1
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Kumari S, Biswas A, Maiti TK, Bandyopadhyay B, Banerjee A. Induction of PD-1 and CD44 in CD4 + T cells by circulatory extracellular vesicles from severe dengue patients drives endothelial damage via the NF-kB signaling pathway. J Virol 2025; 99:e0186124. [PMID: 39745465 PMCID: PMC11852895 DOI: 10.1128/jvi.01861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 02/26/2025] Open
Abstract
Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.g., immunoregulatory proteins (PD-L1, CD44). Further, we demonstrated that SD-EV induces PD-1 and CD44 expression on CD4+ T cells. SD-EV-modulated CD4+ T (SD-EV-CD4) cells released secretome delayed endothelial cell (EC) migration, arrested them in the G1 phase, and augmented the expression of PD-L1 and ICAM-1 expression on EC through the Notch signaling pathway. Blocking SD-EV and CD4+ T-cell interaction through the PD-1/PD-L1 pathway partially rescued the CD4+ T cell's effect on EC but did not alter ICAM-1 expression on EC. We observed that the ICAM-1 expression on EC and hyaluronic acid (HA) release from EC was mediated by CD44, which was elevated on SD-EV-modulated CD4+ T cells (SD-EV-CD4), indicating a permeability defect. Blocking of CD44 on SD-EV-CD4 significantly reduced ICAM-1 expression on EC. Further, depletion of specific cytokines, e.g., TNF-α and not IFN-γ from the SD-EV-CD4 secretome, reduced ICAM-1 expression, decreased transendothelial electrical resistance, and induced apoptosis on EC significantly. Treatment with NF-kB inhibitor before secretome addition to EC reduced ICAM-1 expression on EC. In conclusion, we provided evidence that SD-EV-CD4 carrying PD-1 and CD44, when interacting with EC, significantly affected endothelial cell properties and may be significant in dengue-mediated endothelial dysfunction.IMPORTANCEExtracellular vesicles (EVs) are small membrane vesicles secreted into biological fluids, including plasma from living cells, holding insights into pathological processes. Studying EVs under pathological conditions is extremely important as they play a selective role in intercellular communication and modulation of immune response under diverse pathological conditions. However, there is less clarity on how circulatory extracellular vesicles influence immune cells during dengue virus (DV) infection and impact pathogenesis. Our present study highlights the impact of severe dengue patients' plasma-derived EV (SD-EV) on CD4+ T cells and together induce endothelial barrier dysfunction. We provided evidence that SD-EV induces PD-1 and CD44 on CD4+ T cells and, when interacting with endothelial cells (EC), drives endothelial damage through direct interaction or secretome and may be significant in dengue-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Sharda Kumari
- Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| | - Ankit Biswas
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| | | | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Chee YJ, Dalan R, Cheung C. The Interplay Between Immunity, Inflammation and Endothelial Dysfunction. Int J Mol Sci 2025; 26:1708. [PMID: 40004172 PMCID: PMC11855323 DOI: 10.3390/ijms26041708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The endothelium is pivotal in multiple physiological processes, such as maintaining vascular homeostasis, metabolism, platelet function, and oxidative stress. Emerging evidence in the past decade highlighted the immunomodulatory function of endothelium, serving as a link between innate, adaptive immunity and inflammation. This review examines the regulation of the immune-inflammatory axis by the endothelium, discusses physiological immune functions, and explores pathophysiological processes leading to endothelial dysfunction in various metabolic disturbances, including hyperglycemia, obesity, hypertension, and dyslipidaemia. The final section focuses on the novel, repurposed, and emerging therapeutic targets that address the immune-inflammatory axis in endothelial dysfunction.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| |
Collapse
|
4
|
Takano EA, Jana MK, Lara Gonzalez LE, Pang JMB, Salgado R, Loi S, Fox SB. Preliminary characterisation of the spatial immune and vascular environment in triple negative basal breast carcinomas using multiplex fluorescent immunohistochemistry. PLoS One 2025; 20:e0317331. [PMID: 39792888 PMCID: PMC11723538 DOI: 10.1371/journal.pone.0317331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population. We characterised the spatial immune environment in 10 basal breast cancers showing a range of tumour-infiltrating lymphocytes using multiplex fluorescent immunohistochemistry and quantitative digital analysis of CD3+ T cells. We examined their relationship to blood vessels and their activation status as defined by VCAM-1, ICAM-1 and PD-L1. Confirmation of the relationship between tumour-infiltrating lymphocytes and endothelial activation was performed through in silico analysis on TCGA BRCA RNA-seq data (N = 808). Significantly higher CD3+ T cell densities were observed in the stromal compartment compared with the neoplastic cell compartment (P = 0.003). ICAM-1 activated blood vessels were spatially associated with higher CD3+ T cell densities only within 30 microns of blood vessels compared with more distal activated and non-activated blood vessels (P = 0.041). In silico analysis confirmed higher numbers of tumour-infiltrating lymphocytes in basal breast cancers and that higher numbers were significantly associated with endothelial cell activation molecules, co-clustering with upregulated ICAM-1 and VCAM-1 amongst others. PD-L1 was also identified in a subset of blood vessels, suggesting an additional immune regulatory mechanism in endothelial cells. Regulating the activation status of tumour-associated vascular endothelial cells may improve T cell trafficking into basal breast tumours and enhance immunotherapeutic response.
