1
|
Chakraborty R, Mukherjee AK, Bala A. Interleukin-35: A key player managing pre-diabetes and chronic inflammatory type 1 autoimmune diabetes. World J Diabetes 2024; 15:2147-2151. [PMID: 39493554 PMCID: PMC11525726 DOI: 10.4239/wjd.v15.i10.2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Interleukin-35 (IL-35) is a novel protein comprising IL-12α and IL-27β chains. The IL12A and EBI3 genes are responsible for its production. The study of IL-35 has experienced a substantial increase in interest in recent years, as demonstrated by many research papers. Recent clinical studies have shown that individuals who do not have a C-peptide have notably reduced amounts of IL-35 in their blood serum. This is accompanied by a drop in the percentage of IL-35+ Treg cells, regulatory B cells, and CD8+ FOXP3+ cells that produce IL-35. This article em-phasizes the potential significance of IL-35 expression in governing the immune response and its involvement in chronic inflammatory autoimmune diabetes in pancreatic inflammation. It demonstrates IL-35's ability to regulate cytokine proportions, modulate B cells, and protect against autoimmune diabetes. However, further investigation is necessary to ascertain the precise mechanism of IL-35, and meticulous planning is essential for clinical studies.
Collapse
Affiliation(s)
- Ratul Chakraborty
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Guwahati, Assam, India
| | - Ashis Kumar Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Guwahati, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India
| |
Collapse
|
2
|
Xu M, Zhang G, Cui T, Liu J, Wang Q, Shang D, Yu T, Guo B, Huang J, Li C. Cross-modal integration of bulk RNA-seq and single-cell RNA sequencing data to reveal T-cell exhaustion in colorectal cancer. J Cell Mol Med 2024; 28:e70101. [PMID: 39344205 PMCID: PMC11439987 DOI: 10.1111/jcmm.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) is a relatively common malignancy clinically and the second leading cause of cancer-related deaths. Recent studies have identified T-cell exhaustion as playing a crucial role in the pathogenesis of CRC. A long-standing challenge in the clinical management of CRC is to understand how T cells function during its progression and metastasis, and whether potential therapeutic targets for CRC treatment can be predicted through T cells. Here, we propose DeepTEX, a multi-omics deep learning approach that integrates cross-model data to investigate the heterogeneity of T-cell exhaustion in CRC. DeepTEX uses a domain adaptation model to align the data distributions from two different modalities and applies a cross-modal knowledge distillation model to predict the heterogeneity of T-cell exhaustion across diverse patients, identifying key functional pathways and genes. DeepTEX offers valuable insights into the application of deep learning in multi-omics, providing crucial data for exploring the stages of T-cell exhaustion associated with CRC and relevant therapeutic targets.
Collapse
Affiliation(s)
- Mingcong Xu
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
| | - Guorui Zhang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
| | - Ting Cui
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
| | - Jiaqi Liu
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Qiuyu Wang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Desi Shang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Tingting Yu
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
| | - Bingzhou Guo
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical UniversityJinanShandongChina
| | - Jinjie Huang
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Chunquan Li
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| |
Collapse
|
3
|
Li L, Pang W, Xu L, Zhang Y, Zhang H, Zhu L, Li Y, Lin H, Mo L, Liu Y, Wang L, Yang P. Inhibition of DNMT1 attenuates experimental food allergy. Mol Immunol 2024; 173:71-79. [PMID: 39067087 DOI: 10.1016/j.molimm.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The treatment of food allergy (FA) needs improvement. The treatment of immune disorders can be improved by regulating epigenetic marks, which is a promising method. The objective of this research is to alleviate experimental FA by employing an inhibitor of DNA methyltransferase-1 (DNMT1). METHODS Ovalbumin was used as the specific antigen to establish a mouse model of FA. Intestinal IL-35+ regulatory B cells (Breg cells) were isolated from FA mice, and characterized using immunological approaches. RESULTS FA mice had a lower frequency of IL-35+ Breg cells, which was inversely correlated with their FA response. The quantity of IL-35 was lower in intestinal Breg cells from FA mice. Hypermethylation status was detected in the Il35 promoter, which was accompanied with high levels of H3K9me3. Enforced expression of DNMT1 hindered the promoter activity of the IL35 gene. Administration of an inhibitor of DNMT1 (RG108) restored the immune regulatory capacity of FA intestinal Bregs, and effectively suppressed the expression of DNMT1, and attenuated experimental FA. CONCLUSIONS The elevated quantity of DNMT1 in intestinal Breg cells compromises the expression of IL-35 and affects the immune regulatory functions, which facilitates the development of FA. The immune regulatory functions of intestinal Breg cells are restored and experimental FA is attenuated by inhibiting DNMT1.
