1
|
Liu XW, Zhang YH, Xu L, Xing JB, Wang ZX, Hu ML, Chen Y, Qi ZL, Ding Y, Zhang X, Ding MX, Zhang XJ, Wan J. Exploring the effects of quercetin-added pancreatic diet on metabolic homeostasis in dogs via metabolomics. PLoS One 2025; 20:e0318159. [PMID: 39946409 PMCID: PMC11824997 DOI: 10.1371/journal.pone.0318159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE To investigate the role of quercetin-added pancreatic prescription food in regulating metabolic homeostasis in dogs. METHODS The experimental dogs were divided into a control diet group and a prescription diet group. The control group was fed regular food, while the prescription group was fed pancreatic prescription food (3.9 g of quercetin was added in per 1 kg of food) for 8 weeks. Canine physical examination, complete blood count, and serum biochemical tests were conducted at 0 w, 4 w, and 8 w. Non-targeted metabolomics tests were performed using plasma samples at 0 w and 8 w. RESULTS Dogs that received a quercetin-added pancreatic diet supplemented with quercetin showed no changes in the body weight, fasting blood glucose, body condition score, the indexes of whole blood program of red blood cells, white blood cells and platelets, and most blood biochemical indexes, but increased lipase levels in plasma at 8 w. Quercetin significant improved in metabolic homeostasis, especially in fatty acid, amino acid, and bile acid metabolism. Untargeted metabolomics analysis revealed that quercetin activates ABC transport and arginine/proline pathways, suggesting potential benefits for pancreatitis in large animals, while maintaining comparable safety parameters. CONCLUSIONS Quercetin-added prescription food enhances fatty acid and amino acid metabolism, demonstrating its potential to promote pancreatic function and sustain metabolic homeostasis.
Collapse
Affiliation(s)
- Xiao-Wan Liu
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yao-hui Zhang
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Li Xu
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jia-Bao Xing
- Jiangxi Huichong Technology Co., Ltd., Ganzhou, China
| | - Zhou-xiang Wang
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Wuhan University, Wuhan, China
| | - Man-li Hu
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yun Chen
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Zhi-li Qi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Jing Zhang
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Wuhan University, Wuhan, China
| | - Juan Wan
- Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Dhandapani S, Ha Y, Wang R, Kwon TW, Cho IH, Kim YJ. Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection. J Nanobiotechnology 2025; 23:15. [PMID: 39815303 PMCID: PMC11734238 DOI: 10.1186/s12951-024-03064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity. This study aimed to prepare a biocompatible and therapeutically potent Korean ginseng nanoemulsion (KGS-NE) using ginseng seed oil (GSO), optimize its encapsulation and drug delivery efficiency, and evaluate its antiviral activity. RESULTS Various techniques were utilized to confirm the KGS-NE formation. Energy-dispersive X-ray spectroscopy identified gold nanoparticles with the highest Au peak at 2.1 keV. Selected area diffraction patterns revealed crystallographic structures. FT-IR spectrometry detected functional groups, with peaks at 2922.09 cm-1 (alkene C-H stretching), 1740.24 cm-1 (aldehyde C=O stretching), and 1098.07 cm-1 (C-O stretching in secondary alcohol). Storage stability studies showed that KGS-NE maintained its size and stability for 6 months at 4 °C. The KGS-NE exhibited a dose-dependent suppression of HCoV-OC43 viral replication in Vero E6 cells. RNA sequencing analysis unveiled differentially expressed genes (DEGs) specifically involved in the ABC transporters signaling pathway. KGS-NE oral administration facilitated the recovery of mice induced with the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, as confirmed by inflammatory markers expression in lung tissue. In the Syrian hamster infected with the SARS-CoV-2 model, the lungs dissected showed enlarged morphology and induced inflammatory cytokines. This effect was mitigated with KGS-NE oral administration, as observed through H&E and qRT-PCR analysis. Biochemical analysis at various oral administration concentrations demonstrated that KGS-NE had no adverse effects on the kidney and liver. CONCLUSIONS Our findings strongly suggest that oral administering KGS-NE in mice and Syrian hamster models has the potential to effectively mitigate lung inflammation against coronavirus. This indicates a promising new strategy for developing the antiviral nano-agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeevram Dhandapani
