1
|
Singh AK, Kumar Pathak A, Kumar P, Kumar Singh A, Kumar Sah Gond M, Singh Negi R, Das R, Agrawal S, Kumar Mishra S, Tiwari KN. Effects of Asiatic acid on brain cancer by altering astrocytes and the AKT1-PRKCB signaling pathway: A genomic and network pharmacology perspective. Brain Res 2025; 1859:149652. [PMID: 40252893 DOI: 10.1016/j.brainres.2025.149652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The most common primary brain tumor, glioblastoma (GBM), currently has a dismal prognosis because of its fast growth and dissemination. Recent research indicates that Asiatic acid (AA), which is extracted from Trema orientalis L., has potential as a medicinal agent. AA, which was obtained from a methanolic extract of Trema orientalis L. and examined utilizing high-resolution mass spectroscopy (HRMS) analysis, was employed in this investigation. Then, in order to forecast the therapeutic advantages of AA in managing GBM, we conducted an in silico study. Online web servers like SwissADME, pKCSM, and Protox-II were used to assess AA. Then, the major targets of the AA (from Swiss Target Prediction and TargetNet) and GBM (from GeneCards and DisGeNET) were identified. The important genes were then merged into the STRING and ShinyGo databases to examine the protein-protein interaction (PPI) network, gene annotation, and KEGG pathways, with the goal of identifying the core mechanisms involved in GBM management. The top five hub gene targets of the built network (AKT1, SRC, IL-6, TNF, and EGFR) were investigated, along with some contemporaneous additional major targets (PRKCB, GSK3B, ITGB1, BRAF, and PTPN6). These targets were tightly linked to GO activities such as synoviocyte proliferation, cytokine activity, and EGFR tyrosine kinase inhibitor resistance, as well as proteoglycans in cancer-related pathways. Furthermore, a survival study was conducted to assess the chronicity of targets, as well as molecular docking activity between important targets and AA against GBM to determine binding effectiveness. Overall, the study found that AKT1 is the most powerful receptor for AA, having a binding energy of -8.19 kcal/mol, followed by PRKCB (-7.53 kcal/mol). Finally, docking studies suggest that AA has the potential to be an effective treatment for GBM. Furthermore, clinical studies will provide more precise insights into the AA's efficacy as a medicine in the future.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmacognosy, Kunwar Haribansh Singh College of Pharmacy, Jaunpur, Uttar Pradesh 222182, India
| | - Adarsh Kumar Pathak
- Department of Pharmaceutical Chemistry, Ashok Singh Pharmacy College, Jaunpur, Uttar Pradesh 222180, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, PG College, Mariahu, VBS Purvanchal University, Jaunpur, Uttar Pradesh 222161, India
| | - Manjeet Kumar Sah Gond
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Singh Negi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760 Gujarat, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760 Gujarat, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Liu RT, Guo YK, Du X, Li H. Very-late-onset neuromyelitis optica spectrum disorder: a case report and review. Front Neurol 2025; 16:1559872. [PMID: 40276466 PMCID: PMC12018252 DOI: 10.3389/fneur.2025.1559872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/26/2025] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disorder that causes demyelination within the central nervous system, typically manifesting as symptoms of optic neuritis and myelitis. We report the case of a 92-year-old patient with NMOSD who was admitted to our hospital; hers is currently the oldest reported case of NMOSD globally. The onset occurred after COVID-19 vaccination, and the patient responded well to treatment with satralizumab.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Kun Guo
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xia Du
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Heng Li
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Gant Kanegusuku A, Carll T, Yeo KTJ. Analytical evaluation of the automated interleukin-6 assay on the Roche cobas e602 analyzer. Lab Med 2025; 56:129-135. [PMID: 39126709 DOI: 10.1093/labmed/lmae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is a proinflammatory cytokine that is associated with many inflammatory diseases. This validation study evaluates the automated Roche Elecsys IL-6 electrochemiluminescent immunoassay that has been granted emergency use authorization by the US Food and Drug Administration. METHODS The Elecsys IL-6 assay was evaluated for precision, linearity, interference (by hemoglobin, bilirubin, triglycerides, and biotin) and clinical performance was compared to the V-PLEX Human IL-6 immunoassay (Meso Scale Discovery), performed by a reference laboratory. RESULTS The Elecsys IL-6 assay is precise (intra-assay <3% coefficient of variation [CV], interassay <5% CV), exhibits an analytical measurable range of 1.5-4790 pg/mL, and is tolerant of significant interferences (H < 2522, I <62, L<2101, biotin <50 ng/mL). Comparison with the V-PLEX assay revealed a 2.95 slope bias in patient samples evaluated for IL-6 concentration (n = 43, range = 1.5-1891 pg/mL, y = 2.95x - 32.7, r2 = 0.84). Bland-Altman analysis revealed an absolute mean bias of 152 pg/mL (SD = 254 pg/mL), or a mean percentage difference of 73%. CONCLUSION The Roche IL-6 assay showed good analytical performance. The large systematic bias compared with another reference method precludes using multiple methods to monitor IL-6 response. The random-access nature of an automated IL-6 assay on the Roche platform makes the test available on demand.
Collapse
Affiliation(s)
| | - Timothy Carll
- Department of Pathology, University of Chicago, Chicago, IL, US
- Pritzker School of Medicine, University of Chicago, Chicago, IL, US
| | - Kiang-Teck J Yeo
- Department of Pathology, University of Chicago, Chicago, IL, US
- Pritzker School of Medicine, University of Chicago, Chicago, IL, US
| |
Collapse
|
4
|
Sun H, Xia T, Ma S, Lv T, Li Y. Intercellular communication is crucial in the regulation of healthy aging via exosomes. Pharmacol Res 2025; 212:107591. [PMID: 39800177 DOI: 10.1016/j.phrs.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The hallmarks of aging encompass a variety of molecular categories (genomic, telomeric, and epigenetic), organelles (proteostasis, autophagy, and mitochondria), cellular components (including stem cells), systems (such as intercellular communication and chronic inflammation), and environmental factors (dysbiosis and nutrient sensing). These hallmarks play a crucial role in the aging process. Despite their intricate interconnections, the relationships among the hallmarks of aging remain unclear. Although the boundaries between these hallmarks may be indistinct, they exhibit interdependence, with the influence of one hallmark extending to others. Building on this foundation, we investigated the interrelations among the various hallmarks of aging and provided a systematic overview of their logical relationships, proposing that cellular communication plays a crucial role in the aging process. Exosomes function as a primary mode of cellular communication and significantly impact the aging process. Therefore, we propose utilizing exosomes as valuable tools for understanding the mechanisms of aging and addressing age-related concerns. Exosomes may represent a novel approach for the treatment and diagnosis of aging-related conditions in animals. Furthermore, our research reveals that exocytosis in young nematodes slows the aging process, while exocytosis in aged nematodes has the opposite effect, accelerating aging. In conclusion, exosomes act as intercellular messengers that influence the maintenance of a healthy aging process and link the hallmarks of aging with indicators of well-being.
Collapse
Affiliation(s)
- Huifang Sun
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tengyuan Xia
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Shuting Ma
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tao Lv
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| | - Yuhong Li
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| |
Collapse
|
5
|
Noguchi S, Shimonishi R. Interleukin-6 promotes the epithelial mesenchymal transition in canine tonsillar squamous cell carcinoma cells. Res Vet Sci 2025; 183:105487. [PMID: 39637476 DOI: 10.1016/j.rvsc.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/10/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Canine oral squamous cell carcinoma (CoSCC) is often associated with suppurative inflammation. Metastasis of malignant tumors is one of the signs of major interest in oncology because it speaks of disease progression, where the involvement of interleukin-6 (IL-6) in cancer progression is so far unknown. Therefore, the aim of this study was the determination of the role of IL-6 in metastasis in CoSCC cells model through expression analysis of mRNA and protein using real-time PCR and western blotting and assessment of cell migration and invasion. The messenger RNA (mRNA) expression level of IL-6 was elevated in CoSCC tissues, and the IL-6 receptor protein was expressed in CoSCC cell lines. Furthermore, IL-6 levels were associated and showed negative correlation with survival time (rs = -0.92857) in dogs with tonsillar SCC. Recombinant canine IL-6 (rcIL-6) treatment promoted migration and invasion, in addition to increasing the viable cell number of the tonsillar SCC cell line (TSCCLN#6). Consistently, the protein expression of phosphorylated ERK1/2 and STAT3 and Fascin1 (FSCN1) was upregulated by treatment with rcIL-6 in a dose-dependent manner. Treatment with ERK or STAT3 inhibitors abolished the effects of rcIL-6, and the ERK inhibitor successfully downregulated the expression of FSCN1. In conclusion, IL-6 may be involved in tonsillar CoSCC invasion and metastasis through the activation of the mitogen-activated protein kinase and Janus tyrosine kinase/signal transducer and activator of transcription signaling.