Collapse
Affiliation(s)
- Linjing Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University School, China
| | - Wenjing Pang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University School, China
| | - Lingzhi Xu
- Department of Immunology, Basic Medical College of Weifang Medical University, Weifang, China
| | - Yuanyi Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Department of Immunology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Hanqing Zhang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Liming Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University School, China
| | - Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University School, China
| | - Huapeng Lin
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University School, China
| | - Lihua Mo
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lei Wang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University School, China.
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Wei X, Zhang J, Cui J, Xu W, Zhao G, Guo C, Yuan W, Zhou X, Ma J. Adaptive plasticity of natural interleukin-35-induced regulatory T cells (Tr35) that are required for T-cell immune regulation. Theranostics 2024; 14:2897-2914. [PMID: 38773985 PMCID: PMC11103508 DOI: 10.7150/thno.90608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.
Collapse
Affiliation(s)
- Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Nanning, P.R. China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Jian Cui
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Wei Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Nanning, P.R. China
| |
Collapse
|
5
|
Geng M, Li K, Ai K, Liang W, Yang J, Wei X. Evolutionarily conserved IL-27β enhances Th1 cells potential by triggering the JAK1/STAT1/T-bet axis in Nile tilapia. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100087. [PMID: 36873098 PMCID: PMC9978509 DOI: 10.1016/j.fsirep.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
As a pleiotropic cytokine in the interleukin (IL)-12 family, IL-27β plays a significant role in regulating immune cell responses, eliminating invading pathogens, and maintaining immune homeostasis. Although non-mammalian IL-27β homologs have been identified, the mechanism of whether and how it is involved in adaptive immunity in early vertebrates remains unclear. In this study, we identified an evolutionarily conserved IL-27β (defined as OnIL-27β) from Nile tilapia (Oreochromis niloticus), and explored its conserved status through gene collinearity, gene structure, functional domain, tertiary structure, multiple sequence alignment, and phylogeny analysis. IL-27β was widely expressed in the immune-related tissues/organ of tilapia. The expression of OnIL-27β in spleen lymphocytes increased significantly at the adaptive immune phase after Edwardsiella piscicida infection. OnIL-27β can bind to precursor cells, T cells, and other lymphocytes to varying degrees. Additionally, IL-27β may be involved in lymphocyte-mediated immune responses through activation of Erk and JNK pathways. More importantly, we found that IL-27β enhanced the mRNA expression of the Th1 cell-associated cytokine IFN-γ and the transcription factor T-bet. This potential enhancement of the Th1 response may be attributed to the activation of the JAK1/STAT1/T-bet axis by IL-27β, as it induced increased transcript levels of JAK1, STAT1 but not TYK2 and STAT4. This study provides a new perspective for understanding the origin, evolution and function of the adaptive immune system in teleost.
Collapse
Affiliation(s)
- Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Ma X, Chen Q, Chen Z, Chen S, Zhou Q. Genome-wide DNA methylation mediates the resistance to vibriosis in Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109144. [PMID: 37805114 DOI: 10.1016/j.fsi.2023.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) is an economically important marine fish in China. However, vibriosis has caused huge mortality and economic losses in its culturing industry. To reveal the effect of DNA methylation on the resistance to vibriosis in tongue sole, we conducted RNA sequencing and whole genome bisulfite sequencing (WGBS), and compared the gene expressions and DNA methylation patterns between the resistant and susceptible families. We identified a total of 741 significantly differentially expressed genes (DEGs) in kidney and 17460 differentially methylated genes (DMGs), which were both enriched in immune-related pathways, such as "cAMP signaling pathway" and "NOD-like receptor signaling pathway". Through the correlation analysis of DEGs and DMGs, we identified two important immune pathways, including "complement and coagulation cascades", and "cytokine-cytokine receptor interaction", which played important roles in regulating the inflammation level and immune homeostasis. For example, the expression of proinflammatory cytokine il17c was down-regulated under the regulation of DNA methylation; in addition, the expression of protease-activated receptor 3 (par3) was up-regulated, which could induce the up-expressionof il8. These results demonstrated that the regulation of DNA methylation on the genes involved in immune responses might contribute to the resistance to vibriosis in tongue sole, and provided a basis for the control of diseases in fish aquaculture.