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Yujeong Ha
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rongbo Wang
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea
| | - Tae Woo Kwon
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
3
|
Chen D, Pan L, Ran X, Huang J, Teng X, Yang F, Liu H. Microbial diversity and metabolomics analysis of colon contents exposed to cadmium and polystyrene microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117585. [PMID: 39709704 DOI: 10.1016/j.ecoenv.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Cadmium and microplastics, common pollutants, can accumulate in the body, impacting the intestinal barrier and harming livestock breeding. In order to explore the damage mechanism of cadmium and cadmium combined microplastic on the colon of mice, 60 mice were divided into three groups: The control group (0.2 mL of saline), cadmium group (Cd group, 0.2 mL of 4.8 mg/kg/d CdCl2) and mixed group (Mix group, 0.2 mL of mixed solution containing 4.8 mg/kg/d CdCl2 and 10.0 mg/d MPs) were fed for 42 d. The changes of colon histopathology were observed, and the changes of microbial diversity and metabolomics of colon contents were analyzed. Pathological sections of the colon showed abnormal mucosal hyperemia with mixed exposure compared to cadmium exposure. Microbial diversity analysis showed increased abundances of Enterococcus, Adlercreutzia, and Bifidobacterium in the Cd and Mix groups, with Dubosiella being the most significantly increased. Metabolomic analysis indicated significant differences in nucleotide and purine metabolism between the Cd and control groups, and in linoleic acid and bile acid metabolism between the Mix and control groups. The ABC transporter metabolites increased with Cd exposure, while the PPAR pathway metabolites were enriched with MPs exposure. Correlation analysis highlighted several key findings: Pasteurella exhibited a notably negative association with pantothenate. Conversely, Enterococcus demonstrated a significant positive link with palmitoylcarnitine. Additionally, both Adlercreutzia and norank_f_Eggerthellaceae showed a positive correlation with azelaic acid. These findings suggest that Cd and MPs disrupt intestinal microbiota and metabolic pathways, providing insights into potential treatments for such exposures.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Liyu Pan
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xuan Ran
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Junyu Huang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Biwott K, Singh P, Baráth S, Nyariki JN, Hevessy Z, Bacso Z. Dynamic P-glycoprotein expression in early and late memory states of human CD8 + T cells and the protective role of ruxolitinib. Biomed Pharmacother 2025; 182:117780. [PMID: 39740391 DOI: 10.1016/j.biopha.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
ABCB1/MDR-1/P-glycoprotein (Pgp) is an ABC transporter responsible for cancer cell multi-drug resistance. It is expressed in cytotoxic T lymphocytes (CTL). Eliminating sensitive cancer cells during high-dose chemotherapy can also damage immune cells. Our study aimed to assess which maturing human CD8 + CTL memory subsets may be affected based on their Pgp protein expression. In an in vitro CTL differentiation model system, we tracked the maturation of naive, effector, and memory cells and the expression of Pgp. This system involves co-culturing blood lymphocytes with proliferation-inhibited JY antigen-presenting B-lymphoblastoid cells expressing HLA-I A2. These JY-primed maturing CTLs were TCR-activated using beads, and the effect of the maturation-modifying JAK1/2 inhibitor ruxolitinib was examined. Multidimensional analysis identified six major CTL subsets: naive, young memory (Tym), stem cell memory (Tscm), central memory (Tcm), effector memory (Tem), and effectors (Te). These subsets were further divided into thirteen specific subsets: TymCD127 + , TymCD127-, Tscm, TcmCD95 + , TcmCD73 +CD95 + , TcmCD95+CD127 + , TcmPD1 + , TemCD95 + , TemraCD127 + , TemraCD127-, TeCD95 + , and TeCD73 +CD95 + . Pgp expression was detectable in naïve cells and dynamically changed across the thirteen identified subsets. Increased Pgp was detected in young memory T cells and in Tscm, TcmCD95 + , and TcmPD1 + human CTL subsets. Unlike other transiently appearing memory cells, the number of cells in these core Pgp-expressing memory subsets stabilized by the end of the contraction phase. Ruxolitinib treatment downregulated effector T-cell polarization while upregulating small memory subsets expressing Pgp. In conclusion, activation increased Pgp expression, whereas ruxolitinib treatment preserved small early and late memory subset core that primarily expressed Pgp.
