1
|
Machida A, Banshoya K, Eto T, Kawamoto Y, Maehara S, Hieda Y, Hata T, Ohnishi M. Development of an Injectable Formulation of a Water-Insoluble Glycyrrhizin Derivative That Potently Inhibits High-Mobility Group Box 1 in Murine Intracerebral Hemorrhage. Mol Pharm 2025. [PMID: 40268479 DOI: 10.1021/acs.molpharmaceut.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
High-mobility group box (HMGB) 1, a nuclear protein that acts as an inflammatory mediator, exacerbates injury following intracerebral hemorrhage (ICH). Glycyrrhizin, a natural HMGB1 inhibitor derived from licorice, alleviates ICH-induced inflammatory responses, including brain edema formation. In our previous study, inspired by the bioconversion of endophytes living symbiotically in licorice, we discovered a glycyrrhizin derivative with more potent anti-HMGB1 activity than glycyrrhizin. However, this derivative is poorly soluble in water, and some issues remain to be resolved when applying it to treat ICH. The aim of this study was to develop an injectable formulation of a water-insoluble glycyrrhizin derivative (WIGLD) to treat acute ICH. Screening of Pluronic surfactants revealed that Pluronic P103 significantly improved the solubility of WIGLD. The micelles had a particle size of approximately 20 nm; therefore, this formulation was considered suitable for intravenous injection. Thus, we investigated the therapeutic efficacy of an intravenously injected solubilized WIGLD formulation in a murine model of ICH induced by intrastriatal collagenase injection. The injected WIGLD formulation increased brain penetration compared to that after oral administration. Additionally, it inhibited microglial activation by HMGB1, decreased brain edema, and ameliorated neurological deficits. These findings suggested that the injectable WIGLD formulation, with its potent anti-HMGB1 activity, represents a promising therapeutic strategy for managing ICH-related brain edema and associated injuries.
Collapse
Affiliation(s)
- Aoi Machida
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Kengo Banshoya
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tamaki Eto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yui Kawamoto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Shoji Maehara
- Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Toshiyuki Hata
- Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
2
|
Chen J, Hadi F, Wen X, Zhao W, Xu M, Xue S, Lin P, Calandrelli R, Richard JLC, Song Z, Li J, Amani A, Liu Y, Chen X, Zhong S. Transcriptional regulation by PHGDH drives amyloid pathology in Alzheimer's disease. Cell 2025:S0092-8674(25)00397-6. [PMID: 40273909 DOI: 10.1016/j.cell.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Virtually all individuals aged 65 or older develop at least early pathology of Alzheimer's disease (AD), yet most lack disease-causing mutations in APP, PSEN, or MAPT, and many do not carry the APOE4 risk allele. This raises questions about AD development in the general population. Although transcriptional dysregulation has not traditionally been a hallmark of AD, recent studies reveal significant epigenomic changes in late-onset AD (LOAD) patients. We show that altered expression of the LOAD biomarker phosphoglycerate dehydrogenase (PHGDH) modulates AD pathology in mice and human brain organoids independent of its enzymatic activity. PHGDH has an uncharacterized role in transcriptional regulation, promoting the transcription of inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKa) and high-mobility group box 1 (HMGB1) in astrocytes, which suppress autophagy and accelerate amyloid pathology. A blood-brain-barrier-permeable small-molecule inhibitor targeting PHGDH's transcriptional function reduces amyloid pathology and improves AD-related behavioral deficits. These findings highlight transcriptional regulation in LOAD and suggest therapeutic strategies beyond targeting familial mutations.
Collapse
Affiliation(s)
- Junchen Chen
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Fatemeh Hadi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Ming Xu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Shuanghong Xue
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Pei Lin
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | | | - Zhixuan Song
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Jessica Li
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Alborz Amani
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Yang Liu
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA; Program in Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
3
|
Ngadimon IW, Mohan D, Shaikh MF, Khoo CS, Tan HJ, Lee YM, Chamhuri NS, Fadzil F, Zolkafli N, Arulsamy A, Thanabalan J, Aledo‐Serrano A, Cheong WL. HMGB1 blood levels and neurological outcomes after traumatic brain injury: Insights from an exploratory study. Epilepsia Open 2025; 10:494-507. [PMID: 39937590 PMCID: PMC12014938 DOI: 10.1002/epi4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) and cognitive impairment are severe complications following traumatic brain injury (TBI). Neuroinflammation likely contributes, but the role of specific inflammatory mediators requires clarification. High-mobility group box 1 (HMGB1) is an inflammatory cytokine released after brain injury that may be involved. This prospective longitudinal study investigated whether serum HMGB1 levels are associated with PTE development and cognitive decline over 12 months post-TBI. METHODS Serum samples were collected from 41 TBI patients, including mild and moderate to severe, at baseline, 6, and 12 months following TBI. HMGB1 was quantified by ELISA alongside interleukin-1β (IL-1β) and tumor necrosis factor (TNF). Cognitive assessments using validated neuropsychological assessments were performed at 6 and 12 months. The occurrence of PTE was also tracked. RESULTS HMGB1 remained elevated at 12 months post-TBI only in the subgroup (n = 6) that developed PTE (p = 0.026). PTE was associated with moderate to severe TBI cases. Higher HMGB1 levels at 12 months correlated with a greater decline in Addenbrooke's Cognitive Examination scores (p < 0.05). Reductions in HMGB1 (p < 0.05), IL-1β (p < 0.05) and TNF (p < 0.001) levels from 6 to 12 months correlated with improvements in cognitive scores. Multivariate regression analysis confirmed that HMGB1 level changes were independently associated with cognitive trajectory post-TBI (p = 0.003). SIGNIFICANCE The study highlights the importance of understanding the interactions between HMGB1 and inflammatory markers in posttraumatic neuroinflammatory responses. Targeting HMGB1 and associated markers may offer a promising strategy for managing chronic neuroinflammation and mitigating cognitive deficits in TBI patients, emphasizing the potential for targeted therapeutic interventions in this context. PLAIN LANGUAGE SUMMARY This study examines how a protein called HMGB1 may contribute to epilepsy and cognitive deficits after traumatic brain injury (TBI). Patients with higher HMGB1 levels were more likely to develop epilepsy and experience significant cognitive decline within a year. Reducing HMGB1 and related inflammation was associated with better cognitive function and overall brain health. These findings suggest that HMGB1 could be a valuable marker and a potential target for treatments to prevent epilepsy and improve brain recovery after TBI.
Collapse
Affiliation(s)
- Irma Wati Ngadimon
- Department of Pharmaceutical Life Sciences, Faculty of PharmacyUniversity of MalayaKuala LumpurMalaysia
- Neuroscience Research Strength, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Devi Mohan
- Global Public Health, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
- School of Public HealthThe University of QueenslandBrisbaneQueenslandAustralia
| | - Mohd Farooq Shaikh
- Neuroscience Research Strength, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Ching Soong Khoo
- Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
- Neurology Unit, Department of MedicineHospital Canselor Tuanku MuhrizKuala LumpurMalaysia
- Centre for Global Epilepsy, Wolfson CollegeUniversity of OxfordOxfordUK
| | - Hui Jan Tan
- Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
- Neurology Unit, Department of MedicineHospital Canselor Tuanku MuhrizKuala LumpurMalaysia
| | - Yu Mey Lee
- Hospital Pakar Kanak‐KanakUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Nor Syazwani Chamhuri
- Neurology Unit, Department of MedicineHospital Canselor Tuanku MuhrizKuala LumpurMalaysia
| | - Farizal Fadzil
- Department of SurgeryHospital Canselor Tuanku MuhrizKuala LumpurMalaysia
| | - Nursyazwana Zolkafli
- Neurology Unit, Department of MedicineHospital Canselor Tuanku MuhrizKuala LumpurMalaysia
| | - Alina Arulsamy
- Neuroscience Research Strength, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Jegan Thanabalan
- Department of SurgeryHospital Canselor Tuanku MuhrizKuala LumpurMalaysia
| | | | - Wing Loong Cheong
- School of PharmacyMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
4
|
Shirey KA, Joseph J, Coughlan L, Nijhuis H, Varley AW, Blanco JCG, Vogel SN. An adenoviral vector encoding an inflammation-inducible antagonist, HMGB1 Box A, as a novel therapeutic approach to inflammatory diseases. mBio 2025; 16:e0338724. [PMID: 39699172 PMCID: PMC11796352 DOI: 10.1128/mbio.03387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Influenza, as well as other respiratory viruses, can trigger local and systemic inflammation resulting in an overall "cytokine storm" that produces serious outcomes such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). We hypothesized that gene therapy platforms could be useful in these cases if the production of an anti-inflammatory protein reflects the intensity and duration of the inflammatory condition. The recombinant protein would be produced and released only in the presence of the inciting stimulus, avoiding immunosuppression or other unwanted side effects that may occur when treating infectious diseases with anti-inflammatory drugs. To test this hypothesis, we developed AdV.C3-Tat/HIV-Box A, an inflammation-inducible cassette that remains innocuous in the absence of inflammation but releases HMGB1 Box A, an antagonist of high mobility group box 1 (HMGB1), in response to inflammatory stimuli such as lipopolysaccharide (LPS) or influenza virus infection. We report here that this novel inflammation-inducible HMGB1 Box A construct in a non-replicative adenovirus (AdV) vector mitigates lung and systemic inflammation therapeutically in response to influenza infection. We anticipate that this strategy will apply to the treatment of multiple diseases in which HMGB1-mediated signaling is a central driver of inflammation.IMPORTANCEMany inflammatory diseases are mediated by the action of a host-derived protein, HMGB1, on Toll-like receptor 4 (TLR4) to elicit an inflammatory response. We have engineered a non-replicative AdV vector that produces HMGB1 Box A, an antagonist of HMGB1-induced inflammation, under the control of an endogenous complement component C3 (C3) promoter sequence, that is inducible by LPS and influenza in vitro and ex vivo in macrophages (Mϕ) and protects mice and cotton rats therapeutically against infection with mouse-adapted and human non-adapted influenza strains, respectively, in vivo. We anticipate that this novel strategy will apply to the treatment of multiple infectious and non-infectious diseases in which HMGB1-mediated TLR4 signaling is a central driver of inflammation.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - John Joseph
