibitor 6-nitrobenzo[b]thiophene 1,1-dioxide (Stattic) also inhibited the enzymatic activity of GSR and induced the death of cervical cancer cells. More importantly, Stattic decreased the growth of xenograft tumors formed by cervical cancer cells in nude mice. Mechanistically, tumor cell death induced by Stattic-mediated GSR inhibition was ROS-dependent, since the ROS scavengers GSH and N-acetyl cysteine (NAC) reversed the effect of Stattic. In contrast, pharmacological and molecular inhibition of STAT3 did not induce the death of cervical cancer cells, suggesting a STAT3-independent activity of Stattic. Conclusion Stattic inhibits the enzymatic activity of GSR and induces STAT3-independent but ROS-dependent death of cervical cancer cells, suggesting its potential application as a therapeutic agent for human cervical cancers.
Collapse
Affiliation(s)
- Yuchen Xia
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.,Department of Oncology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yan Zhao
- Department of Pathology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Demao Zhu
- Department of Pathology, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Ling Hu
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhao Zhang
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Ting Cao
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Ji Ming Wang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| |
Collapse
|
36
|
Alsubaie M, Matou-Nasri S, Aljedai A, Alaskar A, Al-Eidi H, Albabtain SA, Aldilaijan KE, Alsayegh M, Alabdulkareem IB. In vitro assessment of the efficiency of the PIM-1 kinase pharmacological inhibitor as a potential treatment for Burkitt's lymphoma. Oncol Lett 2021; 22:622. [PMID: 34267815 PMCID: PMC8258613 DOI: 10.3892/ol.2021.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 11/06/2022] Open
Abstract
Burkitt's lymphoma is an aggressive form of lymphoma affecting B lymphocytes. It occurs endemically in Africa and sporadically in the rest of the world. Due to the high proliferation rate of this tumor, intensive multi-drug treatment is required; however, the risk of tumor syndrome lysis is high. Overexpression of the proto-oncogene proviral integration of the Moloney murine leukemia virus (PIM-1) kinase is associated with the development of hematological abnormalities, including Burkitt's lymphoma (BL). PIM-1 primarily exerts anti-apoptotic activities through BAD phosphorylation. The aim of the present study was to investigate the in vitro efficiency of a PIM-1 kinase pharmacological inhibitor (PIM1-1) in BL. The impact of PIM1-1 was evaluated in terms of the viability and apoptosis status of the BL B cell lines, Raji and Daudi, compared with K562 leukemia cells, which highly express PIM-1. Cell viability and apoptotic status were assessed with western blotting, and PIM-1 gene expression was assessed with reverse transcription-quantitative PCR. After 48 h of treatment, PIM1-1 inhibited the Daudi, Raji and K562 cell viability with a half-maximal inhibitory concentration corresponding to 10, 20 and 30 µM PIM1-1, respectively. A significant decrease of ERK phosphorylation was detected in PIM1-1-treated Daudi cells, confirming the antiproliferative effect. The addition of 10 µM PIM1-1 significantly decreased the PIM-1 protein and gene expression in Daudi cells. An inhibition of the pro-apoptotic BAD phosphorylation was observed in the Daudi cells treated with 0.1-1 µM PIM1-1 and 10 µM PIM1-1 decreased BAD phosphorylation in the Raji cells. The apoptotic status of both PIM1-1-treated cells lines were confirmed with the detection of cleaved capase-3. However, no change in cell viability and PIM-1 protein expression was observed in the 10 µM PIM1-1-treated K562 cells. In conclusion, the findings indicated that the PIM1-1 pharmacological inhibitor may have therapeutic potential in BL, but with lower efficiency in leukemia.
Collapse
Affiliation(s)
- Mona Alsubaie
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,Hematology and Serology Unit, Department of Laboratory Medicine Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh 11942, Saudi Arabia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abdullah Aljedai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Alaskar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Division of Adult Hematology and Hematopoietic Stem Cell Transplantation, Department of Oncology, King Abdullah Medical City, Ministry of National Guard-Health Affairs, Riyadh 14611, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Sarah A Albabtain
- Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Khawlah E Aldilaijan
- Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Manal Alsayegh
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Ibrahim B Alabdulkareem
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia.,Research Department, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
37
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
38
|
Li Y, Wei X, Tao F, Deng C, Lv C, Chen C, Cheng Y. The potential application of nanomaterials for ferroptosis-based cancer therapy. Biomed Mater 2021; 16. [PMID: 34038885 DOI: 10.1088/1748-605x/ac058a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
Ferroptosis is a new type of programmed cell death, which is expected to become an important strategy of cancer treatment. Traditional strategies for inducing iron death are small molecule inducers based on biological agents. However, because of their poor water solubility, low cell targeting ability and fast metabolismin vivo, it is difficult for molecular drugs to play the long-acting role of ferroptosis induction. With the further study of ferroptosis and development of nanotechnology, nanomaterials have been proved to be more efficient drugs for inducing ferroptosis than those biological drugs. Therein, iron-based nanomaterials can directly release high concentrations of irons and increase reactive oxygen species levels in cells, which produce a better induction effect for ferroptosis. Whereas, it is challenging to differentiate nanoparticle-induced ferroptosis and traditional inducing strategies, elucidate the detailed mechanisms and further classify the synthetical methods of nanomaterials. For better guidance on the development of anticancer strategies, comprehensive summary of the latest developments of ferroptosis related nanomaterials, especially iron-based nanomaterials are in urgent need. In the paper, we summarized the main mechanisms of ferroptosis, highlighted the latest developments of nanomaterials for ferroptosis, and emphasized the advantages of iron-based nanomaterials for ferroptosis. The future prospect in this field was also discussed, paving the way for the related nanomaterials in the clinical cancer therapy.
