1
|
Plewa P, Kiełbowski K, Mentel O, Figiel K, Bakinowska E, Becht R, Banach B, Pawlik A. Bacteria and Carcinogenesis and the Management of Cancer: A Narrative Review. Pathogens 2025; 14:509. [PMID: 40430828 PMCID: PMC12114594 DOI: 10.3390/pathogens14050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
There is a widely known relationship between certain microbes and cancer progression. For instance, Helicobacter pylori is associated with the occurrence of gastric cancer, while HPV is associated with cervical and head and neck cancers. Recent studies have uncovered novel and important associations between bacterial presence and tumor formation and treatment response. Apart from the influence of the intestinal microbiome on cancer, the local activity of bacteria affects disease properties as well. Bacteria can localize within tumors in less vascularized niches. Their presence mediates the activity of signaling pathways, which contribute to tumorigenesis. Furthermore, they affect the composition of the tumor microenvironment, a highly complex structure composed of immunoregulatory cells and secreted inflammatory mediators. Recently, researchers have analyzed the properties of bacteria to develop novel anticancer strategies. The aim of this review is to discuss the latest findings regarding the relationships between bacteria and cancer and the properties of bacteria that could be used to kill cancer cells.
Collapse
Affiliation(s)
- Paulina Plewa
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Oliwia Mentel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Karolina Figiel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bolesław Banach
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| |
Collapse
|
2
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Gu C, Sha G, Zeng B, Cao H, Cao Y, Tang D. Therapeutic potential of fecal microbiota transplantation in colorectal cancer based on gut microbiota regulation: from pathogenesis to efficacy. Therap Adv Gastroenterol 2025; 18:17562848251327167. [PMID: 40104324 PMCID: PMC11915259 DOI: 10.1177/17562848251327167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with its progression intricately linked to gut microbiota dysbiosis. Disruptions in microbial homeostasis contribute to tumor initiation, immune suppression, and inflammation, establishing the microbiota as a key therapeutic target. Fecal microbiota transplantation (FMT) has emerged as a transformative approach to restore microbial balance, enhance immune responses, and reshape the tumor microenvironment. This review explores the mechanisms underlying FMT's therapeutic potential, evaluates its advantages over other microbiota-based interventions, and addresses challenges such as donor selection, safety concerns, and treatment standardization. Looking forward, the integration of FMT into personalized CRC therapies requires robust clinical trials and the identification of predictive biomarkers to optimize its efficacy and safety.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Herong Cao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yibo Cao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Tang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou 225000, China
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221000, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, 225000, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| |
Collapse
|
4
|
Nambiar J, Venugopal M, Shaji SK, Bose C, Rajeev A, Kalliadan S, Haripriyan J, Nair BG. Deciphering the oncogenic influence of Pasteurella multocida: Implications of matrix metalloproteinase activation. Heliyon 2025; 11:e42538. [PMID: 40028520 PMCID: PMC11870157 DOI: 10.1016/j.heliyon.2025.e42538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Pathogenic bacteria exploit host cells by interfering with the signalling pathways in several ways. Pasteurella multocida, a gram-negative coccobacillus, occurs as a commensal in humans and animals and causes various diseases in ungulates by surviving inside the host cells. P. multocida toxin (PMT) was reported to be one of the most potent mitogens that possess tumour-promoting properties. The present study examined the mitogenic potential of P. multocida cell lysate and culture supernatant on fibrosarcoma cells (HT1080). Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) activity were significantly induced in the presence of P. multocida cell lysate, culture supernatant and in co-culture conditions. Downregulation of endogenous inhibitors of MMP like Tissue Inhibitor of Metalloproteinases (TIMP-2) and reversion inducing cysteine rich protein with kazal motifs (RECK) was also observed. Significant induction of mitogenic and cell survival pathways like p44/42MAPK and Akt was observed in the presence of bacterial components. A pronounced increase in migration and invasion of HT1080 was observed with bacterial cell lysate and culture supernatant. Treatment with plumbagin, a natural naphthoquinone from the medicinal plant Plumbago zeylanica, demonstrated significant cell death in HT1080. In the presence of culture supernatant and cell lysate of P. multocida, the cell death induced by plumbagin was reduced indicating the role of the bacterial components in promoting the proliferation of cells. Therefore, the present study confirms the role of bacterial infections in promoting the proliferation of cancer cells or worsening existing cancers, thereby emphasizing the need for novel perspectives in developing therapies to combat such infections effectively.
Collapse
Affiliation(s)
- Jyotsna Nambiar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Meera Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Sanu Korumadathil Shaji
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Chinchu Bose
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Amrita Rajeev
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Sreelakshmi Kalliadan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Jayalekshmi Haripriyan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| | - Bipin G. Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P O, Kollam, Kerala, 690525, India
| |
Collapse
|
5
|
Javaherchi P, Zarepour A, Khosravi A, Heydari P, Iravani S, Zarrabi A. Innovative applications of MXenes in dialysis: enhancing filtration efficiency. NANOSCALE 2025; 17:4301-4327. [PMID: 39810585 DOI: 10.1039/d4nr04329d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes. MXenes show great promise in the therapeutic management of acute kidney injury, where their biocompatibility and ability to facilitate toxin removal can mitigate damage to renal tissues. In hemodialysis, MXenes can enhance membrane performance through improved permeability and selectivity, leading to more effective clearance of waste products. Despite the potential of MXene-based composites in dialysis applications, several challenges loom large on the horizon. The stability of MXenes in physiological environments is a critical concern, as they can undergo oxidation or degradation, which may compromise their functionality over time. The scalability of synthesis processes remains a significant barrier; producing high-quality MXene materials in sufficient quantities for clinical use is not yet fully realized. Moreover, ensuring biocompatibility is paramount, as any adverse reactions could lead to inflammation or other complications in patients. The integration of MXenes into existing dialysis systems requires meticulous engineering to maintain optimal filtration properties while avoiding clogging or fouling. The future of MXenes and their composites in dialysis presents a promising horizon, teeming with potential innovations. The development of hybrid materials that utilize MXenes alongside other nanomaterials can lead to multifunctional systems, capable of addressing multiple challenges faced in dialysis treatments. Advancements in fabrication techniques may allow for tailored porosity, enabling customized dialysis solutions for individual patients. Research into surface modifications and composites can enhance their stability and functionality, potentially overcoming current limitations. The purpose of this review is to provide a comprehensive understanding of the current landscape of MXenes in dialysis, highlighting their applications, challenges, and future directions. This review explores the diverse applications of MXenes in the field of dialysis, focusing on their roles in the removal of toxic metals and dyes, therapy for acute kidney injury, and hemodialysis enhancement.