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025:10.1007/s12035-025-04718-7. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
6
|
Sun J, Sai N, Zhang T, Tang C, Fan S, Wang Q, Liu D, Zeng X, Li J, Guo W, Yang S, Han W. Repeated low-intensity noise exposure exacerbates age-related hearing loss via RAGE signaling pathway. Neurobiol Dis 2025; 204:106768. [PMID: 39694338 DOI: 10.1016/j.nbd.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Repeated low-intensity noise exposure is prevalent in industrialized societies. It has long been considered risk-free until recent evidence suggests that the temporary threshold shift (TTS) induced by such exposure might be a high-risk factor for hearing loss. This study was conducted to further investigate the manner in which repeated low-intensity noise exposure contributed to hearing damage. Two-month-old C57BL/6 J mice were exposed to white noise at 96 dB SPL for 8 h per day over 7 days to induce TTS. Auditory brainstem response (ABR) was monitored to assess changes in hearing thresholds, tracking the effects of noise exposure until the mice reached 12 months of age. Our results indicated that noise-exposed mice exhibited accelerated age-related hearing loss spanning from high to low frequencies. Proteomics analysis revealed an upregulation in the receptor for the advanced glycation end-products (RAGE) signaling pathway, which was associated with an activated inflammatory response, vascular injury, and mitochondrial and synaptic dysfunction. Further analysis confirmed increased levels of inflammatory cytokines in the cochlear lymph fluid and significant macrophages infiltration in the cochlear lateral wall, accompanied by hyperpermeability of the blood-labyrinth barrier. Additionally, degenerated mitochondria in the outer hair cells and decreased synaptic ribbons in the inner hair cells were also observed. These pathological changes indicated that noise exposure damages the cochlear cellular components, increasing the cochlear susceptibility to age-related stress. Our findings suggest that TTS caused by repeated low-intensity noise exposure correlates with a severe sensorineural hearing loss during aging; targeting the RAGE signaling pathway may be a promising strategy to mitigate damage from low-intensity noise and slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Jianbin Sun
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China; Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Provincial Key Laboratory for Precision Diagnosis and Treatment of Otorhinolaryngology, Xi'an 710004, China
| | - Na Sai
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Tong Zhang
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Chaoying Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shuhang Fan
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Qin Wang
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Da Liu
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Long gang Otorhinolaryngology Hospital, Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen, Guangdong 518172, China
| | - Juanjuan Li
- Department of Otorhinolaryngology, Long gang Otorhinolaryngology Hospital, Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen, Guangdong 518172, China
| | - Weiwei Guo
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China.
| | - Shiming Yang
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China.
| | - Weiju Han
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China.
| |
Collapse
|
7
|
Yang BSK, Gusdon AM, Ren XS, Jeong HG, Lee CH, Blackburn S, Choi HA. Update on Strategies to Reduce Early Brain Injury after Subarachnoid Hemorrhage. Curr Neurol Neurosci Rep 2024; 25:14. [PMID: 39722093 DOI: 10.1007/s11910-024-01396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE OF REVIEW Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH) is the most influential clinical determinant of outcomes. Despite significant advances in understanding of the pathophysiology of EBI, currently no treatments to target EBI have been developed. This review summarizes recent advances in EBI research over the past five years with a focus on potential therapeutic targets. RECENT FINDINGS Mechanism-specific translational studies are converging on several pathophysiologic pathways: improved antioxidant delivery and the Sirt1/Nrf2 pathway for reactive oxygen species; NLRP3 inflammasome and microglial polarization for inflammation; and the PI3K/Akt pathway for apoptosis. Recently identified mechanistic components, such as microcirculatory failure and ferroptosis, need particular attention. Clinical studies developing radiographic markers and mechanism-specific, biofluid markers are attempting to bridge the translational therapeutic gap. There has been an exponential growth in EBI research. Further clinical studies which address specific pathophysiology mechanisms need to be performed to identify novel therapeutic approaches.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aaron M Gusdon
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuefang Sophie Ren
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han-Gil Jeong
- Department of Neurology and Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Spiros Blackburn
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huimahn Alex Choi
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
9
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
10
|
Davis LM, Hwang M. Metabolic Pathways in Hydrocephalus: Profiling with Proteomics and Advanced Imaging. Metabolites 2024; 14:412. [PMID: 39195508 DOI: 10.3390/metabo14080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorrhagic hydrocephalus is a common pathology in neonates with high mortality and morbidity. Current imaging approaches fail to capture the mechanisms behind its pathogenesis. Here, we discuss the processes underlying this pathology, the metabolic dysfunction that occurs as a result, and the ways in which these metabolic changes inform novel methods of clinical imaging. The imaging advances described allow earlier detection of the cellular and metabolic changes, leading to better outcomes for affected neonates.
Collapse
Affiliation(s)
- Laura May Davis
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Jiang R, Yang X. Prognostic value of serum high-mobility group box 1 in neonates with neonatal encephalopathy. Pediatr Res 2024:10.1038/s41390-024-03408-9. [PMID: 39009766 DOI: 10.1038/s41390-024-03408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND This study aimed to investigate the diagnostic potential of serum high-mobility group box 1 (HMGB1) in neonatal encephalopathy (NE). METHODS A retrospective study was conducted, analyzing 216 neonates diagnosed with NE. The neonates were divided into two groups based on their outcomes at 28 days. Serum HMGB1 levels were compared between the two groups. ROC analysis was used to determine the predictive value of HMGB1. RESULTS At 28 days, 174 infants had a good prognosis, while 42 had a poor prognosis. Infants with a poor prognosis had higher serum HMGB1 concentrations within 24 h of birth. Multifactorial analysis revealed that extremely preterm birth, extremely low birth weight, an Apgar score of 0-3 at 5 min, premature rupture of membranes by the mother, moderate to severe NE, and serum HMGB1 > 6.14 ng/mL are independent risk factors for poor prognosis. HMGB1 has predictive value for short-term prognosis with an area under the curve of 0.79. Elevated HMGB1 levels in the acute phase of NE are associated with poor short-term neonatal outcomes. The decrease in HMGB1 concentrations over time correlates with a good prognosis; whereas an increase suggests a poor prognosis. CONCLUSION Early measurement of serum HMGB1 could aid in the prognostic assessment of neonates with NE. IMPACT STATEMENT Although serum HMGB1 has emerged as a potential predictor of neonatal outcomes in neonatal encephalopathy, the relationship of HMGB1 levels to neonatal encephalopathy severity remains unclear. The current results demonstrate that infants with a poor prognosis had higher serum HMGB1 concentrations within 24 h of birth. Importantly, elevated serum HMGB1 levels in the acute phase of neonatal encephalopathy are associated with poor short-term neonatal outcomes. Our findings reveal the clinical values of HMGB1 in the prediction of neonatal outcomes in NE patients.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neonatology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Xinxin Yang
- Department of Endocrinology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| |
Collapse
|
12
|
Travaglianti S, Alotaibi A, Wong W, Abou-Gharbia M, Childers W, Sari Y. Effects of novel GLT-1 modulator, MC-100093, on neuroinflammatory and neurotrophic biomarkers in mesocorticolimbic brain regions of male alcohol preferring rats exposed chronically to ethanol. Brain Res Bull 2024; 211:110935. [PMID: 38570076 PMCID: PMC11056292 DOI: 10.1016/j.brainresbull.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested β-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these β-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic β-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.
Collapse
Affiliation(s)
- Shelby Travaglianti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Ahmed Alotaibi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
13
|
Yu C, Xiang Y, Zhang M, Wen J, Duan X, Wang L, Deng G, Fang P. Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity Through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. J Neuroimmune Pharmacol 2024; 19:21. [PMID: 38771510 PMCID: PMC11108907 DOI: 10.1007/s11481-024-10128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1β), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.