Collapse
Affiliation(s)
- Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rink Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| | - Ryo Shimonishi
- Laboratory of Veterinary Radiology, School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
6
|
Zanelli S, Agnoletti D, Alastruey J, Allen J, Bianchini E, Bikia V, Boutouyrie P, Bruno RM, Climie R, Djeldjli D, Gkaliagkousi E, Giudici A, Gopcevic K, Grillo A, Guala A, Hametner B, Joseph J, Karimpour P, Kodithuwakku V, Kyriacou PA, Lazaridis A, Lønnebakken MT, Martina MR, Mayer CC, Nabeel PM, Navickas P, Nemcsik J, Orter S, Park C, Pereira T, Pucci G, Rey ABA, Salvi P, Seabra ACG, Seeland U, van Sloten T, Spronck B, Stansby G, Steens I, Stieglitz T, Tan I, Veerasingham D, Wassertheurer S, Weber T, Westerhof BE, Charlton PH. Developing technologies to assess vascular ageing: a roadmap from VascAgeNet. Physiol Meas 2024; 45:121001. [PMID: 38838703 PMCID: PMC11697036 DOI: 10.1088/1361-6579/ad548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Vascular ageing (vascular ageing) is the deterioration of arterial structure and function which occurs naturally with age, and which can be accelerated with disease. Measurements of vascular ageing are emerging as markers of cardiovascular risk, with potential applications in disease diagnosis and prognosis, and for guiding treatments. However, vascular ageing is not yet routinely assessed in clinical practice. A key step towards this is the development of technologies to assess vascular ageing. In this Roadmap, experts discuss several aspects of this process, including: measurement technologies; the development pipeline; clinical applications; and future research directions. The Roadmap summarises the state of the art, outlines the major challenges to overcome, and identifies potential future research directions to address these challenges.
Collapse
Affiliation(s)
- Serena Zanelli
- Laboratoire Analyse, Géométrie et Applications, Université Sorbonne Paris Nord, Paris, France
- Axelife, Paris, France
| | - Davide Agnoletti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico Sant’Orsola, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EU, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Elisabetta Bianchini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Vasiliki Bikia
- Stanford University, Stanford, California, United States
- Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Pierre Boutouyrie
- INSERM U970 Team 7, Paris Cardiovascular Research Centre
- PARCC, University Paris Descartes, AP-HP, Pharmacology Unit, Hôpital Européen Georges Pompidou, 56
Rue Leblanc, Paris 75015, France
| | - Rosa Maria Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre
- PARCC, University Paris Descartes, AP-HP, Pharmacology Unit, Hôpital Européen Georges Pompidou, 56
Rue Leblanc, Paris 75015, France
| | - Rachel Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | | | - Alessandro Giudici
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | | | - Andrea Grillo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBER-CV, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernhard Hametner
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Jayaraj Joseph
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Parmis Karimpour
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| | | | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| | - Antonios Lazaridis
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mai Tone Lønnebakken
- Department of Heart Disease, Haukeland University Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Christopher Clemens Mayer
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - P M Nabeel
- Healthcare Technology Innovation Centre, IIT Madras, Chennai 600 113, India
| | - Petras Navickas
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Stefan Orter
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, 1–19 Torrington Place, London WC1E 7HB, UK
| | - Telmo Pereira
- Polytechnic University of Coimbra, Coimbra Health School, Rua 5 de Outubro—S. Martinho do Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Unit of Internal Medicine, ‘Santa Maria’ Terni Hospital, Terni, Italy
| | - Ana Belen Amado Rey
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Paolo Salvi
- Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Ana Carolina Gonçalves Seabra
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Ute Seeland
- Institute of Social Medicine, Epidemiology and Health Economics, Charitè—Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas van Sloten
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University,
Sydney, Australia
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Indra Steens
- Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEK, IMBIT—NeuroProbes, BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Isabella Tan
- Macquarie University, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | | | - Siegfried Wassertheurer
- Center for Health & Bioresources, Medical Signal Analysis, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Berend E Westerhof
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Nijmegen, The Netherlands
| | - Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, United Kingdom
| |
Collapse
|
7
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
8
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
9
|
Lin MY, Wong TW, Lin CS. Revisiting Unaddressed Safety Concerns Regarding Intense Pulsed Light Treatment: Past and Present Perspectives. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e13005. [PMID: 39388538 DOI: 10.1111/phpp.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The light spectrum of intense pulsed light (IPL) comprises visible to near-infrared light. It has been widely employed in the field of aesthetics for approximately 30 years. However, several studies have demonstrated the appearance of various undesirable biomarkers on the skin after IPL irradiation, which remain elucidated. METHODS We reviewed the evolving concepts and explored the potentially harmful effects of IPL that may have been neglected in the past. RESULTS Increased levels of reactive oxidative stress, p53, p16, proliferating cell nuclear antigen, interleukin-6, C-reactive protein, and cleaved caspase 3 and decreased albumin levels in human or mouse skin have been observed after IPL treatment. Visible and infrared light can exert harmful and beneficial effects on human skin. CONCLUSION If perform improperly, IPL treatment may lead to cellular senescence, photoaging, photocarcinogenesis, thermal aging, and inflammaging. Further studies are required to verify the significance of the changes in the relevant biomarkers. The selection of treatment candidates, optimal parameters, and standardized protocols for IPL therapy are necessary.
Collapse
Affiliation(s)
- Mao-Ying Lin
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Biochemistry & Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Chrang-Shi Lin
- National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Dr. Lin Skin Clinic, Taipei, Taiwan
| |
Collapse
|
10
|
Metwally YF, Elsaid AM, Elsadda RR, Refaat S, Zahran RF. Impact of IL-6 and IL-1β Gene Variants on Non-small-cell Lung Cancer Risk in Egyptian Patients. Biochem Genet 2024; 62:3367-3388. [PMID: 38103126 PMCID: PMC11427554 DOI: 10.1007/s10528-023-10596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Lung cancer is a serious health and life issue, with the fastest-growing incidence and fatality rates worldwide. It is now clear that inflammation is a key factor involved in all aspects of carcinogenesis, notably lung cancer development. Genetic changes, including polymorphisms in inflammatory genes, are supposed to be a significant cause of increased lung cancer risk. The main idea of this research was to disclose the linkage between both IL-6 rs1800795 and IL-1β rs16944 variants and susceptibility to non-small-cell lung cancer (NSCLC) in Egyptians. This case-control design was composed of 127 cases and 138 controls, which were genotyped using the ARMS-PCR technique. To examine the NSCLC susceptibility under various genetic models, the odds ratio (OR) and 95% confidence intervals (CIs) were determined by logistic regression. Rs1800795 of the IL-6 gene was linked to higher odds of NSCLC under the allele model (adjusted, OR 2.28; 95% CI 1.2-4.33; p = 0.011). In the genetic models, IL-6 rs1800795 elevated the odds of NSCLC, while IL-1β rs16944 decreased the odds of NSCLC. Stratification analysis showed that IL-6 rs1800795 greatly increased the NSCLC risk in females and adenocarcinoma subtypes, whereas IL-1β rs16944 largely decreased the NSCLC risk for males, patients aged < 55, and nonsmokers. Regarding clinical data, the IL-6 variant was remarkably correlated with tumor size. This work primarily established that IL-6 and IL-1β variants have a great impact on NSCLC development in the Egyptian population; thus, it may be a supportive guide for earlier NSCLC prevention.
Collapse
Affiliation(s)
- Yomna F Metwally
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt.
| | - Afaf M Elsaid
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Rana R Elsadda
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Sherif Refaat
- Oncology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Rasha F Zahran
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
11
|
Mironov S, Borysova O, Morgunov I, Zhou Z, Moskalev A. A Framework for an Effective Healthy Longevity Clinic. Aging Dis 2024:AD.2024.0328-1. [PMID: 38607731 DOI: 10.14336/ad.2024.0328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of an aging global population and the imperative for innovative healthcare solutions, the concept of longevity clinics emerges as a timely and vital area of exploration. Unlike traditional medical facilities, longevity clinics offer a unique approach to preclinical prevention, focusing on "prevention of prevention" through the utilization of aging clocks and biomarkers from healthy individuals. This article presents a comprehensive overview of longevity clinics, encompassing descriptions of existing models, the development of a proposed framework, and insights into biomarkers, wearable devices, and therapeutic interventions. Additionally, economic justifications for investing in longevity clinics are examined, highlighting the significant growth potential of the global biotechnology market and its alignment with the goals of achieving active longevity. Anchored by an Analytical Center, the proposed framework underscores the importance of data-driven decision-making and innovation in promoting prolonged and enhanced human life. At present, there is no universally accepted standard model for longevity clinics. This absence highlights the need for additional research and ongoing improvements in this field. Through a synthesis of scientific research and practical considerations, this article aims to stimulate further discussion and innovation in the field of longevity clinics, ultimately contributing to the advancement of healthcare practices aimed at extending and enhancing human life.