Collapse
Affiliation(s)
- Kipchumba Biwott
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary; Department of Biochemistry and Biotechnology, Technical University of Kenya, Kenya.
| | - Parvind Singh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | - Sándor Baráth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | | | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary; Dean's office, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
5
|
Nathan Mandal R, Ke J, Hasan Kanika N, Hou X, Zhang Z, Zhang P, Chen H, Zeng C, Chen X, Wang J, Wang C. Gut Microbiome-Driven metabolites influence skin pigmentation in TYRP1 mutant Oujiang Color Common Carp. Gene 2024; 928:148811. [PMID: 39094713 DOI: 10.1016/j.gene.2024.148811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome plays a key role in regulating the gut-skin axis, and host genetics partially influence this regulation. The study investigated the role of gut microbiota and host genetics in the gut-skin axis, focusing on the unusual "coffee-like" color phenotype observed in TYRP1 mutant Oujiang Color Common Carp. We employed comparative high-throughput omics data from wild-type and mutant fish to quantify the influence of both genetics and gut microbes on skin transcriptomic expression and blood metabolites. We found 525 differential metabolites (DMs) and 45 distinct gut microbial genera in TYRP1 mutant fish compared to wild type. Interaction and causal mediation analyses revealed a complex interplay. The TYRP1 mutation likely triggers an inflammatory pathway involving Acinetobacter bacteria, Leukotrience-C4 and Spermine. This inflammatory response appears to be counterbalanced by an anti-inflammatory cardiovascular genetic network. The net effect is the upregulation of COMT, PLG, C2, C3, F10, TDO2, MHC1, and SERPINF2, leading to unusual coffee-like coloration. This study highlights the intricate interplay between gut microbiota, host genetics, and metabolic pathways in shaping complex phenotypes.
Collapse
Affiliation(s)
- Roland Nathan Mandal
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhiyi Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Penghui Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Huifan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Chunxiao Zeng
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Wu Y, Liu W, Wang R, Lian Y, Cheng X, Yang R, Wang X, Mi S. Capsaicin and Quercitrin Maintained Lipid Homeostasis of Hyperlipidemic Mice: Serum Metabolomics and Signaling Pathways. Foods 2024; 13:3727. [PMID: 39682799 DOI: 10.3390/foods13233727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 12/18/2024] Open
Abstract
Capsaicin and quercitrin have proved to be two major ingredients in fresh chili pepper. However, the effect of these two compounds on hyperlipidemia and the related molecular mechanisms were still unclear. This work was performed to examine the hypolipidemic capacity of capsaicin and quercitrin as well as the related signaling pathways. Hyperlipidemia was induced in mice by feeding them with a high-fat diet for 4 weeks. Both capsaicin and quercitrin were beneficial to inhibit a rise in fasting glucose, total cholesterol, total triglycerides, low-density lipoprotein cholesterol, and total bile acids and to lift the level of high-density lipoprotein cholesterol in the serum. The optimal lipid-lowering data were achieved in the capsaicin and quercitrin/3:1 group. Supplementation with capsaicin and quercitrin both singly and together in the feed caused a significant influence on the metabolite profiles of mouse serum. The signaling pathway for the hypolipidemic effect of capsaicin and quercitrin was related to the down-regulation of epidermal growth factor receptor (EGFR) but the up-regulation of phosphatidylin-ositol-3-kinase (PI3K), protein kinase Bb(Akt), farnesoid X receptor 1 (FXR1), and cholesterol 7α-hydroxylase (CYP7A1). This study confirmed the jointly hypolipidemic effect of capsaicin and quercitrin, which would benefit the valorization of chili pepper resources.