Collapse
Affiliation(s)
- Pouya Javaherchi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Parisa Heydari
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
6
|
Bano Y, Shrivastava A, Shukla P, Chaudhary AA, Khan SUD, Khan S. The implication of microbiome in lungs cancer: mechanisms and strategies of cancer growth, diagnosis and therapy. Crit Rev Microbiol 2025; 51:128-152. [PMID: 38556797 DOI: 10.1080/1040841x.2024.2324864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Available evidence illustrates that microbiome is a promising target for the study of growth, diagnosis and therapy of various types of cancer. Lung cancer is a leading cause of cancer death worldwide. The relationship of microbiota and their products with diverse pathologic conditions has been getting large attention. The novel research suggests that the microbiome plays an important role in the growth and progression of lung cancer. The lung microbiome plays a crucial role in maintaining mucosal immunity and synchronizing the stability between tolerance and inflammation. Alteration in microbiome is identified as a critical player in the progression of lung cancer and negatively impacts the patient. Studies suggest that healthy microbiome is essential for effective therapy. Various clinical trials and research are focusing on enhancing the treatment efficacy by altering the microbiome. The regulation of microbiota will provide innovative and promising treatment strategies for the maintenance of host homeostasis and the prevention of lung cancer in lung cancer patients. In the current review article, we presented the latest progress about the involvement of microbiome in the growth and diagnosis of lung cancer. Furthermore, we also assessed the therapeutic status of the microbiome for the management and treatment of lung cancer.
Collapse
Affiliation(s)
- Yasmin Bano
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
| | - Abhinav Shrivastava
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
| | - Piyush Shukla
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Bilaspur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
7
|
Tozzi M, Fiore A, Travaglione S, Marcon F, Rainaldi G, Germinario EAP, Laterza I, Donati S, Macchia D, Spada M, Leoni O, Quattrini MC, Pietraforte D, Tomasoni S, Torrigiani F, Verin R, Matarrese P, Gambardella L, Spadaro F, Carollo M, Pietrantoni A, Carlini F, Panebianco C, Pazienza V, Colella F, Lucchetti D, Sgambato A, Sistigu A, Moschella F, Guidotti M, Vincentini O, Maroccia Z, Biffoni M, De Angelis R, Bracci L, Fabbri A. E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration. J Exp Clin Cancer Res 2025; 44:29. [PMID: 39876002 PMCID: PMC11776187 DOI: 10.1186/s13046-024-03271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro. Despite this evidence, a definitive causal link between CNF1 and CRC was missing. Here we investigated whether CNF1 plays an active role in CRC onset by analyzing pro-carcinogenic key effects specifically induced by the toxin in vitro and in vivo. METHODS Viability assays, confocal microscopy of γH2AX and 53BP1 molecules and cytogenetic analysis were carried out to assess CNF1-induced genotoxicity on non-neoplastic intestinal epithelial cells. Caco-2 monolayers and 3D Caco-2 spheroids were used to evaluate permeability alterations specifically induced by CNF1, either in the presence or in the absence of inflammation. In vivo, an inflammatory bowel disease (IBD) model was exploited to evaluate the carcinogenic potential of CNF1. Immunohistochemistry and immunofluorescence stainings of formalin-fixed paraffin-embedded (FFPE) colon tissue were carried out as well as fecal microbiota composition analysis by 16 S rRNA gene sequencing. RESULTS CNF1 induces the release of reactive oxidizing species and chromosomal instability in non-neoplastic intestinal epithelial cells. In addition, CNF1 modifies intestinal permeability by directly altering tight junctions' distribution in 2D Caco-2 monolayers, and by hindering the differentiation of 3D Caco-2 spheroids with an irregular arrangement of these junctions. In vivo, repeated intrarectal administration of CNF1 induces the formation of dysplastic aberrant crypt foci (ACF), and produces the formation of colorectal adenomas in an IBD model. These effects are accompanied by the increased neutrophilic infiltration in colonic tissue, by a mixed pro-inflammatory and anti-inflammatory cytokine milieu, and by the pro-tumoral modulation of the fecal microbiota. CONCLUSIONS Taken together, our results support the hypothesis that the CNF1 toxin from E. coli plays an active role in colorectal carcinogenesis. Altogether, these findings not only add new knowledge to the contribution of bacterial toxins to CRC, but also pave the way to the implementation of current screening programs and preventive strategies.
Collapse
Affiliation(s)
- Michela Tozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Fiore
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Travaglione
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Rainaldi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Ilenia Laterza
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Donati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Omar Leoni
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Sofia Tomasoni
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Legnaro, PD, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Legnaro, PD, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Legnaro, PD, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Maria Carollo
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Francesca Carlini
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Filomena Colella
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Donatella Lucchetti
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Sgambato
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Sistigu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Federica Moschella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Guidotti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Olimpia Vincentini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Stabile G, Doria A, Bruno M, D'Indinosante M, Gallotta V, Fanfani F, Scambia G, Restaino S, Vizzielli G, Carlucci S, Nappi L. The Role of the Endometrial Microbiota in Endometrial Cancer: A Systematic Review of the Literature. J Clin Med 2024; 13:7135. [PMID: 39685594 DOI: 10.3390/jcm13237135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Endometrial cancer is currently the sixth most frequent cancer in women, and scientific research is focusing on the search for particular features of the endometrium that may explain a further predisposition to the onset of endometrial cancer, aimed at improving knowledge of the pathogenetic factors of this disease. The aim of our review is to analyze in detail the results of the literature on the endometrial microbiota in patients with endometrial cancer and to investigate its role. Methods: We performed our research on the Pubmed, Web of Science, and Scopus databases. We searched up to December 2023 and considered manuscripts published from 2000. Only articles in English were included in the search. We excluded studies in which the endometrial microbiota were collected through the vagina or cervical canal. Results: We included in our review a total of five manuscripts at the end of the screening process, and the total number of patients involved was 190. Four studies considered only post-menopausal patients, while one study considered both pre- and post-menopausal patients. In all studies, the microbiota analysis was derived from a post-hysterectomy biopsy. From our review, it emerged that Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria are the most represented bacteria in patients with endometrial cancer. These are both Gram-positive and Gram-negative, but predominantly anaerobic bacteria. Conclusions: The reduced microbial diversity and the presence of specific bacteria is often associated with endometrial cancer. Further work on larger population samples, and on healthy women and those affected by endometrial carcinoma, is needed to understand how the endometrial microbiota changes and influences the development of the tumor and whether intervening in the changes in the microbiota will have a therapeutic impact on endometrial carcinoma.