Collapse
Affiliation(s)
- Changwei Yu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Yalan Xiang
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, 410015, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Gongying Deng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| |
Collapse
|
14
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
15
|
Xu K, Wang M, Wang H, Zhao S, Tu D, Gong X, Li W, Liu X, Zhong L, Chen J, Xie P. HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic Stress-Induced major depressive disorder. J Adv Res 2024; 59:79-96. [PMID: 37321346 PMCID: PMC11081938 DOI: 10.1016/j.jare.2023.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Neuroinflammation and autophagy are implicated in stress-related major depressive disorder (MDD), but the underlying molecular mechanisms remain largely unknown. OBJECTIVES Here, we identified that MDD regulated by HMGB1/STAT3/p65 axis mediated microglial activation and autophagy for the first time. Further investigations were performed to uncover the effects of this axis on MDD in vivo and in vitro. METHODS Bioinformatics analyses were used to re-analysis the transcriptome data from the dorsolateral prefrontal cortex (dlPFC) of post-mortem male MDD patients. The expression level of HMGB1 and its correlation with depression symptoms were explored in MDD clinical patients and chronic social defeat stress (CSDS)-induced depression model mice. Specific adeno-associated virus and recombinant (r)HMGB1 injection into the medial PFC (mPFC) of mice, and pharmacological inhibitors with rHMGB1 in two microglial cell lines exposed to lipopolysaccharide were used to analyze the effects of HMGB1/STAT3/p65 axis on MDD. RESULTS The differential expression of genes from MDD patients implicated in microglial activation and autophagy regulated by HMGB1/STAT3/p65 axis. Serum HMGB1 level was elevated in MDD patients and positively correlated with symptom severity. CSDS not only induced depression-like states in mice, but also enhanced microglial reactivity, autophagy as well as activation of the HMGB1/STAT3/p65 axis in mPFC. The expression level of HMGB1 was mainly increased in the microglial cells of CSDS-susceptible mice, which also correlated with depressive-like behaviors. Specific HMGB1 knockdown produced a depression-resilient phenotype and suppressed the associated microglial activation and autophagy effects of CSDS-induced. The effects induced by CSDS were mimicked by exogenous administration of rHMGB1 or specific overexpression of HMGB1, while blocked by STAT3 inhibitor or p65 knockdown. In vitro, inhibition of HMGB1/STAT3/p65 axis prevented lipopolysaccharide-induced microglial activation and autophagy, while rHMGB1 reversed these changes. CONCLUSION Our study established the role of microglial HMGB1/STAT3/p65 axis in mPFC in mediating microglial activation and autophagy in MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyang Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xue Gong
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Liu Z, Yang W, Chen J, Wang Q. Circulating HMGB1 in acute ischemic stroke and its association with post-stroke cognitive impairment. PeerJ 2024; 12:e17309. [PMID: 38708343 PMCID: PMC11067911 DOI: 10.7717/peerj.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Ischemic stroke frequently leads to a condition known as post-stroke cognitive impairment (PSCI). Timely recognition of individuals susceptible to developing PSCI could facilitate the implementation of personalized strategies to mitigate cognitive deterioration. High mobility group box 1 (HMGB1) is a protein released by ischemic neurons and implicated in inflammation after stroke. Circulating levels of HMGB1 could potentially serve as a prognostic indicator for the onset of cognitive impairment following ischemic stroke. Objective To investigate the predictive value of circulating HMGB1 concentrations in the acute phase of ischemic stroke for the development of cognitive dysfunction at the 3-month follow-up. Methods A total of 192 individuals experiencing their initial episode of acute cerebral infarction were prospectively recruited for this longitudinal investigation. Concentrations of circulating HMGB1 were quantified using an enzyme-linked immunosorbent assay (ELISA) technique within the first 24 hours following hospital admission. Patients underwent neurological evaluation including NIHSS scoring. Neuropsychological evaluation was conducted at the 3-month follow-up after the cerebrovascular event, employing the Montreal Cognitive Assessment (MoCA) as the primary tool for assessing cognitive performance. Multivariable logistic regression models were employed to investigate the relationship between circulating HMGB1 concentrations and cognitive dysfunction following stroke, which was operationalized as a MoCA score below 26, while controlling for potential confounders including demographic characteristics, stroke severity, vascular risk factors, and laboratory parameters. Results Of 192 patients, 84 (44%) developed PSCI. Circulating HMGB1 concentrations were significantly elevated in individuals who developed cognitive dysfunction following stroke compared to those who maintained cognitive integrity (8.4 ± 1.2 ng/mL vs 4.6 ± 0.5 ng/mL, respectively; p < 0.001). The prevalence of PSCI showed a dose-dependent increase with higher HMGB1 quartiles. After controlling for potential confounders such as demographic factors (age, gender, and education), stroke severity, vascular risk factors, and laboratory parameters in a multivariable logistic regression model, circulating HMGB1 concentrations emerged as a significant independent predictor of cognitive dysfunction following stroke (regression coefficient = 0.236, p < 0.001). Conclusion Circulating HMGB1 concentrations quantified within the first 24 hours following acute cerebral infarction are significantly and independently correlated with the likelihood of developing cognitive dysfunction at the 3-month follow-up, even after accounting for potential confounding factors. HMGB1 may be a novel biomarker to identify patients likely to develop post-stroke cognitive impairment for targeted preventive interventions.
Collapse
Affiliation(s)
- Zhenbao Liu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weixia Yang
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianxin Chen
- Department of Critical Care Medicine, Jinan First People’s Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
17
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
18
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
19
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
20
|
Chen S, Zhou A, Yan W. HMGB1 Promotes Accelerated Fracture Healing in Traumatic Brain Injury through PINK1/Parkin-Mediated Mitochondrial Autophagy. Biol Pharm Bull 2024; 47:2143-2153. [PMID: 39710383 DOI: 10.1248/bpb.b24-00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We aimed to investigate the mechanism of high mobility group box 1 (HMGB1) in the accelerated fracture healing process during Traumatic brain injury (TBI). The lateral ventricles of mice in the TBI model group were injected with adenovirus-packaged short hairpin RNA (shRNA)-HMGB1 or overexpressing (ov)-HMGB1 vector. We found HMGB1 levels were higher in bone tissue at the fracture end of TBI combined with fracture model mice. Compared with the TBI combined with fracture model mice, the mice in the ov-HMGB1 group healed faster and the expression levels of mitochondrial autophagy-related proteins were higher. Compared to the ov-HMGB1 group, mice in the ov-HMGB1 + autophagy inhibitor cyclosporin A (CsA) and ov-HMGB1 + shRNA-phosphatase and tensin homolog-induced kinase 1 (PINK1) groups showed slower healing and lower expression of mitochondrial autophagy-associated proteins. The expression of osteocalcin (OCN), SOX9, and bone morphogenetic protein (BMP)-2 in bone tissue at the fracture end of the ov-HMGB1 + shRNA-PINK1 group was lower than that in the ov-HMGB1 group. The mRNA expression levels of chondrogenic differentiation markers in bone tissue at the fracture end of the ov-HMGB1 + shRNA-PINK1 group were lower than those in the ov-HMGB1 group. Fracture healing was accelerated during TBI, especially when HMGB1 was highly expressed, and HMGB1 promote accelerated fracture healing during TBI through PINK1/Parkin-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Shiyang Chen
- Department of Orthopaedics, Chongqing People's Hospital (Currently known as Chongqing General Hospital, Chongqing University)
| | - Aiguo Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University
| | - Wenlong Yan
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
21
|
Kaya Z, Belder N, Sever-Bahcekapili M, Donmez-Demir B, Erdener ŞE, Bozbeyoglu N, Bagci C, Eren-Kocak E, Yemisci M, Karatas H, Erdemli E, Gursel I, Dalkara T. Vesicular HMGB1 release from neurons stressed with spreading depolarization enables confined inflammatory signaling to astrocytes. J Neuroinflammation 2023; 20:295. [PMID: 38082296 PMCID: PMC10712196 DOI: 10.1186/s12974-023-02977-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The role of high mobility group box 1 (HMGB1) in inflammation is well characterized in the immune system and in response to tissue injury. More recently, HMGB1 was also shown to initiate an "inflammatory signaling cascade" in the brain parenchyma after a mild and brief disturbance, such as cortical spreading depolarization (CSD), leading to headache. Despite substantial evidence implying a role for inflammatory signaling in prevalent neuropsychiatric disorders such as migraine and depression, how HMGB1 is released from healthy neurons and how inflammatory signaling is initiated in the absence of apparent cell injury are not well characterized. We triggered a single cortical spreading depolarization by optogenetic stimulation or pinprick in naïve Swiss albino or transgenic Thy1-ChR2-YFP and hGFAP-GFP adult mice. We evaluated HMGB1 release in brain tissue sections prepared from these mice by immunofluorescent labeling and immunoelectron microscopy. EzColocalization and Costes thresholding algorithms were used to assess the colocalization of small extracellular vesicles (sEVs) carrying HMGB1 with astrocyte or microglia processes. sEVs were also isolated from the brain after CSD, and neuron-derived sEVs were captured by CD171 (L1CAM). sEVs were characterized with flow cytometry, scanning electron microscopy, nanoparticle tracking analysis, and Western blotting. We found that HMGB1 is released mainly within sEVs from the soma of stressed neurons, which are taken up by surrounding astrocyte processes. This creates conditions for selective communication between neurons and astrocytes bypassing microglia, as evidenced by activation of the proinflammatory transcription factor NF-ĸB p65 in astrocytes but not in microglia. Transmission immunoelectron microscopy data illustrated that HMGB1 was incorporated into sEVs through endosomal mechanisms. In conclusion, proinflammatory mediators released within sEVs can induce cell-specific inflammatory signaling in the brain without activating transmembrane receptors on other cells and causing overt inflammation.