Collapse
Affiliation(s)
- Sergey Mironov
- Longaevus Technologies LTD, London, United Kingdom
- Human and health division, DEKRA Automobil GmbH, Chemnitz, Germany
| | | | | | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Alexey Moskalev
- Longaevus Technologies LTD, London, United Kingdom
- Institute of biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Gerontological Research and Clinical Center, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
Pu W, Ma C, Wang B, Zhu W, Chen H. The "Heater" of "Cold" Tumors-Blocking IL-6. Adv Biol (Weinh) 2024; 8:e2300587. [PMID: 38773937 DOI: 10.1002/adbi.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/13/2024] [Indexed: 05/24/2024]
Abstract
The resolution of inflammation is not simply the end of the inflammatory response but rather a complex process that involves various cells, inflammatory factors, and specialized proresolving mediators following the occurrence of inflammation. Once inflammation cannot be cleared by the body, malignant tumors may be induced. Among them, IL-6, as an immunosuppressive factor, activates a variety of signal transduction pathways and induces tumorigenesis. Monitoring IL-6 can be used for the diagnosis, efficacy evaluation and prognosis of tumor patients. In terms of treatment, improving the efficacy of targeted and immunotherapy remains a major challenge. Blocking IL-6 and its mediated signaling pathways can regulate the tumor immune microenvironment and enhance immunotherapy responses by activating immune cells. Even transform "cold" tumors that are difficult to respond to immunotherapy into immunogenic "hot" tumors, acting as a "heater" for "cold" tumors, restarting the tumor immune cycle, and reducing immunotherapy-related toxic reactions and drug resistance. In clinical practice, the combined application of IL-6 inhibition with targeted therapy and immunotherapy may produce synergistic results. Nevertheless, additional clinical trials are imperative to further validate the safety and efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Weigao Pu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Weidong Zhu
- General Surgery Department of Lintao County People's Hospital in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, Gansu, 730030, China
| |
Collapse
|
13
|
Paterno G, Palmieri R, Tesei C, Nunzi A, Ranucci G, Mallegni F, Moretti F, Meddi E, Tiravanti I, Marinoni M, Page C, Fagiolo S, Buzzatti E, Secchi R, Gurnari C, Maurillo L, Buccisano F, Venditti A, Del Principe MI. The ISTH DIC-score predicts early mortality in patients with non-promyelocitic acute myeloid leukemia. Thromb Res 2024; 236:30-36. [PMID: 38387301 DOI: 10.1016/j.thromres.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Coagulation disorders frequently complicate the clinical course of acute myeloid leukemia (AML) patients. This study examined the frequency and prognostic significance, with regards of early mortality, of the presence of overt disseminated intravascular coagulation (DIC) at AML diagnosis and its correlation with clinical and biological characteristics. A retrospective analysis of 351 newly diagnosed non-promyelocytic AML patients was conducted, utilizing the 2018 ISTH DIC-Score criteria to evaluate the presence of overt DIC at AML onset. The study cohort had a median age of 65 years with a predominance of male gender (59 %). Overt DIC was present in 21 % of cases and was associated with advanced age, comorbidities, poor performance status, hyperleukocytosis, LDH levels, NPM1 mutations, expression of CD33 and CD4, and lack of expression of CD34. With a median follow-up of 72 months (3-147 months), the 6-year overall survival (OS) was 17.4 %, with patients having overt DIC showing significantly poorer outcomes (7.2 % compared to 20.3 % of those without DIC, p < 0.001). Patients with overt DIC showed markedly high early mortality rates at 30 (42.5 % vs 8 %), 60 (49.3 % vs 16.9 %), and 120 days (64.4 % vs 25.6 %) from disease onset. In multivariate analysis overt DIC retained its independent prognostic value for early mortality. In conclusion, the prevalence and clinical relevance of DIC in non-promyelocytic AML is not negligible, underlining its potential as an unfavorable prognostic marker. In newly diagnosed patients with AML, early recognition and measure to counteract coagulation disturbances might help mitigate the elevated mortality risk associated with DIC.
Collapse
Affiliation(s)
| | - Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Cristiano Tesei
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Andrea Nunzi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giorgia Ranucci
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Flavia Mallegni
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Federico Moretti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Elisa Meddi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Ilaria Tiravanti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Massimiliano Marinoni
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Camilla Page
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Solaria Fagiolo
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Roberto Secchi
- Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Carmelo Gurnari
- Hematology, Fondazione Policlinico Tor Vergata, Rome, Italy; Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Luca Maurillo
- Hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Francesco Buccisano
- Hematology, Fondazione Policlinico Tor Vergata, Rome, Italy; Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Adriano Venditti
- Hematology, Fondazione Policlinico Tor Vergata, Rome, Italy; Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.
| | - Maria Ilaria Del Principe
- Hematology, Fondazione Policlinico Tor Vergata, Rome, Italy; Hematology, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Abramenko N, Vellieux F, Veselá K, Kejík Z, Hajduch J, Masařík M, Babula P, Hoskovec D, Pacák K, Martásek P, Smetana K, Jakubek M. Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules. Sci Rep 2024; 14:3043. [PMID: 38321096 PMCID: PMC10847107 DOI: 10.1038/s41598-024-51804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Karel Pacák
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic.
| |
Collapse
|
15
|
Procházka V, Lacina L, Smetana K, Svoboda M, Skřivanová K, Beňovská M, Jarkovský J, Křen L, Kala Z. Serum concentrations of proinflammatory biomarker interleukin-6 (IL-6) as a predictor of postoperative complications after elective colorectal surgery. World J Surg Oncol 2023; 21:384. [PMID: 38098074 PMCID: PMC10720211 DOI: 10.1186/s12957-023-03270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The aim of this prospective study was to evaluate the role of serum IL-6 as a potential predictive biomarker of postoperative complications (POC) in elective colorectal surgery. METHOD A total of 115 patients underwent colorectal surgery for malignancy. IL-6 was measured on the first and third postoperative days (POD1, POD3), and C-reactive protein (CRP) was measured on the POD3. POC was analysed in subgroups according to Clavien‒Dindo (CD), antibiotic (ATB) treatment, intensive care unit (ICU) and hospital length of stay. The predictive power of variables for evaluated endpoints was analysed using receiver-operating characteristic (ROC) analysis and described by area under the curve (AUC). ROC analysis was adopted for the identification of optimal cut-offs. Histological analysis was performed to verify IL-6 production by the tumour. RESULTS Out of 115 patients who were analysed, 42% had POC. Patients with POC had significantly higher serum levels of IL-6 on POD1 (p < 0.001) and POD3 (p < 0.001). IL-6 early on POD1 as a predictor of antibiotic treatment, ICU stay and hospital stay (AUC 0.818; 0.811; 0.771) did not significantly differ from the AUC of CRP late on POD3 (0.879; 0.838, 0.752). A cut-off IL-6 value of 113 pg/ml on POD1 and 180.5 pg/ml on POD3 in severe complications (CD > 3a) resulted in 75% and 72% sensitivity, 78.6% and 99% specificity, negative predictive value 96.4% and 97% and positive predictive value 29% and 88.9%. CONCLUSION The serum level of interleukin-6 can predict severe (CD > 3a) POC early on POD1. On POD3, IL-6 is superior to CRP in terms of high positive predictive power of severe POC. Interestingly, the advantage of IL-6 on POD1 is early prediction of the need for antibiotic treatment, ICU stay and hospital stay, which is comparable to the CRP serum level late on the third POD.
Collapse
Grants
- Conceptual development of research organisation, FNBr, 65269705 Ministerstvo Zdravotnictví Ceské Republiky,Czechia
- Conceptual development of research organisation, FNBr, 65269705 Ministerstvo Zdravotnictví Ceské Republiky,Czechia
- Conceptual development of research organisation, FNBr, 65269705 Ministerstvo Zdravotnictví Ceské Republiky,Czechia
- Conceptual development of research organisation, FNBr, 65269705 Ministerstvo Zdravotnictví Ceské Republiky,Czechia
- Conceptual development of research organisation, FNBr, 65269705 Ministerstvo Zdravotnictví Ceské Republiky,Czechia
- project National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102) Operational Programme Research, Development, and Education
- project National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102) Operational Programme Research, Development, and Education
- Cooperatio ONCO Univerzita Karlova v Praze
- Cooperatio ONCO Univerzita Karlova v Praze
Collapse
Affiliation(s)
- Vladimír Procházka
- Department of Surgery, Faculty of Medicine, University Hospital Brno Bohunice, Masaryk University, Brno, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Dermatovernereology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Svoboda
- Department of Surgery, Faculty of Medicine, University Hospital Brno Bohunice, Masaryk University, Brno, Czech Republic.