Collapse
Affiliation(s)
- Guglielmo Stabile
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| | - Alessandra Doria
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| | - Matteo Bruno
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco D'Indinosante
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Valerio Gallotta
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Fanfani
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Restaino
- Department of Medicinal Area (DAME) Clinic of Obstetrics and Gynecology, Santa Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Giuseppe Vizzielli
- Obstetrics and Gynecology Clinic, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Stefania Carlucci
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
9
|
Bao N, Zhang X, Lin C, Qiu F, Mo G. A scoring model based on bacterial lipopolysaccharide-related genes to predict prognosis in NSCLC. Front Genet 2024; 15:1408000. [PMID: 39610830 PMCID: PMC11602480 DOI: 10.3389/fgene.2024.1408000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) has high incidence and mortality rates. The discovery of an effective biomarker for predicting prognosis and treatment response in patients with NSCLC is of great significance. Bacterial lipopolysaccharide-related genes (LRGs) play a critical role in tumor development and the formation of an immunosuppressive microenvironment; however, their relevance in NSCLC prognosis and immune features is yet to be discovered. Methods Differentially expressed LRGs associated with NSCLC prognosis were identified in the TCGA dataset. Prognostic LRG scoring and nomogram models were established using single-variable Cox regression, Least Absolute Shrinkage, and Selection Operator (LASSO) regression. The prognostic value of the scoring and nomogram models was evaluated using Kaplan-Meier (KM) analysis and further validated using an external dataset. Patients were stratified into high- and low-risk groups based on the nomogram score, and drug sensitivity analysis was performed. Additionally, clinical characteristics, mutation features, immune infiltration characteristics, and responses to immunotherapy were compared between the two groups. Results We identified 15 differentially expressed LRGs associated with NSCLC prognosis. A prognostic prediction model consisting of 6 genes (VIPR1, NEK2, HMGA1, FERMT1, SLC7A, and TNS4) was established. Higher LRG scores were associated with worse clinical prognosis and were independent prognostic factors for NSCLC. Subsequently, a clinical risk prediction nomogram model for NSCLC was constructed, incorporating the status of patients with tumor burden, tumor T-stage, and LRG scores. The nomogram model demonstrated good predictive performance upon validation. Additionally, NSCLC patients classified as high risk based on the model's predictions exhibited not only a poorer prognosis but also a more pronounced inflammatory immune microenvironment phenotype than low-risk patients. Furthermore, high-risk patients showed disparate predicted responses to various drugs and immunotherapies compared with low-risk patients. Conclusion The LRGs scoring model can serve as a biomarker that contributes to the establishment of a reliable prognostic risk-prediction model, potentially facilitating the development of personalized treatment strategies for patients with NSCLC.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xinxin Zhang
- Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| | - Chenyu Lin
- Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, First Medical Center of the PLA General Hospital, Beijing, China
| | - Guoxin Mo
- Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Porreca A, Ibrahimi E, Maturo F, Marcos Zambrano LJ, Meto M, Lopes MB. Robust prediction of colorectal cancer via gut microbiome 16S rRNA sequencing data. J Med Microbiol 2024; 73. [PMID: 39377779 DOI: 10.1099/jmm.0.001903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Introduction. The study addresses the challenge of utilizing human gut microbiome data for the early detection of colorectal cancer (CRC). The research emphasizes the potential of using machine learning techniques to analyze complex microbiome datasets, providing a non-invasive approach to identifying CRC-related microbial markers.Hypothesis/Gap Statement. The primary hypothesis is that a robust machine learning-based analysis of 16S rRNA microbiome data can identify specific microbial features that serve as effective biomarkers for CRC detection, overcoming the limitations of classical statistical models in high-dimensional settings.Aim. The primary objective of this study is to explore and validate the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for colorectal cancer (CRC) detection and progression. The focus is on developing a classifier that effectively predicts the presence of CRC and normal samples based on the analysis of three previously published faecal 16S rRNA sequencing datasets.Methodology. To achieve the aim, various machine learning techniques are employed, including random forest (RF), recursive feature elimination (RFE) and a robust correlation-based technique known as the fuzzy forest (FF). The study utilizes these methods to analyse the three datasets, comparing their performance in predicting CRC and normal samples. The emphasis is on identifying the most relevant microbial features (taxa) associated with CRC development via partial dependence plots, i.e. a machine learning tool focused on explainability, visualizing how a feature influences the predicted outcome.Results. The analysis of the three faecal 16S rRNA sequencing datasets reveals the consistent and superior predictive performance of the FF compared to the RF and RFE. Notably, FF proves effective in addressing the correlation problem when assessing the importance of microbial taxa in explaining the development of CRC. The results highlight the potential of the human microbiome as a non-invasive means to detect CRC and underscore the significance of employing FF for improved predictive accuracy.Conclusion. In conclusion, this study underscores the limitations of classical statistical techniques in handling high-dimensional information such as human microbiome data. The research demonstrates the potential of the human microbiome, specifically in the colon, as a valuable source of biomarkers for CRC detection. Applying machine learning techniques, particularly the FF, is a promising approach for building a classifier to predict CRC and normal samples. The findings advocate for integrating FF to overcome the challenges associated with correlation when identifying crucial microbial features linked to CRC development.
Collapse
Affiliation(s)
- Annamaria Porreca
- Department of Economics, Statistics and Business, Faculty of Economics and Law, Universitas Mercatorum, Rome, Italy
| | - Eliana Ibrahimi
- Department of Biology, University of Tirana, Tirana, Albania
| | - Fabrizio Maturo
- Department of Economics, Statistics and Business, Faculty of Technological and Innovation Sciences, Universitas Mercatorum, Rome, Italy
| | - Laura Judith Marcos Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
| | - Melisa Meto
- Department of Biology, University of Tirana, Tirana, Albania
| | - Marta B Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, Portugal
- UNIDEMI, Research and Development Unit for Mechanical and Industrial Engineering, NOVA School of Science and Technology, Caparica, Portugal
| |
Collapse
|
11
|
Yang X, Gan Y, Zhang Y, Liu Z, Geng J, Wang W. Microbial genotoxin-elicited host DNA mutations related to mitochondrial dysfunction, a momentous contributor for colorectal carcinogenesis. mSystems 2024; 9:e0088724. [PMID: 39189772 PMCID: PMC11406885 DOI: 10.1128/msystems.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Gut microbe dysbiosis increases repetitive inflammatory responses, leading to an increase in the incidence of colorectal cancer. Recent studies have revealed that specific microbial species directly instigate mutations in the host nucleus DNA, thereby accelerating the progression of colorectal cancer. Given the well-established role of mitochondrial dysfunction in promoting colorectal cancer, it is reasonable to postulate that gut microbes may induce mitochondrial gene mutations, thereby inducing mitochondrial dysfunction. In this review, we focus on gut microbial genotoxins and their known and potential targets in mitochondrial genes. Consequently, we propose that targeted disruption of genotoxin transport pathways may effectively reduce the rate of mitochondrial gene mutations and yield substantial benefits for the prevention of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuting Zhang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
12
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
13
|
Azzi-Martin L, Touffait-Calvez V, Everaert M, Jia R, Sifré E, Seeneevassen L, Varon C, Dubus P, Ménard A. Cytolethal Distending Toxin Modulates Cell Differentiation and Elicits Epithelial to Mesenchymal Transition. J Infect Dis 2024; 229:1688-1701. [PMID: 38416880 DOI: 10.1093/infdis/jiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The bacterial genotoxin, cytolethal distending toxin (CDT), causes DNA damage in host cells, a risk factor for carcinogenesis. Previous studies have shown that CDT induces phenotypes reminiscent of epithelial to mesenchymal transition (EMT), a process involved in cancer initiation and progression. METHODS We investigated different steps of EMT in response to Helicobacter hepaticus CDT and its active CdtB subunit using in vivo and in vitro models. RESULTS Most of the steps of the EMT process were induced by CDT/CdtB and observed throughout the study in murine and epithelial cell culture models. CdtB induced cell-cell junction disassembly, causing individualization of cells and acquisition of a spindle-like morphology. The key transcriptional regulators of EMT (SNAIL and ZEB1) and some EMT markers were upregulated at both RNA and protein levels in response to CDT/CdtB. CdtB increased the expression and proteolytic activity of matrix metalloproteinases, as well as cell migration. A range of these results were confirmed in Helicobacter hepaticus-infected and xenograft murine models. In addition, colibactin, a genotoxic metabolite produced by Escherichia coli, induced EMT-like effects in cell culture. CONCLUSIONS Overall, these data show that infection with genotoxin-producing bacteria elicits EMT process activation, supporting their role in tumorigenesis.