Collapse
Affiliation(s)
- Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Nevin Belder
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Melike Sever-Bahcekapili
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Buket Donmez-Demir
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Naz Bozbeyoglu
- Department of Molecular Biology and Genetics, Science Faculty, Bilkent University, Ankara, Turkey
| | - Canan Bagci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Emine Eren-Kocak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Esra Erdemli
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Science Faculty, Bilkent University, Ankara, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, İzmir, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey.
| |
Collapse
|
22
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
23
|
Habotta OA, Abdeen A, El-Hanafy AA, Yassin N, Elgameel D, Ibrahim SF, Abdelrahaman D, Hasan T, Imbrea F, Ghamry HI, Fericean L, Behairy A, Atwa AM, Abdelkader A, Mahdi MR, El-Mosallamy SA. Sesquiterpene nootkatone counteracted the melamine-induced neurotoxicity via repressing of oxidative stress, inflammatory, and apoptotic trajectories. Biomed Pharmacother 2023; 165:115133. [PMID: 37454594 DOI: 10.1016/j.biopha.2023.115133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Melamine (ML), a chemical substance of high nitrogen content, is used as a food adulterant. Former evidences implied that ML could induce a variety of toxic effects including neurotoxicity and cognitive impairment. Therefore, the aim of this study was to delineate the protective effect of the nootkatone (NK) against ML-induced neural adverse effects. Rats were orally pretreated with NK (5 and 10 mg/kg) prior to the oral administration of ML (700 mg/kg) for a period of 28 days. Our findings unveiled remarkable alleviating effect of NK on MK-induced neurobehavioral disturbance in open field test. Furthermore, NK lessened ML-caused increases in the acetylcholine esterase level in the brain tissue of exposed rats. NK also decreased the neural oxidative stress as represented by elevated levels of SOD, CAT, and GSH along with decreased MDA and NO levels. Upregulated mRNA expression levels of neural NRF-2 and HO-1 were noticed after NK administration. Remarkable anti-inflammatory impact was prominent by decreased neural IL-1β, and TNF-α along with downregulated NF-κB and TLR-4 gene expression levels in NK-treated rats. Noteworthily, pre-treatment with NK decreased the immune reaction of RAGE and HMGB-1 induced by oral ML exposure. Brain histological examination validated the obtained biochemical and molecular results. To sum up, these outcomes reveal that NK successfully alleviated the neural damage induced by ML via blocking of oxidative stress, and inflammatory signaling pathways. Consequently, our study may suggest NK as a new effective therapeutic supplement for treatment of ML-mediated neurotoxicity in rats via inhibition of HMGB-1-RAGE/TLR-4/NF-κB.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Aya A El-Hanafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, New Mansoura University, New Mansoura, 35516, Egypt.
| | - Neimet Yassin
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina Elgameel
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt.
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Doaa Abdelrahaman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Florin Imbrea
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania.
| | - Heba I Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Liana Fericean
- Department of Biology and Plant protection, Faculty of Agriculture. University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI 3487181, Romania.
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
| | - Shaaban A El-Mosallamy
- Department of Forensic Medicine and Clinical toxicology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
24
|
Li X, Zeng L, Lu X, Chen K, Yu M, Wang B, Zhao M. Early Brain Injury and Neuroprotective Treatment after Aneurysmal Subarachnoid Hemorrhage: A Literature Review. Brain Sci 2023; 13:1083. [PMID: 37509013 PMCID: PMC10376973 DOI: 10.3390/brainsci13071083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Early brain injury (EBI) subsequent to subarachnoid hemorrhage (SAH) is strongly associated with delayed cerebral ischemia and poor patient prognosis. Based on investigations into the molecular mechanisms underlying EBI, neurovascular dysfunction resulting from SAH can be attributed to a range of pathological processes, such as microvascular alterations in brain tissue, ionic imbalances, blood-brain barrier disruption, immune-inflammatory responses, oxidative stress, and activation of cell death pathways. Research progress presents a variety of promising therapeutic approaches for the preservation of neurological function following SAH, including calcium channel antagonists, endothelin-1 receptor blockers, antiplatelet agents, anti-inflammatory agents, and anti-oxidative stress agents. EBI can be mitigated following SAH through neuroprotective measures. To enhance our comprehension of the relevant molecular pathways involved in brain injury, including brain ischemia-hypoxic injury, neuroimmune inflammation activation, and the activation of various cell-signaling pathways, following SAH, it is essential to investigate the evolution of these multifaceted pathophysiological processes. Facilitating neural repair following a brain injury is critical for improving patient survival rates and quality of life.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuanzhen Lu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Kun Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maling Yu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Razali K, Mohd Nasir MH, Kumar J, Mohamed WMY. Mitophagy: A Bridge Linking HMGB1 and Parkinson's Disease Using Adult Zebrafish as a Model Organism. Brain Sci 2023; 13:1076. [PMID: 37509008 PMCID: PMC10377498 DOI: 10.3390/brainsci13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 07/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) has been implicated as a key player in two critical factors of Parkinson's disease (PD): mitochondrial dysfunction and neuroinflammation. However, the specific role of HMGB1 in PD remains elusive. We investigated the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration on mitochondrial dysfunction and HMGB1-associated inflammatory genes as well as locomotor activity in zebrafish, aiming to elucidate the role of HMGB1 in PD. Adult zebrafish received MPTP injections, and locomotor activity was measured at 24- and 48-h post-administration. Gene expression levels related to mitophagy (fis1, pink1, and park2) and HMGB1-mediated inflammation (hmgb1, tlr4, and nfkb) were quantified through RT-qPCR analysis. Following MPTP injection, the significant increase in transcript levels of fis1, pink1, and park2 indicated notable changes in PINK1/Parkin mitophagy, while the upregulation of hmgb1, tlr4, and nfkb genes pointed to the activation of the HMGB1/TLR4/NFκB inflammatory pathway. Furthermore, MPTP-injected zebrafish exhibited decreased locomotor activity, evident through reduced distance travelled, mean speed, and increased freezing durations. HMGB1 plays a major role in cellular processes as it is involved in both the mitophagy process and functions as a pro-inflammatory protein. MPTP administration in adult zebrafish activated mitophagy and inflammatory signaling, highlighting the significant role of HMGB1 as a mediator in both processes and further emphasizing its significant contribution to PD pathogenesis.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur 56000, Selangor, Malaysia
| | - Wael M Y Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
| |
Collapse
|
26
|
Banks WA, Hansen KM, Erickson MA, Crews FT. High-mobility group box 1 (HMGB1) crosses the BBB bidirectionally. Brain Behav Immun 2023; 111:386-394. [PMID: 37146655 DOI: 10.1016/j.bbi.2023.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a ubiquitous protein that regulates transcription in the nucleus, and is an endogenous damage-associated molecular pattern molecule that activates the innate immune system. HMGB1 activates the TLR4 and RAGE recepto, inducing downstream signals reminiscent of cytokines that have been found to cross the blood-brain barrier (BBB). Blood HMGB1 increases in stroke, sepsis, senescence, alcohol binge drinking and other conditions. Here, we examined the ability of HMGB1 radioactively labeled with iodine (I-HMGB1) to cross the BBB. We found that I-HMGB1 readily entered into mouse brain from the circulation with a unidirectional influx rate of 0.654 μl/g-min. All brain regions tested took up I-HMGB1; uptake was greatest by the olfactory bulb and least in the striatum. Transport was not reliably inhibited by unlabeled HMGB1 nor by inhibitors of TLR4, TLR2, RAGE, or CXCR4. Uptake was enhanced by co-injection of wheatgerm agglutinin, suggestive of involvement of absorptive transcytosis as a mechanism of transport. Induction of inflammation/neuroinflammation with lipopolysaccharide is known to increase blood HMGB1; we report here that brain transport is also increased by LPS-induced inflammation. Finally, we found that I-HMGB1 was also transported in the brain-to-blood direction, with both unlabeled HMGB1 or lipopolysaccharide increasing the transport rate. These results show that HMGB1 can bidirectionally cross the BBB and that those transport rates are enhanced by inflammation. Such transport provides a mechanism by which HMGB1 levels would impact neuroimmune signaling in both the brain and periphery.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State.
| | - Kim M Hansen
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State
| | - Michelle A Erickson
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State
| | - Fulton T Crews
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, US State
| |
Collapse
|
27
|
Datta S, Lin F, Jones LD, Pingle SC, Kesari S, Ashili S. Traumatic brain injury and immunological outcomes: the double-edged killer. Future Sci OA 2023; 9:FSO864. [PMID: 37228857 PMCID: PMC10203904 DOI: 10.2144/fsoa-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.
Collapse
Affiliation(s)
- Souvik Datta
- Rhenix Lifesciences, 237 Arsha Apartments, Kalyan Nagar, Hyderabad, TG 500038, India
| | - Feng Lin
- CureScience, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | | | | | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | | |
Collapse
|
28
|
Cardoso MGDF, de Barros JLVM, de Queiroz RAB, Rocha NP, Silver C, da Silva AS, da Silva EWM, Roque IG, Carvalho JDL, Dos Santos LF, Cota LB, Lemos LM, Miranda MF, Miranda MF, Vianna PP, Oliveira RA, de Oliveira Furlam T, Soares TSS, Pedroso VSP, Faleiro RM, Vieira ÉLM, Teixeira AL, de Souza LC, de Miranda LS. Potential Biomarkers of Impulsivity in Mild Traumatic Brain Injury: A Pilot Study. Behav Brain Res 2023; 449:114457. [PMID: 37116663 DOI: 10.1016/j.bbr.2023.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Very few studies have investigated cognition and impulsivity following mild traumatic brain injury (mTBI) in the general population. Furthermore, the neurobiological mechanisms underlying post-TBI neurobehavioral syndromes are complex and remain to be fully clarified. Herein, we took advantage of machine learning based-modeling to investigate potential biomarkers of mTBI-associated impulsivity. Twenty-one mTBI patients were assessed within one-month post-TBI and their data were compared to 19 healthy controls on measures of impulsivity (Barratt Impulsiveness Scale - BIS), executive functioning, episodic memory, self-report cognitive failures and blood biomarkers of inflammation, vascular and neuronal damage. mTBI patients were significantly more impulsive than controls in BIS total and subscales. Serum levels of sCD40L, Cathepsin D, IL-4, Neuropilin-1, IFN-α2, and Copeptin were associated with impulsivity in mTBI patients. Besides showing that mTBI are associated with impulsivity in non-military people, we unveiled different pathophysiological pathways potentially implicated in mTBI-related impulsivity.