| | - Kateřina Skřivanová
- Department of Clinical Psychology, University Hospital Brno-Bohunice, Brno, Czech Republic
| | - Miroslava Beňovská
- Division of Clinical Biochemistry, Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Jarkovský
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Leoš Křen
- Department of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Zdeněk Kala
- Department of Surgery, Faculty of Medicine, University Hospital Brno Bohunice, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Tosta BR, de Almeida IM, da Cruz Pena L, Dos Santos Silva H, Reis-Goes FS, Silva NN, Cruz JVA, Dos Anjos Silva M, de Araújo JF, Rodrigues JL, Oliveira G, Figueiredo RG, Vaz SN, Montaño-Castellón I, Santana D, de Lima Beltrão FE, Carneiro VL, Campos GS, Brites C, Fortuna V, Figueiredo CA, Trindade SC, Ramos HE, Costa RDS. MTOR gene variants are associated with severe COVID-19 outcomes: A multicenter study. Int Immunopharmacol 2023; 125:111155. [PMID: 37951192 DOI: 10.1016/j.intimp.2023.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND The worst outcomes linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been attributed to the cytokine storm, which contributes significantly to the immunopathogenesis of the disease. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. The individual genetic background might play a role in the exacerbated immune response. OBJECTIVE In this study, we aimed to investigate the association between MTOR genetic variants and COVID-19 outcomes. METHODS This study enrolled groups of individuals with severe (n = 285) and mild (n = 207) COVID-19 from Brazilian states. The MTOR variants, rs1057079 and rs2536, were genotyped. A logistic regression analysis and Kaplan-Meier survival curves were performed. We applied a genotyping risk score to estimate the cumulative contribution of the risk alleles. Tumor necrosis factor (TNF) and interleukin-6 (IL-6) plasma levels were also measured. RESULTS The T allele of the MTOR rs1057079 variant was associated with a higher likelihood of developing the most severe form of COVID-19. In addition, higher levels of IL-6 and COVID-19 death was linked to the T allele of the rs2536 variant. These variants exhibited a cumulative risk when inherited collectively. CONCLUSIONS These results show a potential pathogenetic role of MTOR gene variants and may be useful for predicting severe outcomes following COVID-19 infection, resulting in a more effective allocation of health resources.
Collapse
Affiliation(s)
- Bruna Ramos Tosta
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Ingrid Marins de Almeida
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Laiane da Cruz Pena
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Hatilla Dos Santos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Fabiane S Reis-Goes
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Nívia N Silva
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - João Victor Andrade Cruz
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Mailane Dos Anjos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Jéssica Francisco de Araújo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Juliana Lopes Rodrigues
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | | | | | - Sara Nunes Vaz
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Iris Montaño-Castellón
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Daniele Santana
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | | | | | - Gubio Soares Campos
- Laboratório de Virologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Carlos Brites
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Bahia, Brazil
| | - Vitor Fortuna
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Camila Alexandrina Figueiredo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Soraya Castro Trindade
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil; Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Helton Estrela Ramos
- Programa de Pós-Graduação em Processos Interativos de Órgãos e Sistema, Instituto de Saúde e Ciência, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Ryan Dos Santos Costa
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
17
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
18
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Liu J, Zheng R, Zhang Y, Jia S, He Y, Liu J. The Cross Talk between Cellular Senescence and Melanoma: From Molecular Pathogenesis to Target Therapies. Cancers (Basel) 2023; 15:cancers15092640. [PMID: 37174106 PMCID: PMC10177054 DOI: 10.3390/cancers15092640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.
Collapse
Affiliation(s)
- Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
20
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
21
|
Szymanska B, Lukaszewski Z, Hermanowicz-Szamatowicz K, Gorodkiewicz E. A Multiple-Array SPRi Biosensor as a Tool for Detection of Gynecological-Oncological Diseases. BIOSENSORS 2023; 13:279. [PMID: 36832045 PMCID: PMC9954693 DOI: 10.3390/bios13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Diagnostics based on the determination of biomarkers in body fluids will be more successful when several biomarkers are determined. A multiple-array SPRi biosensor for the simultaneous determination of CA125, HE4, CEA, IL-6 and aromatase has been developed. Five individual biosensors were placed on the same chip. Each of them consisted of a suitable antibody covalently immobilized onto a gold chip surface via a cysteamine linker by means of the NHS/EDC protocol. The biosensor for IL-6 works in the pg mL-1 range, that for CA125 in the µg mL-1 range, and the other three within the ng mL-1 range; these are ranges suitable for the determination of biomarkers in real samples. The results obtained with the multiple-array biosensor are very similar to those obtained with a single biosensor. The applicability of the multiple biosensor was demonstrated using several examples of plasma from patients suffering from ovarian cancer and endometrial cyst. The average precision was 3.4% for the determination of CA125, 3.5% for HE4, 5.0% for CEA and IL-6, and 7.6% for aromatase. The simultaneous determination of several biomarkers may be an excellent tool for the screening of the population for earlier detection of diseases.
Collapse
Affiliation(s)
- Beata Szymanska
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, Pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
| | | | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
22
|
Mandys V, Popov A, Gürlich R, Havránek J, Pfeiferová L, Kolář M, Vránová J, Smetana K, Lacina L, Szabo P. Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043617. [PMID: 36835029 PMCID: PMC9961675 DOI: 10.3390/ijms24043617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in controlling the biological properties of this type of tumor have been extensively studied. A better insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas, and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210 were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in our study were cultured under normoxic conditions. We also noted a relation to IL-6 production. In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210 expression similarly to the cancer tissue samples harvested from the patients.
Collapse
Affiliation(s)
- Václav Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Jan Havránek
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Lucie Pfeiferová
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jana Vránová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Lukáš Lacina
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Pavol Szabo
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
23
|
Sass D, Parmelee Streck B, Guedes VA, Cooper D, Guida JL, Armstrong TS. Blood-based biomarkers of frailty in solid tumors: a systematic review. Front Public Health 2023; 11:1171243. [PMID: 37213604 PMCID: PMC10193038 DOI: 10.3389/fpubh.2023.1171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
This review examines the current literature to identify biomarkers of frailty across patients with solid tumors. We conducted the systematic review using preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA). PubMed, Web of Science, and Embase databases were searched from their inception to December 08, 2021, for reports of biomarkers and frailty. Two reviewers independently screened titles, abstracts, and full-text articles. A quality assessment was conducted using NHLBI Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, and Quality Assessment of Case-Control Studies. In total, 915 reports were screened, and 14 full-text articles were included in the review. Most studies included breast tumors, were cross-sectional in design, and measured biomarkers at baseline or pre-treatment. Frailty tools varied with Fried Frailty Phenotype and the geriatric assessment most frequently used. Increased inflammatory parameters (i.e., Interleukin-6, Neutrophil Lymphocyte Ratio, Glasgow Prognostic Score-2) were associated with frailty severity. Only six studies were rated as good quality using assessment ratings. Together, the small number of studies and heterogeneity in frailty assessment limited our ability to draw conclusions from the extant literature. Future research is needed to identify potential target biomarkers of frailty in cancer survivors that may aid in early detection and referral.
Collapse
Affiliation(s)
- Dilorom Sass
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dilorom Sass, ;
| | - Brennan Parmelee Streck
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Vivian A. Guedes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Diane Cooper
- Office of Research Services, National Institutes of Health Library, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L. Guida
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Terri S. Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Papageorgiou L, Papakonstantinou E, Diakou I, Pierouli K, Dragoumani K, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Semantic and Population Analysis of the Genetic Targets Related to COVID-19 and Its Association with Genes and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:59-78. [PMID: 37525033 DOI: 10.1007/978-3-031-31978-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 is a coronavirus responsible for one of the most serious, modern worldwide pandemics, with lasting and multifaceted effects. By late 2021, SARS-CoV-2 has infected more than 180 million people and has killed more than 3 million. The virus gains entrance to human cells through binding to ACE2 via its surface spike protein and causes a complex disease of the respiratory system, termed COVID-19. Vaccination efforts are being made to hinder the viral spread, and therapeutics are currently under development. Toward this goal, scientific attention is shifting toward variants and SNPs that affect factors of the disease such as susceptibility and severity. This genomic grammar, tightly related to the dark part of our genome, can be explored through the use of modern methods such as natural language processing. We present a semantic analysis of SARS-CoV-2-related publications, which yielded a repertoire of SNPs, genes, and disease ontologies. Population data from the 1000 Genomes Project were subsequently integrated into the pipeline. Data mining approaches of this scale have the potential to elucidate the complex interaction between COVID-19 pathogenesis and host genetic variation; the resulting knowledge can facilitate the management of high-risk groups and aid the efforts toward precision medicine.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece.
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
25
|
Li T, Meng Y, Ding P, Wang H, Liu J, Xia C, Chen Y, Li J. Pathological implication of CaMKII in NF-κB pathway and SASP during cardiomyocytes senescence. Mech Ageing Dev 2023; 209:111758. [PMID: 36462537 DOI: 10.1016/j.mad.2022.111758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Senescence-associated secretory phenotype (SASP) could be developed during heart ageing. But the role of SASP in cardiomyocytes senescence and its molecular mechanism remains undetermined. In this study, we observed elevated Ca2+/calmodulin -dependent protein kinase II (CaMKII) activation in both physiological aged heart and premature senescent cardiomyocytes. Notably, we confirmed the gradual SASP development induced by NF-κB activation in long-term cultured cardiomyocytes. Transgenic inhibition of CaMKII in mice (AC3-I mice) alleviated the NF-κB activation, chronic sterile inflammation and ageing-associated cardiomyopathy. Correspondingly, pharmacological inhibition of CaMKII with KN93 mitigated SASP and hindered cardiomyocytes senescence. Meanwhile, increased NF-κB activation and exacerbated cardiomyocytes senescence were observed with transgenic CaMKII activation. Collectively, our results indicated that the increased CaMKII activation accompanying ageing could aggravate NF-κB activation and SASP development and facilitate cardiomyocytes senescence and heart ageing.
