1
|
Łętocha A, Miastkowska M, Sikora E, Michalczyk A, Liszka-Skoczylas M, Witczak M. Hybrid Systems of Oleogels and Probiotic-Loaded Alginate Carriers for Potential Application in Cosmetics. Molecules 2024; 29:5984. [PMID: 39770073 PMCID: PMC11678532 DOI: 10.3390/molecules29245984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use. As a result of the research, two oleogels were developed, into which freeze-dried alginate carriers with a probiotic, L. casei, were incorporated. Two techniques were used to produce probiotic-loaded capsules-extrusion and emulsification. Alginate beads obtained by the extrusion process have a size of approximately 1.2 mm, while much smaller microspheres were obtained using the emulsification technique, ranging in size from 8 to 17 µm. The trehalose was added as a cryoprotectant to improve the survival rate of probiotics in freeze-dried alginate carriers. The encapsulation efficiency for both of the methods applied, the emulsification and the extrusion technique, was high, with levels of 90% and 87%, respectively. The obtained results showed that the production method of probiotic-loaded microspheres influence the bacterial viability. The better strain survival in the developed systems was achieved in the case of microspheres produced by the emulsification (reduction in bacterial cell viability in the range of 1.98-3.97 log in silica oleogel and 2.15-3.81 log in sucragel oleogel after 7 and 30 days of storage) than by the extrusion technique (after a week and a month of oleogel storage, the decrease in cell viability was 2.52-4.52 log in silica oleogel and 2.48-4.44 log in sucragel oleogel).
Collapse
Affiliation(s)
- Anna Łętocha
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 31-155 Cracow, Poland; (M.M.); (E.S.)
| | - Małgorzata Miastkowska
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 31-155 Cracow, Poland; (M.M.); (E.S.)
| | - Elżbieta Sikora
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, 31-155 Cracow, Poland; (M.M.); (E.S.)
| | - Alicja Michalczyk
- Lukasiewicz—Research Network-Institute of Industrial Organic Chemistry, 03-236 Warsaw, Poland;
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland; (M.L.-S.); (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland; (M.L.-S.); (M.W.)
| |
Collapse
|
2
|
Pavlačková J, Egner P, Mokrejš P, Janalíková M. Formulating Sustainable Emulsions: Mandelic Acid and Essential Oils as Natural Preservatives. Molecules 2024; 29:4510. [PMID: 39339504 PMCID: PMC11435087 DOI: 10.3390/molecules29184510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Emulsion products with natural antimicrobials are becoming increasingly popular for topical application. Mandelic Acid is interesting in cosmetics due to its potent exfoliating properties, which have driven advancements in skincare technologies. Essential oils have various properties, of which the most useful in cosmetics are those that do not cause irritation, smell pleasant, and have other beneficial properties such as antimicrobial effects. Emulsions with Mandelic Acid and essential oils from Satureja montana, Lemongrass, and Litsea cubeba were formulated and microbiologically tested for their preservative effectiveness. The effect of the treatments on skin condition was monitored by non-invasive diagnostic methods, such as hydration, transepidermal water loss, and pH value. Sensory analysis revealed that the matrix containing Mandelic Acid alone or combined with Litsea Cubeba Oil was the best-performing formulation, consistent with the compliant results of antimicrobial efficacy. The topical form of this cosmetic product has demonstrated excellent preservative activity and desirable biophysical efficacy on the skin.