Collapse
Affiliation(s)
- Elena A. Takano
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Metta K. Jana
- Centre for Advanced Histology and Microscopy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Luis E. Lara Gonzalez
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jia-Min B. Pang
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roberto Salgado
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- GZA-ZNA-Hospitals, Antwerp, Belgium
| | - Sherene Loi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Chen Y, Lu X, Peng G, Liu S, Wang M, Hou H. A bibliometric analysis of research on PD-1/PD-L1 in urinary tract tumors. Hum Vaccin Immunother 2024; 20:2390727. [PMID: 39385743 PMCID: PMC11469446 DOI: 10.1080/21645515.2024.2390727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are key components in immune checkpoint studies across various tumors, including those in the urinary tract. The utilization of PD-1/PD-L1 inhibitors in urinary tract tumors is on the rise. This study provides a comprehensive overview of PD-1/PD-L1 research in urinary tract tumors through bibliometric analysis. A search was conducted in the Web of Science Core Collection (WoSCC) database for academic papers on PD-1/PD-L1 in urinary tract tumors published between January 1, 1999, and September 3, 2022. Tools such as VOSviewer, CiteSpace, and an online bibliometric platform, were used for an in-depth analysis covering countries, institutions, authors, journals, references, and keywords. A total of 1,711 articles on PD-1/PD-L1 in urinary tract tumors were analyzed. The United States led in article contributions, followed by China and Japan. Harvard University was the top institution in this research area. With notable conctributions from Choueiri TK, who authored 48 related articles. The Journal for Immunotherapy of Cancer was the top publisher, and Topalian SL's 2012 publication in The New England Journal of Medicine was the most cited article. Key author keywords included "immunotherapy," "PD-L1," "renal cell carcinoma," "bladder cancer," and "immune checkpoint inhibitors." Notably, research on the role of PD-1/PD-L1 in kidney and bladder cancer has garnered significant attention.
Collapse
Affiliation(s)
- Yongming Chen
- Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Genyuan Peng
- Department of Gastrointestinal Surgery, Shenshan Central Hospital of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zeng L, Liang Y, Zhou R, Yang W, Chen K, He B, Qiu Y, Liu L, Zhou D, Xiao Z, Liang H, Zhang B, Li R, Yu L, Yi M, Lin X. PD-1/PD-L1 and coronary heart disease: a mendelian randomization study. Front Cardiovasc Med 2024; 11:1424770. [PMID: 39494235 PMCID: PMC11527656 DOI: 10.3389/fcvm.2024.1424770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction It has been found that programmed cell death protein-1 (PD-1) or its ligand PD-L1 may play an important role in the onset and progression of coronary heart disease (CHD). Thus, we conducted this mendelian randomization analysis (MR) to estimate the causal relationship between PD-1/PD-L1 and 5 specific CHDs (chronic ischemic heart disease, acute myocardial infarction, angina pectoris, coronary atherosclerosis, and unstable angina pectoris), complemented by gene set enrichment analysis (GSEA) for further validation. Methods Publicly available summary-level data were attained from the UK Biobank with genetic instruments obtained from the largest available, nonoverlapping genome-wide association studies (GWAS). Our analysis involved various approaches including inverse variance-weighted meta-analysis, alternative techniques like weighted median, MR-Egger, MR-multipotency residuals and outliers detection (PRESSO), along with multiple sensitivity assessments such as MR-Egger intercept test, Cochran's Q test, and leave-one-out sensitivity analysis to evaluate and exclude any anomalies. Results Gene expression profile (GSE71226) was obtained from Gene Expression Omnibus (GEO) database for GSEA. IVW analysis showed a causal association between PD-1 and chronic ischemic heart disease (OR, 0.997; 95%CI, 0.995-0.999; P, 0.009), chronic ischemic heart disease and PD-1 (beta, -3.1; 95%CI, -6.017 to -0.183; P, 0.037), chronic ischemic heart disease and PD-L1 (beta, -3.269; 95%CI, -6.197 to -0.341; P, 0.029). No significant causal relationship was found between PD-1/PD-L1 and other 4 CHDs. The accuracy and robustness of these findings were confirmed by sensitivity tests. GSEA found that the KEGG pathway and related core genes of "PD-L1 expression and PD-1 checkpoint pathway in cancer" pathway were downregulated in CHD. Discussion This study provided evidence of a bidirectional causal relationship between PD-1 and chronic ischemic heart disease and a protective association between chronic ischemic heart disease and PD-L1.
Collapse
Affiliation(s)
- Liangjia Zeng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Yinglan Liang
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
- Department of Anesthesiology, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Ruoyun Zhou
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Wenting Yang
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
- Department of Medical Imageology, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Kexin Chen
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Baixin He
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Yuqing Qiu
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Linglong Liu
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
- Department of Anesthesiology, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Deyang Zhou
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
- Department of Anesthesiology, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Zhaolin Xiao
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Haowen Liang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Binghua Zhang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
| | - Renyu Li
- Medical Exploration and Translation Team, Cardiovascular Medicine and Cardio-Oncology Group, Guangzhou, China
- Department of Psychiatry, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Lihong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Min Yi
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaozhen Lin
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Sun D, Altalbawy FMA, Yumashev A, Hjazi A, Menon SV, Kaur M, Deorari M, Abdulwahid AS, Shakir MN, Gabal BC. Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update. Cell Biochem Biophys 2024; 82:1709-1720. [PMID: 38907940 DOI: 10.1007/s12013-024-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.