Collapse
Affiliation(s)
- Ting Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidi Meng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwu Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfei Wang
- Department of Cardiac Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaorui Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingdong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
27
|
Gál P, Brábek J, Holub M, Jakubek M, Šedo A, Lacina L, Strnadová K, Dubový P, Hornychová H, Ryška A, Smetana K. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol 2022; 158:415-434. [PMID: 35867145 PMCID: PMC9305064 DOI: 10.1007/s00418-022-02140-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
Collapse
Affiliation(s)
- Peter Gál
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, 160 00 Prague, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 120 00 Praha 2, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Petr Dubový
- Institute of Anatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Helena Hornychová
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| |
Collapse
|
28
|
Kaźmierczak-Barańska J, Karwowski BT. Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response. Nutrients 2022; 14:nu14204219. [PMID: 36296903 PMCID: PMC9611527 DOI: 10.3390/nu14204219] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is the common name for a group of compounds recognized as essential for blood clotting. The group comprises phylloquinone (K1)—a 2-methyl-3-phytyl-1,4-naphthoquinone; menaquinone (K2, MK)—a group of compounds with an unsaturated side chain in position 3 of a different number of isoprene units and a 1,4-naphthoquinone group and menadione (K3, MD)—a group of synthetic, water-soluble compounds 2-methyl-1,4-naphthoquinone. However, recent epidemiological studies suggest that vitamin K has various benefits that go beyond blood coagulation processes. A dietary intake of K1 is inversely associated with the risk of pancreatic cancer, K2 has the potential to induce a differentiation in leukemia cells or apoptosis of various types of cancer cells, and K3 has a documented anti-cancer effect. A healthy diet rich in fruit and vegetables ensures an optimal supply of K1 and K2, though consumers often prefer supplements. Interestingly, the synthetic form of vitamin K—menadione—appears in the cell during the metabolism of phylloquinone and is a precursor of MK-4, a form of vitamin K2 inaccessible in food. With this in mind, the purpose of this review is to emphasize the importance of vitamin K as a micronutrient, which not only has a beneficial effect on blood clotting and the skeleton, but also reduces the risk of cancer and other pro-inflammatory diseases. A proper diet should be a basic and common preventive procedure, resulting in a healthier society and reduced burden on healthcare systems.
Collapse
|
29
|
Talianová V, Kejík Z, Kaplánek R, Veselá K, Abramenko N, Lacina L, Strnadová K, Dvořánková B, Martásek P, Masařík M, Megová MH, Bušek P, Křížová J, Zdražilová L, Hansíková H, Vlčák E, Filimonenko V, Šedo A, Smetana K, Jakubek M. New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity. Pharmaceutics 2022; 14:pharmaceutics14081712. [PMID: 36015338 PMCID: PMC9416741 DOI: 10.3390/pharmaceutics14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding −9.5 and −8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.
Collapse
Affiliation(s)
- Veronika Talianová
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University and General University Hospital, CZ-128 08 Prague, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Magdalena Houdová Megová
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Lucie Zdražilová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Hana Hansíková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| | - Erik Vlčák
- Institute of Molecular Genetics, Academy of Sciences, CZ-140 00 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Academy of Sciences, CZ-140 00 Prague, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, CZ-120 00 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, CZ-252 42 Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, CZ-128 08 Prague, Czech Republic
| |
Collapse
|
30
|
Jafrin S, Aziz MA, Islam MS. Elevated Levels of Pleiotropic Interleukin-6 (IL-6) and Interleukin-10 (IL-10) are Critically Involved With the Severity and Mortality of COVID-19: An Updated Longitudinal Meta-Analysis and Systematic Review on 147 Studies. Biomark Insights 2022; 17:11772719221106600. [PMID: 35747885 PMCID: PMC9209786 DOI: 10.1177/11772719221106600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/26/2022] [Indexed: 01/08/2023] Open
Abstract
Objectives Disruption in the natural immune reaction due to SARS-CoV-2 infection can initiate a potent cytokine storm among COVID-19 patients. An elevated level of IL-6 and IL-10 during a hyperinflammatory state plays a vital role in increasing the risk of severity and mortality. In this study, we aimed to evaluate the potential of circulating IL-6 and IL-10 levels as biomarkers for detecting the severity and mortality of COVID-19. Methods This study was conducted according to the Cochrane Handbook and PRISMA guidelines. Authorized databases were searched to extract suitable studies using specific search terms. RevMan 5.4 was applied for performing the meta-analysis. Mean differences in IL-6 and IL-10 levels were calculated among COVID-19 patients via a random-effects model. NOS scoring, publication bias and sensitivity analyses were checked to ensure study quality. Results A total of 147 studies were selected, with 31 909 COVID-19 patients under investigation. In the severity analysis, the mean concentration of IL-6 was significantly higher in the severe COVID-19 cases than in the non-severe cases (MD: 19.98; P < .001; 95% CI: 17.56, 22.40). Similar result was observed for IL-10 mean concentration in severe COVID-19 cases (MD: 1.35; P < .001; 95% CI: 0.90, 1.80). In terms of mortality analysis, circulating IL-6 showed sharp elevation in the deceased patients (MD: 42.11; P < .001; 95% CI: 36.86, 47.36). IL-10 mean concentration was higher in the dead patients than in the survived patients (MD: 4.79; P < .001; 95% CI: 2.83, 6.75). Publication bias was not found except for comparing IL-6 levels with disease severity. Sensitivity analysis also reported no significant deviation from the pooled outcomes. Conclusions Elevated levels of circulating IL-6 and IL-10 signifies worsening of COVID-19. To monitor the progression of SARS-CoV-2 infection, IL-6 and IL-10 should be considered as potential biomarkers for severity and mortality detection in COVID-19. Systematic review registration INPLASY registration number: INPLASY202240046.
Collapse
Affiliation(s)
- Sarah Jafrin
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| |
Collapse
|
31
|
Szymanska B, Lukaszewski Z, Oldak L, Zelazowska-Rutkowska B, Hermanowicz-Szamatowicz K, Gorodkiewicz E. Two Biosensors for the Determination of Interleukin-6 in Blood Plasma by Array SPRi. BIOSENSORS 2022; 12:bios12060412. [PMID: 35735559 PMCID: PMC9221503 DOI: 10.3390/bios12060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/05/2022]
Abstract
Interleukin-6 (IL-6) is a biomarker of inflammation, the advanced stage of COVID-19, and several cancers, including ovarian cancer. Two biosensors for the determination of IL-6 in blood plasma by array SPRi have been developed. One of these biosensors consists of the mouse monoclonal anti-IL-6 antibody as the receptor immobilized via the cysteamine linker. The second contains galiellalactone as the receptor, being an inhibitor specific for IL-6, immobilized via octadecanethiol (ODM) as the linker. Both biosensors are specific for IL-6. The biosensor with the antibody as the receptor gives a linear analytical response between 3 (LOQ) and 20 pg mL−1 and has a precision between 8% and 9.8% and recovery between 97% and 107%, depending on the IL-6 concentration. The biosensor with galiellalactone as the receptor gives a linear analytical response between 1.1 (LOQ) and 20 pg mL−1, and has a precision between 3.5% and 9.3% and recovery between 101% and 105%, depending on IL-6 concentration. Both biosensors were validated. Changes in IL-6 concentration in blood plasma before and after resection of ovarian tumor and endometrial cyst, as determined by the two developed biosensors, are given as an example of a real clinical application.
Collapse
Affiliation(s)
- Beata Szymanska
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
- Correspondence: (Z.L.); (E.G.)
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | | | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
- Correspondence: (Z.L.); (E.G.)
| |
Collapse
|
32
|
Srivastava S, Rasool M. Underpinning IL-6 biology and emphasizing selective JAK blockade as the potential alternate therapeutic intervention for rheumatoid arthritis. Life Sci 2022; 298:120516. [DOI: 10.1016/j.lfs.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
|
33
|
Dritsoula A, Dowsett L, Pilotti C, O'Connor MN, Moss SE, Greenwood J. Angiopathic activity of LRG1 is induced by the IL-6/STAT3 pathway. Sci Rep 2022; 12:4867. [PMID: 35318338 PMCID: PMC8938720 DOI: 10.1038/s41598-022-08516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1-/- explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility.