Collapse
Affiliation(s)
- Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Pavlína Egner
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| |
Collapse
|
3
|
Bradic J, Petrovic A, Nikolic M, Nedeljkovic N, Andjic M, Baljak J, Jakovljevic V, Kocovic A, Tadic V, Stojanovic A, Simanic I. Potentilla tormentilla Extract Loaded Gel: Formulation, In Vivo and In Silico Evaluation of Anti-Inflammatory Properties. Int J Mol Sci 2024; 25:9389. [PMID: 39273336 PMCID: PMC11395307 DOI: 10.3390/ijms25179389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The objective of the study was to develop a novel topical gel by mixing Potentilla tormentilla ethanolic extract, thermosensitive poloxamer 407, and carbomer 940 and evaluating its stability and rheological behavior. The irritation potential of the gel was evaluated in accordance with the Organization for Economic Cooperation and Development Guidelines 404. The potential anti-inflammatory effects of the developed gel were evaluated in vivo in rats using the carrageenan-induced paw edema test. Moreover, the in silico binding affinity for chlorogenic and ellagic acid, as dominant components in the extract, against cyclooxygenase (COX) 1 and 2 was also determined. Our findings suggest that the gel containing Potentilla tormentilla extract remained stable throughout the observation period, exhibited pseudoplastic behavior, and caused no irritation in rats, thus being considered safe for topical treatment. Additionally, the developed gel showed the capability to reduce rat paw edema, which highlights significant anti-inflammatory potential. In silico analysis revealed that chlorogenic and ellagic acid exhibited a reduced binding affinity against COX-1 but had a similar inhibitory effect on COX-2 as flurbiprofen, which was confirmed by molecular dynamics results. The study proposes the possible application of Potentilla tormentilla ethanolic extract gel for the alleviation of localized inflammatory diseases; however, future clinical evaluation is required.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Milos Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Nedeljkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Jovan Baljak
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, 119991 Moscow, Russia
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Vanja Tadic
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Aleksandra Stojanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia
| | - Igor Simanic
- Specialized Hospital for Rehabilitation and Orthopedic Prosthetics, Sokobanjska 17, 11000 Beograd, Serbia
- Department of Physical Medicine and Rehabilitation, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Pawar VU, Dessai AD, Nayak UY. Oleogels: Versatile Novel Semi-Solid System for Pharmaceuticals. AAPS PharmSciTech 2024; 25:146. [PMID: 38937416 DOI: 10.1208/s12249-024-02854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Oleogels is a novel semi-solid system, focusing on its composition, formulation, characterization, and diverse pharmaceutical applications. Due to their stability, smoothness, and controlled release qualities, oleogels are frequently utilized in food, cosmetics, and medicinal products. Oleogels are meticulously formulated by combining oleogelators like waxes, fatty acids, ethyl cellulose, and phytosterols with edible oils, leading to a nuanced understanding of their impact on rheological characteristics. They can be characterized by methods like visual inspection, texture analysis, rheological measurements, gelation tests, and microscopy. The applications of oleogels are explored in diverse fields such as nutraceuticals, cosmetics, food, lubricants, and pharmaceutics. Oleogels have applications in topical, transdermal, and ocular drug delivery, showcasing their potential for revolutionizing drug administration. This review aims to enhance the understanding of oleogels, contributing to the evolving landscape of pharmaceutical formulations. Oleogels emerge as a versatile and promising solution, offering substantial potential for innovation in drug delivery and formulation practices.
Collapse
Affiliation(s)
- Vaishnavi U Pawar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Petrovic B, Petrovic A, Bijelic K, Stanisic D, Mitrovic S, Jakovljevic V, Bolevich S, Glisovic Jovanovic I, Bradic J. From Nature to Healing: Development and Evaluation of Topical Cream Loaded with Pine Tar for Cutaneous Wound Repair. Pharmaceutics 2024; 16:859. [PMID: 39065556 PMCID: PMC11279966 DOI: 10.3390/pharmaceutics16070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the numerous efforts to find an appropriate therapeutic modality, diabetic wounds remain a global unsolved problem. Therefore, our study aimed to develop a topical formulation loaded with pine tar and to investigate its wound-healing capacity. After phytochemical profiling of pine tar, an oil-in-water emulsion with 1% pine tar was prepared. The physical, chemical, and microbiological stability of prepared pine tar cream (PTC) was assessed during six months. Additionally, safety potential was examined in healthy rats, while wound-healing potential was accessed by creating excision wounds in diabetic rats. Diabetic animals were divided into four groups: untreated or topically treated with either the cream base, PTC, or silver sulfadiazine cream. Wound healing was monitored at the following time points (0, 7, 14, and 21 days) through macroscopic, biochemical, and histological examinations. Our PTC formula showed good physicochemical properties and remained stable and compatible for cutaneous application. PTC showed a remarkable increase in wound closure rate and led to attenuation of morphological alterations in skin samples. These findings were associated with significantly improved redox status and enhanced hydroxyproline levels in PTC relative to the untreated and cream base groups. Our results demonstrated that PTC might serve as a promising tool for the management of diabetic wounds.