Collapse
Affiliation(s)
- Yingze Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Xueyan Wei
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Feng Tao
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Cuijun Deng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Cheng Lv
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yu Cheng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
39
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
40
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
41
|
Wang Y, Xu J, Alarifi S, Wang H. Kirenol inhibited the cell survival and induced apoptosis in human thyroid cancer cells by altering PI3K/AKT and MAP kinase signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:811-820. [PMID: 33331091 DOI: 10.1002/tox.23083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The thyroid cancer, especially papillary thyroid cancers are very common among population with high intake of iodine or iodine uptake. Even though several treatment options are available, there is still complication and side effects are still persistent. The role of signaling molecules in cancer signaling is very vast and their significance in progression of disease was increasing which leads to mortality of the patient. The major key players are PI3K, AKT and MAP kinase, involves in cell survival, proliferation, and inhibition of apoptosis and are the promising candidate for cancer treatment target, several researchers focuses these molecule to treat various acute and chronic diseases like cancer. On the other side, various literatures propose that natural compounds derived from plant source are shown potent anticancer property against several cancers. In our study we are looking in to one such active principle obtained from plant source, a diterpenoid compound kirenol, and its role thyroid cancer. Here, we report that kirenol role on various cellular mechanisms like induction of apoptosis, enhancing ROS indirectly by inhibiting antioxidants, altering the signaling mechanism of cell survival and apoptosis. Our study proposes that kirenol involved in the cancer cell cytotoxicity by inducing apoptosis and inhibition of cancer cell survival. Thus, targeting this signaling molecule with kirenol definitely favors and may lead to a therapeutic modality for thyroid cancer.
Collapse
Affiliation(s)
- Yulong Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jia Xu
- Department of Thyroid Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Huanjun Wang
- Department of Endocrine and Metabolic Disease, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
42
|
Homma K, Toda E, Osada H, Nagai N, Era T, Tsubota K, Okano H, Ozawa Y. Taurine rescues mitochondria-related metabolic impairments in the patient-derived induced pluripotent stem cells and epithelial-mesenchymal transition in the retinal pigment epithelium. Redox Biol 2021; 41:101921. [PMID: 33706170 PMCID: PMC7944050 DOI: 10.1016/j.redox.2021.101921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria participate in various metabolic pathways, and their dysregulation results in multiple disorders, including aging-related diseases. However, the metabolic changes and mechanisms of mitochondrial disorders are not fully understood. Here, we found that induced pluripotent stem cells (iPSCs) from a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) showed attenuated proliferation and survival when glycolysis was inhibited. These deficits were rescued by taurine administration. Metabolomic analyses showed that the ratio of the reduced (GSH) to oxidized glutathione (GSSG) was decreased; whereas the levels of cysteine, a substrate of GSH, and oxidative stress markers were upregulated in MELAS iPSCs. Taurine normalized these changes, suggesting that MELAS iPSCs were affected by the oxidative stress and taurine reduced its influence. We also analyzed the retinal pigment epithelium (RPE) differentiated from MELAS iPSCs by using a three-dimensional culture system and found that it showed epithelial mesenchymal transition (EMT), which was suppressed by taurine. Therefore, mitochondrial dysfunction caused metabolic changes, accumulation of oxidative stress that depleted GSH, and EMT in the RPE that could be involved in retinal pathogenesis. Because all these phenomena were sensitive to taurine treatment, we conclude that administration of taurine may be a potential new therapeutic approach for mitochondria-related retinal diseases. iPS cell lines were derived from a MELAS patient with the mtDNA A3243G mutation. Decreased proliferation and survival of MELAS iPSCs were rescued by taurine. Reduction in GSH/GSSG ratio in MELAS iPSCs was suppressed by taurine. EMT in MELAS iPSC-derived retinal pigment epithelium was suppressed by taurine. Oxidative stress markers in MELAS iPSCs and RPE were suppressed by taurine.