Collapse
Affiliation(s)
- Athina Dritsoula
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Laura Dowsett
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Camilla Pilotti
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Marie N O'Connor
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
34
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV, Orekhov AN. Role of the mtDNA Mutations and Mitophagy in Inflammaging. Int J Mol Sci 2022; 23:ijms23031323. [PMID: 35163247 PMCID: PMC8836173 DOI: 10.3390/ijms23031323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Ageing is an unavoidable multi-factorial process, characterised by a gradual decrease in physiological functionality and increasing vulnerability of the organism to environmental factors and pathogens, ending, eventually, in death. One of the most elaborated ageing theories implies a direct connection between ROS-mediated mtDNA damage and mutations. In this review, we focus on the role of mitochondrial metabolism, mitochondria generated ROS, mitochondrial dynamics and mitophagy in normal ageing and pathological conditions, such as inflammation. Also, a chronic form of inflammation, which could change the long-term status of the immune system in an age-dependent way, is discussed. Finally, the role of inflammaging in the most common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, is also discussed.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
35
|
Vokurka M, Lacina L, Brábek J, Kolář M, Ng YZ, Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int J Mol Sci 2022; 23:964. [PMID: 35055153 PMCID: PMC8778626 DOI: 10.3390/ijms23020964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
Collapse
Affiliation(s)
- Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic;
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic;
| | - Yi Zhen Ng
- A*STAR Skin Research Labs (A*SRL)—Biopolis, Skin Research Institute of Singapore, 8A Biomedical Grove #06-06 Immunos Singapore, Singapore 138665, Singapore;
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
36
|
Opposing Effects of Chelidonine on Tyrosine and Serine Phosphorylation of STAT3 in Human Uveal Melanoma Cells. Int J Mol Sci 2021; 22:ijms222312974. [PMID: 34884773 PMCID: PMC8658041 DOI: 10.3390/ijms222312974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
STAT3 is a transcription factor that regulates various cellular processes with oncogenic potential, thereby promoting tumorigenesis when activated uncontrolled. STAT3 activation is mediated by its tyrosine phosphorylation, triggering dimerization and nuclear translocation. STAT3 also contains a serine phosphorylation site, with a postulated regulatory role in STAT3 activation and G2/M transition. Interleukin-6, a major activator of STAT3, is present in elevated concentrations in uveal melanomas, suggesting contribution of dysregulated STAT3 activation to their pathogenesis. Here, we studied the impact of chelidonine on STAT3 signaling in human uveal melanoma cells. Chelidonine, an alkaloid isolated from Chelidonium majus, disrupts microtubules, causes mitotic arrest and provokes cell death in numerous tumor cells. According to our flow cytometry and confocal microscopy data, chelidonine abrogated IL-6-induced activation and nuclear translocation, but amplified constitutive serine phosphorylation of STAT3. Both effects were restricted to a fraction of cells only, in an all-or-none fashion. A partial overlap could be observed between the affected subpopulations; however, no direct connection could be proven. This study is the first proof on a cell-by-cell basis for the opposing effects of a microtubule-targeting agent on the two types of STAT3 phosphorylation.
Collapse
|
37
|
Strnadová K, Pfeiferová L, Přikryl P, Dvořánková B, Vlčák E, Frýdlová J, Vokurka M, Novotný J, Šáchová J, Hradilová M, Brábek J, Šmigová J, Rösel D, Smetana K, Kolář M, Lacina L. Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts. Histochem Cell Biol 2021; 157:153-172. [PMID: 34837514 PMCID: PMC8847298 DOI: 10.1007/s00418-021-02052-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .
Collapse
Affiliation(s)
- Karolína Strnadová
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.,BIOCEV, 1st Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Petr Přikryl
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 00, Praha, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.,BIOCEV, 1st Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic
| | - Erik Vlčák
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jana Frýdlová
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 00, Praha, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 00, Praha, Czech Republic
| | - Jiří Novotný
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 25250, Vestec, Czech Republic
| | - Jana Šmigová
- BIOCEV, Faculty of Sciences, Charles University, 25250, Vestec, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 25250, Vestec, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.,BIOCEV, 1st Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic. .,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Lukáš Lacina
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic. .,BIOCEV, 1st Faculty of Medicine, Charles University, 25250, Vestec, Czech Republic. .,Department of Dermatovenereology, 1st Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague 2, Czech Republic.
| |
Collapse
|
38
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
39
|
Omland SH, Wenande EC, Svane IM, Tam J, Olesen UH, Hædersdal M. Laser Immunotherapy: A Potential Treatment Modality for Keratinocyte Carcinoma. Cancers (Basel) 2021; 13:cancers13215405. [PMID: 34771568 PMCID: PMC8582581 DOI: 10.3390/cancers13215405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary In light of expanding incidences of keratinocyte carcinoma (KC) with many patients developing multiple tumors, the demand for new treatment modalities is high. With the approval of cemplimab for locally advanced and metastasizing basal cell carcinoma and squamous cell carcinoma, KC is now included as an indication for systemic immunotherapy. At present, however, systemic KC therapy remains limited by the severe side effects associated with treatment. Immunotherapy might be more broadly applied if locally administered. Localized to the skin, KCs are easily accessible to topical drugs and physical interventions such as laser. There is an increasing appreciation of lasers’ potential to activate an immune response. Further enhancement of the laser-based immune activation might be obtained by combining laser and immunotherapeutic agents, known as laser immunotherapy. In search of new treatment modalities for KC and aiming to broaden the field of KC immunotherapy, this review discusses the current literature on immune activation following both laser monotherapy and laser immunotherapy. Abstract The role of the immune system in cancer growth is well recognized and the development of immunotherapy represents a breakthrough in cancer treatment. Recently, the use of systemic immunotherapy was extended to keratinocyte carcinoma (KC), specifically locally advanced and metastasizing basal and squamous cell carcinoma. However, since most KC lesions are non-aggressive, systemic treatment with associated side effects is rarely justified. Conversely, topical immunotherapy with imiquimod remains restricted to premalignant and superficial lesions. Use of laser in the treatment of KC has evolved from physical tumor destruction and laser-assisted drug delivery to laser-mediated immune modulation. Evidence indicates that laser monotherapy can lead to immune cell infiltration, tumor reduction and resistance to tumor re-inoculation. Combining laser with immunotherapeutic agents, termed laser immunotherapy (LIT), may further potentiate immune activation and tumor response. Studies on LIT show not only direct anti-tumor effects but systemic adaptive immunity, illustrated by the prevention of tumor recurrence and regression in distant untreated tumors. These findings imply a therapeutic potential for both local and metastatic disease. This work provides rationales for immune-based treatment of KC and presents the current status of KC immunotherapy. Aiming to expand the field of KC immunotherapy, the review discusses the literature on immune activation following laser monotherapy and LIT.
Collapse
Affiliation(s)
- Silje Haukali Omland
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2700 Copenhagen, Denmark; (E.C.W.); (U.H.O.); (M.H.)
- Correspondence:
| | - Emily Cathrine Wenande
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2700 Copenhagen, Denmark; (E.C.W.); (U.H.O.); (M.H.)
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark;
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Uffe Høgh Olesen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2700 Copenhagen, Denmark; (E.C.W.); (U.H.O.); (M.H.)
| | - Merete Hædersdal
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2700 Copenhagen, Denmark; (E.C.W.); (U.H.O.); (M.H.)
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| |
Collapse
|
40
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
41
|
Fibroblasts Influence Metastatic Melanoma Cell Sensitivity to Combined BRAF and MEK Inhibition. Cancers (Basel) 2021; 13:cancers13194761. [PMID: 34638245 PMCID: PMC8507536 DOI: 10.3390/cancers13194761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Preclinical 3D in vitro coculture models are known to be more complex systems than monolayer cell culture and mimic the physiological environment more closely. Three-dimensional dermal equivalents provide a relevant environment for cutaneous metastatic melanoma cells and are capable of modulating a cancer cell’s response to drugs. We showed that a combined targeted therapy (vemurafenib and cobimetinib) efficiently inhibits cell proliferation and induces apoptosis, especially in the 3D coculture model. A cancer-associated fibroblast population isolated from a cutaneous melanoma was also sensitive to the treatment but with no detectable induction of apoptosis. To better understand the complex crosstalk between melanoma cells and their microenvironment, we compared the influence of conditioned media obtained from healthy or cancer-associated fibroblasts on the response of metastatic melanomas to the drugs. Our data indicate that normal fibroblast supernatants potentialize the therapy’s efficiency, whereas cancer-associated fibroblast secretomes favor melanoma cell survival. Abstract The sensitivity of melanoma cells to targeted therapy compounds depends on the tumor microenvironment. Three-dimensional (3D) in vitro coculture systems better reflect the native structural architecture of tissues and are ideal for investigating cellular interactions modulating cell sensitivity to drugs. Metastatic melanoma (MM) cells (SK-MEL-28 BRAF V600E mutant and SK-MEL-2 BRAF wt) were cultured as a monolayer (2D) or cocultured on 3D dermal equivalents (with fibroblasts) and treated with a BRAFi (vemurafenib) combined with a MEK inhibitor (MEKi, cobimetinib). The drug combination efficiently inhibited 2D and 3D MM cell proliferation and survival regardless of their BRAF status. Two-dimensional and three-dimensional cancer-associated fibroblasts (CAFs), isolated from a cutaneous MM biopsy, were also sensitive to the targeted therapy. Conditioned media obtained from healthy dermal fibroblasts or CAFs modulated the MM cell’s response differently to the treatment: while supernatants from healthy fibroblasts potentialized the efficiency of drugs on MM, those from CAFs tended to increase cell survival. Our data indicate that the secretory profiles of fibroblasts influence MM sensitivity to the combined vemurafenib and cobimetinib treatment and highlight the need for 3D in vitro cocultures representing the complex crosstalk between melanoma and CAFs during preclinical studies of drugs.