Collapse
Affiliation(s)
- Lamia Azzi-Martin
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | | | - Maude Everaert
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Ruxue Jia
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Elodie Sifré
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Lornella Seeneevassen
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Christine Varon
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | - Pierre Dubus
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
- Institut de Pathologie et de Biologie du Cancer, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Armelle Ménard
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Ma M, Zheng Z, Li J, He Y, Kang W, Ye X. Association between the gut microbiota, inflammatory factors, and colorectal cancer: evidence from Mendelian randomization analysis. Front Microbiol 2024; 15:1309111. [PMID: 38562480 PMCID: PMC10982360 DOI: 10.3389/fmicb.2024.1309111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors primarily affecting individuals over the age of 50 years. Recent studies have suggested that the dysbiosis of the gut microbiota, a community of microorganisms in the human gut, is closely associated with the occurrence and development of CRC. Additionally, inflammatory factors (IFs) have also been reported to play a significant role in the development of CRC. However, the causal relationships between the gut microbiota, IFs, and CRC remain unclear. Methods In this study, we performed Mendelian randomization (MR) analysis using publicly available genome-wide association study (GWAS) data to explore the causal relationship between the gut microbiota, IFs, and CRC. The gut microbiota GWAS data were obtained from the MiBioGen study, while the IFs GWAS data were derived from the comprehensive analysis of three independent cohorts. Causal relationship analysis was conducted using appropriate instrumental variables (IVs) and statistical models. Results MR analysis of the gut microbiota and CRC revealed a negative correlation between the Lachnospiraceae species in the gut and CRC risk, while a positive correlation was observed between Porphyromonadaceae species, Lachnospiraceae UCG010 genus, Lachnospira genus, and Sellimonas genus in the gut, and CRC risk. Additionally, we observed a causal relationship between IL-10 and CRC risk. These findings suggest that the dysbiosis of the gut microbiota might be associated with an increased risk of CRC and that specific bacterial groups may play a crucial role in the occurrence and development of CRC. Conclusion Using MR analysis, this study revealed the causal relationships between the gut microbiota, IFs, and CRC. The negative correlation between the Lachnospiraceae species in the gut and CRC risk, as well as the causal relationship between IL-10 and CRC, provide important clues for the potential roles of gut microbiota regulation and inflammatory factor control in the prevention and treatment of CRC.
Collapse
Affiliation(s)
| | | | | | | | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
16
|
Li Q. Bacterial infection and microbiota in carcinogenesis and tumor development. Front Cell Infect Microbiol 2023; 13:1294082. [PMID: 38035341 PMCID: PMC10684967 DOI: 10.3389/fcimb.2023.1294082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Microbiota colonize exposed body tissues (e.g., gastrointestinal tract, skin, lungs, female genital tract, and urogenital tracts) and unexposed sites (e.g., breast). Persistent bacterial infection in the host lead to the development of multiple disease. They are implicated in the pathogenesis of various complex diseases, including diabetes, atherosclerosis, autoimmune diseases, Alzheimer's disease, and malignant diseases. Amounting studies have demonstrated the role of bacterial infection in carcinogenesis. The study of microbiota in tumorigenesis is primarily focused on lung cancer, colorectal cancer (CRC), breast cancer, gastric cancer, and gynecologic tumors, and so on. Infection of Helicobacter pylori in gastric cancer carcinogenesis is recognized as class I carcinogen by the World Health Organization (WHO) decades ago. The role of Fusobacterium nucleatum in the development of colorectal cancer is extensively investigated. Variable bacteria have been cultured from the tumor tissues. The identification of microbiota in multiple tumor tissues reveal that bacterial infection and microbiota are associated with tumor development. The microbiota affects multiple aspects of carcinogenesis and tumor development, including favoring epithelial cells proliferation, establishing inflammatory microenvironment, promoting metastasis, and causing resistance to therapy. On the other hand, microbiota can shape a tumor surveillance environment by enhancing cell activity, and sensitize the tumor cells to immune therapy. In the present review, the roles of microbiota in multiple malignancies are summarized, and unraveling the mechanisms of host-microbiota interactions can contribute to a better understanding of the interaction between microbiota and host cells, also the development of potential anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Bassotti G, Stracci F, Marconi P, Fettucciari K. Clostridioides difficile and colorectal cancer: a dangerous liaison. Eur J Gastroenterol Hepatol 2023; 35:985-988. [PMID: 37505976 DOI: 10.1097/meg.0000000000002615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Many colorectal diseases depend on complex interactions between several pathophysiological factors, including the intestinal microbiota. In recent years, the widespread use of antibiotics has been recognized as a main cause of intestinal dysbiosis and a favouring factor for Clostridioides difficile infection. The latter, in addition, causes infectious diarrhoea, pseudomembranous colitis, and toxic megacolon by means of its toxins (A and, especially, B), is characterized by frequent relapses; thus, its persistence in a host may be long-lasting. Based on recent experimental evidence, here we analyse the possibility that, similarly to other bacteria, Clostridioides difficile may be considered a potential carcinogen for colorectal cancer.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia
- Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Li W, Zhou X, Yuan S, Wang L, Yu L, Sun J, Chen J, Xiao Q, Wan Z, Zheng JS, Zhang CX, Larsson SC, Farrington SM, Law P, Houlston RS, Tomlinson I, Ding KF, Dunlop MG, Theodoratou E, Li X. Exploring the Complex Relationship between Gut Microbiota and Risk of Colorectal Neoplasia Using Bidirectional Mendelian Randomization Analysis. Cancer Epidemiol Biomarkers Prev 2023; 32:809-817. [PMID: 37012201 PMCID: PMC10233354 DOI: 10.1158/1055-9965.epi-22-0724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human gut microbiome has complex relationships with the host, contributing to metabolism, immunity, and carcinogenesis. METHODS Summary-level data for gut microbiota and metabolites were obtained from MiBioGen, FINRISK and human metabolome consortia. Summary-level data for colorectal cancer were derived from a genome-wide association study meta-analysis. In forward Mendelian randomization (MR), we employed genetic instrumental variables (IV) for 24 gut microbiota taxa and six bacterial metabolites to examine their causal relationship with colorectal cancer. We also used a lenient threshold for nine apriori gut microbiota taxa as secondary analyses. In reverse MR, we explored association between genetic liability to colorectal neoplasia and abundance of microbiota studied above using 95, 19, and 7 IVs for colorectal cancer, adenoma, and polyps, respectively. RESULTS Forward MR did not find evidence indicating causal relationship between any of the gut microbiota taxa or six bacterial metabolites tested and colorectal cancer risk. However, reverse MR supported genetic liability to colorectal adenomas was causally related with increased abundance of two taxa: Gammaproteobacteria (β = 0.027, which represents a 0.027 increase in log-transformed relative abundance values of Gammaproteobacteria for per one-unit increase in log OR of adenoma risk; P = 7.06×10-8), Enterobacteriaceae (β = 0.023, P = 1.29×10-5). CONCLUSIONS We find genetic liability to colorectal neoplasia may be associated with abundance of certain microbiota taxa. It is more likely that subset of colorectal cancer genetic liability variants changes gut biology by influencing both gut microbiota and colorectal cancer risk. IMPACT This study highlights the need of future complementary studies to explore causal mechanisms linking both host genetic variation with gut microbiome and colorectal cancer susceptibility.