Collapse
Affiliation(s)
- Branislav Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Katarina Bijelic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Sergej Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Ivana Glisovic Jovanovic
- Orthopedic and Traumatology University Clinic, Clinical Center of Serbia, Dr Koste Todorovica 26, 11000 Belgrade, Serbia;
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| |
Collapse
|
6
|
Rao MR, Gaikwad P, Misal P, Gandhi SV. Phyto-cosmeceutical gel containing curcumin and quercetin loaded mixed micelles for improved anti-oxidant and photoprotective activity. Colloids Surf B Biointerfaces 2024; 237:113837. [PMID: 38508086 DOI: 10.1016/j.colsurfb.2024.113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Ultra Violet radiations induced skin damage and associated skin disorders are a widespread concern. The consequences of sun exposure include a plethora of dermal conditions like aging, solar urticaria, albinism and cancer. Sunscreens provide effective protection to skin from these damages. Besides FDA approved physical and chemical UV filters, phytoconstituents with their multi functionalities are emerging as frontrunners in Therapy of skin disorders. Objective of this study was to develop novel phyto-dermal gel (PDG) with dual action of sun protection and antioxidant potential using polymeric mixed micelles (PMMs) are nanocarriers. PMMs of Pluronic F127 and Pluronic F68 loaded with curcumin and quercetin were optimized by 32 factorial designs. Responses studied were vesicle size, SPF, entrapment efficiency of curcumin and quercetin and antioxidant activity. Droplet size ranged from 300 to 500 nm with PDI in between 0.248 and 0.584. Combination of curcumin and quercetin showed enhanced sun protection and antioxidant activity. Pluronics played a significant positive role in various parameters. In present studies vesicle size of factorial batches was found to be between 387 and 527 nm, and SPF was found to be between 18.86 and 28.32. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into Carbopol 940. Optimized PDG was evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and skin retention. Hysteresis loop in the rheogram suggested thixotropy of PDG. Syneresis for gels from day 0-30 days was found to be between 0% and 12.46% w/w. SPF of optimized PDG was 27±0.5. Optimized PDG showed no signs of erythema and edema on Wistar rats. PMMs thus effectively enhanced antioxidant and skin protective effect of curcumin and quercetin.
Collapse
Affiliation(s)
- Monica Rp Rao
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| | - Pranjali Gaikwad
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| | - Poonam Misal
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| | - Santosh V Gandhi
- Department of Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near RTO, Pune, Maharashtra 411001, India
| |
Collapse
|
7
|
Raut S, Azheruddin M, Kumar R, Singh S, Giram PS, Datta D. Lecithin Organogel: A Promising Carrier for the Treatment of Skin Diseases. ACS OMEGA 2024; 9:9865-9885. [PMID: 38463343 PMCID: PMC10918684 DOI: 10.1021/acsomega.3c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Skin is the largest organ of the human body, as it protects the body from the external environment. Nowadays, skin diseases and skin problems are more common, and millions of people are affected daily. Skin diseases are due to numerous infectious pathogens or inflammatory conditions. The increasing demand for theoretical research and practical applications has led to the rising prominence of gel as a semisolid material. To this end, organogels has been widely explored due to their unique composition, which includes organic solvents and mineral or vegetable oils, among others. Organogels can be described as semisolid systems wherein an organic liquid phase is confined within a three-dimensional framework consisting of self-assembled, cross-linked, or entangled gelator fibers. These gels have the ability to undergo significant expansion and retain substantial amounts of the liquid phase, reaching up to 99% swelling capacity. Furthermore, they respond to a range of physical and chemical stimuli, including temperature, light, pH, and mechanical deformation. Notably, due to their distinctive properties, they have aroused significant interest in a variety of practical applications. Organogels favor the significant encapsulation and enhanced permeation of hydrophobic molecules when compared with hydrogels. Accordingly, organogels are characterized into lecithin organogels, pluronic lecithin organogels, sorbitan monostearate-based organogels, and eudragit organogels, among others, based on the nature of their network and the solvent system. Lecithin organogels contain lecithin (natural and safe as a living cell component) as an organogelator. It acts as a good penetration enhancer. In this review, first we have summarized the fundamental concepts related to the elemental structure of organogels, including their various forms, distinctive features, methods of manufacture, and diverse applications. Nonetheless, this review also sheds light on the delivery of therapeutic molecules entrapped in the lecithin organogel system into deep tissue for the management of skin diseases and provides a synopsis of their clinical applications.