Collapse
Affiliation(s)
- Dongmei Sun
- Siping City Central People's Hospital, Siping, Jilin, 136000, P. R. China
| | - Farag M A Altalbawy
- Department of Biochemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Alzahraa S Abdulwahid
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Baneen Chasib Gabal
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
8
|
Wang L, Mu M, Guo Y, Huang J, Zhang R, Zhang M, Hu Y, Wang Y, Gao Z, Liu L, Wang W, Cheng Y, Zhu X, Liu J, Wang W, Ying S. PD-1/PD-L1 Provides Protective Role in Hypoxia-Induced Pulmonary Vascular Remodeling. Hypertension 2024; 81:1822-1836. [PMID: 38853755 DOI: 10.1161/hypertensionaha.123.22393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a T helper 17 cell response-driven disease, and PD-1 (programmed cell death 1)/PD-L1 (programmed cell death-ligand 1) inhibitor-associated pulmonary hypertension has been reported recently. This study is designed to explore whether the PD-1/PD-L1 pathway participates in HPH via regulating endothelial dysfunction and T helper 17 cell response. METHODS Lung tissue samples were obtained from eligible patients. Western blotting, immunohistochemistry, and immunofluorescence techniques were used to assess protein expression, while immunoprecipitation was utilized to detect ubiquitination. HPH models were established in C57BL/6 WT (wild-type) and PD-1-/- mice, followed by treatment with PD-L1 recombinant protein. Adeno-associated virus vector delivery was used to upregulate PD-L1 in the endothelial cells. Endothelial cell function was assessed through assays for cell angiogenesis and adhesion. RESULTS Expression of the PD-1/PD-L1 pathway was downregulated in patients with HPH and mouse models, with a notable decrease in PD-L1 expression in endothelial cells compared with the normoxia group. In comparison to WT mice, PD-1-/- mice exhibited a more severe HPH phenotype following exposure to hypoxia, However, administration of PD-L1 recombinant protein and overexpression of PD-L1 in lung endothelial cells mitigated HPH. In vitro, blockade of PD-L1 with a neutralizing antibody promoted endothelial cell angiogenesis, adhesion, and pyroptosis. Mechanistically, hypoxia downregulated PD-L1 protein expression through ubiquitination. Additionally, both in vivo and in vitro, PD-L1 inhibited T helper 17 cell response through the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in HPH. CONCLUSIONS PD-1/PD-L1 plays a role in ameliorating HPH development by inhibiting T helper 17 cell response through the PI3K/AKT/mTOR pathway and improving endothelial dysfunction, suggesting a novel therapeutic indication for PD-1/PD-L1-based immunomodulatory therapies in the treatment of HPH.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (L.W.)
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Mi Mu
- Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China (M.M.)
| | - Yu Guo
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Ruoyang Zhang
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (R.Z.)
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yanhua Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Zhenqiang Gao
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Lin Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wang Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - XinPing Zhu
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Hu Y, Lou X, Zhang K, Pan L, Bai Y, Wang L, Wang M, Yan Y, Wan J, Yao X, Duan X, Ni C, Qin Z. Tumor necrosis factor receptor 2 promotes endothelial cell-mediated suppression of CD8+ T cells through tuning glycolysis in chemoresistance of breast cancer. J Transl Med 2024; 22:672. [PMID: 39033271 PMCID: PMC11265105 DOI: 10.1186/s12967-024-05472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND T cells play a pivotal role in chemotherapy-triggered anti-tumor effects. Emerging evidence underscores the link between impaired anti-tumor immune responses and resistance to paclitaxel therapy in triple-negative breast cancer (TNBC). Tumor-related endothelial cells (ECs) have potential immunoregulatory activity. However, how ECs regulate T cell activity during TNBC chemotherapy remains poorly understood. METHODS Single-cell analysis of ECs in patients with TNBC receiving paclitaxel therapy was performed using an accessible single-cell RNA sequencing (scRNA-seq) dataset to identify key EC subtypes and their immune characteristics. An integrated analysis of a tumor-bearing mouse model, immunofluorescence, and a spatial transcriptome dataset revealed the spatial relationship between ECs, especially Tumor necrosis factor receptor (TNFR) 2+ ECs, and CD8+ T cells. RNA sequencing, CD8+ T cell proliferation assays, flow cytometry, and bioinformatic analyses were performed to explore the immunosuppressive function of TNFR2 in ECs. The downstream metabolic mechanism of TNFR2 was further investigated using RNA sequencing, cellular glycolysis assays, and western blotting. RESULTS In this study, we identified an immunoregulatory EC subtype, characterized by enhanced TNFR2 expression in non-responders. By a mouse model of TNBC, we revealed a dynamic reduction in the proportion of the CD8+ T cell-contacting tumor vessels that could co-localize spatially with CD8+ T cells during chemotherapy and an increased expression of TNFR2 by ECs. TNFR2 suppresses glycolytic activity in ECs by activating NF-κB signaling in vitro. Tuning endothelial glycolysis enhances programmed death-ligand (PD-L) 1-dependent inhibitory capacity, thereby inducing CD8+ T cell suppression. In addition, TNFR2+ ECs showed a greater spatial affinity for exhausted CD8+ T cells than for non-exhausted CD8+ T cells. TNFR2 blockade restores impaired anti-tumor immunity in vivo, leading to the loss of PD-L1 expression by ECs and enhancement of CD8+ T cell infiltration into the tumors. CONCLUSIONS These findings reveal the suppression of CD8+ T cells by ECs in chemoresistance and indicate the critical role of TNFR2 in driving the immunosuppressive capacity of ECs via tuning glycolysis. Targeting endothelial TNFR2 may serve as a potent strategy for treating TNBC with paclitaxel.