Collapse
Affiliation(s)
- Yanxia Wu
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Rongrong Wang
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
| | - Xinying Cheng
- Hebei Chenguang Testing Technical Services Co., Ltd., Handan 057250, China
| | - Ruili Yang
- Hebei Chenguang Testing Technical Services Co., Ltd., Handan 057250, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| |
Collapse
|
7
|
Ran X, Li X, Xie X, Lei J, Yang F, Chen D. Effects of Probiotic Enterococcus faecium from Yak on the Intestinal Microflora and Metabolomics of Mice with Salmonella Infection. Probiotics Antimicrob Proteins 2024; 16:1036-1051. [PMID: 37273089 DOI: 10.1007/s12602-023-10102-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Salmonella spp. are pathogenic bacteria that cause diarrhea, abortion, and death in yak and severely harm livestock breeding. Therefore, it is vital to identify a probiotic that effectively antagonizes Salmonella. To the best of our knowledge, few prior studies have investigated the efficacy of Enterococcus faecium against Salmonella. Here, we evaluated the enteroprotective mechanism of E. faecium in a mouse Salmonella infection model using hematoxylin-eosin (H&E) staining, quantitative real-time polymerase chain reaction (Q-PCR) technology, microbial diversity sequencing, and metabonomics. Enterococcus faecium inhibited the proinflammatory cytokines IL-1β, IL-6, TNF-α, and IFN-γ and promoted the anti-inflammatory cytokine IL-10. The Firmicutes/Bacteroidota (F/B) ratio and the abundances of Firmicutes and Akkermansia were significantly higher in the E. faecium than in the Salmonella group. Metabonomics and microbial diversity sequencing disclosed five different metabolites with variable importance in the projection (VIP) > 3 that were characteristic of both the Salmonella and E. faecium groups. Combined omics revealed that Lactobacillus and Bacteroides were negatively and positively correlated, respectively, with cholic acid, while Desulfovibrio was positively correlated with lipids in both the control and Salmonella groups. Desulfovibrio was also positively correlated with lipids in both the Salmonella and E. faecium groups. Enterococcus faecium antagonizes Salmonella by normalizing the abundance of the intestinal microorganisms and modulating their metabolic pathways. Hence, it may efficaciously protect the host intestine against Salmonella infection.
Collapse
Affiliation(s)
- Xuan Ran
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xianhui Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xueer Xie
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiangying Lei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest University for Nationalities), Ministry of Education, Chengdu, 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest University for Nationalities), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
8
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
9
|
Sha Y, Liu X, Pu X, He Y, Wang J, Zhao S, Shao P, Wang F, Xie Z, Chen X, Yang W. Characterizing the dynamics of the rumen microbiota, its metabolites, and blood metabolites across reproductive stages in Small-tailed Han sheep. Microbiol Spectr 2023; 11:e0286723. [PMID: 37948319 PMCID: PMC10715166 DOI: 10.1128/spectrum.02867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Our study illustrates the succession of the rumen microbiota and its metabolites in Small-tailed Han sheep at different reproductive stages. Among them, Firmicutes and Prevotella, which are related to energy metabolism, increased in abundance during pregnancy, while Fibrobacter, a fiber-degrading bacterium, increased in abundance during lactation. At the same time, the microbial metabolic profile and serum metabolic profile characteristics of different reproductive stages were revealed, and some functional pathways and metabolites related to energy and immunity were found. This study provides a reference for the health management of ruminants during non-pregnancy, pregnancy, and lactation.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoning Pu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaowei Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
11
|