Collapse
Affiliation(s)
- Sushil Raut
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Mohammed Azheruddin
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Rajeev Kumar
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Shivani Singh
- Lloyd
Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India
| | - Prabhanjan S. Giram
- Department
of Pharmaceutics, Dr. DY Patil Institute
of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
8
|
Khan MZI, Khan D, Akbar MY, Wang H, Haq IU, Chen JZ. 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, MD simulations, in vitro and in vivo studies to identify potential anti-hyperplasia drugs. Biotechnol J 2024; 19:e2300437. [PMID: 38403464 DOI: 10.1002/biot.202300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Psoriasis is a common immune-mediated skin condition characterized by aberrant keratinocytes and cell proliferation. The purpose of this study was to explore the FDA-approved drugs by 3D-QSAR pharmacophore model and evaluate their efficiency by in-silico, in vitro, and in vivo psoriasis animal model. A 3D-QSAR pharmacophore model was developed by utilizing HypoGen algorithm using the structural features of 48 diaryl derivatives with diverse molecular patterns. The model was validated by a test set of 27 compounds, by cost analysis method, and Fischer's randomization test. The correlation coefficient of the best model (Hypo2) was 0.9601 for the training set while it was 0.805 for the test set. The selected model was taken as a 3D query for the virtual screening of over 3000 FDA-approved drugs. Compounds mapped with the pharmacophore model were further screened through molecular docking. The hits that showed the best docking results were screened through in silico skin toxicity approach. Top five hits were selected for the MD simulation studies. Based on MD simulations results, the best two hit molecules, that is, ebastine (Ebs) and mebeverine (Mbv) were selected for in vitro and in vivo antioxidant studies performed in mice. TNF-α and COX pro-inflammatory mediators, biochemical assays, histopathological analyses, and immunohistochemistry observations confirmed the anti-inflammatory response of the selected drugs. Based on these findings, it appeared that Ebs can effectively treat psoriasis-like skin lesions and down-regulate inflammatory responses which was consistent with docking predictions and could potentially be employed for further research on inflammation-related skin illnesses such as psoriasis.
Collapse
Affiliation(s)
| | - Dildar Khan
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Akbar
- Computational Biology Lab, National Centre for Bioinformatics Quaid-i-Azam University, Islamabad, Pakistan
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ihsan-Ul Haq
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Miastkowska M, Kulawik-Pióro A, Lasoń E, Śliwa K, Malinowska MA, Sikora E, Kantyka T, Bielecka E, Maksylewicz A, Klimaszewska E, Ogorzałek M, Tabaszewska M, Skoczylas Ł, Nowak K. Topical Formulations Based on Ursolic Acid-Loaded Nanoemulgel with Potential Application in Psoriasis Treatment. Pharmaceutics 2023; 15:2559. [PMID: 38004538 PMCID: PMC10675167 DOI: 10.3390/pharmaceutics15112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Psoriasis is a chronic disorder that causes a rash with itchy, scaly patches. It affects nearly 2-5% of the worldwide population and has a negative effect on patient quality of life. A variety of therapeutic approaches, e.g., glucocorticoid topical therapy, have shown limited efficacy with systemic adverse reactions. Therefore, novel therapeutic agents and physicochemical formulations are in constant need and should be obtained and tested in terms of effectiveness and minimization of side effects. For that reason, the aim of our study was to design and obtain various hybrid systems, nanoemulgel-macroemulsion and nanoemulgel-oleogel (bigel), as vehicles for ursolic acid (UA) and to verify their potential as topical formulations used in psoriasis treatment. Obtained topical formulations were characterized by conducting morphological, rheological, texture, and stability analysis. To determine the safety and effectiveness of the prepared ursolic acid carriers, in vitro studies on human keratinocyte cell-like HaCaT cells were performed with cytotoxicity analysis for individual components and each formulation. Moreover, a kinetic study of ursolic acid release from the obtained systems was conducted. All of the studied UA-loaded systems were well tolerated by keratinocyte cells and had suitable pH values and stability over time. The obtained formulations exhibit an apparent viscosity, ensuring the appropriate time of contact with the skin, ease of spreading, soft consistency, and adherence to the skin, which was confirmed by texture tests. The release of ursolic acid from each of the formulations is followed by a slow, controlled release according to the Korsmeyer-Peppas and Higuchi models. The elaborated systems could be considered suitable vehicles to deliver triterpene to psoriatic skin.