Collapse
Affiliation(s)
- Wanxin Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Yu
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ke-Feng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Evropi Theodoratou
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Qi Z, Zhibo Z, Jing Z, Zhanbo Q, Shugao H, Weili J, Jiang L, Shuwen H. Prediction model of poorly differentiated colorectal cancer (CRC) based on gut bacteria. BMC Microbiol 2022; 22:312. [PMID: 36539710 PMCID: PMC9764708 DOI: 10.1186/s12866-022-02712-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The mortality of colorectal cancer is high, the malignant degree of poorly differentiated colorectal cancer is high, and the prognosis is poor. OBJECTIVE To screen the characteristic intestinal microbiota of poorly differentiated intestinal cancer. METHODS Fecal samples were collected from 124 patients with moderately differentiated CRC and 123 patients with poorly differentiated CRC, and the bacterial 16S rRNA V1-V4 region of the fecal samples was sequenced. Alpha diversity analysis was performed on fecal samples to assess the diversity and abundance of flora. The RDP classifier Bayesian algorithm was used to analyze the community structure. Linear discriminant analysis and Student's t test were used to screen the differences in flora. The PICRUSt1 method was used to predict the bacterial function, and six machine learning models, including logistic regression, random forest, neural network, support vector machine, CatBoost and gradient boosting decision tree, were used to construct a prediction model for the poor differentiation of colorectal cancer. RESULTS There was no significant difference in fecal flora alpha diversity between moderately and poorly differentiated colorectal cancer (P > 0.05). The bacteria that accounted for a large proportion of patients with poorly differentiated and moderately differentiated colorectal cancer were Blautia, Escherichia-Shigella, Streptococcus, Lactobacillus, and Bacteroides. At the genus level, there were nine bacteria with high abundance in the poorly differentiated group, including Bifidobacterium, norank_f__Oscillospiraceae, Eisenbergiella, etc. There were six bacteria with high abundance in the moderately differentiated group, including Megamonas, Erysipelotrichaceae_UCG-003, Actinomyces, etc. The RF model had the highest prediction accuracy (100.00% correct). The bacteria that had the greatest variable importance in the model were Pseudoramibacter, Megamonas and Bifidobacterium. CONCLUSION The degree of pathological differentiation of colorectal cancer was related to gut flora, and poorly differentiated colorectal cancer had some different bacterial flora, and intestinal bacteria can be used as biomarkers for predicting poorly differentiated CRC.
Collapse
Affiliation(s)
- Zhang Qi
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China
| | - Zuo Zhibo
- grid.459505.80000 0004 4669 7165First Hospital of Jiaxing, Jiaxing, Zhejiang Province People’s Republic of China
| | - Zhuang Jing
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China
| | - Qu Zhanbo
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province People’s Republic of China
| | - Han Shugao
- grid.13402.340000 0004 1759 700XSecond Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
| | - Jin Weili
- Nanxun District People’s Hospital, Huzhou, Zhejiang Province People’s Republic of China
| | - Liu Jiang
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China
| | - Han Shuwen
- grid.413679.e0000 0004 0517 0981Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000 People’s Republic of China ,Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, People’s Republic of China
| |
Collapse
|
20
|
Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med 2022; 25:e1. [PMID: 36511134 DOI: 10.1017/erm.2022.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.
Collapse
|
21
|
Virulence Factors in Colorectal Cancer Metagenomes and Association of Microbial Siderophores with Advanced Stages. Microorganisms 2022; 10:microorganisms10122365. [PMID: 36557618 PMCID: PMC9781273 DOI: 10.3390/microorganisms10122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Colorectal cancer (CRC) is a growing public health challenge, featuring a multifactorial etiology and complex host-environment interactions. Recently, increasing evidence has pointed to the role of the gut microbiota in CRC development and progression. To explore the role of gut microbes in CRC, we retrieved metagenomic data from 156 stools from the European Nucleotide Archive database and mapped them against the VFDB database for virulence factors (VFs). GO annotations of VFs and KEGG pathways were then performed to predict the microbial functions and define functional pathways enriched in the tumor-associated microbiota. Interestingly, 306 VFs were detected in the metagenomic data. We revealed the enrichment of adenomas with VFs involved in cell adhesion, whereas in the early stages of CRC they were enriched in both adhesins and isochorismatase. Advanced stages of CRC were enriched with microbial siderophores, especially enterobactin, which was significantly associated with isochorismate synthase. We highlighted higher abundances of porins and transporters involved in antibiotic resistance and the development of biofilm in advanced stages of CRC. Most VFs detected in CRC, particularly in advanced stages, were shown to be included in siderophore biosynthesis pathways. This enrichment of predicted VFs supports the key role of the gut microbiota in the disease.