Zhang J, Tang Z, Liu Z, Wang G, Yang X, Hou X. Metabolomic and proteomic analyses of primary Sjogren's syndrome. Immunobiology 2023; 228:152722. [PMID: 37567091 DOI: 10.1016/j.imbio.2023.152722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The pathogenesis of primary Sjogren's syndrome (pSS) has not been fully elucidated. We explored differentially expressed proteins and metabolic pathways in pSS using proteomics and metabolomics. 456 named proteins in total were identified, among which 50 were significantly changed in the pSS. Altered proteins were significantly associated with signaling pathways such as antigen processing and presentation, human immunodeficiency virus 1 infection, and FC gamma R-mediated phagocytosis. Meanwhile, 12 proteins, such as SH3BGRL3, TPM4, and CA1, can be used as potential clinical molecular markers. Moreover, 128 metabolites were significantly expressed in the pSS group. A total of 96 pathways were significantly enriched including central carbon metabolism in cancer, taurine and hypotaurine metabolism, and ABC transporters. Notably, both proteomics and metabolomics enriched glycolysis/gluconeogenesis metabolism, pentose phosphate pathway, and glutathione metabolism pathways. In this study, the progression mechanism of pSS was analyzed and novel biomarkers were identified by proteomics and metabolomics.
Collapse
Affiliation(s)
- Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zixing Tang
- Department of Neurosurgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
12
|
Li Y, Shen X. Cadmium Exposure Affects Serum Metabolites and Proteins in the Male Guizhou Black Goat. Animals (Basel) 2023; 13:2705. [PMID: 37684969 PMCID: PMC10487163 DOI: 10.3390/ani13172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Food safety and environmental pollution are the hotspots of general concern globally. Notably, long-term accumulation of trace toxic heavy metals, such as cadmium (Cd), in animals may endanger human health via the food chain. The mechanism of Cd toxicity in the goat, a popular farmed animal, has not been extensively investigated to date. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg-1·BW) for 30 days (five male goats per group). In this study, we used an integrated approach combining proteomics and metabolomics to profile proteins and metabolites in the serum of Cd-exposed goats. It was found that Cd exposure impacted the levels of 30 serum metabolites and 108 proteins. The combined proteomic and metabolomic analysis revealed that Cd exposure affected arginine and proline metabolism, beta-alanine metabolism, and glutathione metabolism. Further, antioxidant capacity in the serum of goats exposed to Cd was reduced. We identified CKM and spermidine as potential protein and metabolic markers, respectively, of early Cd toxicity in the goat. This study details approaches for the early diagnosis and prevention of Cd-poisoned goats.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
13
|
Chen Q, Liu M, Guo H, Wang K, Liu J, Wang Y, Lin Y, Li J, Li P, Yang L, Jia L, Yang J, Li P, Song H. Altered Respiratory Microbiomes, Plasma Metabolites, and Immune Responses in Influenza A Virus and Methicillin-Resistant Staphylococcus aureus Coinfection. Microbiol Spectr 2023; 11:e0524722. [PMID: 37318361 PMCID: PMC10433956 DOI: 10.1128/spectrum.05247-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV)-methicillin-resistant Staphylococcus aureus (MRSA) coinfection causes severe respiratory infections. The host microbiome plays an important role in respiratory tract infections. However, the relationships among the immune responses, metabolic characteristics, and respiratory microbial characteristics of IAV-MRSA coinfection have not been fully studied. We used specific-pathogen-free (SPF) C57BL/6N mice infected with IAV and MRSA to build a nonlethal model of IAV-MRSA coinfection and characterized the upper respiratory tract (URT) and lower respiratory tract (LRT) microbiomes at 4 and 13 days postinfection by full-length 16S rRNA gene sequencing. Immune response and plasma metabolism profile analyses were performed at 4 days postinfection by flow cytometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships among the LRT microbiota, the immune response, and the plasma metabolism profile were analyzed by Spearman's correlation analysis. IAV-MRSA coinfection showed significant weight loss and lung injury and significantly increased loads of IAV and MRSA in bronchoalveolar lavage fluid (BALF). Microbiome data showed that coinfection significantly increased the relative abundances of Enterococcus faecalis, Enterobacter hormaechei, Citrobacter freundii, and Klebsiella pneumoniae and