Collapse
Affiliation(s)
- Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Agnieszka Kulawik-Pióro
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Elwira Lasoń
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Karolina Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Magdalena Anna Malinowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Elżbieta Sikora
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Anna Maksylewicz
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Emilia Klimaszewska
- Department of Cosmetology, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland; (E.K.); (M.O.)
| | - Marta Ogorzałek
- Department of Cosmetology, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland; (E.K.); (M.O.)
| | - Małgorzata Tabaszewska
- Department of Fruit, Vegetable and Mushroom Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.)
| | - Łukasz Skoczylas
- Department of Fruit, Vegetable and Mushroom Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.)
| | - Krzysztof Nowak
- Wellnanopharm, Jerzego Samuela Bandtkego 19, 30-129 Cracow, Poland;
| |
Collapse
|
10
|
Jokubaite M, Pukenaite G, Marksa M, Ramanauskiene K. Balsam Poplar Buds Extracts-Loaded Gels and Emulgels: Development, Biopharmaceutical Evaluation, and Biological Activity In Vitro. Gels 2023; 9:821. [PMID: 37888394 PMCID: PMC10606801 DOI: 10.3390/gels9100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Balsam poplar buds have been used for wound healing and treating irritated skin in traditional medicine. Balsam poplar buds extracts exhibit anti-inflammatory, antioxidant, and antimicrobial effects. In recent years, scientific research has begun to validate some of these traditional uses, leading to an increased interest in balsam poplar buds as a potential source of natural remedies in modern medicine. The study aims to simulate semi-solid pharmaceutical forms with balsam poplar buds extract and evaluate their quality through biopharmaceutical research. The active compounds identified in Lithuanian poplar buds were p-coumaric acid, cinnamic acid, caffeic acid, galangin, pinocembrin, pinobanksin, and salicin. In gels, pH values ranged from 5.85 ± 0.05 to 5.95 ± 0.07. The determined pH values of emulgels ranged from 5.13 ± 0.05 to 5.66 ± 0.15. After 6 h, the release of active compounds from gels and emulgels ranged from 47.40 ± 2.41% to 71.17 ± 3.54. p-coumaric acid dominates in the balsam poplar buds extracts. The pH values of the prepared sem-solid pharmaceutical forms are suitable for use on the skin. The viscosity of the formulations depends on the amount of gelling agent. All formulations showed antioxidant activity. It is relevant to conduct a more extensive study on the influence of the chosen carrier on the release of active compounds from semi-solid formulations with an extract of balsam poplar buds.
Collapse
Affiliation(s)
- Monika Jokubaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Greta Pukenaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania; (G.P.); (K.R.)
| |
Collapse
|
11
|
Silva-Abreu M, Sosa L, Espinoza LC, Fábrega MJ, Rodríguez-Lagunas MJ, Mallandrich M, Calpena AC, Garduño-Ramírez ML, Rincón M. Efficacy of Apremilast Gels in Mouse Model of Imiquimod-Induced Psoriasis Skin Inflammation. Pharmaceutics 2023; 15:2403. [PMID: 37896163 PMCID: PMC10610068 DOI: 10.3390/pharmaceutics15102403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Apremilast (APM) is a novel drug for the treatment of psoriasis and psoriatic arthritis. APM is a phosphodiesterase 4 (PDE4) inhibitor, raising intracellular cAMP levels and thereby decreasing the inflammatory response by modulating the expression of TNF-α, IL-17, IL-23, and other inflammatory cytokines. The goal of this study is to develop APM gels as a new pharmaceutical formulation for the treatment of topical psoriasis. APM was solubilized in Transcutol-P and incorporated into Pluronic F127, Sepigel, and carbomer bases at different proportions. All formulations were characterized physiochemically. A biopharmaceutical study (release profile) was performed, and ex vivo permeation was evaluated using a human skin model. A toxicity assay was carried out on the HaCaT cell line. A mouse model of imiquimod-induced psoriasis skin inflammation was carried out to determine its efficacy by histological analysis, RNA extraction, and RT-qPCR assays. APM gel formulations showed good physicochemical characteristics and a sustained release profile. There was no permeation of any gel measured through human skin, indicating a high retained amount of APM on the skin. Cell viability was greater than 80% at most dilution concentrations. APM gels treated the psoriasis mouse model, and it shows a reduction in the proinflammatory cytokines (IL-8, IL-17A, IL-17F, and IL-23). APM gels could be a new approach for the treatment of topical psoriasis.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - Lilian Sosa