Collapse
Affiliation(s)
- Maíra Glória de Freitas Cardoso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - João Luís Vieira Monteiro de Barros
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Alves Bonfim de Queiroz
- Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto-UFOP, Ouro Preto, MG, Brasil
| | - Natalia Pessoa Rocha
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carlisa Silver
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Agnes Stéphanie da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - Ewelin Wasner Machado da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Isadora Gonçalves Roque
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Júlia de Lima Carvalho
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Laura Ferreira Dos Santos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Bitencourt Cota
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Lucas Miranda Lemos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Mariana Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Millena Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Parenti Vianna
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Arantes Oliveira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Tiago de Oliveira Furlam
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Túlio Safar Sarquis Soares
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Vinicius Sousa Pietra Pedroso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rodrigo Moreira Faleiro
- Hospital João XXIII, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG. Belo Horizonte, Minas Gerais, Brasil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Centre for Addiction and Mental Health - CAMH, Toronto, Canada
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston. Houston, Texas; Faculdade Santa Casa BH, Belo Horizonte, Brasil
| | - Leonardo Cruz de Souza
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, MG, Brasil.
| | - Line Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brasil.
| |
Collapse
|
29
|
DeWulf B, Minsart L, Verdonk F, Kruys V, Piagnerelli M, Maze M, Saxena S. High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells 2023; 12:cells12071088. [PMID: 37048161 PMCID: PMC10093266 DOI: 10.3390/cells12071088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) remains a challenge for intensivists that is exacerbated by lack of an effective diagnostic tool and an unambiguous definition to properly identify SAE patients. Risk factors for SAE development include age, genetic factors as well as pre-existing neuropsychiatric conditions. Sepsis due to certain infection sites/origins might be more prone to encephalopathy development than other cases. Currently, ICU management of SAE is mainly based on non-pharmacological support. Pre-clinical studies have described the role of the alarmin high mobility group box 1 (HMGB1) in the complex pathogenesis of SAE. Although there are limited data available about the role of HMGB1 in neuroinflammation following sepsis, it has been implicated in other neurologic disorders, where its translocation from the nucleus to the extracellular space has been found to trigger neuroinflammatory reactions and disrupt the blood–brain barrier. Negating the inflammatory cascade, by targeting HMGB1, may be a strategy to complement non-pharmacologic interventions directed against encephalopathy. This review describes inflammatory cascades implicating HMGB1 and strategies for its use to mitigate sepsis-induced encephalopathy.
Collapse
Affiliation(s)
- Bram DeWulf
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
| | - Laurens Minsart
- Department of Anesthesia, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Franck Verdonk
- Department of Anesthesiology and Intensive Care, GRC 29, DMU DREAM, Hôpital Saint-Antoine and Sorbonne University, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
- Experimental Medicine Laboratory (ULB Unit 222), CHU-Charleroi, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Saxena
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
30
|
Jung H, Youn DH, Park JJ, Jeon JP. Bone-Marrow-Derived Mesenchymal Stem Cells Attenuate Behavioral and Cognitive Dysfunction after Subarachnoid Hemorrhage via HMGB1-RAGE Axis Mediation. Life (Basel) 2023; 13:881. [PMID: 37109411 PMCID: PMC10145212 DOI: 10.3390/life13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We evaluated the therapeutic effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on behavioral and cognitive function in a mouse model of mild subarachnoid hemorrhage (SAH) and explored the underlying mechanisms in conjunction with the HMGB1-RAGE axis. The SAH models were generated in a total of 126 male C57BL/6J mice via endovascular perforation and evaluated 24 h and 72 h after the intravenous administration of BMSCs (3 × 105 cells). The BMSCs were administered once, at 3 h, or twice, at 3 h and 48 h after the model induction. The therapeutic effects of the BMSCs were compared to those of the saline administration. Compared to saline-treated SAH-model mice, at 3 h, the mice with mild SAH treated with the BMSCs showed significant improvements in their neurological scores and cerebral edema. The administration of the BMSCs decreased the mRNA expression of HMGB1, RAGE, TLR4, and MyD88, as well as the protein expression of HMGB1 and phosphorylated NF-kB p65. Furthermore, the numbers of slips per walking time, impairments in short-term memory, and the recognition of novel objects were improved. There was some improvement in inflammatory-marker levels and cognitive function according to the BMSCs' administration times, but no large differences were seen. The administration of BMSCs improved behavioral and cognitive dysfunction by ameliorating HMGB1-RAGE axis-mediated neuroinflammation after SAH.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
31
|
Liu Z, Zhu L, Sheng LP, Huang QC, Qian T, Qi BX. [A pilot study on the effects of early use of valproate sodium on neuroinflammation after traumatic brain injury]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:253-258. [PMID: 36946159 PMCID: PMC10032078 DOI: 10.7499/j.issn.1008-8830.2210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES To study the effect of early use of sodium valproate on neuroinflammation after traumatic brain injury (TBI). METHODS A total of 45 children who visited in Xuzhou Children's Hospital Affiliated to Xuzhou Medical University from August 2021 to August 2022 were enrolled in this prospective study, among whom 15 healthy children served as the healthy control group, and 30 children with TBI were divided into a sodium valproate treatment group and a conventional treatment group using a random number table (n=15 each). The children in the sodium valproate treatment group were given sodium valproate in addition to conventional treatment, and those in the conventional group were given an equal volume of 5% glucose solution in addition to conventional treatment. The serum concentrations of nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3), high-mobility group box 1 (HMGB1), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were measured in the healthy control group on the day of physical examination and in the children with TBI on days 1, 3, and 5 after admission. Glasgow Outcome Scale-Extended (GOS-E) score was evaluated for the children with TBI 2 months after discharge. RESULTS Compared with the healthy control group, the children with TBI had significantly higher serum concentrations of NLRP3, HMGB1, TNF-α, and IL-1β on day 1 after admission (P<0.017). The concentration of NLRP3 on day 5 after admission was significantly higher than that on days 1 and 3 after admission in the children with TBI (P<0.017). On days 3 and 5 after admission, the sodium valproate treatment group had a significantly lower concentration of NLRP3 than the conventional treatment group (P<0.05). For the conventional treatment group, there was no significant difference in the concentration of HMGB1 on days 1, 3, and 5 after admission (P>0.017), while for the sodium valproate treatment group, the concentration of HMGB1 on day 5 after admission was significantly lower than that on days 1 and 3 after admission (P<0.017). On day 5 after admission, the sodium valproate treatment group had a significantly lower concentration of HMGB1 than the conventional treatment group (P<0.05). For the children with TBI, the concentration of TNF-α on day 1 after admission was significantly lower than that on days 3 and 5 after admission (P<0.017). On days 3 and 5 after admission, the sodium valproate treatment group had a significantly lower concentration of TNF-α than the conventional treatment group (P<0.05). The concentration of IL-1β on day 3 after admission was significantly lower than that on days 1 and 5 after admission (P<0.017) in the children with TBI. On days 3 and 5 after admission, the sodium valproate treatment group had a significantly lower concentration of IL-1β than the conventional treatment group (P<0.05). The GOS-E score was significantly higher in the sodium valproate treatment group than that in the conventional treatment group 2 months after discharge (P<0.05). CONCLUSIONS Early use of sodium valproate can reduce the release of neuroinflammatory factors and improve the prognosis of children with TBI.
Collapse
Affiliation(s)
- Zhi Liu
- Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Lei Zhu
- Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Li-Ping Sheng
- Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Qing-Chen Huang
- Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Tong Qian
- Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Bo-Xiang Qi
- Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| |
Collapse
|
32
|
Sustained Hyperammonemia Activates NF-κB in Purkinje Neurons Through Activation of the TrkB-PI3K-AKT Pathway by Microglia-Derived BDNF in a Rat Model of Minimal Hepatic Encephalopathy. Mol Neurobiol 2023; 60:3071-3085. [PMID: 36790604 DOI: 10.1007/s12035-023-03264-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Chronic hyperammonemia is a main contributor to the cognitive and motor impairment in patients with hepatic encephalopathy. Sustained hyperammonemia induces the TNFα expression in Purkinje neurons, mediated by NF-κB activation. The aims were the following: (1) to assess if enhanced TrkB activation by BDNF is responsible for enhanced NF-κB activation in Purkinje neurons in hyperammonemic rats, (2) to assess if this is associated with increased content of NF-κB modulated proteins such as TNFα, HMGB1, or glutaminase I, (3) to assess if these changes are due to enhanced activation of the TNFR1-S1PR2-CCR2-BDNF-TrkB pathway, (4) to analyze if increased activation of NF-κB is mediated by the PI3K-AKT pathway. It is shown that, in the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons leading to activation of PI3K, which enhances phosphorylation of AKT and of IκB, leading to increased nuclear translocation of NF-κB which enhances TNFα, HMGB1, and glutaminase I content. To assess if the changes are due to enhanced activation of the TNFR1-S1PR2-CCR2 pathway, we blocked TNFR1 with R7050, S1PR2 with JTE-013, and CCR2 with RS504393. These changes are reversed by blocking TrkB, PI3K, or the TNFR1-SP1PR2-CCL2-CCR2-BDNF-TrkB pathway at any step. In hyperammonemic rats, increased levels of BDNF enhance TrkB activation in Purkinje neurons, leading to activation of the PI3K-AKT-IκB-NF-κB pathway which increased the content of glutaminase I, HMGB1, and TNFα. Enhanced activation of this TrkB-PI3K-AKT-NF-κB pathway would contribute to impairing the function of Purkinje neurons and motor function in hyperammonemic rats and likely in cirrhotic patients with minimal or clinical hepatic encephalopathy.