decreased the relative abundances of Lactobacillus reuteri and Lactobacillus murinus. The percentages of CD4+/CD8+ T cells and B cells in the spleen; the levels of interleukin-9 (IL-9), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 in the lung; and the level of mevalonolactone in plasma were increased in IAV-MRSA-coinfected mice. L. murinus was positively correlated with lung macrophages and natural killer (NK) cells, negatively correlated with spleen B cells and CD4+/CD8+ T cells, and correlated with multiple plasma metabolites. Future research is needed to clarify whether L. murinus mediates or alters the severity of IAV-MRSA coinfection. IMPORTANCE The respiratory microbiome plays an important role in respiratory tract infections. In this study, we characterized the URT and LRT microbiota, the host immune response, and plasma metabolic profiles during IAV-MRSA coinfection and evaluated their correlations. We observed that IAV-MRSA coinfection induced severe lung injury and dysregulated host immunity and plasma metabolic profiles, as evidenced by the aggravation of lung pathological damage, the reduction of innate immune cells, the strong adaptation of the immune response, and the upregulation of mevalonolactone in plasma. L. murinus was strongly correlated with immune cells and plasma metabolites. Our findings contribute to a better understanding of the role of the host microbiome in respiratory tract infections and identified a key bacterial species, L. murinus, that may provide important references for the development of probiotic therapies.
Collapse
Affiliation(s)
- Qichao Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing City, Jiangsu Province, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing City, Jiangsu Province, China
| | - Kaiying Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yun Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- School of Public Health, China Medical University, Shenyang City, Liaoning Province, China
| | - Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Jinhui Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Peihan Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Lang Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Leili Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| |
Collapse
|
14
|
Perrone F, Favari E, Maglietta G, Verzè M, Pluchino M, Minari R, Sabato R, Mazzaschi G, Ronca A, Rossi A, Cortellini A, Pecci F, Cantini L, Bersanelli M, Quaini F, Tiseo M, Buti S. The role of blood cholesterol quality in patients with advanced cancer receiving immune checkpoint inhibitors. Cancer Immunol Immunother 2023; 72:2127-2135. [PMID: 36828963 PMCID: PMC10992484 DOI: 10.1007/s00262-023-03398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) became the standard of care for several solid tumors. A limited fraction of patients (pts) achieves a long-term benefit. Plasmatic and intracellular cholesterol levels have emerged as promising biomarkers. The aim of the present study was to determine whether cholesterol efflux capacity (CEC), mediated by serum transporters (ABCA1 and ABCG1) and passive diffusion (PD), impacts on clinical outcome of advanced non-small cell lung cancer (NSCLC) and metastatic renal cell carcinoma (mRCC) pts treated with ICIs. MATERIAL AND METHODS We retrospectively enrolled advanced NSCLC and mRCC pts consecutively treated with ICIs between October 2013 and October 2018. CEC and cholesterol loading capacity (CLC) were assessed by well-established specific cell models. As primary endpoint, CEC, PD and CLC were correlated with overall survival (OS) while the effects of these parameters on progression-free survival (PFS) and clinical benefit (CB), defined as complete/partial response or stable disease, represented secondary endpoints. RESULTS NSCLC accounted for 94.2% of 70 enrolled cases, and serum sample suitable for CEC and PD determination was available in 68. Blood cholesterol and serum ABCA1, ABCG1, PD and CLC were associated with outcomes (OS, PFS and CB) at univariate analysis. At the multivariate analysis, only PD confirmed its positive prognostic value in terms of OS, PFS and CB. CONCLUSION The favorable impact of cholesterol PD on clinical outcome might reflect its main conformation in mature HDL particles which potentially shape an inflamed context, ultimately promoting ICI efficacy. Further prospective studies are needed to support our findings and uncover targetable pathways.