- Research Institute of Applied Sciences and Technology, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
- Microbiology Research Institute, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Lupe Carolina Espinoza
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc de Recerca Biomèdica de Barcelona, University Pompeu Fabra (UPF), 08005 Barcelona, Spain;
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - Ana Cristina Calpena
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - María Luisa Garduño-Ramírez
- Center for Chemical Research, Institute for Research Basic and Applied Sciences, Autonomous University of the State of Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico;
| | - María Rincón
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Alhasso B, Ghori MU, Conway BR. Development of a Nanoemulgel for the Topical Application of Mupirocin. Pharmaceutics 2023; 15:2387. [PMID: 37896147 PMCID: PMC10610056 DOI: 10.3390/pharmaceutics15102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Mupirocin (MUP) is an effective topical antibiotic with poor skin permeability; however, its skin permeability can be improved by a nanoemulsion formulation based on eucalyptus oil or eucalyptol. Despite this improvement, the nanoemulsion has limitations, such as low viscosity, low spreadability, and poor retention on the skin. To overcome these limitations, the aim of this study was to develop a nanoemulgel formulation that would enhance its rheological behaviour and physicochemical properties. The MUP nanoemulgel was prepared by incorporating a preprepared MUP nanoemulsion into Carbopol gel at a concentration of 0.75% in a 1:1 ratio. The nanoemulgel formulations were characterised and evaluated for their physicochemical and mechanical strength properties, rheological behaviour, and in vitro skin permeation and deposition, as well as antibacterial studies. Both nanoemulgels exhibited stability at temperatures of 4 and 25 °C for a period of 3 months. They had a smooth, homogenous, and consistent appearance and displayed non-Newtonian pseudoplastic behaviour, with differences in their viscosity and spreadability. However, both nanoemulgels exhibited lower skin permeability compared to the marketed control. The local accumulation efficiency of MUP from nanoemulgel after 8 h was significantly higher than that of the control, although there was no significant difference after 24 h. Micro-CT scan imaging allowed visualisation of these findings and interpretation of the deposited drug spots within the layers of treated skin. While there were no significant differences in the antibacterial activities between the nanoemulgels and the control, the nanoemulgels demonstrated superiority over the control due to their lower content of MUP. These findings support the potential use of the nanoemulgel for targeting skin lesions where high skin deposition and low permeability are required, such as in the case of topical antibacterial agents.
Collapse
Affiliation(s)
- Bahjat Alhasso
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (B.A.); (M.U.G.)
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (B.A.); (M.U.G.)
| | - Barbara R. Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (B.A.); (M.U.G.)
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
13
|
Ohsedo Y, Shinoda T. Creation of Molecular Gel Materials Using Polyrotaxane-Derived Polymeric Organogelator. Gels 2023; 9:730. [PMID: 37754411 PMCID: PMC10529233 DOI: 10.3390/gels9090730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Molecular gels, which are soft and flexible materials, are candidates for healthcare, cosmetic base, and electronic applications as new materials. In this study, a new polymeric organogelator bearing a polyrotaxane (PR) structure was developed and could induce the gelation of N',N″-dimethylformamide (DMF), a known solvent for dissolving polymeric materials and salts. Furthermore, the resulting DMF molecular gels exhibited thixotropic properties, observed by the inversion method using vials, which are essential for gel spreading. The scanning electron microscopy of the xerogels suggested that the gel-forming ability and thixotropic property of gels were imparted by the network of the laminated aggregates of thin layer material similar to those of other gels made of clay materials. This thin layer material would be formed by the aggregation of polymeric organogelators. The dynamic viscoelasticity measurements of the obtained gels revealed the stability and pseudo-thixotropic behaviors of the obtained gels, as well as a specific concentration effect on the mechanical behavior of the gels attributed to the introduction of the PR structure. Additionally, the preparation of the polymer organogelator/polymer composites was investigated to improve the mechanical properties via the filler effect induced by the agglomerates of organogelator. Moreover, the tensile tests confirmed that the introduction of the gelator enhanced the mechanical properties of the composites.
