1
|
Lozano LP, Jensen R, Jennisch M, Pandala NG, Jamshidi F, Boldt HC, Tucker BA, Binkley EM. Genetics and current research models of Mendelian tumor predisposition syndromes with ocular involvement. Prog Retin Eye Res 2025; 106:101359. [PMID: 40274012 DOI: 10.1016/j.preteyeres.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
In this review, we aim to provide a survey of hereditable tumor predisposition syndromes with a Mendelian inheritance pattern and ocular involvement. We focus our discussion on von Hippel-Lindau disease, neurofibromatosis type 1, NF2-related schwannomatosis, tuberous sclerosis complex, retinoblastoma, and the BAP1 tumor predisposition syndrome. For each of the six diseases, we discuss the clinical presentation and the molecular pathophysiology. We emphasize the genetics, current research models, and therapeutic developments. After reading each disease section, readers should possess an understanding of the clinical presentation, genetic causes and inheritance patterns, and current state of research in disease modeling and treatment.
Collapse
Affiliation(s)
- Lola P Lozano
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Renato Jensen
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Madeleine Jennisch
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Narendra G Pandala
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Farzad Jamshidi
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, PA, 15213, USA.
| | - H Culver Boldt
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Budd A Tucker
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Elaine M Binkley
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
3
|
Rubio AD, Hamilton L, Bausch M, Jin M, Papetti A, Jiang P, Yelamanchili SV. A Comprehensive Review on Utilizing Human Brain Organoids to Study Neuroinflammation in Neurological Disorders. J Neuroimmune Pharmacol 2025; 20:23. [PMID: 39987404 PMCID: PMC11846768 DOI: 10.1007/s11481-025-10181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Most current information about neurological disorders and diseases is derived from direct patient and animal studies. However, patient studies in many cases do not allow replication of the early stages of the disease and, therefore, offer limited opportunities to understand disease progression. On the other hand, although the use of animal models allows us to study the mechanisms of the disease, they present significant limitations in developing drugs for humans. Recently, 3D-cultured in vitro models derived from human pluripotent stem cells have surfaced as a promising system. They offer the potential to connect findings from patient studies with those from animal models. In this comprehensive review, we discuss their application in modeling neurodevelopmental conditions such as Down Syndrome or Autism, neurodegenerative diseases such as Alzheimer's or Parkinson's, and viral diseases like Zika virus or HIV. Furthermore, we will discuss the different models used to study prenatal exposure to drugs of abuse, as well as the limitations and challenges that must be met to transform the landscape of research on human brain disorders.
Collapse
Affiliation(s)
- Adrian Domene Rubio
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Luke Hamilton
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Mark Bausch
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ava Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Green AL, Cowell EC, Carr LM, Hemsley K, Sherratt E, Collins-Praino LE, Carr JM. Application of diceCT to Study the Development of the Zika Virus-Infected Mouse Brain. Viruses 2024; 16:1330. [PMID: 39205304 PMCID: PMC11358961 DOI: 10.3390/v16081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Zika virus (ZIKV) impacts the developing brain. Here, a technique was applied to define, in 3D, developmental changes in the brains of ZIKV-infected mice. Postnatal day 1 mice were uninfected or ZIKV-infected, then analysed by iodine staining and micro-CT scanning (diffusible iodine contrast-enhanced micro-CT; diceCT) at 3-, 6-, and 10-days post-infection (dpi). Multiple brain regions were visualised using diceCT: the olfactory bulb, cerebrum, hippocampus, midbrain, interbrain, and cerebellum, along with the lens and retina of the eye. Brain regions were computationally segmented and quantitated, with increased brain volumes and developmental time in uninfected mice. Conversely, in ZIKV-infected mice, no quantitative differences were seen at 3 or 6 dpi when there were no clinical signs, but qualitatively, diverse visual defects were identified at 6-10 dpi. By 10 dpi, ZIKV-infected mice had significantly lower body weight and reduced volume of brain regions compared to 10 dpi-uninfected or 6 dpi ZIKV-infected mice. Nissl and immunofluorescent Iba1 staining on post-diceCT tissue were successful, but RNA extraction was not. Thus, diceCT shows utility for detecting both 3D qualitative and quantitative changes in the developing brain of ZIKV-infected mice, with the benefit, post-diceCT, of retaining the ability to apply traditional histology and immunofluorescent analysis to tissue.