Collapse
|
22
|
Colorectal Cancer and the Role of the Gut Microbiota-Do Medical Students Know More Than Other Young People?-Cross-Sectional Study. Nutrients 2022; 14:nu14194185. [PMID: 36235836 PMCID: PMC9572037 DOI: 10.3390/nu14194185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Malignant neoplasms account for an increasing share of the disease burden of the world population and are an increasingly common cause of death. In the aspect of colorectal cancer, increasing attention is paid to the microbiota. According to current knowledge, the composition of gut microbiota in patients diagnosed with colorectal cancer significantly differs from the composition of microorganisms in the intestines of healthy individuals. (2) Material and methods: The survey included 571 students from the three universities located in Silesia. The research tool was an original, anonymous questionnaire created for the study. The ratio of correct answers to the total number of points possible to obtain was evaluated according to the adopted criteria (≤25%—very low level of knowledge; >75%—high level of knowledge). (3) Results: From the questions about the gut microbiota, the subjects scored an average of six points (SD ± 1.31) out of nine possible points. Statistical analysis showed differences between the number of correct answers among students of the Medical University of Silesia and the University of Silesia (p = 0.04, p < 0.05). On the other hand, in the field of colorectal cancer, the respondents scored on average four points (SD ± 2.07) out of eight possible. Statistical analysis showed significant differences between the ratio of correct answers and the respondent’s university affiliation (p < 0.05). Both age and place of residence did not positively correlate with knowledge level (p = 0.08 NS). In contrast, chronic diseases were found to have a significant effect on the amount of information held by the students surveyed (p < 0.05). (4) Conclusions: The level of knowledge of the surveyed students of the Silesia Province is unsatisfactory. The higher awareness among the students of medical universities results from the presence of issues related to microbiota and CRC in the medical educational content. Therefore, there is a need to consider the introduction of educational activities in the field of cancer prevention, including CRC, especially among non-medical university students.
Collapse
|
23
|
Chen YC, Chuang CH, Miao ZF, Yip KL, Liu CJ, Li LH, Wu DC, Cheng T, Lin CY, Wang JY. Gut microbiota composition in chemotherapy and targeted therapy of patients with metastatic colorectal cancer. Front Oncol 2022; 12:955313. [PMID: 36212420 PMCID: PMC9539537 DOI: 10.3389/fonc.2022.955313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Studies have reported the effects of the gut microbiota on colorectal cancer (CRC) chemotherapy, but few studies have investigated the association between gut microbiota and targeted therapy. This study investigated the role of the gut microbiota in the treatment outcomes of patients with metastatic CRC (mCRC). We enrolled 110 patients with mCRC and treated them with standard cancer therapy. Stool samples were collected before administering a combination of chemotherapy and targeted therapy. Patients who had a progressive disease (PD) or partial response (PR) for at least 12 cycles of therapy were included in the study. We further divided these patients into anti-epidermal growth factor receptor (cetuximab) and anti-vascular endothelial growth factor (bevacizumab) subgroups. The gut microbiota of the PR group and bevacizumab-PR subgroup exhibited significantly higher α-diversity. The β-diversity of bacterial species significantly differed between the bevacizumab-PR and bevacizumab-PD groups (P = 0.029). Klebsiella quasipneumoniae exhibited the greatest fold change in abundance in the PD group than in the PR group. Lactobacillus and Bifidobacterium species exhibited higher abundance in the PD group. The abundance of Fusobacterium nucleatum was approximately 32 times higher in the PD group than in the PR group. A higher gut microbiota diversity was associated with more favorable treatment outcomes in the patients with mCRC. Bacterial species analysis of stool samples yielded heterogenous results. K. quasipneumoniae exhibited the greatest fold change in abundance among all bacterial species in the PD group. This result warrants further investigation especially in a Taiwanese population.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Deng-Chyang Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian−Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| |
Collapse
|
24
|
Genomic instability genes in lung and colon adenocarcinoma indicate organ specificity of transcriptomic impact on Copy Number Alterations. Sci Rep 2022; 12:11739. [PMID: 35817785 PMCID: PMC9273645 DOI: 10.1038/s41598-022-15692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic instability (GI) in cancer facilitates cancer evolution and is an exploitable target for therapy purposes. However, specific genes involved in cancer GI remain elusive. Causal genes for GI via expressions have not been comprehensively identified in colorectal cancers (CRCs). To fill the gap in knowledge, we developed a data mining strategy (Gene Expression to Copy Number Alterations; "GE-CNA"). Here we applied the GE-CNA approach to 592 TCGA CRC datasets, and identified 500 genes whose expression levels associate with CNA. Among these, 18 were survival-critical (i.e., expression levels correlate with significant differences in patients' survival). Comparison with previous results indicated striking differences between lung adenocarcinoma and CRC: (a) less involvement of overexpression of mitotic genes in generating genomic instability in the colon and (b) the presence of CNA-suppressing pathways, including immune-surveillance, was only partly similar to those in the lung. Following 13 genes (TIGD6, TMED6, APOBEC3D, EP400NL, B3GNT4, ZNF683, FOXD4, FOXD4L1, PKIB, DDB2, MT1G, CLCN3, CAPS) were evaluated as potential drug development targets (hazard ratio [> 1.3 or < 0.5]). Identification of specific CRC genomic instability genes enables researchers to develop GI targeting approach. The new results suggest that the "targeting genomic instability and/or aneuploidy" approach must be tailored for specific organs.
Collapse
|
25
|
Gubatan J, Boye TL, Temby M, Sojwal RS, Holman DR, Sinha SR, Rogalla SR, Nielsen OH. Gut Microbiome in Inflammatory Bowel Disease: Role in Pathogenesis, Dietary Modulation, and Colitis-Associated Colon Cancer. Microorganisms 2022; 10:1371. [PMID: 35889090 PMCID: PMC9316834 DOI: 10.3390/microorganisms10071371] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome has increasingly been recognized as a critical and central factor in inflammatory bowel disease (IBD). Here, we review specific microorganisms that have been suggested to play a role in the pathogenesis of IBD and the current state of fecal microbial transplants as a therapeutic strategy in IBD. We discuss specific nutritional and dietary interventions in IBD and their effects on gut microbiota composition. Finally, we examine the role and mechanisms of the gut microbiome in mediating colitis-associated colon cancer.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Theresa Louise Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| | - Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Raoul S. Sojwal
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Stephan R. Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| |
Collapse
|
26
|
Fusobacterium Nucleatum Is a Risk Factor for Metastatic Colorectal Cancer. Curr Med Sci 2022; 42:538-547. [DOI: 10.1007/s11596-022-2597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
|
27
|
Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Res Int 2022; 156:111327. [DOI: 10.1016/j.foodres.2022.111327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
|
28
|
Role of the Microbiota in Lung Cancer: Insights on Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23116138. [PMID: 35682816 PMCID: PMC9181592 DOI: 10.3390/ijms23116138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world’s deadliest cancers. However, the mechanisms by which the microbiota can impact this type of cancer and patient survival and response to treatments remain poorly investigated. In this review, the peculiarities of the gut and lung microbial ecosystems have been highlighted, and recent findings illustrating the possible mechanisms underlying the microbiota–lung cancer interaction and the host immune response have been discussed. In addition, the mucosal immune system has been identified as a crucial communication frame to ease interactive dynamics between the immune system and the microbiota. Finally, the use of specific next-generation intestinal probiotic strains in counteracting airway diseases has been evaluated. We believe that restoring homeostasis and the balance of bacterial microflora should become part of the routine of integrated cancer interventions, using probiotics, prebiotics, and postbiotics, and promoting a healthy diet and lifestyle.