Collapse
Affiliation(s)
- Xinran Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory for Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, Shandong, 266071, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Quanchao Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory for Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, Shandong, 266071, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory for Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, Shandong, 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory for Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, Shandong, 266071, China
| | - Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Shandong Key Laboratory for Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, Shandong, 266071, China.
| |
Collapse
|
7
|
Caliendo G, D'Elia G, Makker J, Passariello L, Albanese L, Molinari AM, Vietri MT. Biological, genetic and epigenetic markers in ulcerative colitis. Adv Med Sci 2023; 68:386-395. [PMID: 37813048 DOI: 10.1016/j.advms.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/15/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
In this review, we have summarized the existing knowledge of ulcerative colitis (UC) markers based on current literature, specifically, the roles of potential new biomarkers, such as circulating, fecal, genetic, and epigenetic alterations, in UC onset, disease activity, and in therapy response. UC is a complex multifactorial inflammatory disease. There are many invasive and non-invasive diagnostic methods in UC, including several laboratory markers which are employed in diagnosis and disease assessment; however, colonoscopy remains the most widely used method. Common laboratory abnormalities currently used in the clinical practice include inflammation-induced alterations, serum autoantibodies, and antibodies against bacterial antigens. Other new serum and fecal biomarkers are supportive in diagnosis and monitoring disease activity and therapy response; and potential salivary markers are currently being evaluated as well. Several UC-related genetic and epigenetic alterations are implied in its pathogenesis and therapeutic response. Moreover, the use of artificial intelligence in the integration of laboratory biomarkers and big data could potentially be useful in clinical translation and precision medicine in UC management.
Collapse
Affiliation(s)
- Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna D'Elia
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jasmine Makker
- Department of GKT School of Medical Education, King's College London, London, UK
| | - Luana Passariello
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Maria Molinari
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
8
|
Reza Lahimchi M, Eslami M, Yousefi B. Interleukin-35 and Interleukin-37 anti-inflammatory effect on inflammatory bowel disease: Application of non-coding RNAs in IBD therapy. Int Immunopharmacol 2023; 117:109932. [PMID: 37012889 DOI: 10.1016/j.intimp.2023.109932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Inflammatory bowel disease (IBD) is a widespread autoimmune disease that may even be life-threatening. IBD is divided into two major subtypes: ulcerative colitis and Crohn's disease. Interleukin (IL)-35 and IL-37 are anti-inflammatory cytokines that belong to IL-12 and IL-1 families, respectively. Their recruitment relieves inflammation in various autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and IBD. Regulatory T cells (Tregs) and regulatory B cells (Bregs) are the primary producers of IL-35/IL-37. IL-35 and IL-37 orchestrate the regulation of the immune system through two main strategies: Blocking nuclear transcription factor kappa-B (NF-kB) and mitogen-activated protein kinase (MAPK) signaling pathways or promoting the proliferation of Tregs and Bregs. Moreover, IL-35 and IL-37 can also inhibit inflammation by adjusting the T helper (Th)17/Treg ratio balance. Among the anti-inflammatory cytokines, IL-35 and IL-37 have significant potential to reduce intestinal inflammation. Therefore, administering IL-35/IL-37-based drugs or blocking their inhibitor microRNAs could be a promising approach to alleviate IBD symptoms. Overall, in this review article, we summarized the therapeutic application of IL-35 and IL-37 in both human and experimental models of IBD. Also, it is hoped that this practical information will reach beyond IBD therapy and shed some light on treating all intestinal inflammations.