Collapse
Affiliation(s)
- Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan; Department of Ophthalmology, St. Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan; St. Luke's International University, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.
| |
Collapse
|
43
|
Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. Bioessays 2021; 43:e2000205. [PMID: 33533033 DOI: 10.1002/bies.202000205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
It is not clear why cancer cells choose to disrupt their circadian clock rhythms, and whether such disruption governs a selective fitness and a survival advantage. In this review, I focus on understanding the impacts of clock gene disruption on a simpler model, such as the unicellular cyanobacterium, in order to explain how cancer cells may alter the circadian rhythm to reprogram their metabolism based on their needs and status. It appears to be that the activation of the oxidative pentose phosphate pathway (OPPP) and production of NADPH, the preferred molecule for detoxification of reactive oxygen species, is a critical process for night survival in unicellular organisms. The circadian clock acts as a gatekeeper that controls how the organism will utilize its sugar, shifting sugar influx between glycolysis and OPPP. The circadian clock can thus act as a gatekeeper between an anabolic, proliferative mode and a homeostatic, survival mode.
Collapse
Affiliation(s)
- Aliaa A Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cell Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Garcia-Gil M, Turri B, Gabriele M, Pucci L, Agnarelli A, Lai M, Freer G, Pistello M, Vignali R, Batistoni R, Marracci S. Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells. Pharmaceuticals (Basel) 2021; 14:ph14020090. [PMID: 33530428 PMCID: PMC7912662 DOI: 10.3390/ph14020090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Benedetta Turri
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Alessandro Agnarelli
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Robert Vignali
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Renata Batistoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
45
|
Polat IH, Tarrado-Castellarnau M, Bharat R, Perarnau J, Benito A, Cortés R, Sabatier P, Cascante M. Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism. BIOLOGY 2021; 10:85. [PMID: 33498665 PMCID: PMC7911610 DOI: 10.3390/biology10020085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
The pentose phosphate pathway (PPP) plays an essential role in the metabolism of breast cancer cells for the management of oxidative stress and the synthesis of nucleotides. 6-phosphogluconate dehydrogenase (6PGD) is one of the key enzymes of the oxidative branch of PPP and is involved in nucleotide biosynthesis and redox maintenance status. Here, we aimed to analyze the functional importance of 6PGD in a breast cancer cell model. Inhibition of 6PGD in MCF7 reduced cell proliferation and showed a significant decrease in glucose consumption and an increase in glutamine consumption, resulting in an important alteration in the metabolism of these cells. No difference in reactive oxygen species (ROS) production levels was observed after 6PGD inhibition, indicating that 6PGD, in contrast to glucose 6-phosphate dehydrogenase, is not involved in redox balance. We found that 6PGD inhibition also altered the stem cell characteristics and mammosphere formation capabilities of MCF7 cells, opening new avenues to prevent cancer recurrance after surgery or chemotherapy. Moreover, inhibition of 6PGD via chemical inhibitor S3 resulted in an induction of senescence, which, together with the cell cycle arrest and apoptosis induction, might be orchestrated by p53 activation. Therefore, we postulate 6PGD as a novel therapeutic target to treat breast cancer.
Collapse
Affiliation(s)
- Ibrahim H. Polat
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France;
- Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Míriam Tarrado-Castellarnau
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain
| | - Rohit Bharat
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Jordi Perarnau
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Adrian Benito
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Roldán Cortés
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Philippe Sabatier
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain
| |
Collapse
|
46
|
Wang F, Roh YS. Mitochondrial connection to ginsenosides. Arch Pharm Res 2020; 43:1031-1045. [PMID: 33113096 DOI: 10.1007/s12272-020-01279-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in energy synthesis and supply, thereby maintaining cellular function, survival, and energy homeostasis via mitochondria-mediated pathways, including apoptosis and mitophagy. Ginsenosides are responsible for most immunological and pharmacological activities of ginseng, a highly beneficial herb with antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective properties. Studies have shown that ginsenosides assist in regulating mitochondrial energy metabolism, oxidative stress, biosynthesis, apoptosis, mitophagy, and the status of membrane channels, establishing mitochondria as one of their most important targets. This article reviews the regulatory effects of ginsenosides on the mitochondria and highlights their beneficial role in treating mitochondrial diseases.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea
| | - Yoon Seok Roh
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
47
|
Peluso M, Russo V, Mello T, Galli A. Oxidative Stress and DNA Damage in Chronic Disease and Environmental Studies. Int J Mol Sci 2020; 21:ijms21186936. [PMID: 32967341 PMCID: PMC7555191 DOI: 10.3390/ijms21186936] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Humans are continually exposed to a large number of environmental carcinogens [...].
Collapse
Affiliation(s)
- Marco Peluso
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy;
- Correspondence:
| | - Valentina Russo
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy;
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (T.M.); (A.G.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (T.M.); (A.G.)
| |
Collapse
|