Collapse
|
33
|
Liu XL, Sun DD, Zheng MT, Li XT, Niu HH, Zhang L, Zhou ZW, Rong HT, Wang Y, Wang JW, Yang GL, Liu X, Chen FL, Zhou Y, Zhang S, Zhang JN. Maraviroc promotes recovery from traumatic brain injury in mice by suppression of neuroinflammation and activation of neurotoxic reactive astrocytes. Neural Regen Res 2023; 18:141-149. [PMID: 35799534 PMCID: PMC9241405 DOI: 10.4103/1673-5374.344829] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuroinflammation and the NACHT, LRR, and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury (TBI). Maraviroc, a C-C chemokine receptor type 5 antagonist, has been viewed as a new therapeutic strategy for many neuroinflammatory diseases. We studied the effect of maraviroc on TBI-induced neuroinflammation. A moderate-TBI mouse model was subjected to a controlled cortical impact device. Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days. Western blot, immunohistochemistry, and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI. Our results suggest that maraviroc administration reduced NACHT, LRR, and PYD domains-containing protein 3 inflammasome activation, modulated microglial polarization from M1 to M2, decreased neutrophil and macrophage infiltration, and inhibited the release of inflammatory factors after TBI. Moreover, maraviroc treatment decreased the activation of neurotoxic reactive astrocytes, which, in turn, exacerbated neuronal cell death. Additionally, we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score, rotarod test, Morris water maze test, and lesion volume measurements. In summary, our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI, and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.
Collapse
|
34
|
Lai J, Chen G, Wu Z, Yu S, Huang R, Zeng Y, Lin W, Fan C, Chen X. PHLDA1 modulates microglial response and NLRP3 inflammasome signaling following experimental subarachnoid hemorrhage. Front Immunol 2023; 14:1105973. [PMID: 36875102 PMCID: PMC9982097 DOI: 10.3389/fimmu.2023.1105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Balancing microglia M1/M2 polarization is an effective therapeutic strategy for neuroinflammation after subarachnoid hemorrhage (SAH). Pleckstrin homology-like domain family A member 1 (PHLDA1) has been demonstrated to play a crucial role in immune response. However, the function roles of PHLDA1 in neuroinflammation and microglial polarization after SAH remain unclear. In this study, SAH mouse models were assigned to treat with scramble or PHLDA1 small interfering RNAs (siRNAs). We observed that PHLDA1 was significantly increased and mainly distributed in microglia after SAH. Concomitant with PHLDA1 activation, nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome expression in microglia was also evidently enhanced after SAH. In addition, PHLDA1 siRNA treatment significantly reduced microglia-mediated neuroinflammation by inhibiting M1 microglia and promoting M2 microglia polarization. Meanwhile, PHLDA1 deficiency reduced neuronal apoptosis and improved neurological outcomes after SAH. Further investigation revealed that PHLDA1 blockade suppressed the NLRP3 inflammasome signaling after SAH. In contrast, NLRP3 inflammasome activator nigericin abated the beneficial effects of PHLDA1 deficiency against SAH by promoting microglial polarization to M1 phenotype. In all, we proposed that PHLDA1 blockade might ameliorate SAH-induced brain injury by balancing microglia M1/M2 polarization via suppression of NLRP3 inflammasome signaling. Targeting PHLDA1 might be a feasible strategy for treating SAH.
Collapse
Affiliation(s)
- Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Genwang Chen
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhe Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shaoyang Yu
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Rongfu Huang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yile Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weibin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
35
|
Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-ĸB/HMGB1 and Nrf2/HO-1 pathways. Int Immunopharmacol 2023; 114:109619. [PMID: 36700781 DOI: 10.1016/j.intimp.2022.109619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury often causes poor outcomes and has few established treatments. Neuroinflammation and ferroptosis hinder therapeutic progress in this domain. Annexin A5 (A5) has anticoagulant, anti-apoptotic and anti-inflammatory bioactivities. However, its protective effects on traumatic brain injury remain unclear. Thus, we explored whether inhibiting ferroptosis and neuroinflammation using A5 could ameliorate traumatic brain injury. We injected recombinant A5 (50 µg/kg) in the tail vein of mice 30 min after fluid percussion injury. We then assessed modified neurologic severity scores, Morris water maze performance, rotarod test performance, brain water content, and blood-brain barrier permeability to document the neuroprotective effects of A5. Two days after the traumatic brain injury, we collected injured cortex tissues for western blot, Perl's staining, apoptosis staining, Nissl staining, immunofluorescence/immunohistochemistry, and enzyme-linked immunosorbent assay. We also quantified superoxide dismutase and glutathione peroxidase activity and glutathione and malondialdehyde levels. A5 improved neurological deficits, weight loss, cerebral hypoperfusion, brain edema, blood-brain barrier disruption, neuronal apoptosis, and ferroptosis. It also increased the ratio of M2/M1 phenotype microglia, reduced interleukin 1β and 6 levels, decreased peripheral immune cell infiltration, and increased interleukin 10 levels. A5 reduced neuronal iron accumulation, p53-related cell death, and oxidative stress damage. Finally, A5 downregulated HMGB1 and NF-ĸB pathways and upregulated the nuclear erythroid 2-related factor (Nrf2) and HO-1 pathways. These results suggest that A5 exerts neuroprotection in traumatic brain injury mice and ameliorates neuroinflammation, oxidative stress, and ferroptosis by regulating the NF-kB/HMGB1 pathway and the Nrf2/HO-1 antioxidant system.
Collapse
|
36
|
Yue JK, Kobeissy FH, Jain S, Sun X, Phelps RR, Korley FK, Gardner RC, Ferguson AR, Huie JR, Schneider AL, Yang Z, Xu H, Lynch CE, Deng H, Rabinowitz M, Vassar MJ, Taylor SR, Mukherjee P, Yuh EL, Markowitz AJ, Puccio AM, Okonkwo DO, Diaz-Arrastia R, Manley GT, Wang KK. Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Rep 2023; 4:171-183. [PMID: 36974122 PMCID: PMC10039275 DOI: 10.1089/neur.2022.0060] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The relationship between systemic inflammation and secondary injury in traumatic brain injury (TBI) is complex. We investigated associations between inflammatory markers and clinical confirmation of TBI diagnosis and prognosis. The prospective TRACK-TBI Pilot (Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot) study enrolled TBI patients triaged to head computed tomography (CT) and received blood draw within 24 h of injury. Healthy controls (HCs) and orthopedic controls (OCs) were included. Thirty-one inflammatory markers were analyzed from plasma. Area under the receiver operating characteristic curve (AUC) was used to evaluate discriminatory ability. AUC >0.7 was considered acceptable. Criteria included: TBI diagnosis (vs. OC/HC); moderate/severe vs. mild TBI (Glasgow Coma Scale; GCS); radiographic TBI (CT positive vs. CT negative); 3- and 6-month Glasgow Outcome Scale-Extended (GOSE) dichotomized to death/greater relative disability versus less relative disability (GOSE 1-4/5-8); and incomplete versus full recovery (GOSE <8/ = 8). One-hundred sixty TBI subjects, 28 OCs, and 18 HCs were included. Markers discriminating TBI/OC: HMGB-1 (AUC = 0.835), IL-1b (0.795), IL-16 (0.784), IL-7 (0.742), and TARC (0.731). Markers discriminating GCS 3-12/13-15: IL-6 (AUC = 0.747), CRP (0.726), IL-15 (0.720), and SAA (0.716). Markers discriminating CT positive/CT negative: SAA (AUC = 0.767), IL-6 (0.757), CRP (0.733), and IL-15 (0.724). At 3 months, IL-15 (AUC = 0.738) and IL-2 (0.705) discriminated GOSE 5-8/1-4. At 6 months, IL-15 discriminated GOSE 1-4/5-8 (AUC = 0.704) and GOSE <8/ = 8 (0.711); SAA discriminated GOSE 1-4/5-8 (0.704). We identified a profile of acute circulating inflammatory proteins with potential relevance for TBI diagnosis, severity differentiation, and prognosis. IL-15 and serum amyloid A are priority markers with acceptable discrimination across multiple diagnostic and outcome categories. Validation in larger prospective cohorts is needed. ClinicalTrials.gov Registration: NCT01565551.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
- Address correspondence to: John K. Yue, MD, Department of Neurosurgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94143, USA.
| | - Firas H. Kobeissy
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Sonia Jain
- Division of Biostatistics and Bioinformatics, Departments of Family Medicine and Public Health, University of California, San Diego, San Diego, California, USA
| | - Xiaoying Sun
- Division of Biostatistics and Bioinformatics, Departments of Family Medicine and Public Health, University of California, San Diego, San Diego, California, USA
| | - Ryan R.L. Phelps
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raquel C. Gardner
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Adam R. Ferguson
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - J. Russell Huie
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Andrea L.C. Schneider
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhihui Yang
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Haiyan Xu
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Cillian E. Lynch
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Miri Rabinowitz
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mary J. Vassar
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Sabrina R. Taylor
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Esther L. Yuh
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Amy J. Markowitz
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Ava M. Puccio
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Geoffrey T. Manley
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Kevin K.W. Wang
- Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Gancitano G, Reiter RJ. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022; 11:biomedicines11010005. [PMID: 36672513 PMCID: PMC9855431 DOI: 10.3390/biomedicines11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.