Collapse
|
29
|
Wang WY, Zhou H, Wang Z, Zhang YH. RETRACTED: Comparison between diagnostic performance of intestinal Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli in 5-fluorouracil resistance to colorectal cancer: A meta‑analysis. Cancer Treat Res Commun 2022; 32:100536. [PMID: 35567912 DOI: 10.1016/j.ctarc.2022.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors, as the current findings are incomplete and need to be validated. The reasons include that the results are not comparable to the diagnostic performance of three bacteria species in 5-fluorouracil resistance in CRC from the clinical studies which are conducted to detect each type of bacteria separately. Additional results of quantifying three bacteria species in the same colorectal cancer group are required to validate the conclusion.
Collapse
Affiliation(s)
- Wen-Yu Wang
- Beijing Friendship Hospital, Capital Medical University Beijing,100050 China
| | - Hang Zhou
- Beijing Friendship Hospital, Capital Medical University Beijing,100050 China
| | - Zhi Wang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing,100053 China.
| | - Yu-Hang Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing,100034 China; Institute of Clinical Pharmacology, Peking University First Hospital, Beijing,100191 China.
| |
Collapse
|
30
|
Fabbri A, Bracci L. Immunomodulatory properties of CNF1 toxin from E. coli: implications for colorectal carcinogenesis. Am J Cancer Res 2022; 12:651-660. [PMID: 35261793 PMCID: PMC8899975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. The risk of developing CRC is influenced by both environmental and genetic factors. Recently, chronic inflammation and gut microbiota modifications have been associated with increased CRC risk. Escherichia coli belongs to the commensal intestinal flora and can become highly pathogenic following the acquisition of genes coding for virulence factors, such as the cytotoxic necrotizing factor type 1 (CNF1). Numerous reports highlight that, besides exerting direct effects on epithelial cells, CNF1 can also act on immune cells, modulating their responses and possibly contributing to disease development. In the present review, we summarized the key studies addressing the immunomodulatory functions of CNF1 and discussed the contribution that CNF1 can bring about to CRC through the creation of a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di SanitàViale Regina Elena 299, Rome, Italy
| | - Laura Bracci
- Departement of Oncology and Molecular Medicine, Istituto Superiore di SanitàViale Regina Elena 299, Rome, Italy
| |
Collapse
|
31
|
Campillo-Gimenez L, Rios-Covian D, Rivera-Nieves J, Kiyono H, Chu H, Ernst PB. Microbial-Driven Immunological Memory and Its Potential Role in Microbiome Editing for the Prevention of Colorectal Cancer. Front Cell Infect Microbiol 2021; 11:752304. [PMID: 34869061 PMCID: PMC8633303 DOI: 10.3389/fcimb.2021.752304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last several years, many advances have been made in understanding the role of bacteria in the pathogenesis of gastrointestinal cancers. Beginning with Helicobacter pylori being recognized as the first bacterial carcinogen and the causative agent of most gastric cancers, more recent studies have examined the role of enteric microbes in colorectal cancer. In the digestive tract, these communities are numerous and have a complex interrelationship with local immune/inflammatory responses that impact the health of the host. As modifying the microbiome in the stomach has decreased the risk of gastric cancer, modifying the distal microbiome may decrease the risk of colorectal cancers. To date, very few studies have considered the notion that mucosal lymphocyte-dependent immune memory may confound attempts to change the microbial components in these communities. The goal of this review is to consider some of the factors impacting host-microbial interactions that affect colorectal cancer and raise questions about how immune memory responses to the local microbial consortium affect any attempt to modify the composition of the intestinal microbiome.
Collapse
Affiliation(s)
- Laure Campillo-Gimenez
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - David Rios-Covian
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - Jesus Rivera-Nieves
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, CA, United States
- San Diego Veterans Affairs (VA) Medical Center, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
| | - Peter B. Ernst
- Department of Pathology, University of California San Diego, San Diego, CA, United States
- San Diego Veterans Affairs (VA) Medical Center, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
- Division of Comparative Pathology and Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
32
|
Association of Polygenic Risk Score and Bacterial Toxins at Screening Colonoscopy with Colorectal Cancer Progression: A Multicenter Case-Control Study. Toxins (Basel) 2021; 13:toxins13080569. [PMID: 34437440 PMCID: PMC8402601 DOI: 10.3390/toxins13080569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for tumor progression. Recent data suggest that certain bacterial toxins implicated in DNA attack or in proliferation, replication, and death can be risk factors for insurgence and progression of CRC. In this study, we recruited more than 300 biopsy specimens from people undergoing colonoscopy, and we analyzed to determine whether a correlation exists between the presence of bacterial genes coding for toxins possibly involved in CRC onset and progression and the different stages of CRC. We also analyzed to determine whether CRC-predisposing genetic factors could contribute to bacterial toxins response. Our results showed that CIF toxin is associated with polyps or adenomas, whereas pks+ seems to be a predisposing factor for CRC. Toxins from Escherichia coli as a whole have a higher incidence rate in adenocarcinoma patients compared to controls, whereas Bacteroides fragilis toxin does not seem to be associated with pre-cancerous nor with cancerous lesions. These results have been obtained irrespectively of the presence of CRC-risk loci.