Collapse
Affiliation(s)
- Yu Hu
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohan Lou
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kaili Zhang
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Longze Pan
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Medicine, Luohe Medical College, Luohe, 462000, China
| | - Yueyue Bai
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Shangqiu Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Shangqiu, 476000, China
| | - Linlin Wang
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ming Wang
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yan Yan
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiajia Wan
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohan Yao
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xixi Duan
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Ni
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhihai Qin
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Wan Z, Zhang S, Zhong AX, Xu L, Coughlin MF, Pavlou G, Shelton SE, Nguyen HT, Hirose S, Kim S, Floryan MA, Barbie DA, Hodi FS, Kamm RD. Transmural Flow Upregulates PD-L1 Expression in Microvascular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400921. [PMID: 38696611 PMCID: PMC11234398 DOI: 10.1002/advs.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Endothelial programmed death-ligand 1 (PD-L1) expression is higher in tumors than in normal tissues. Also, tumoral vasculatures tend to be leakier than normal vessels leading to a higher trans-endothelial or transmural fluid flow. However, it is not clear whether such elevated transmural flow can control endothelial PD-L1 expression. Here, a new microfluidic device is developed to investigate the relationship between transmural flow and PD-L1 expression in microvascular networks (MVNs). After treating the MVNs with transmural flow for 24 h, the expression of PD-L1 in endothelial cells is upregulated. Additionally, CD8 T cell activation by phytohemagglutinin (PHA) is suppressed when cultured in the MVNs pre-conditioned with transmural flow. Moreover, transmural flow is able to further increase PD-L1 expression in the vessels formed in the tumor microenvironment. Finally, by utilizing blocking antibodies and knock-out assays, it is found that transmural flow-driven PD-L1 upregulation is controlled by integrin αVβ3. Overall, this study provides a new biophysical explanation for high PD-L1 expression in tumoral vasculatures.
Collapse
Affiliation(s)
- Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Amy X Zhong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liling Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Huu Tuan Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Satomi Hirose
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seunggyu Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Marie A Floryan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Parker Institute for Cancer Immunotherapy, Boston, MA, 02215, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Zhang P, Wang Y, Miao Q, Chen Y. The therapeutic potential of PD-1/PD-L1 pathway on immune-related diseases: Based on the innate and adaptive immune components. Biomed Pharmacother 2023; 167:115569. [PMID: 37769390 DOI: 10.1016/j.biopha.2023.115569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Currently, immunotherapy targeting programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) has revolutionized the treatment strategy of human cancer patients. Meanwhile, PD-1/PD-L1 pathway has also been implicated in the pathogenesis of many immune-related diseases, such as autoimmune diseases, chronic infection diseases and adverse pregnancy outcomes, by regulating components of the innate and adaptive immune systems. Given the power of the new therapy, a better understanding of the regulatory effects of PD-1/PD-L1 pathway on innate and adaptive immune responses in immune-related diseases will facilitate the discovery of novel biomarkers and therapeutic drug targets. Targeting this pathway may successfully halt or potentially even reverse these pathological processes. In this review, we discuss recent major advances in PD-1/PD-L1 axis regulating innate and adaptive immune components in immune-related diseases. We reveal that the impact of PD-1/PD-L1 axis on the immune system is complex and manifold and multi-strategies on the targeted PD-1/PD-L1 axis are taken in the treatment of immune-related diseases. Consequently, targeting PD-1/PD-L1 pathway, alone or in combination with other treatments, may represent a novel strategy for future therapeutic intervention on immune-related diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuting Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
12
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
13
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
14
|
Baggio C, Ramaschi GE, Oliviero F, Ramonda R, Sfriso P, Trevisi L, Cignarella A, Bolego C. Sex-dependent PD-L1/sPD-L1 trafficking in human endothelial cells in response to inflammatory cytokines and VEGF. Biomed Pharmacother 2023; 162:114670. [PMID: 37068331 DOI: 10.1016/j.biopha.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) expressed in non-immune cells is involved in immune-mediated tissue damage in the context of inflammatory conditions and tumor immune escape. Emerging evidence suggests soluble (s)PD-L1 as a marker of inflammation. Based on well-established sex-specific differences in immunity, we tested the novel hypotheses that (i) endothelial cell PD-L1 is modulated by inflammatory cytokines and vascular endothelial growth factor (VEGF) in a sex-specific fashion, and (ii) the endothelium is a source of sPD-L1. After exposure of human umbilical vein endothelial cells (HUVECs) to lipopolysaccharide, interleukin (IL)1β or VEGF for 24 h, total PD-L1 levels were upregulated solely in cells from female donors, while being unchanged in those from male donors. Accordingly, exposure to synovial fluids from patients with inflammatory arthritis upregulated PD-L1 levels in HUVECs from female donors only. Membrane PD-L1 expression as measured by flow cytometry was unchanged in response to inflammatory stimuli. However, exposure to 2 ng/mL IL-1β or 50 ng/mL VEGF time-dependently increased sPD-L1 release by HUVECs from female donors. Treatment with the metalloproteinase (MMP) inhibitor GM6001 (10 μM) prevented IL-1β-induced sPD-L1 release and enhanced membrane PD-L1 levels. The anti-VEGF agents bevacizumab and sunitinib reduced both VEGF-induced PD-L1 accumulation and sPD-L1 secretion. Thus, inflammatory agents and VEGF rapidly increased endothelial PD-L1 levels in a sex-specific fashion. Furthermore, the vascular endothelium may be a sPD-L1 source, whose production is MMP-dependent and modulated by anti-VEGF agents. These findings may have implications for sex-specific immunity, vascular inflammation and response to anti-angiogenic therapy.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Sfriso
- Department of Medicine, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
15
|
Wacker M, Ball A, Beer HD, Schmitz I, Borucki K, Azizzadeh F, Scherner M, Awad G, Wippermann J, Veluswamy P. Immunophenotyping of Monocyte Migration Markers and Therapeutic Effects of Selenium on IL-6 and IL-1β Cytokine Axes of Blood Mononuclear Cells in Preoperative and Postoperative Coronary Artery Disease Patients. Int J Mol Sci 2023; 24:7198. [PMID: 37108367 PMCID: PMC10139122 DOI: 10.3390/ijms24087198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Multivessel coronary artery disease (CAD) is characterized by underlying chronic vascular inflammation and occlusion in the coronary arteries, where these patients undergo coronary artery bypass grafting (CABG). Since post-cardiotomy inflammation is a well known phenomenon after CABG, attenuation of this inflammation is required to reduce perioperative morbidity and mortality. In this study, we aimed to phenotype circulating frequencies and intensities of monocyte subsets and monocyte migration markers, respectively, and to investigate the plasma level of inflammatory cytokines and chemokines between preoperative and postoperative CAD patients and later, to intervene the inflammation with sodium selenite. We found a higher amplitude of inflammation, postoperatively, in terms of CCR1high monocytes and significantly increased pro-inflammatory cytokines, IL-6, IL-8, and IL-1RA. Further, in vitro intervention with selenium displayed mitigating effects on the IL-6/STAT-3 axis of mononuclear cells derived from postoperative CAD patients. In addition, in vitro selenium intervention significantly reduced IL-1β production as well as decreased cleaved caspase-1 (p20) activity by preoperative (when stimulated) as well as postoperative CAD mononuclear cells. Though TNF-α exhibited a positive correlation with blood troponin levels in postoperative CAD patients, there was no obvious effect of selenium on the TNF-α/NF-κB axis. In conclusion, anti-inflammatory selenium might be utilized to impede systemic inflammatory cytokine axes to circumvent aggravating atherosclerosis and further damage to the autologous bypass grafts during the post-surgical period.