Collapse
|
9
|
Li Y, Wang X, Lu J. Interleukin-35 Promote Osteogenesis and Inhibit Adipogenesis: Role of Wnt/β-Catenin and PPARγ Signaling Pathways. Inflammation 2023; 46:522-533. [PMID: 36380113 DOI: 10.1007/s10753-022-01749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into several cell types, including cartilage, fat, and bone. It has been reported that the decision process of MSCs into fat and bone cells is competing and reciprocal. Interleukin (IL)-35 is an important effector protein in the Wnt/β-catenin signaling pathway that acts as a bone metabolism regulator. However, it is unclear whether IL-35 is also important for regulating MSC differentiation to fat and bone. In the current study, we evaluated the role of IL-35 in C3H10T1/2 cells, which are a good cell model for investigating osteogenesis and adipogenesis in bone marrows. The role of IL-35 on osteoblast proliferation and apoptosis was assessed using cell counting kit-8 assay and flow cytometry, respectively. Extracellular matrix mineralization and lipid accumulation were measured by Alizarin Red S staining and Oil Red O staining, respectively. The most important transcription factor of the process of osteogenesis Runx2 and Wnt/β-catenin signaling pathway components β-catenin and Axin2 were investigated in response to IL-35 treatment. Furthermore, the adipogenic markers PPAR-γ and C/EBPα were also investigated. Our observations showed that IL-35 could promote the proliferation of MSCs and inhibit the apoptosis of MSCs. We found that IL-35 treatment resulted in a dramatic stimulation of osteogenesis and inhibition of adipogenesis. Moreover, IL-35 enhanced Wnt/β-catenin pathway key component β-catenin as well as Axin2 expression during MSCs differentiated to osteoblasts. Our findings suggested that IL-35 might control the balance between osteogenic and adipogenic differentiation of progenitor cells through the Wnt/β-catenin-PPARγ signaling pathway, suggesting its potential application in providing an intervention in osteoporosis and obesity.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaofei Wang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
10
|
Gu D, Cao T, Yi S, Liu Y, Fan C. CCCTC-Binding Factor Mediates the Transcription of Insulin-Like Growth Factor Binding Protein 5 Through EZH2 in Ulcerative Colitis. Dig Dis Sci 2023; 68:778-790. [PMID: 35705732 DOI: 10.1007/s10620-022-07566-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/11/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) features chronic, non-infectious inflammation of the colon. Insulin-like growth factor binding protein 5 (IGFBP5) has been indicated to be related to various inflammation-related diseases. However, its association with UC remains largely unclear. AIMS Here, we investigate the role of IGFBP5 in colonic mucosal epithelial cell injury in UC. METHODS Differentially expressed genes in the colonic tissues of UC mice were screened using the Gene Expression Omnibus database, and IGFBP5 was identified. UC mice were developed using dextran sulfate sodium, and IGFBP5 expression in the colonic tissues of UC mice was confirmed by immunohistochemistry and RT-qPCR. The effects of IGFBP5 in vivo and in vitro were investigated by intraperitoneal injection of adeno-associated virus into UC mice or by transfection with an IGFBP5 overexpression plasmid into lipopolysaccharide-treated colonic mucosal epithelial cells. The mechanisms causing IGFBP5 deletion in UC were predicted by bioinformatics analysis and ChIP-qPCR and verified by rescue experiments. RESULTS IGFBP5 was reduced in UC. IGFBP5 impaired the NFκB pathway in the colonic tissue of UC mice and ameliorated inflammatory infiltration and colonic mucosal cell injury. IGFBP5 depletion was associated with H3K27me3 modification, which was induced by EZH2. CTCF was responsible for recruiting EZH2 to the promoter region of IGFBP5. CTCF inhibition repressed UC progression by reducing H3K27me3 modification via the discouragement of the enrichment of EZH2 in the IGFBP5 promoter. CONCLUSIONS CTCF modulates H3K27me3 modification of the IGFBP5 promoter by recruiting EZH2, thereby downregulating IGFBP5 to accentuate colonic mucosal epithelial cell injury in UC mice.