Collapse
Affiliation(s)
- Amy L. Green
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Evangeline C. Cowell
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Laura M. Carr
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (L.M.C.); (L.E.C.-P.)
| | - Kim Hemsley
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey E. Collins-Praino
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (L.M.C.); (L.E.C.-P.)
| | - Jillian M. Carr
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| |
Collapse
|
6
|
Kim SH, Choi HN, Jo MG, Lee B, Kim YJ, Seong H, Song C, Yoo HS, Lee JH, Seong D, Park HJ, Roh IS, Yang J, Lee MY, Kim HJ, Park SW, Kim M, Kim SJ, Kim M, Kim HJ, Hong KW, Yun SP. Activation of neurotoxic A1-reactive astrocytes by SFTS virus infection accelerates fatal brain damage in IFNAR1 -/- mice. J Med Virol 2024; 96:e29854. [PMID: 39135475 DOI: 10.1002/jmv.29854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) has a high mortality rate compared to other infectious diseases. SFTS is particularly associated with a high risk of mortality in immunocompromised individuals, while most patients who die of SFTS exhibit symptoms of severe encephalitis before death. However, the region of brain damage and mechanisms by which the SFTS virus (SFTSV) causes encephalitis remains unknown. Here, we revealed that SFTSV infects the brainstem and spinal cord, which are regions of the brain associated with respiratory function, and motor nerves in IFNAR1-/- mice. Further, we show that A1-reactive astrocytes are activated, causing nerve cell death, in infected mice. Primary astrocytes of SFTSV-infected IFNAR1-/- mice also induced neuronal cell death through the activation of A1-reactive astrocytes. Herein, we showed that SFTSV induces fatal neuroinflammation in the brain regions important for respiratory function and motor nerve, which may underlie mortality in SFTS patients. This study provides new insights for the treatment of SFTS, for which there is currently no therapeutic approach.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyemin Seong
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chieun Song
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han Sol Yoo
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Hyun Lee
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Daseul Seong
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Jin Park
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - In-Soon Roh
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jinsung Yang
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Biochemistry, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Young Lee
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Rheumatology Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyun-Jeong Kim
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Laboratory Animal Research Center, Central Scientific Instrumentation Facility, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyung-Wook Hong
- Division of Infectious Diseases, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18 kDa. J Neurochem 2024; 168:1374-1401. [PMID: 38482552 DOI: 10.1111/jnc.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/26/2024]
Abstract
The mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. Relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed extracellular metabolic flux analyses. We found that TSPO deficiency reduced basal cellular respiration and attenuated the bioenergetic response to glucopenia. Fatty acid oxidation was increased, and lactate production was reduced in TSPO-/- MPAs and U373 cells. Co-immunoprecipitation studies revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a in U373 and MPAs, presenting a mechanism wherein TSPO may regulate FAO in these cells. Compared to TSPO+/+ cells, in TSPO-/- MPAs we observed attenuated tumor necrosis factor release following 3 h lipopolysaccharide (LPS) stimulation, which was enhanced at 24 h post-LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility, TSPO deficiency does not appear to modulate the metabolic response of MPAs to inflammation, at least in response to the model used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate L J Ellacott
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
9
|
Vardhan S, Jordan T, Sakiyama-Elbert S. Stem cell engineering approaches for investigating glial cues in central nervous system disorders. Curr Opin Biotechnol 2024; 87:103131. [PMID: 38599012 PMCID: PMC11351366 DOI: 10.1016/j.copbio.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Glial cells are important in maintaining homeostasis for neurons in the central nervous system (CNS). During CNS disease or after injury, glia react to altered microenvironments and often acquire altered functions that contribute to disease pathology. A major focus for research is utilizing stem cell (SC)-derived glia as a potential renewable source for cell replacement to restore function, including neuronal support, and as a model for disease states to identify therapeutic targets. In this review, we focus on SC differentiation protocols for deriving three types of glial cells, astrocytes, oligodendrocytes, and microglia. These SC-derived glia can be used to identify critical cues that contribute to CNS disease progression and aid in investigation of therapeutic targets.