Collapse
Affiliation(s)
- Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Anna Ball
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland;
| | - Ingo Schmitz
- Department of Molecular Immunology, Medical Faculty of Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Faranak Azizzadeh
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - George Awad
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| | - Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Leipziger Straße 44, 39120 Magdeburg, Germany; (M.W.); (A.B.); (F.A.); (M.S.); (G.A.); (J.W.)
| |
Collapse
|
16
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
17
|
Malinowska K, Kowalski A, Merecz-Sadowska A, Paprocka-Zjawiona M, Sitarek P, Kowalczyk T, Zielińska-Bliźniewska H. PD-1 and PD-L1 Expression Levels as a Potential Biomarker of Chronic Rhinosinusitis and Head and Neck Cancers. J Clin Med 2023; 12:jcm12052033. [PMID: 36902820 PMCID: PMC10004389 DOI: 10.3390/jcm12052033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Inflammation is an etiological factor of various chronic diseases contributing to more than 50% of worldwide deaths. In this study, we focus on the immunosuppressive role of the programmed death-1 (PD-1) receptor and its ligand (PD-L1) in inflammatory-related diseases, including chronic rhinosinusitis and head and neck cancers. The study included 304 participants. Of this number, 162 patients had chronic rhinosinusitis with nasal polyps (CRSwNP), 40 patients had head and neck cancer (HNC) and there were 102 healthy subjects. The expression level of the PD-1 and PD-L1 genes in the tissues of the study groups was measured by qPCR and Western blot methods. The associations between the age of the patients and the extent of disease and genes' expression were evaluated. The study showed a significantly higher mRNA expression of PD-1 and PD-L1 in the tissues of both the CRSwNP and HNC patient groups compared to the healthy group. The severity of CRSwNP significantly correlated with the mRNA expression of PD-1 and PD-L1. Similarly, the age of the NHC patients influenced PD-L1 expression. In addition, a significantly higher level of PD-L1 protein was noticed also for both the CRSwNP and HNC patient groups. The increased expression of PD-1 and PD-L1 may be a potential biomarker of inflammatory-related diseases, including chronic rhinosinusitis and head and neck cancers.
Collapse
Affiliation(s)
- Katarzyna Malinowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland
- Correspondence:
| | - Andrzej Kowalski
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical University of Lodz, 90-549 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland
| | - Milena Paprocka-Zjawiona
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | | |
Collapse
|
18
|
Dong M, Yu T, Tse G, Lin Z, Lin C, Zhang N, Wang R, Liu T, Zhong L. PD-1/PD-L1 Blockade Accelerates the Progression of Atherosclerosis in Cancer Patients. Curr Probl Cardiol 2023; 48:101527. [PMID: 36455793 DOI: 10.1016/j.cpcardiol.2022.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
PD-1(programed death-1)/PD-L1(programed death-1 ligand) blockade represents a major breakthrough of anti-cancer therapies, however, it may come with increased risk of cardiovascular morbidity, such as myocarditis, acute coronary syndrome, arrhythmias, etc. Although the PD-1/PD-L1-blockade-related acute coronary syndrome (ACS) is rare, it can be fatal. Previous studies have implicated a role of the PD-1/PD-L1 axis in the development of atherosclerosis. This review explores a hypothesis that PD-1/PD-L1 blockade accelerates the progression of atherosclerosis and promotes plaque rupture, by synthesizing the evidence of vascular inflammation, as well as plaque progression, destabilization and rupture via T-cell activation and effector function. In order to improve the prognosis of cancer patients and decrease the cardiotoxicity of PD-1/PD-L1 blockade therapy, early recognition of PD-1/PD-L1-blockade-related ACS is important.
Collapse
Affiliation(s)
- Mei Dong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Ting Yu
- Medical College, Qingdao University, Qingdao, Shandong, P.R. China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China; Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK
| | - Zerun Lin
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Chen Lin
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Rujian Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China.