Collapse
|
33
|
Guz M, Jeleniewicz W, Malm A, Korona-Glowniak I. A Crosstalk between Diet, Microbiome and microRNA in Epigenetic Regulation of Colorectal Cancer. Nutrients 2021; 13:2428. [PMID: 34371938 PMCID: PMC8308570 DOI: 10.3390/nu13072428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| |
Collapse
|
34
|
Shariati A, Razavi S, Ghaznavi-Rad E, Jahanbin B, Akbari A, Norzaee S, Darban-Sarokhalil D. Association between colorectal cancer and Fusobacterium nucleatum and Bacteroides fragilis bacteria in Iranian patients: a preliminary study. Infect Agent Cancer 2021; 16:41. [PMID: 34108031 PMCID: PMC8191199 DOI: 10.1186/s13027-021-00381-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background and aim Recent studies have proposed that commensal bacteria might be involved in the development and progression of gastrointestinal disorders such as colorectal cancer (CRC). Therefore, in this study, the relative abundance of Fusobacterium nucleatum, Bacteroides fragilis, Streptococcus bovis/gallolyticus, and Enteropathogenic Escherichia coli (EPEC) in CRC tissues, and their association with clinicopathologic characteristics of CRC was investigated in Iranian patients. Moreover, the role of these bacteria in the CRC-associated mutations including PIK3CA, KRAS, and BRAF was studied. Method To these ends, the noted bacteria were quantified in paired tumors and normal tissue specimens of 30 CRC patients, by TaqMan quantitative Real-Time Polymerase Chain Reaction (qPCR). Next, possible correlations between clinicopathologic factors and mutations in PIK3CA, KRAS, and BRAF genes were analyzed. Results In studied samples, B. fragilis was the most abundant bacteria that was detected in 66 and 60% of paired tumor and normal samples, respectively. Furthermore, 15% of the B. fragilis-positive patients were infected with Enterotoxigenic B. fragilis (ETBF) in both adenocarcinoma and matched adjacent normal samples. F. nucleatum was also identified in 23% of tumors and 13% of adjacent normal tissue samples. Moreover, the relative abundance of these bacteria determined by 2-ΔCT was significantly higher in CRC samples than in adjacent normal mucosa (p < 0.05). On the other hand, our findings indicated that S. gallolyticus and EPEC, compared to adjacent normal mucosa, were not prevalent in CRC tissues. Finally, our results revealed a correlation between F. nucleatum-positive patients and the KRAS mutation (p = 0.02), while analyses did not show any association between bacteria and mutation in PIK3CA and BRAF genes. Conclusion The present study is the first report on the analysis of different bacteria in CRC tissue samples of Iranian patients. Our findings revealed that F. nucleatum and B. fragilis might be linked to CRC. However, any link between gut microbiome dysbiosis and CRC remains unknown.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Olvera-Rosales LB, Cruz-Guerrero AE, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Jaimez-Ordaz J, Castañeda-Ovando A, Añorve-Morga J, Calderón-Ramos ZG, Arias-Rico J, González-Olivares LG. Impact of the Gut Microbiota Balance on the Health-Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods 2021; 10:1261. [PMID: 34199351 PMCID: PMC8230287 DOI: 10.3390/foods10061261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a group of microorganisms that are deposited throughout the entire gastrointestinal tract. Currently, thanks to genomic tools, studies of gut microbiota have pointed towards the understanding of the metabolism of important bacteria that are not cultivable and their relationship with human homeostasis. Alterations in the composition of gut microbiota could explain, at least in part, some epidemics, such as diabetes and obesity. Likewise, dysbiosis has been associated with gastrointestinal disorders, neurodegenerative diseases, and even cancer. That is why several studies have recently been focused on the direct relationship that these types of conditions have with the specific composition of gut microbiota, as in the case of the microbiota-intestine-brain axis. In the same way, the control of microbiota is related to the diet. Therefore, this review highlights the importance of gut microbiota, from its composition to its relationship with the human health-disease condition, as well as emphasizes the effect of probiotic and prebiotic consumption on the balance of its composition.
Collapse
Affiliation(s)
- Laura-Berenice Olvera-Rosales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Alma-Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - Aurora Quintero-Lira
- Área Académica de Ingeniería Agroindustrial e Ingeniería en alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico;
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Judith Jaimez-Ordaz
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Javier Añorve-Morga
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Zuli-Guadalupe Calderón-Ramos
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Luis-Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| |
Collapse
|
36
|
Mohamed A, Menon H, Chulkina M, Yee NS, Pinchuk IV. Drug-Microbiota Interaction in Colon Cancer Therapy: Impact of Antibiotics. Biomedicines 2021; 9:259. [PMID: 33807878 PMCID: PMC7999677 DOI: 10.3390/biomedicines9030259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Colon adenocarcinoma is one of the most common malignancies, and it is highly lethal. Chemotherapy plays an important role in the treatment of colon cancer at various stages of the disease. The gut microbiome has emerged as a key player in colon cancer development and progression, and it can also alter the therapeutic agent's efficacy and toxicities. Antibiotics can directly and/or indirectly affect the balance of the gut microbiome and, therefore, the clinical outcomes. In this article, we provided an overview of the composition of the gut microbiome under homeostasis and the mechanistic links between gut microbiota and colon cancer. The relationship between the use of oral antibiotics and colon cancer, as well as the impact of the gut microbiome on the efficacy and toxicities of chemotherapy in colon cancer, are discussed. Potential interventions to modulate microbiota and improve chemotherapy outcomes are discussed. Further studies are indicated to address these key gaps in the field and provide a scientific basis for the design of novel microbiota-based approaches for prevention/use as adjuvant therapeutics for patients with colon cancer.
Collapse
Affiliation(s)
- Ali Mohamed
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.M.); (H.M.)
| | - Harry Menon
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.M.); (H.M.)
| | - Marina Chulkina
- Mechanisms of Carcinogenesis Program, Division of Gastroenterology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nelson S. Yee
- Next-Generation Therapies Program, Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Irina V. Pinchuk
- Mechanisms of Carcinogenesis Program, Division of Gastroenterology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
37
|
Uriarte-Navarrete I, Hernández-Lemus E, de Anda-Jáuregui G. Gene-Microbiome Co-expression Networks in Colon Cancer. Front Genet 2021; 12:617505. [PMID: 33659025 PMCID: PMC7917223 DOI: 10.3389/fgene.2021.617505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that cancer onset and development arise from complex, multi-factorial phenomena spanning from the molecular, functional, micro-environmental, and cellular up to the tissular and organismal levels. Important advances have been made in the systematic analysis of the molecular (mostly genomic and transcriptomic) within large studies of high throughput data such as The Cancer Genome Atlas collaboration. However, the role of the microbiome in the induction of biological changes needed to reach these pathological states remains to be explored, largely because of scarce experimental data. In recent work a non-standard bioinformatics strategy was used to indirectly quantify microbial abundance from TCGA RNA-seq data, allowing the evaluation of the microbiome in well-characterized cancer patients, thus opening the way to studies incorporating the molecular and microbiome dimensions altogether. In this work, we used such recently described approaches for the quantification of microbial species alongside with gene expression. With this, we will reconstruct bipartite networks linking microbial abundance and gene expression in the context of colon cancer, by resorting to network reconstruction based on measures from information theory. The rationale is that microbial communities may induce biological changes important for the cancerous state. We analyzed changes in microbiome-gene interactions in the context of early (stages I and II) and late (stages III and IV) colon cancer, studied changes in network descriptors, and identify key discriminating features for early and late stage colon cancer. We found that early stage bipartite network is associated with the establishment of structural features in the tumor cells, whereas late stage is related to more advance signaling and metabolic features. This functional divergence thus arise as a consequence of changes in the organization of the corresponding gene-microorganism co-expression networks.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Conacyt Research Chairs, National Council on Science and Technology, Mexico City, Mexico
| |
Collapse
|