Collapse
|
42
|
Harris CC. Editor-in-Chief's Editorial 2021 January Issue 42:1. Carcinogenesis 2021; 42:1. [PMID: 33527994 DOI: 10.1093/carcin/bgab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/15/2022] Open
|
43
|
Frustaci A, Francone M, Verardo R, Capobianchi MR, Chimenti C. Virus-Negative Necrotizing Coronary Vasculitis with Aneurysm Formation in Human SARS-CoV-2 Infection. Infect Dis Rep 2021; 13:597-601. [PMID: 34202646 PMCID: PMC8293265 DOI: 10.3390/idr13030055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
We report a case of myopericarditis associated to SARS-CoV-2 infection with necrotizing coronary vasculitis of intramural vessels, giving rise to biventricular apical microaneurysms and to electrical instability. Negativity of myocardial polymerase chain reaction for the most common cardiotropic viruses and for SARS-CoV-2 suggested an immune-mediated myocardial and pericardial inflammatory disease. High dose (1 mg/Kg daily) prednisone and anti-viral (Remdesivir, IDA Business, Carrigtohill, County Cork, T45 DP77, Ireland) therapy led to resolution of cardiac inflammation and ventricular arrhythmias. Morpho-molecular characterization of endomyocardial tissue may improve the outcome in subjects with SARS-CoV-2-associated myopericarditis and coronary vasculitis.
Collapse
Affiliation(s)
- Andrea Frustaci
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University, 00166 Rome, Italy
- Correspondence: ; Tel.: +39-06-5517-0520
| | - Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, 00166 Rome, Italy;
| | - Romina Verardo
- Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, 00149 Rome, Italy;
| | - Maria Rosaria Capobianchi
- Laboratory of Virology National Institute for Infectious Diseases “L. Spallanzani”, 00149 Rome, Italy; (M.R.C.); (C.C.)
| | - Cristina Chimenti
- Laboratory of Virology National Institute for Infectious Diseases “L. Spallanzani”, 00149 Rome, Italy; (M.R.C.); (C.C.)
| |
Collapse
|
44
|
Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021; 22:6551. [PMID: 34207220 PMCID: PMC8233910 DOI: 10.3390/ijms22126551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
| | - Petra Tesařová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic;
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Adam Tesař
- Department of Neurology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|
45
|
Sørensen MS, Colding-Rasmussen T, Horstmann PF, Hindsø K, Dehlendorff C, Johansen JS, Petersen MM. Pretreatment Plasma IL-6 and YKL-40 and Overall Survival after Surgery for Metastatic Bone Disease of the Extremities. Cancers (Basel) 2021; 13:cancers13112833. [PMID: 34200156 PMCID: PMC8201042 DOI: 10.3390/cancers13112833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Estimating postoperative survival in patients undergoing surgery for metastatic bone disease of the extremities is important in order to choose an implant that will outlive the patient. The present study suggests that plasma IL-6, reflecting the inflammatory state of the patient, is predictive for postoperative overall survival (OS). Abstract Background: Plasma IL-6 and YKL-40 are prognostic biomarkers for OS in patients with different types of solid tumors, but they have not been studied in patients before surgery of metastatic bone disease (MBD) of the extremities. The aim was to evaluate the prognostic value of plasma IL-6 and YKL-40 in patients undergoing surgery for MBD of the extremities. Patients and Methods: A prospective study included all patients undergoing surgery for MBD in the extremities at a tertiary referral center during the period 2014–2018. Preoperative blood samples from index surgery were included. IL-6 and YKL-40 concentrations in plasma were determined by commercial ELISA. A total of 232 patients (median age 66 years, IQR 58–74; female 51%) were included. Results: Cox regression analysis was performed to identify independent prognostic factors for OS. IL-6 correlated with YKL-40 (rho = 0.46, p < 0.01). In univariate analysis (log2 continuous variable) IL-6 (HR = 1.26, 95% CI 1.16–1.37), CRP (HR = 1.20, 95% CI 1.12–1.29) and YKL-40 (HR = 1.25, 95% CI 1.15–1.37) were associated with short OS. In multivariable analysis, adjusted for known risk factors for survival, only log2(IL-6) was independently associated with OS (HR = 1.24, 95% CI 1.08–1.43), whereas CRP and YKL-40 were not. Conclusion: High preoperative plasma IL-6 is an independent biomarker of short OS in patients undergoing surgery for MBD.
Collapse
Affiliation(s)
- Michala Skovlund Sørensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
- Correspondence: or
| | - Thomas Colding-Rasmussen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
| | - Peter Frederik Horstmann
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
| | - Klaus Hindsø
- Pediatric Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Christian Dehlendorff
- Statistics and Data Analysis Danish Cancer Society Research Center, 2100 Copenhagen Ø, Denmark;
| | - Julia Sidenius Johansen
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark;
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2730 Herlev, Denmark
| | - Michael Mørk Petersen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
46
|
Nakahara K, Nakane S, Nagaishi A, Narita T, Matsuo H, Ando Y. Very late onset neuromyelitis optica spectrum disorders. Eur J Neurol 2021; 28:2574-2581. [PMID: 33960076 DOI: 10.1111/ene.14901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica spectrum disorder (NMOSD) often presents in the elderly with an insidious onset of symptoms and aggressive progression. There have been anecdotal cases of very late onset (VLO)-NMOSD, but case series reports are rare. The aim of this retrospective study was to clarify the clinical features of VLO-NMOSD. METHODS According to the age at onset, we classified patients with NMOSD into three subgroups: ≤49 years, early onset NMOSD (EO-NMOSD); 50-69 years, late onset NMOSD (LO-NMOSD); and ≥70 years, VLO-NMOSD. We evaluated the clinical characteristics, magnetic resonance imaging (MRI) findings, laboratory data, and immunotherapies of the groups. RESULTS Overall, 12 men and 64 women with a median (interquartile range) age at onset and duration of disease of 42.0 (29.0-55.8) years and 70.0 (16.3-143.0) months, respectively, were included. Eight (11%) patients had VLO-NMOSD, 22 (29%) had LO-NMOSD, and 46 (61%) had EO-NMOSD. Patients with EO-NMOSD had a significantly longer interval between episodes as well as time between the first symptom and diagnosis of NMOSD than did those with VLO-NMOSD and LO-NMOSD (p = 0.046). Optic neuritis and nerve lesions on MRI were significantly less frequent in patients with VLO-NMOSD than in those with LO-NMOSD and EO-NMOSD (p = 0.002 and p = 0.028, respectively). In contrast, patients with VLO-NMOSD had higher nadir Expanded Disability Status Scale and Nurick scale scores and a significantly longer spinal lesion length than did those with LO-NMOSD and EO-NMOSD (p = 0.029, p = 0.049, and p = 0.032, respectively). CONCLUSIONS Patients with VLO-NMOSD tend to develop severe myelitis with long cord lesions but not optic neuritis.
Collapse
Affiliation(s)
- Keiichi Nakahara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunya Nakane
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, Kumamoto, Japan
| | - Akiko Nagaishi
- Department of Neurology, National Hospital Organization Nagasaki Kawatana Medical Center, Nagasaki, Japan
| | - Tomoko Narita
- Department of Neurology, National Hospital Organization Nagasaki Kawatana Medical Center, Nagasaki, Japan
| | - Hidenori Matsuo
- Department of Neurology, National Hospital Organization Nagasaki Kawatana Medical Center, Nagasaki, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Lacina L, Brábek J, Fingerhutová Š, Zeman J, Smetana K. Pediatric Inflammatory Multisystem Syndrome (PIMS) - Potential role for cytokines such Is IL-6. Physiol Res 2021; 70:153-159. [PMID: 33992044 DOI: 10.33549/physiolres.934673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
COVID-19 is a transmissible respiratory disease caused by coronavirus SARS-CoV-2, which is similar to SARS or MERS. Its increased severity was noted in aged patients usually over 65 years of age. Children and young people have an asymptomatic or mild course of the disease.Unfortunately, the number of children with problems after mild or asymptomatic COVID-19 recovery is increasing and their troubles resemble Kawasaki disease, although the laboratory findings seem to be different. This condition is called pediatric inflammatory multisystem syndrome (PIMS), and it is a new disease seen in children directly influenced by previous SARS-CoV-2 infection. The literature reports that PIMS typically follows 2-4 weeks after SARS-CoV-2 infection. The clinical symptoms of the affected children are extremely complex, ranging from gastrointestinal to cardiovascular problems with frequent skin and mucosal manifestations, and without intensive treatment they can be fatal. The exact causes of PIMS are recently unknown, however, it is explained as hyperactivation of immunity.In this minireview, we summarize data on the prominent role of the IL-6-IL-6R-STAT3 axis in PIMS aetiopathogenesis. Therapeutic manipulation of IL-6 or IL-6 receptor could be an approach to the treatment of children with severe PIMS.