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China.
| |
Collapse
|
19
|
Jahangir M, Yazdani O, Kahrizi MS, Soltanzadeh S, Javididashtbayaz H, Mivefroshan A, Ilkhani S, Esbati R. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy. Cancer Cell Int 2022; 22:401. [PMID: 36510217 PMCID: PMC9743549 DOI: 10.1186/s12935-022-02816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Mohammadsaleh Jahangir
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Sara Soltanzadeh
- grid.411705.60000 0001 0166 0922Department of Radiation Oncology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Javididashtbayaz
- grid.411768.d0000 0004 1756 1744Baran Oncology Clinic, Medical Faculty, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Azam Mivefroshan
- grid.412763.50000 0004 0442 8645Department of Adult Nephrology, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Ilkhani
- grid.411600.2Department of Surgery and Vascular Surgery, Shohada-ye-Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Romina Esbati
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zheng W, Tang WW. Keeping the Failing Heart in Check: Can Modulating Immune Checkpoints Promote Myocardial Recovery? JACC Basic Transl Sci 2022; 7:1140-1142. [PMID: 36687277 PMCID: PMC9849457 DOI: 10.1016/j.jacbts.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weili Zheng
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - W.H. Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Yousif LI, Tanja AA, de Boer RA, Teske AJ, Meijers WC. The role of immune checkpoints in cardiovascular disease. Front Pharmacol 2022; 13:989431. [PMID: 36263134 PMCID: PMC9574006 DOI: 10.3389/fphar.2022.989431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) are monoclonal antibodies which bind to immune checkpoints (IC) and their ligands to prevent inhibition of T-cell activation by tumor cells. Currently, multiple ICI are approved targeting Cytotoxic T-lymphocyte antigen 4 (CTLA-4), Programmed Death Protein 1 (PD-1) and its ligand PD-L1, and Lymphocyte-activation gene 3 (LAG-3). This therapy has provided potent anti-tumor effects and improved prognosis for many cancer patients. However, due to systemic effects, patients can develop immune related adverse events (irAE), including possible life threatening cardiovascular irAE, like atherosclerosis, myocarditis and cardiomyopathy. Inhibition of vascular IC is associated with increased atherosclerotic burden and plaque instability. IC protect against atherosclerosis by inhibiting T-cell activity and cytokine production, promoting regulatory T-cell differentiation and inducing T-cell exhaustion. In addition, PD-L1 on endothelial cells might promote plaque stability by reducing apoptosis and increasing expression of tight junction molecules. In the heart, IC downregulate the immune response to protect against cardiac injury by reducing T-cell activity and migration. Here, inhibition of IC could induce life-threatening T-cell-mediated-myocarditis. One proposed purpose behind lymphocyte infiltration is reaction to cardiac antigens, caused by decreased self-tolerance, and thereby increased autoimmunity because of IC inhibition. In addition, there are several reports of ICI-mediated cardiomyopathy with immunoglobulin G expression on cardiomyocytes, indicating an autoimmune response. IC are mostly known due to their cardiotoxicity. However, t his review compiles current knowledge on mechanisms behind IC function in cardiovascular disease with the aim of providing an overview of possible therapeutic targets in prevention or treatment of cardiovascular irAEs.
Collapse
Affiliation(s)
- Laura I. Yousif
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, Netherlands
| | - Anniek A. Tanja
- Graduate School of Life Science, Utrecht University, Utrecht, Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Arco J. Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter C. Meijers
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Muckenhuber M, Wekerle T, Schwarz C. Costimulation blockade and Tregs in solid organ transplantation. Front Immunol 2022; 13:969633. [PMID: 36119115 PMCID: PMC9478950 DOI: 10.3389/fimmu.2022.969633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in containing allo-immune responses in the context of transplantation. Recent advances yielded the approval of the first pharmaceutical costimulation blockers (abatacept and belatacept), with more of them in the pipeline. These costimulation blockers inhibit effector cells with high clinical efficacy to control disease activity, but might inadvertently also affect Tregs. Treg homeostasis is controlled by a complex network of costimulatory and coinhibitory signals, including CD28, the main target of abatacept/belatacept, and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects the therapeutic manipulation of costimulation has on Treg function in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| | - Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| |
Collapse
|
23
|
Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal 2022; 20:44. [PMID: 35392976 PMCID: PMC8991803 DOI: 10.1186/s12964-022-00854-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The main breakthrough in tumor immunotherapy was the discovery of immune checkpoint (IC) proteins, which act as a potent suppressor of the immune system by a myriad of mechanisms. After that, scientists focused on the immune checkpoint molecules mainly. Thereby, much effort was spent to progress novel strategies for suppressing these inhibitory axes, resulting in the evolution of immune checkpoint inhibitors (ICIs). Then, ICIs have become a promising approach and shaped a paradigm shift in tumor immunotherapies. CTLA-4 plays an influential role in attenuation of the induction of naïve and memory T cells by engagement with its responding ligands like B7-1 (CD80) and B7-2 (CD86). Besides, PD-1 is predominantly implicated in adjusting T cell function in peripheral tissues through its interaction with programmed death-ligand 1 (PD-L1) and PD-L2. Given their suppressive effects on anti-tumor immunity, it has firmly been documented that ICIs based therapies can be practical and rational therapeutic approaches to treat cancer patients. Nonetheless, tumor inherent or acquired resistance to ICI and some treatment-related toxicities restrict their application in the clinic. The current review will deliver a comprehensive overview of the ICI application to treat human tumors alone or in combination with other modalities to support more desired outcomes and lower toxicities in cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rebar N. Mohammed
- Medical Laboratory Analysis Department, Cihan University Sulaimaniya, Sulaymaniyah, 46001 Kurdistan Region Iraq
- College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ahmed Raji
- College of Medicine, University of Babylon, Department of Pathology, Babylon, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Mohammed Nader Shalaby
- Associate Professor of Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Siavash Kamrava
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin D. Sohrabi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Noroozi-Aghideh
- Department of Hematology, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
24
|
Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. Int J Mol Sci 2022; 23:ijms23042313. [PMID: 35216427 PMCID: PMC8877013 DOI: 10.3390/ijms23042313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The vasculature plays a major role in regulating the tumor immune cell response although the underlying mechanisms explaining such effects remain poorly understood. This review discusses current knowledge on known vascular functions with a viewpoint on how they may yield distinct immune responses. The vasculature might directly influence selective immune cell infiltration into tumors by its cell surface expression of cell adhesion molecules, expression of cytokines, cell junction properties, focal adhesions, cytoskeleton and functional capacity. This will alter the tumor microenvironment and unleash a plethora of responses that will influence the tumor’s immune status. Despite our current knowledge of numerous mechanisms operating, the field is underexplored in that few functions providing a high degree of specificity have yet been provided in relation to the enormous divergence of responses apparent in human cancers. Further exploration of this field is much warranted.