Collapse
Affiliation(s)
- Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - Elda Favari
- Food and Drug Department, University of Parma, Parma, Italy
| | - Giuseppe Maglietta
- Clinical & Epidemiological Research Unit, University Hospital of Parma, Parma, Italy
| | - Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Monica Pluchino
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Roberto Sabato
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Annalisa Ronca
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Federica Pecci
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona, Italy
| | - Luca Cantini
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona, Italy
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Cook I, Leyh TS. Sulfotransferase 2B1b, Sterol Sulfonation, and Disease. Pharmacol Rev 2023; 75:521-531. [PMID: 36549865 PMCID: PMC10158503 DOI: 10.1124/pharmrev.122.000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The primary function of human sulfotransferase 2B1b (SULT2B1b) is to sulfonate cholesterol and closely related sterols. SULT2B1b sterols perform a number of essential cellular functions. Many are signaling molecules whose activities are redefined by sulfonation-allosteric properties are switched "on" or "off," agonists are transformed into antagonists, and vice versa. Sterol sulfonation is tightly coupled to cholesterol homeostasis, and sulfonation imbalances are causally linked to cholesterol-related diseases including certain cancers, Alzheimer disease, and recessive X-linked ichthyosis-an orphan skin disease. Numerous studies link SULT2B1b activity to disease-relevant molecular processes. Here, these multifaceted processes are integrated into metabolic maps that highlight their interdependence and how their actions are regulated and coordinated by SULT2B1b oxysterol sulfonation. The maps help explain why SULT2B1b inhibition arrests the growth of certain cancers and make the novel prediction that SULT2B1b inhibition will suppress production of amyloid β (Aβ) plaques and tau fibrils while simultaneously stimulating Aβ plaque phagocytosis. SULT2B1b harbors a sterol-selective allosteric site whose structure is discussed as a template for creating inhibitors to regulate SULT2B1b and its associated biology. SIGNIFICANCE STATEMENT: Human sulfotransferase 2B1b (SULT2B1b) produces sterol-sulfate signaling molecules that maintain the homeostasis of otherwise pro-disease processes in cancer, Alzheimer disease, and X-linked ichthyosis-an orphan skin disease. The functions of sterol sulfates in each disease are considered and codified into metabolic maps that explain the interdependencies of the sterol-regulated networks and their coordinate regulation by SULT2B1b. The structure of the SULT2B1b sterol-sensing allosteric site is discussed as a means of controlling sterol sulfate biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov Today 2023; 28:103537. [PMID: 36801375 DOI: 10.1016/j.drudis.2023.103537] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Of the many known multidrug resistance (MDR) mechanisms, ATP-binding cassette (ABC) transporters expelling drug molecules out of cells is a major factor limiting the efficacy of present-day anticancer drugs. In this review, we highlights updated information on the structure, function, and regulatory mechanisms of major MDR-related ABC transporters, such as P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), and the effect of modulators on their functions. We also provide focused information on different modulators of ABC transporters that could be utilized against the emerging MDR crisis in cancer treatment. Finally, we discuss the importance of ABC transporters as therapeutic targets in light of future strategic planning for translating ABC transporter inhibitors into clinical practice.