Collapse
Affiliation(s)
- L Lacina
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
48
|
Coperchini F, Chiovato L, Rotondi M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One! Front Immunol 2021; 12:668507. [PMID: 33981314 PMCID: PMC8107352 DOI: 10.3389/fimmu.2021.668507] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-COV-2 virus is responsible for the ongoing devastating pandemic. Since the early phase of the pandemic, the "cytokine-storm" appeared a peculiar aspect of SARS-COV-2 infection which, at least in the severe cases, is responsible for respiratory treat damage and subsequent multi-organ failure. The efforts made in the last few months elucidated that the cytokine-storm results from a complex network involving cytokines/chemokines/infiltrating-immune-cells which orchestrate the aberrant immune response in COVID-19. Clinical and experimental studies aimed at depicting a potential "immune signature" of SARS-COV-2, identified three main "actors," namely the cytokine IL-6, the chemokine CXCL10 and the infiltrating immune cell type macrophages. Although other cytokines, chemokines and infiltrating immune cells are deeply involved and their role should not be neglected, based on currently available data, IL-6, CXCL10, and infiltrating macrophages could be considered prototype factors representing each component of the immune system. It rapidly became clear that a strong and continuous interplay among the three components of the immune response is mandatory in order to produce a severe clinical course of the disease. Indeed, while IL-6, CXCL10 and macrophages alone would not be able to fully drive the onset and maintenance of the cytokine-storm, the establishment of a IL-6/CXCL10/macrophages axis is crucial in driving the sequence of events characterizing this condition. The present review is specifically aimed at overviewing current evidences provided by both in vitro and in vivo studies addressing the issue of the interplay among IL-6, CXCL10 and macrophages in the onset and progression of cytokine storm. SARS-COV-2 infection and the "cytokine storm."
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
49
|
Thoreau B, Galland J, Delrue M, Neuwirth M, Stepanian A, Chauvin A, Dellal A, Nallet O, Roriz M, Devaux M, London J, Martin-Lecamp G, Froissart A, Arab N, Ferron B, Groff MH, Queyrel V, Lorut C, Regard L, Berthoux E, Bayer G, Comarmond C, Lioger B, Mekinian A, Szwebel TA, Sené T, Amador-Borrero B, Mangin O, Sellier PO, Siguret V, Mouly S, Kevorkian JP, Vodovar D, Sene D. D-Dimer Level and Neutrophils Count as Predictive and Prognostic Factors of Pulmonary Embolism in Severe Non-ICU COVID-19 Patients. Viruses 2021; 13:v13050758. [PMID: 33926038 PMCID: PMC8146364 DOI: 10.3390/v13050758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
The incidence of pulmonary embolism (PE) is high during severe Coronavirus Disease 2019 (COVID-19). We aimed to identify predictive and prognostic factors of PE in non-ICU hospitalized COVID-19 patients. In the retrospective multicenter observational CLOTVID cohort, we enrolled patients with confirmed RT-PCR COVID-19 who were hospitalized in a medicine ward and also underwent a CT pulmonary angiography for a PE suspicion. Baseline data, laboratory biomarkers, treatments, and outcomes were collected. Predictive and prognostics factors of PE were identified by using logistic multivariate and by Cox regression models, respectively. A total of 174 patients were enrolled, among whom 86 (median [IQR] age of 66 years [55–77]) had post-admission PE suspicion, with 30/86 (34.9%) PE being confirmed. PE occurrence was independently associated with the lack of long-term anticoagulation or thromboprophylaxis (OR [95%CI], 72.3 [3.6–4384.8]) D-dimers ≥ 2000 ng/mL (26.3 [4.1–537.8]) and neutrophils ≥ 7.0 G/L (5.8 [1.4–29.5]). The presence of these two biomarkers was associated with a higher risk of PE (p = 0.0002) and death or ICU transfer (HR [95%CI], 12.9 [2.5–67.8], p < 0.01). In hospitalized non-ICU severe COVID-19 patients with clinical PE suspicion, the lack of anticoagulation, D-dimers ≥ 2000 ng/mL, neutrophils ≥ 7.0 G/L, and these two biomarkers combined might be useful predictive markers of PE and prognosis, respectively.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, University of Paris, CEDEX 14, 75679 Paris, France;
- INSERM U1016, Cochin Institute, Paris, University of Paris, CNRS UMR 8104, 75014 Paris, France
- Correspondence: ; Tel.: +33-1-58-41-14-36; Fax: +33-1-58-41-14-50
| | - Joris Galland
- Department of Internal Medicine, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP) Université de Paris, 75010 Paris, France; (J.G.); (B.A.-B.); (O.M.); (S.M.); (D.S.)
| | - Maxime Delrue
- Haemostasis Laboratory, Lariboisière Hospital, AP-HP, University of Paris, 75010 Paris, France; (M.D.); (M.N.); (A.S.); (V.S.)
| | - Marie Neuwirth
- Haemostasis Laboratory, Lariboisière Hospital, AP-HP, University of Paris, 75010 Paris, France; (M.D.); (M.N.); (A.S.); (V.S.)
| | - Alain Stepanian
- Haemostasis Laboratory, Lariboisière Hospital, AP-HP, University of Paris, 75010 Paris, France; (M.D.); (M.N.); (A.S.); (V.S.)
| | - Anthony Chauvin
- Emergency Department, Lariboisière Hospital, AP-HP, University of Paris, 75010 Paris, France;
| | - Azeddine Dellal
- Department of Rheumatology and Internal Medicine, Le Raincy-Montfermeil Hospital, 93370 Montfermeil, France;
| | - Olivier Nallet
- Department of Cardiology, Le Raincy-Montfermeil Hospital, 93370 Montfermeil, France;
| | - Melanie Roriz
- Department of Internal Medicine, Hospital Center of Agen, 47923 Agen, France;
| | - Mathilde Devaux
- Department of Internal Medicine, Hospital Center of Poissy-Saint Germain, 78300 Saint Germain en Laye, France;
| | - Jonathan London
- Department of Internal Medicine, Diaconesses Croix Saint-Simon Hospital, 75012 Paris, France;
| | | | - Antoine Froissart
- Department of Internal Medicine, Intermunicipal Hospital Center of Créteil, 94000 Créteil, France; (A.F.); (N.A.)
| | - Nouara Arab
- Department of Internal Medicine, Intermunicipal Hospital Center of Créteil, 94000 Créteil, France; (A.F.); (N.A.)
| | - Bertrand Ferron
- Department of Internal Medicine, Hospital Center of Sens, 89100 Sens, France;
| | - Marie-Helene Groff
- Department of Internal Medicine, Hospital Center of Nord-Mayenne, 53100 Mayenne, France;
| | - Viviane Queyrel
- Department of Rheumatology, University Hospital of Nice, 06000 Nice, France;
| | - Christine Lorut
- Department of Pneumology, Cochin Hospital, AP-HP, Université de Paris, 75014 Paris, France; (C.L.); (L.R.)
| | - Lucile Regard
- Department of Pneumology, Cochin Hospital, AP-HP, Université de Paris, 75014 Paris, France; (C.L.); (L.R.)
| | - Emilie Berthoux
- Department of Internal Medicine, Saint Luc-Saint Joseph Hospital, 69007 Lyon, France;
| | - Guillaume Bayer
- Department of Internal Medicine, Claude Galien Hospital, 91480 Quincy sous Senart, France;
| | - Chloe Comarmond
- Department of Internal Medicine, Pitié-Salpétrière Hospital, AP-HP, Sorbonne University, 75013 Paris, France;
| | - Bertrand Lioger
- Department of Internal Medicine, Simone Veil Hospital, 41000 Blois, France;
| | - Arsène Mekinian
- Department of Internal Medicine, Saint Antoine Hospital, APHP, 75012 Paris, France;
| | - Tali-Anne Szwebel
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, University of Paris, CEDEX 14, 75679 Paris, France;
| | - Thomas Sené
- Department of Internal Medicine, Fondation Rothschild, 75019 Paris, France;
| | - Blanca Amador-Borrero
- Department of Internal Medicine, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP) Université de Paris, 75010 Paris, France; (J.G.); (B.A.-B.); (O.M.); (S.M.); (D.S.)
| | - Olivier Mangin
- Department of Internal Medicine, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP) Université de Paris, 75010 Paris, France; (J.G.); (B.A.-B.); (O.M.); (S.M.); (D.S.)
| | - Pierre O. Sellier
- Department of Infectious Disease, Lariboisière Hospital, APHP, 75010 Paris, France;
| | - Virginie Siguret
- Haemostasis Laboratory, Lariboisière Hospital, AP-HP, University of Paris, 75010 Paris, France; (M.D.); (M.N.); (A.S.); (V.S.)
| | - Stéphane Mouly
- Department of Internal Medicine, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP) Université de Paris, 75010 Paris, France; (J.G.); (B.A.-B.); (O.M.); (S.M.); (D.S.)
| | | | | | - Dominique Vodovar
- Centre Anti-Poison, Fernand Widal Hospital, AP-HP, University of Paris, 75010 Paris, France;
- INSERM UMRS 1144, 75006 Paris, France
| | - Damien Sene
- Department of Internal Medicine, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, (AP-HP) Université de Paris, 75010 Paris, France; (J.G.); (B.A.-B.); (O.M.); (S.M.); (D.S.)
| |
Collapse
|