Collapse
|
25
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
26
|
Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy. Comput Struct Biotechnol J 2022; 20:5150-5161. [PMID: 36187919 PMCID: PMC9508382 DOI: 10.1016/j.csbj.2022.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
|
27
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:5815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| |
Collapse
|
28
|
Calabretta R, Staber PB, Kornauth C, Lu X, Binder P, Pichler V, Mitterhauser M, Haug A, Li X, Hacker M. Immune Checkpoint Inhibitor Therapy Induces Inflammatory Activity in the Large Arteries of Lymphoma Patients under 50 Years of Age. BIOLOGY 2021; 10:1206. [PMID: 34827199 PMCID: PMC8615286 DOI: 10.3390/biology10111206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Background: Immune checkpoint inhibitors (ICI) have transformed the management of various cancers. Serious and potentially fatal cardiovascular toxicity, as well as a progression of atherosclerosis, have been described, mainly in elderly and comorbid patients. Methods: We investigated 117 arterial segments of 12 young (under 50 years of age), otherwise healthy lymphoma patients pre/post-ICI treatment using 2-[18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Maximum FDG standardized uptake values (SUVmax) and target-to-background ratios (TBRs) were calculated along arterial segments. Additionally, metabolic activities (SUVmax) of the bone marrow, spleen, and liver were analyzed. The levels of high-sensitivity C-reactive protein (hsCRP) were assessed. Results: ICI therapy induced arterial inflammatory activity, detected by increased TBR in arterial segments without pre-existing inflammation (TBRneg_pre = 1.20 ± 0.22 vs. TBRneg_post = 1.71 ± 0.45, p < 0.001), whereas already-inflamed lesions remained unchanged. Dormant calcified segments (Hounsfield Units-HU ≥ 130) showed a significant increase in TBR values after ICI treatment (TBRcalc_pre = 1.36 ± 0.38 vs. TBRcalc_post = 1.76 ± 0.42, p < 0.001). FDG uptake measured in other organs and hsCRP levels remained unchanged after ICI therapy. Conclusions: Although the effects of ICI therapy on arterial inflammation are still incompletely understood, cancer immunotherapy might be a critical moderator of atherosclerosis with a subsequently increased risk of future cerebro- and/or cardiovascular events in young oncological patients.
Collapse
Affiliation(s)
- Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Philipp B. Staber
- Division of Hematology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (P.B.S.); (C.K.)
| | - Christoph Kornauth
- Division of Hematology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (P.B.S.); (C.K.)
| | - Xia Lu
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Patrick Binder
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (R.C.); (X.L.); (P.B.); (V.P.); (M.M.); (A.H.); (X.L.)
| |
Collapse
|
29
|
Thromboembolic events associated with immune checkpoint inhibitors: A real-world study of data from the food and drug administration adverse event reporting system (FAERS) database. Int Immunopharmacol 2021; 98:107818. [PMID: 34130149 DOI: 10.1016/j.intimp.2021.107818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although there have been a few studies reporting thromboembolic events (TEEs) in patients treated with immune checkpoint inhibitors (ICIs), the detailed profile of the TEEs and the prothrombotic effects of ICIs remain mostly unknown. METHODS Data from January 2004 to December 2019 in the FAERS database were retrieved. We investigated the clinical characteristics of the TEEs and conducted disproportionality analysis by using reporting odds ratios (ROR) to compare ICIs with the full database and other anti-cancer agents. RESULTS We identified 1855 reports of TEEs associated with ICIs. Affected patients tended to be male (59.68%) and older than 65 (47.12%). The case-fatality rate of the reported TEEs was high (38%). The median time to onset (TTO) of all cases was 42 (interquartile range [IQR] 15-96) days and the median TTO of fatal cases (31 [IQR 13-73] days) was significantly shorter than non-fatal cases (50 [IQR 20-108] days, p = 0.000002). ICIs showed increased risks of VTE (ROR 2.81, 95% CI 2.69-2.95) and ATE (ROR 1.44, 95% CI 1.37-1.52) compared with the full database. Compared with protein kinase inhibitors, ICIs showed an increased risk of VTE (ROR 1.23, 95% CI 1.17-1.29), but only anti-PD-L1 showed an increased risk of cerebral ATE (ROR 1.38, 95% CI 1.08-1.76). Compared with chemotherapy, ICIs showed an increased risk of PE (ROR 1.14, 95% CI 1.07-1.21). CONCLUSIONS Our study suggested ICIs tend to increase risks of VTE and ATE. The poor clinical outcome and early onset of these events should attract clinical attention.