Collapse
Affiliation(s)
- Yutaka Ohsedo
- Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Tomoka Shinoda
- Faculty of Human Life and Environment, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| |
Collapse
|
14
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
15
|
Al-Saedi ZHF, Salih ZT, Ahmed KK, Ahmed RA, Jasim SA. Formulation and Characterization of Oleogel as a Topical Carrier of Azithromycin. AAPS PharmSciTech 2022; 24:17. [DOI: 10.1208/s12249-022-02481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
|
16
|
Anita SH, Asishe A, Syafriana V, Febriani A, Zulfiana D, Oktaviani M, Nurhayat OD, Yanto DHY. Hand Sanitizer Gel Formulation with Laccase Enzyme as an Antibacterial Against Staphylococcus aureus and Escherichia coli. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i4.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Laccase enzymes have been used widely in industrial fields such as textile, pulp, paper, food, cosmetic, and pharmaceutical industries. Laccase is used in toothpaste, mouthwash, deodorants, and soaps in personal care products. Previously, laccase enzymes had never been used for formulating hand sanitizer gel. This study aimed to determine the effect of the laccase enzyme on the physicochemical properties and the antibacterial potential of the hand sanitizer gel against pathogenic bacteria. Laccase enzyme was produced through fermentation using the fungus Trametes hirsuta EDN 082 with an activity of 0.032 U/mL. Hand sanitizer gel was made with the addition of laccase enzyme with varying concentrations of 4, 7, and 10% (v/v). The physicochemical test included organoleptic tests, pH evaluation, gel spreadability, and viscosity. The antibacterial was tested by the palm swab method. The gel physicochemical characteristics showed that the more laccase enzyme added, the more yellow the color produced, the less thick the shape, the wider the gel spreadability, and the lower the viscosity. The obtained pH ranged from 7.4 to 7.6. The best formulation of the hand sanitizer gel was achieved with the addition of a 7% (v/v) laccase enzyme. This formulation can reduce the number of bacteria colonies of Staphylococcus aureus and Escherichia coli on the palms with effectiveness above 95%. The laccase enzyme can be used as an active ingredient and antibacterial agent in the formulation of hand sanitizers.
Collapse
Affiliation(s)
| | | | | | | | - Deni Zulfiana
- National Research and Innovation Agency Republic of Indonesia
| | | | | | | |
Collapse
|
17
|
Design-of-Experiments (DoE)-Assisted Fabrication of Quercetin-Loaded Nanoemulgel and Its Evaluation against Human Skin Cancer Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14112517. [PMID: 36432708 PMCID: PMC9692577 DOI: 10.3390/pharmaceutics14112517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Quercetin (QCT) is a natural polyphenolic flavonoid showing great potential in the treatment of skin cancer. However, its use is limited owing to its poor water solubility, poor absorption, quick metabolism and excretion, as well as low stability. Preparation of nanoemulgel has been proven to be an effective approach to deliver the drugs topically due to various advantages associated with it. Objectives: This study aimed to prepare stable nanoemulgel of QCT using a Design-of-Experiments (DoE) tool for optimization, to characterize and to assess its in vivo toxicity and efficacy against human cancer cell lines in vitro. Methods: An ultrasonication emulsification method was used for the preparation of QCT-loaded nanoemulsion (QCT@NE). Box-Behnken design was used for the optimization of developed nanoemulgel. Then, in vitro characterization of prepared nanoemulsion was performed using Fourier Transform-Infra Red (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), particle size analysis, determination of zeta potential and entrapment efficiency (%EE). Further, the developed QCT-loaded nanoemulgel (QCT@NG) was characterized in vitro using texture profile analysis, viscosity and pH determination. Eventually, the cell cytotoxicity studies of the prepared nanoemulgel were performed on the skin cancer cell lines A431 followed by an acute toxicity and skin irritation study on male wistar rats in vivo. Results: The developed QCT@NE was found to be nanometric in size (173.1 ± 1.2 nm) with low polydispersity index (0.353 ± 0.13), zeta potential (-36.1 ± 5.9 mV), and showed good %EE (90.26%). The QCT@NG was found to be substantially more effective against the human skin carcinoma (A431) cell lines as compared to plain QCT with IC50 values of 108.5 and 579.0 µM, respectively. Skin irritation study showed no sign of toxicity and ensured safety for topical application. Hematological analysis revealed no significant differences between the treatment and control group in any biochemical parameter. In the nanoemulgel treatment group, there were no discernible differences in the liver enzymes, bilirubin, hemoglobin, total leukocyte and platelet counts as compared to the control group. Conclusions: The optimized QCT@NG was found to be an ideal and promising formulation for the treatment of skin cancer without showing skin irritation and organ toxicity.