Collapse
Affiliation(s)
- Dan Gu
- Department of Gastroenterology, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ting Cao
- Department of Gastroenterology, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shijie Yi
- Department of Gastrointestinal Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya Liu
- Department of Anorectal Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, People's Republic of China
| | - Chao Fan
- Department of Anorectal Surgery, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Xu HM, Xu J, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Nie YQ, Wang LS, Yao J, Li DF. Epigenetic DNA methylation of Zbtb7b regulates the population of double-positive CD4 +CD8 + T cells in ulcerative colitis. J Transl Med 2022; 20:289. [PMID: 35761286 PMCID: PMC9235105 DOI: 10.1186/s12967-022-03477-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a heterogeneous disorder with complex pathogenesis. Therefore, in the present study, we aimed to assess genome-wide DNA methylation changes associated explicitly with the pathogenesis of UC. METHODS DNA methylation changes were identified by comparing UC tissues with healthy controls (HCs) from the GEO databases. The candidate genes were obtained and verified in clinical samples. Moreover, the underlying molecular mechanism related to Zbtb7b in the pathogenesis of UC was explored using the dextran sodium sulfate (DSS)-induced colitis model. RESULTS Bioinformatic analysis from GEO databases confirmed that Zbtb7b, known as Th-inducing POZ-Kruppel factor (ThPOK), was demethylated in UC tissues. Then, we demonstrated that Zbtb7b was in a hypo-methylation pattern through the DSS-induced colitis model (P = 0.0357), whereas the expression of Zbtb7b at the mRNA and protein levels was significantly up-regulated in the inflamed colonic tissues of UC patients (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0079, P < 0.0001) and DSS-induced colitis model (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0045, P = 0.0004). Moreover, the expression of Zbtb7b was positively associated with the degree of UC activity. Mechanically, over-expression of Zbtb7b might activate the maturation of CD4+T cells (FCM, IF: P = 0.0240, P = 0.0003) and repress the differentiation of double-positive CD4+CD8+T (DP CD4+CD8+T) cells (FCM, IF: P = 0.0247, P = 0.0118), contributing to the production of inflammatory cytokines, such as TNF-α (P = 0.0005, P = 0.0005), IL-17 (P = 0.0014, P = 0.0381), and IFN-γ (P = 0.0016, P = 0.0042), in the serum and colonic tissue of DSS-induced colitis model. CONCLUSIONS Epigenetic DNA hypo-methylation of Zbtb7b activated the maturation of CD4+T cells and repressed the differentiation of DP CD4+CD8+ T cells, resulting in the production of inflammatory cytokines and colonic inflammation in UC. Therefore, Zbtb7b might be a diagnostic and therapeutic biomarker for UC, and hypo-methylation might affect the biological function of Zbtb7b.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China
| | - Quan-Zhou Peng
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Yuexiu District, No. 1, Panfu Road, Guangzhou, 510180, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Luohu District, No. 1017, Dongmen North Road, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
12
|
DNMT3a-Mediated Enterocyte Barrier Dysfunction Contributes to Ulcerative Colitis via Facilitating the Interaction of Enterocytes and B Cells. Mediators Inflamm 2022; 2022:4862763. [PMID: 35574272 PMCID: PMC9106515 DOI: 10.1155/2022/4862763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Dysfunction of the enterocyte barrier is associated with the development of ulcerative colitis (UC). This study was aimed at exploring the effect of DNMT3a on enterocyte barrier function in the progression of UC and the underlying mechanism. Method Mice were given 3.5% dextran sodium sulphate (DSS) in drinking water to induce colitis. The primary intestinal epithelial cells (IECs) were isolated and treated with lipopolysaccharide (LPS) to establish an in vitro inflammatory model. We detected mouse clinical symptoms, histopathological damage, enterocyte barrier function, B cell differentiation, DNA methylation level, and cytokine production. Subsequently, the effect of DNMT3a from IECs on B cell differentiation was explored by a cocultural experiment. Result DSS treatment significantly reduced the body weight and colonic length, increased disease activity index (DAI), and aggravated histopathological damage. In addition, DSS treatment induced downregulation of tight junction (TJ) protein, anti-inflammatory cytokines (IL-10 and TGF-β), and the number of anti-inflammatory B cells (CD1d+) in intestinal epithelial tissues, while upregulated proinflammatory cytokines (IL-6 and TNF-α), proinflammatory B cells (CD138+), and DNA methylation level. Further in vitro results revealed that DNMT3a silencing or TNFSF13 overexpression in IECs partly abolished the result of LPS-induced epithelial barrier dysfunction, as well as abrogated the effect of IEC-regulated B cell differentiation, while si-TACI transfection reversed these effects. Moreover, DNMT3a silencing decreased TNFSF13 methylation level and induced CD1d+ B cell differentiation, and the si-TNFSF13 transfection reversed the trend of B cell differentiation but did not affect TNFSF13 methylation level. Conclusion Our study suggests that DNMT3a induces enterocyte barrier dysfunction to aggravate UC progression via TNFSF13-mediated interaction of enterocyte and B cells.
Collapse
|