Collapse
Affiliation(s)
- Giuseppe Gancitano
- 1st Carabinieri Paratrooper Regiment “Tuscania”, Italian Ministry of Defence, 57127 Livorno, Italy
- Correspondence:
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
39
|
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol 2022; 13:1029891. [PMID: 36388178 PMCID: PMC9659947 DOI: 10.3389/fneur.2022.1029891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein associated with early inflammatory changes upon extracellular secretion expressed in various cells, including neurons and microglia. With the progress of research, neuroinflammation is believed to be involved in the pathogenesis of neurological diseases such as Parkinson's, epilepsy, and autism. As a key promoter of neuroinflammation, HMGB1 is thought to be involved in the pathogenesis of Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis. However, in the clinic, HMGB1 has not been described as a biomarker for the above-mentioned diseases. However, the current preclinical research results show that HMGB1 antagonists have positive significance in the treatment of Parkinson's disease, stroke, traumatic brain injury, epilepsy, and other diseases. This review discusses the possible mechanisms by which HMGB1 mediates Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1 as a biomarker for these diseases. Future research needs to further explore the underlying molecular mechanisms and clinical translation.
Collapse
Affiliation(s)
- Di Mao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Han
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hongyang Zhao
| |
Collapse
|
40
|
Wei G, Pan Y, Wang J, Xiong X, He Y, Xu J. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives. Clin Cosmet Investig Dermatol 2022; 15:2177-2186. [PMID: 36267690 PMCID: PMC9576603 DOI: 10.2147/ccid.s381432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Vitiligo is a chronic depigmenting disorder of the skin and mucosa caused by the destruction of epidermal melanocytes. Although the exact mechanism has not been elucidated, studies have shown that oxidative stress plays an important role in the pathogenesis of vitiligo. High mobility group box protein B1 (HMGB1) is a major nonhistone protein and an extracellular proinflammatory or chemotactic molecule that is actively secreted or passively released by necrotic cells. Recent data showed that HMGB1 is overexpressed in both blood and lesional specimens from vitiligo patients. Moreover, oxidative stress triggers the release of HMGB1 from keratinocytes and melanocytes, indicating that HMGB1 may participate in the pathological process of vitiligo. Overall, this review mainly focuses on the role of HMGB1 in the potential mechanisms underlying vitiligo depigmentation under oxidative stress. In this review, we hope to provide new insights into vitiligo pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Guangmin Wei
- Department of Dermatology, Medical Center Hospital of Qionglai City, Qionglai, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
41
|
Jelinek M, Duris K. Inflammatory Response in Sepsis and Hemorrhagic Stroke. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
42
|
Wang D, Ousaka D, Qiao H, Wang Z, Zhao K, Gao S, Liu K, Teshigawara K, Takada K, Nishibori M. Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb. Cells 2022; 11:cells11192970. [PMID: 36230933 PMCID: PMC9563572 DOI: 10.3390/cells11192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Handong Qiao
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Ziyi Wang
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 1020083, Japan
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Shangze Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keyue Liu
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo 0606642, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
- Correspondence:
| |
Collapse
|
43
|
Wei L, Zhang W, Li Y, Zhai J. The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence. Front Cell Dev Biol 2022; 10:986511. [PMID: 36081910 PMCID: PMC9448523 DOI: 10.3389/fcell.2022.986511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a common complication of many chronic diseases. It includes inflammation of the parenchyma and vascular systems. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, which can directly participate in the suppression of inflammation. It can also regulate the activity of other proteins. Among them, high mobility group box 1 (HMGB1) signaling can be inhibited by deacetylating four lysine residues (55, 88, 90, and 177) in quiescent endothelial cells. HMGB1 is a ubiquitous nuclear protein, once translocated outside the cell, which can interact with various target cell receptors including the receptor for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, and TLR4 and stimulates the release of pro-inflammatory cyto-/chemokines. And SIRT1 has been reported to inhibit the activity of HMGB1. Both are related to the occurrence and development of inflammation and associated diseases but show an antagonistic relationship in controlling inflammation. Therefore, in this review, we introduce how this signaling axis regulates the emergence of inflammation-related responses and tumor occurrence, providing a new experimental perspective for future inflammation research. In addition, it explores diverse upstream regulators and some natural/synthetic activators of SIRT1 as a possible treatment for inflammatory responses and tumor occurrence which may encourage the development of new anti-inflammatory drugs. Meanwhile, this review also introduces the potential molecular mechanism of the SIRT1-HMGB1 pathway to improve inflammation, suggesting that SIRT1 and HMGB1 proteins may be potential targets for treating inflammation.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenrui Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueyang Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Jinghui Zhai,
| |
Collapse
|
44
|
GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB pathway. Int Immunopharmacol 2022; 110:108995. [PMID: 35785730 DOI: 10.1016/j.intimp.2022.108995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cigarette smoking (CS) has been associated with an increased risk of cognitive disorders. Although HMGB1 has been connected to various neurological ailments, its role in the pathogenesis of CS-induced cognitive impairments is undefined. With the ability of GLP-1 to lower HMGB1 expression and improve learning and memory performance, we sought to assess the potential neuroprotective efficacy of Crocin (Cro) as a GLP-1 stimulator against CS-induced cognitive impairments, with a focus on the HMGB1-RAGE/TLR4-NF-κB pathway. Fifty adult rats were specified into: Control; Cro (30 mg/kg); CS; Cro then CS and CS concurrently with Cro. Cognitive functions were assessed by MWM, EMP, and passive avoidance tests. Hippocampal levels of GLP-1, HMGB1, pro-inflammatory cytokines, and apoptotic markers were detected using ELISA, western blotting, and immunohistochemistry. Hippocampal oxidant/antioxidant status was evaluated via colorimetric determination of MDA and TAC. The results revealed that Cro either before or along with CS produced a significant improvement in learning and memory. Cro markedly hindered HMGB1-RAGE/TLR4-NF-κB pathway through enhancing GLP-1 level and expression, which in turn suppressed TNF-α and IL-1β levels and alleviated CS-induced neuroinflammation. Cro significantly counteracted CS-triggered oxidative stress as evidenced by reducing MDA level and raising TAC. Histopathologically, Cro lessened neuronal apoptosis by lowering Bax/Bcl-2 ratio at hippocampal CA2 region. These findings confirmed a GLP-1-dependent neuroprotective action of Cro against CS-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB axis.
Collapse
|
45
|
Gerber KS, Alvarez G, Alamian A, Behar-Zusman V, Downs CA. Biomarkers of Neuroinflammation in Traumatic Brain Injury. Clin Nurs Res 2022; 31:1203-1218. [PMID: 35770330 DOI: 10.1177/10547738221107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) is characterized by neuroinflammation and structural damage leading to symptoms and altered brain function. Biomarkers are useful in understanding neuroinflammation and correlations with TBI sequalae. The purpose of this paper is to identify and discuss biomarkers of neuroinflammation used to study TBI and its sequalae. A systematic review was conducted using PubMed, CINAHL, Embase, and Web of Science. A total of 350 articles met criteria; 70 used biomarkers. PRISMA criteria were used for Quality Assessment. Articles included reviews (n = 17), case-control (n = 25), cross-sectional (n = 25) studies, and randomized controlled trials (n = 3). Twenty-seven biomarkers were identified, including inflammasomes, cytokines, neuropeptides, complement complexes, miRNA and exosomes, and glial cell-specific proteins. Biomarkers aid in predicting morbidity and mortality and advance our understanding of neuroinflammation in TBI. This systematic review advances our understanding of the neuroinflammatory response to better enable nurses and clinicians to provide informed care of TBI patients.