Collapse
|
18
|
Corredor-Chaparro MY, Vargas-Riveros D, Mora-Huertas CE. Hypromellose – Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Rompicherla NC, Joshi P, Shetty A, Sudhakar K, Amin HIM, Mishra Y, Mishra V, Albutti A, Alhumeed N. Design, Formulation, and Evaluation of Aloe vera Gel-Based Capsaicin Transemulgel for Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14091812. [PMID: 36145560 PMCID: PMC9503439 DOI: 10.3390/pharmaceutics14091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Topical treatments are a potential therapeutic option for the therapy of osteoarthritis, with significant data supporting the effectiveness and safety of topical formulation. Topical gel formulations may offer an alternative to oral formulations to relieve osteoarthritis (OA) pain while decreasing systemic exposure. Topical capsaicin transemulgel may represent an effective and safe alternative. The transemulgel was prepared from aqueous Aloe vera gel and Carbopol 934 with capsaicin in clove oil emulsion. The optimized transemulgel of capsaicin showed a pH of 6.1 ± 0.1 and viscosity of 15263–998 cps. Data from in vitro diffusion demonstrated improved permeability properties. The formulation caused no skin irritation when applied topically. The optimal transemulgel spreadability was found to be 20.23 g·cm/s. In vitro and ex vivo studies of the optimized formulation were performed. The skin irritant test was performed on rat skin with an optimized and marketed formulation. Both showed no irritation on the skin. The transemulgel of the capsaicin with Aloe vera gel was proven to be effective for osteoarthritis therapy.
Collapse
Affiliation(s)
- Narayana Charyulu Rompicherla
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Punam Joshi
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Amitha Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Hawraz Ibrahim M. Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil 44001, Iraq
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Correspondence: (V.M.); (A.A.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (A.A.)
| | - Naif Alhumeed
- Deputyship for Research and Innovation, Ministry of Education, Riyadh 11153, Saudi Arabia
| |
Collapse
|
20
|
Abdel-Rashid RS, Helal DA, Alaa-Eldin AA, Abdel-Monem R. Polymeric versus lipid nanocapsules for miconazole nitrate enhanced topical delivery: in vitro and ex vivo evaluation. Drug Deliv 2022; 29:294-304. [PMID: 35037528 PMCID: PMC8765242 DOI: 10.1080/10717544.2022.2026535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanocapsules can be equated to other nanovesicular systems in which a drug is entrapped in a void containing liquid core surrounded by a coat. The objective of the present study was to investigate the potential of polymeric and lipid nanocapsules (LNCs) as innovative carrier systems for miconazole nitrate (MN) topical delivery. Polymeric nanocapsules and LNCs were prepared using emulsification/nanoprecipitation technique where the effect of poly(ε-caprolactone (PCL) and lipid matrix concentrations with respect to MN were assessed. The resulted nanocapsules were examined for their average particle size, zeta potential, %EE, and in vitro drug release. Optimum formulation in both polymeric and lipidic nanocapsules was further subjected to anti-fungal activity and ex vivo permeation tests. Based on the previous results, nanoencapsulation strategy into polymeric and LNCs created formulations of MN with slow biphasic release, high %EE, and improved stability, representing a good approach for the delivery of MN. PNCs were best fitted to Higuchi’s diffusion while LNCs followed Baker and Lonsdale model in release kinetics. The encapsulated MN either in PNCs or LNCs showed higher cell viability in WISH amniotic cells in comparison with free MN. PNCs showed less ex vivo permeation. PNCs were accompanied by high stability and more amount drug deposition (32.2 ± 3.52 µg/cm2) than LNCs (12.7 ± 1.52 µg/cm2). The antifungal activity of the PNCs was high 19.07 mm compared to 11.4 mm for LNCs. In conclusion, PNCs may have an advantage over LNCs by offering dual action for both superficial and deep fungal infections.
Collapse
Affiliation(s)
- Rania S. Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Doaa A. Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | | | - Raghda Abdel-Monem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| |
Collapse
|
21
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:843-860. [DOI: 10.1093/jpp/rgac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/19/2022] [Indexed: 12/07/2022]
|