Collapse
Affiliation(s)
- Sangamithra Vardhan
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Tyler Jordan
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Shelly Sakiyama-Elbert
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
11
|
St. Pierre M, Duck SA, Nazareth M, Fung C, Jantzie LL, Chavez-Valdez R. Unbiased Quantitative Single-Cell Morphometric Analysis to Identify Microglia Reactivity in Developmental Brain Injury. Life (Basel) 2023; 13:899. [PMID: 37109428 PMCID: PMC10147015 DOI: 10.3390/life13040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Microglia morphological studies have been limited to the process of reviewing the most common characteristics of a group of cells to conclude the likelihood of a "pathological" milieu. We have developed an Imaris-software-based analytical pipeline to address selection and operator biases, enabling use of highly reproducible machine-learning algorithms to quantify at single-cell resolution differences between groups. We hypothesized that this analytical pipeline improved our ability to detect subtle yet important differences between groups. Thus, we studied the temporal changes in Iba1+ microglia-like cell (MCL) populations in the CA1 between P10-P11 and P18-P19 in response to intrauterine growth restriction (IUGR) at E12.5 in mice, chorioamnionitis (chorio) at E18 in rats and neonatal hypoxia-ischemia (HI) at P10 in mice. Sholl and convex hull analyses differentiate stages of maturation of Iba1+ MLCs. At P10-P11, IUGR or HI MLCs were more prominently 'ameboid', while chorio MLCs were hyper-ramified compared to sham. At P18-P19, HI MLCs remained persistently 'ameboid' to 'transitional'. Thus, we conclude that this unbiased analytical pipeline, which can be adjusted to other brain cells (i.e., astrocytes), improves sensitivity to detect previously elusive morphological changes known to promote specific inflammatory milieu and lead to worse outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Mark St. Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD 21205, USA
| | - Michelle Nazareth
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD 21205, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT 84132, USA
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Liu G, Li T, Yang A, Zhang X, Qi S, Feng W. Knowledge domains and emerging trends of microglia research from 2002 to 2021: A bibliometric analysis and visualization study. Front Aging Neurosci 2023; 14:1057214. [PMID: 36688156 PMCID: PMC9849393 DOI: 10.3389/fnagi.2022.1057214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Microglia have been identified for a century. In this period, their ontogeny and functions have come to light thanks to the tireless efforts of scientists. However, numerous documents are being produced, making it challenging for scholars, especially those new to the field, to understand them thoroughly. Therefore, having a reliable method for quickly grasping a field is crucial. Methods We searched and downloaded articles from the Web of Science Core Collection with "microglia" or "microglial" in the title from 2002 to 2021. Eventually, 12,813 articles were located and, using CiteSpace and VOSviewer, the fundamental data, knowledge domains, hot spots, and emerging trends, as well as the influential literature in the field of microglia research, were analyzed. Results Following 2011, microglia publications grew significantly. The two prominent journals are Glia and J Neuroinflamm. The United States and Germany dominated the microglia study. The primary research institutions are Harvard Univ and Univ Freiburg, and the leading authors are Prinz Marco and Kettenmann Helmut. The knowledge domains of microglia include eight directions, namely neuroinflammation, lipopolysaccharide, aging, neuropathic pain, macrophages, Alzheimer's disease, retina, and apoptosis. Microglial phenotype is the focus of research; while RNA-seq, exosome, and glycolysis are emerging topics, a microglial-specific marker is still a hard stone. We also identified 19 influential articles that contributed to the study of microglial origin (Mildner A 2007; Ginhoux F 2010), identity (Butovsky O 2014), homeostasis (Cardona AE 2006; Elmore MRP 2014); microglial function such as surveillance (Nimmerjahn A 2005), movement (Davalos D 2005; Haynes SE 2006), phagocytosis (Simard AR 2006), and synapse pruning (Wake H 2009; Paolicelli RC 2011; Schafer DP 2012; Parkhurst CN 2013); and microglial state/phenotype associated with disease (Keren-Shaul H 2017), as well as 5 review articles represented by Kettenmann H 2011. Conclusion Using bibliometrics, we have investigated the fundamental data, knowledge structure, and dynamic evolution of microglia research over the previous 20 years. We hope this study can provide some inspiration and a reference for researchers studying microglia in neuroscience.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,China International Neuroscience Institute (China-INI), Beijing, China
| | - Anming Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Songtao Qi, ✉
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,Wenfeng Feng, ✉
| |
Collapse
|
13
|
Lehoux M, Connolly K, Assetta B, Huang YWA. The Generation and Functional Characterization of Human Microglia-Like Cells Derived from iPS and Embryonic Stem Cells. Methods Mol Biol 2023; 2683:69-78. [PMID: 37300767 DOI: 10.1007/978-1-0716-3287-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The following protocol describes the generation of microglia cells from human-induced pluripotent stem cells (hiPSCs) using commercially available kits by StemCell Technologies. This protocol consists of three major steps: (1) Differentiation of hematopoietic precursor cells, (2) Microglia differentiation, and (3) Microglia maturation. Assays are described to characterize hematopoietic precursor cells and mature microglia.