Collapse
|
30
|
Liang Y, Li L, Chen Y, Xiao J, Wei D. PD-1/PD-L1 immune checkpoints: Tumor vs atherosclerotic progression. Clin Chim Acta 2021; 519:70-75. [PMID: 33872608 DOI: 10.1016/j.cca.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
Immunotherapy has become one of the most attraction cancer therapy strategies. The PD-1/PD-L1 pathway plays key roles in immune responses and autoimmunity by regulating T cell activity. Overactivation of this pathway dampens T cell and immune function, which allows tumor cells immune escape. Antibody or inhibitors of PD-1/PD-L1 immune targets have been implicated in clinic anti-cancer therapy and gain great clinic outcoming for their high efficiency. However, recent studies showed that the PD-1/PD-L1 immunotherapy in some tumor patients was found to accelerate T cell-driven inflammatory and the progression of atherosclerotic lesions. This article reviews the research progression of PD-1/PD-L1 in tumors and atherosclerosis, and the possible mechanisms of anti-PD-1/PD-L1 immunotherapy increasing the risk of atherosclerotic lesions.
Collapse
Affiliation(s)
- Yamin Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lu Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yanmei Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jinyan Xiao
- YueYang Maternal-Child Medicine Health Hospital Hunan Province Innovative Training Base for Medical Postgraduates, University of China South China and Yueyang Women & Children's Medical Center, Yueyang, Hunan 414000, China.
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
31
|
Zhang C, Yang K, Yang Y, Zhao G. PD-L1 expression on peripheral T-cells and association with coronary heart disease patients: A protocol for systematic reviews and meta-analysis. Medicine (Baltimore) 2021; 100:e25157. [PMID: 33761687 PMCID: PMC9282099 DOI: 10.1097/md.0000000000025157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND As immune checkpoint pathways, programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) can be exploited by tumor cells to evade immuno-surveillance. Inflammation and immune processes play decisive roles in the occurrence and development of coronary heart disease (CHD). The low expression level of PD-1/ PD-L1 or anti-PD-1/PD-L1 therapy can accelerate the immune processes in CHD and aggravates disease based on numerous studies. However, the expression of PD-L1 and CHD still remains controversial to date. We conducted this meta-analysis to detect the value of PD-L1 expression on peripheral T-cells in CHD. METHODS We will search PubMed, Embase, Web of Science, Google Scholar, Chinese National Knowledge Infrastructure, Chinese VIP Information, Wanfang Database, and Chinese Biomedical Literature Database for related published studies before February 2021. Two review authors will search and assess relevant studies independently. Case control studies and cohort studies will be included. The Revman 5.3 software was applied to carry out the meta-analysis for the included literature. RESULTS The findings of this systematic review will be disseminated in a peer-reviewed publication and/or presented at relevant conferences. CONCLUSION This study will provide a new theoretical basis for the immunological prevention and treatment of CHD. TRIAL REGISTRATION NUMBER DOI 10.17605/OSF.IO/X3R52. ETHICS AND DISSEMINATION Formal ethical approval is not required, as the data are not individualized.
Collapse
Affiliation(s)
- Chunwei Zhang
- Department of cardiovascular, Clinical Medical College &Afiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province
| | - Ke Yang
- Department of cardiovascular, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yang
- Department of cardiovascular, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Zhao
- Department of cardiovascular, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Wang C, Nan X, Pei S, Zhao Y, Wang X, Ma S, Ma G. Salidroside and isorhamnetin attenuate urotensin II-induced inflammatory response in vivo and in vitro: Involvement in regulating the RhoA/ROCK II pathway. Oncol Lett 2021; 21:292. [PMID: 33732368 PMCID: PMC7905674 DOI: 10.3892/ol.2021.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Urotensin II (UII), a vital vasoconstrictor peptide, causes an inflammatory response in the pathogenesis of atherosclerosis. Previous studies have reported that the Ras homolog gene family, member A (RhoA)/Rho kinases (ROCK) pathway modulates the inflammatory response of the atherosclerotic process. However, to the best of our knowledge, whether the RhoA/ROCK pathway mediates the inflammatory effect of UII has not been previously elucidated. Salidroside and isorhamnetin are two early developed antioxidant Tibetan drugs, both displaying cardioprotective effects against atherosclerosis. Therefore, the aim of the present study was to investigate the protective effects of salidroside, isorhamnetin or combination of these two drugs on the UII-induced inflammatory response in vivo (rats) or in vitro [primary vascular smooth muscle cells (VSMCs)], as well as to examine the role of the RhoA/ROCK pathway in these processes. The levels of inflammatory markers were measured via ELISA. The mRNA and protein expression levels of RhoA and ROCK II were detected using reverse transcription-quantitative PCR assay and western blot analysis. It was demonstrated that salidroside, isorhamnetin and both in combination decreased the levels of the serum pro-inflammatory cytokines TNF-α and IL-1β, as well as increased the levels of the anti-inflammatory cytokine IL-10 and macrophage migration inhibitory factor in rats with subacute infusion of UII and in the culture supernatant from primary VSMCs-exposed to UII. Moreover, salidroside, isorhamnetin and both in combination attenuated the mRNA and protein expression levels of RhoA and ROCK II in vivo and in vitro, at concentrations corresponding to human therapeutic blood plasma concentrations. Thus, these drugs could inhibit the RhoA/ROCK II pathway under UII conditions. The combination of salidroside and isorhamnetin did not display a stronger inhibitory effect on the inflammatory response and the RhoA/ROCK II pathway compared with salidroside and isorhamnetin in isolation. Collectively, the results indicated that salidroside, isorhamnetin and both in combination inhibited the RhoA/ROCK II pathway, which then attenuated the inflammatory response under UII-induced conditions, resulting in cardioprotection in atherosclerosis.
Collapse
Affiliation(s)
- Chenjing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaodong Nan
- Intensive Care Unit, Gansu Provincial Corps Hospital of Chinese People's Armed Police Force, Lanzhou, Gansu 730050, P.R. China
| | - Shuyan Pei
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Yu Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaokun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Shijie Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Guoyan Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|