Collapse
Affiliation(s)
- Kathryn S Gerber
- University of Miami School of Nursing and Health Studies, Coral Gables, FL, USA
| | - Gema Alvarez
- University of Miami Miller School of Medicine, FL, USA
| | - Arsham Alamian
- University of Miami School of Nursing and Health Studies, Coral Gables, FL, USA
| | | | - Charles A Downs
- University of Miami School of Nursing and Health Studies, Coral Gables, FL, USA
| |
Collapse
|
46
|
Wang H, Huang Q, Zhang Z, Ji J, Sun T, Wang D. Transient post-operative overexpression of CXCR2 on monocytes of traumatic brain injury patients drives monocyte chemotaxis toward cerebrospinal fluid and enhances monocyte-mediated immunogenic cell death of neurons in vitro. J Neuroinflammation 2022; 19:171. [PMID: 35768823 PMCID: PMC9245242 DOI: 10.1186/s12974-022-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background After traumatic brain injury (TBI), peripheral monocytes infiltrate into the central nervous system due to disruption of the blood–brain barrier, and play an important role in neuroinflammation. However, the mechanisms regulating the movement and function of peripheral monocytes after TBI have not been fully investigated. Methods TBI patients who underwent surgery at our hospital were recruited. CXCR2 expression in CD14+ monocytes from peripheral blood and cerebrospinal fluid (CSF) of TBI patients around surgery was analyzed by flow cytometry and compared with that of patients who suffered TBI 2–24 months prior and underwent cranioplasty. In vitro, serum or CSF from TBI/non-TBI patients were used to treat peripheral monocytes isolated from healthy volunteers to evaluate their effect on CXCR2 expression. Transwell experiments were performed to analyze the role of CXCR2 in monocyte chemotaxis toward the CSF. The role of CXCR2 in monocyte-mediated immunogenic cell death (ICD) of nerve cells was explored in an indirect co-culture system. Results Transient CXCR2 upregulation in monocytes from the peripheral blood and CSF of TBI patients was detected soon after surgery and was associated with unfavorable outcomes. TBI serum and CSF promoted CXCR2 expression in monocytes, and dexamethasone reversed this effect. Peripheral monocytes from TBI patients showed enhanced chemotaxis toward the CSF and increased inflammatory cytokine secretion. The CXCR2 antagonist SB225002 decreased monocyte chemotaxis toward TBI CSF, and lowered pro-inflammatory cytokine secretion in monocytes treated with TBI serum. SB225002 also relieved ICD in nerve cells co-cultured with TBI serum-treated monocytes. Conclusions CXCR2 is transiently overexpressed in the peripheral monocytes of TBI patients post-surgery, and drives peripheral monocyte chemotaxis toward CSF and monocyte-mediated ICD of nerve cells. Therefore, CXCR2 may be a target for monocyte-based therapies for TBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02535-6.
Collapse
Affiliation(s)
- Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Qibing Huang
- Department of Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Zhijie Zhang
- Department of Ultrasound, Shandong Maternal and Child Health Hospital, Jinan, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, Shandong, China.
| |
Collapse
|
47
|
Ren Q, Jiang X, Paudel YN, Gao X, Gao D, Zhang P, Sheng W, Shang X, Liu K, Zhang X, Jin M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson's disease like pathology in Zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115234. [PMID: 35358621 DOI: 10.1016/j.jep.2022.115234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second most devastating age-related neurodegenerative diseases after Alzheimer diseases (AD) and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) and aggregation of α-synuclein (α-syn). The precise etiology of PD is not yet fully understood and lacks the disease-modifying therapeutic strategies that could reverse the ongoing neurodegeneration. In the quest of exploring novel disease modifying therapeutic strategies, natural compounds from plant sources have gained much attention in recent days. Glycyrrhizin (GL) is the main active ingredient of the roots and rhizomes of licorice (Glycyrrhiza glabra L), which are generally used in the treatment of inflammatory diseases or as a tonifying herbal medicine. In Persia, GL is a conventional neuroprotective agent that are used to treat neurological disorders. The traditional use of GL in Japan is to treat chronic hepatitis B. In addition, GL is a natural inhibitor of high mobility group box 1 (HMGB1) which has exerted neuroprotective effect against several HMGB1 mediated pathological conditions. AIM OF THE STUDY The study is aimed to evaluate therapeutic effect of GL against PD in zebrafish. MATERIAL AND METHODS PD in zebrafish larvae is induced by administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Apoptosis was assessed with TUNEL assay. Gene expression was performed to assess the modulation in genes related to neuroinflammatory and autophagy. RESULTS We observed that GL co-treatment increased the length of DA neurons, decreased the number of apoptotic cells in zebrafish brain, and inhibited the loss of vasculature and disorganized vasculature induced by MPTP. GL co-treatment relieved the MPTP-induced locomotor impairment in zebrafish. GL co-treatment suppressed MPTP-induced upregulated mRNA expression of inflammatory markers such as hmgb1a, tlr4b, nfκb, il1β, and il6. GL co-treatment suppressed the autophagy related genes α-syn and atg5 whereas increased the mRNA expression level of parkin and pink1. In addition, molecular docking study reveals that GL has binding interaction with HMGB1, TLR4, and RAGE. CONCLUSION Hence, the effect of GL co-treatment on MPTP-induced PD-like condition in zebrafish is to alleviate apoptosis and autophagy, as well as suppress inflammatory responses.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Ji'nan, 250353, Shandong Province, PR China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Xin Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiujun Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
48
|
Duan X, Wen J, Zhang M, Wang C, Xiang Y, Wang L, Yu C, Deng G, Yan M, Zhang B, Fang P. Glycyrrhiza uralensis Fisch. and its active components mitigate Semen Strychni-induced neurotoxicity through regulating high mobility group box 1 (HMGB1) translocation. Biomed Pharmacother 2022; 149:112884. [PMID: 35358800 DOI: 10.1016/j.biopha.2022.112884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
Semen Strychni has long been used for the treatment of rheumatoid arthritis, facioplegia and myasthenia gravis due to its anti-inflammation and anti-nociceptive properties in China. However, the fatal neurotoxicity of Semen Strychni has limited its wider clinical application. To investigate the acute toxicity induced by Semen Strychni and the detoxification of liquorice, we evaluated inflammation, oxidative stress and the translocation of high mobility group box 1 (HMGB1) in rats. As a result, there were obvious oxidative stress and inflammation in hippocampus after the Semen Strychni extracts (STR) treatment in rats. Liquorice extracts (LE) and its three active monomers - glycyrrhizic acid (GA), liquiritigenin (LIQ), isoliquiritigenin (ISL) showed the potential for mitigating STR-induced neurotoxicity. HMGB1 levels in cytoplasm and serum and the levels of two downstream receptors RAGE and TLR4 were significantly increased after STR treatment. Through using LE and the monomers, the nucleocytoplasmic transport and release of HMGB1 were inhibited. In addition, the binding between HMGB1 and TLR4 was weakened in detoxification groups comparing with the STR group. Taken together, these findings indicated that liquorice and its active components alleviated acute neurotoxicity induced by Semen Strychni partly via HMGB1-related pathway.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Jing Wen
- Department of Pharmacy, The Third Hospital of Changsha, Changsha 410015, China
| | - Min Zhang
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Chao Wang
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yalan Xiang
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Lu Wang
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Changwei Yu
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Gongying Deng
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Miao Yan
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Pingfei Fang
- Department of Pharmacy, The Seond Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China.
| |
Collapse
|
49
|
Chen JQ, Gao SQ, Luo L, Jiang ZY, Liang CF, He HY, Guo Y. Nonoxid-HMGB1 Attenuates Cognitive Impairment After Traumatic Brain Injury in Rats. Front Med (Lausanne) 2022; 9:827585. [PMID: 35479959 PMCID: PMC9035677 DOI: 10.3389/fmed.2022.827585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global burden of health. As an accepted inflammatory mediator, high mobility group box 1 (HMGB1) is found to be effective in facilitating neurogenesis and axonal regeneration. SH3RF2 (also known as POSHER), an E3 ligase SH3 domain-containing ring finger 2, belongs to the SH3RF family of proteins. Here, we aimed to investigate the role of redox states of HMGB1 on neurite outgrowth and regeneration both in vitro and in vivo. In this study, distinct recombinant HMGB1 redox isoforms were used. Sequencing for RNA-seq and data analysis were performed to find the potential downstream target of nonoxid-HMGB1 (3S-HMGB1). Protein changes and distribution of SH3RF2 were evaluated by western blot assays and immunofluorescence. Lentivirus and adeno-associated virus were used to regulate the expression of genes. Nonoxid-HMGB1-enriched exosomes were constructed and used to treat TBI rats. Neurological function was evaluated by OF test and NOR test. Results demonstrated that nonoxid-HMGB1 and fr-HMGB1, but not ds-HMGB1, promoted neurite outgrowth and axon elongation. RNA-seq and western blot assay indicated a significant increase of SH3RF2 in neurons after treated with nonoxid-HMGB1 or fr-HMGB1. Notably, the beneficial effects of nonoxid-HMGB1 were attenuated by downregulation of SH3RF2. Furthermore, nonoxid-HMGB1 ameliorated cognitive impairment in rats post-TBI via SH3RF2. Altogether, our experimental results suggest that one of the promoting neurite outgrowth and regeneration mechanisms of nonoxid-HMGB1 is mediated through the upregulated expression of SH3RF2. Nonoxid-HMGB1 is an attractive therapeutic candidate for the treatment of TBI.
Collapse
|
50
|
Fernandes A, Caldeira C, Cunha C, Ferreiro E, Vaz AR, Brites D. Differences in Immune-Related Genes Underlie Temporal and Regional Pathological Progression in 3xTg-AD Mice. Cells 2022; 11:cells11010137. [PMID: 35011699 PMCID: PMC8750089 DOI: 10.3390/cells11010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| | - Cláudia Caldeira
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Carolina Cunha
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Bruno Silva-Santos Lab, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elisabete Ferreiro
- MitoXT-Mitochondrial Toxicologu and Experimental Therapeutics Laboratory, CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-516 Coimbra, Portugal;
- III-Institute for Interdisciplinary Research (IIIUC), Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - Ana Rita Vaz
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| |
Collapse
|