Collapse
Affiliation(s)
- Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute of Translational Science, Brown University, Providence, RI, USA
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute of Translational Science, Brown University, Providence, RI, USA
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute of Translational Science, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute of Translational Science, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
15
|
Comparison of Microglial Morphology and Function in Primary Cerebellar Cell Cultures on Collagen and Collagen-Mimetic Hydrogels. Biomedicines 2022; 10:biomedicines10051023. [PMID: 35625762 PMCID: PMC9139096 DOI: 10.3390/biomedicines10051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/07/2022] Open
Abstract
Neuronal-glial cell cultures are usually grown attached to or encapsulated in an adhesive environment as evenly distributed networks lacking tissue-like cell density, organization and morphology. In such cultures, microglia have activated amoeboid morphology and do not display extended and intensively branched processes characteristic of the ramified tissue microglia. We have recently described self-assembling functional cerebellar organoids promoted by hydrogels containing collagen-like peptides (CLPs) conjugated to a polyethylene glycol (PEG) core. Spontaneous neuronal activity was accompanied by changes in the microglial morphology and behavior, suggesting the cells might play an essential role in forming the functional neuronal networks in response to the peptide signalling. The present study examines microglial cell morphology and function in cerebellar cell organoid cultures on CLP-PEG hydrogels and compares them to the cultures on crosslinked collagen hydrogels of similar elastomechanical properties. Material characterization suggested more expressed fibril orientation and denser packaging in crosslinked collagen than CLP-PEG. However, CLP-PEG promoted a significantly higher microglial motility (determined by time-lapse imaging) accompanied by highly diverse morphology including the ramified (brightfield and confocal microscopy), more active Ca2+ signalling (intracellular Ca2+ fluorescence recordings), and moderate inflammatory cytokine level (ELISA). On the contrary, on the collagen hydrogels, microglial cells were significantly less active and mostly round-shaped. In addition, the latter hydrogels did not support the neuron synaptic activity. Our findings indicate that the synthetic CLP-PEG hydrogels ensure more tissue-like microglial morphology, motility, and function than the crosslinked collagen substrates.
Collapse
|
16
|
Kim J, Erice C, Rohlwink UK, Tucker EW. Infections in the Developing Brain: The Role of the Neuro-Immune Axis. Front Neurol 2022; 13:805786. [PMID: 35250814 PMCID: PMC8891478 DOI: 10.3389/fneur.2022.805786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade. This immune response is initiated by the resident brain cells, microglia and astrocytes, which are not only integral to fighting the infection but also have important roles during normal brain development. Additionally, cytokines and other immune mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells not only play a role in BBB permeability and peripheral cell recruitment, but also in brain maturation. Consequently, these immune modulators and the activation of microglia and astrocytes during infection adversely impact normal neurodevelopment. Perturbations to normal brain development manifest as neurodevelopmental and neurocognitive impairments common among children who survive CNS infections and are often permanent. In part 2 of the review series, we broadly summarize the unique challenges CNS infections create in a developing brain and explore the interaction of regulators of neurodevelopment and CNS immune response as part of the neuro-immune axis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Faculty of Health Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front Neurosci 2022; 16:824888. [PMID: 35250459 PMCID: PMC8888691 DOI: 10.3389/fnins.2022.824888] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia and astrocytes play essential roles in the central nervous system contributing to many functions including homeostasis, immune response, blood-brain barrier maintenance and synaptic support. Evidence has emerged from experimental models of glial communication that microglia and astrocytes influence and coordinate each other and their effects on the brain environment. However, due to the difference in glial cells between humans and rodents, it is essential to confirm the relevance of these findings in human brains. Here, we aim to review the current knowledge on microglia-astrocyte crosstalk in humans, exploring novel methodological techniques used in health and disease conditions. This will include an in-depth look at cell culture and iPSCs, post-mortem studies, imaging and fluid biomarkers, genetics and transcriptomic data. In this review, we will discuss the advantages and limitations of these methods, highlighting the understanding these methods have brought the field on these cells communicative abilities, and the knowledge gaps that remain.
Collapse
Affiliation(s)
| | | | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
18
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
19
|
Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. Int J Mol Sci 2021; 22:ijms221910254. [PMID: 34638595 PMCID: PMC8508580 DOI: 10.3390/ijms221910254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.
Collapse
|
20
|
Mormino A, Bernardini G, Cocozza G, Corbi N, Passananti C, Santoni A, Limatola C, Garofalo S. Enriched Environment Cues Suggest a New Strategy to Counteract Glioma: Engineered rAAV2-IL-15 Microglia Modulate the Tumor Microenvironment. Front Immunol 2021; 12:730128. [PMID: 34552593 PMCID: PMC8450436 DOI: 10.3389/fimmu.2021.730128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Several types of cancer grow differently depending on the environmental stimuli they receive. In glioma, exposure to an enriched environment (EE) increases the overall survival rate of tumor-bearing mice, acting on the cells that participate to define the tumor microenvironment. In particular, environmental cues increase the microglial production of interleukin (IL)-15 which promotes a pro-inflammatory (antitumor) phenotype of microglia and the cytotoxic activity of natural killer (NK) cells, counteracting glioma growth, thus representing a virtuous mechanism of interaction between NK cells and microglia. To mimic the effect of EE on glioma, we investigated the potential of creating engineered microglia as the source of IL-15 in glioma. We demonstrated that microglia modified with recombinant adeno-associated virus serotype 2 (rAAV2) carrying IL-15 (rAAV2-IL-15), to force the production of IL-15, are able to increase the NK cells viability in coculture. Furthermore, the intranasal delivery of rAAV2-IL-15 microglia triggered the interplay with NK cells in vivo, enhancing NK cell recruitment and pro-inflammatory microglial phenotype in tumor mass of glioma-bearing mice, and ultimately counteracted tumor growth. This approach has a high potential for clinical translatability, highlighting the therapeutic efficacy of forced IL-15 production in microglia: the delivery of engineered rAAV2-IL-15 microglia to boost the immune response paves the way to design a new perspective therapy for glioma patients.
Collapse
Affiliation(s)
- Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, Rome, Italy
| | - Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Nicoletta Corbi
- Department of Molecular Medicine, CNR-Institute of Molecular Biology and Pathology, Sapienza University, Rome, Italy
| | - Claudio Passananti
- Department of Molecular Medicine, CNR-Institute of Molecular Biology and Pathology, Sapienza University, Rome, Italy
| | - Angela Santoni
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
21
|
Dib S, Pahnke J, Gosselet F. Role of ABCA7 in Human Health and in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094603. [PMID: 33925691 PMCID: PMC8124837 DOI: 10.3390/ijms22094603] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies, including genome wide association studies (GWAS), have strongly suggested a central role for the ATP-binding cassette transporter subfamily A member 7 (ABCA7) in Alzheimer’s disease (AD). This ABC transporter is now considered as an important genetic determinant for late onset Alzheimer disease (LOAD) by regulating several molecular processes such as cholesterol metabolism and amyloid processing and clearance. In this review we shed light on these new functions and their cross-talk, explaining its implication in brain functioning, and therefore in AD onset and development.
Collapse
Affiliation(s)
- Shiraz Dib
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway;
- LIED, University of Lübeck, Ratzenburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Fabien Gosselet
- UR2465, LBHE-Blood–Brain Barrier Laboratory, University Artois, 62300 Lens, France;
- Correspondence: ; Tel.: +33-(0)3-21791733
| |
Collapse
|