Collapse
|
17
|
Liu Y, Tang Y, Ren S, Chen L. Antibacterial Components and Modes of the Methanol-Phase Extract from Commelina communis Linn. PLANTS (BASEL, SWITZERLAND) 2023; 12:890. [PMID: 36840240 PMCID: PMC9966474 DOI: 10.3390/plants12040890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Infectious diseases caused by pathogenic bacteria severely threaten human health. Traditional Chinese herbs are potential sources of new or alternative medicine. In this study, we analyzed for the first time antibacterial substances in the methanol-phase extract from a traditional Chinese herb-Commelina communis Linn-which showed an inhibition rate of 58.33% against 24 species of common pathogenic bacteria. The extract was further purified using preparative high-performance liquid chromatography (Prep-HPLC), which generated four single fragments (Fragments 1 to 4). The results revealed that Fragment 1 significantly increased bacterial cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, showing disruptive effects on cell integrity of Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, and Salmonella enterica subsp., compared to the control groups (p < 0.05). In sum, 65 compounds with known functions in Fragment 1 were identified using liquid chromatography and mass spectrometry (LC-MS), of which quercetin-3-o-glucuronide was predominant (19.35%). Comparative transcriptomic analysis revealed multiple altered metabolic pathways mediated by Fragment 1, such as inhibited ABC transporters, ribosome, citrate cycle and oxidative phosphorylation, and upregulated nitrogen metabolism and purine metabolism, thereby resulting in the repressed bacterial growth and even death (p < 0.05). Overall, the results of this study demonstrate that Fragment 1 from C. communis Linn is a promising candidate against common pathogenic bacteria.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
18
|
Fan J, To KKW, Chen ZS, Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist Updat 2023; 66:100905. [PMID: 36463807 DOI: 10.1016/j.drup.2022.100905] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Multidrug resistance (MDR) is the phenomenon in which cancer cells simultaneously develop resistance to a broad spectrum of structurally and mechanistically unrelated drugs. MDR severely hinders the effective treatment of cancer and is the major cause of chemotherapy failure. ATP-binding cassette (ABC) transporters are extensively expressed in various body tissues, and actively transport endogenous and exogenous substrates through biological membranes. Overexpression of ABC transporters is frequently observed in MDR cancer cells, which promotes efflux of chemotherapeutic drugs and reduces their intracellular accumulation. Increasing evidence suggests that ABC transporters regulate tumor immune microenvironment (TIME) by transporting various cytokines, thus controlling anti-tumor immunity and sensitivity to anticancer drugs. On the other hand, the expression of various ABC transporters is regulated by cytokines and other immune signaling molecules. Targeted inhibition of ABC transporter expression or function can enhance the efficacy of immune checkpoint inhibitors by promoting anticancer immune microenvironment. This review provides an update on the recent research progress in this field.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
19
|
Proper Dietary and Supplementation Patterns as a COVID-19 Protective Factor (Cross-Sectional Study-Silesia, Poland). LIFE (BASEL, SWITZERLAND) 2022; 12:life12121976. [PMID: 36556341 PMCID: PMC9781383 DOI: 10.3390/life12121976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The COVID-19 pandemic has become a challenge for the world today, so it is very important to create healthy eating habits in society to support immunity and raise awareness of the benefits of supplementation. OBJECTIVE The purpose of this study is to evaluate diet and dietary supplementation, since previous studies indicate the protective nature of these in building immunity during the pandemic and post-pandemic period (COVID-19). The hypothesis of the study is whether the dietary regimen presented by the COVID-19 respondents can be considered protective in building immunity against SARS-CoV-2. MATERIAL AND METHODS The study included 304 subjects, with an average age of 39.04 ± 23.59. The main criteria for inclusion in the study were that the respondent was ≥18 years old and participated voluntarily. The study was conducted using an original questionnaire. RESULTS In the study group, no change was noticed in the previous diet during the COVID-19 pandemic, while the level of physical activity among the respondents decreased. Too low a percentage of people regularly consumed, among other foods. legume seeds-only 10.5% of respondents consumed them several times a week-and citrus fruits-the largest number of respondents, as many as 39.8%, only consumed them several times a month. The largest percentage of respondents with mild/scanty COVID-19 disease regularly took vitamin C-containing preparations (n = 61; 59.80%). Statistical analysis showed that there was a correlation between the incidence of mild/scanty COVID-19 and the regularity of taking vitamin C-containing preparations (T = 11.374; r = 0.611; p = 0.04603). A statistical significance level was also obtained for the regularity of supplementation of multivitamin preparations, which were taken by 68% (34) of respondents affected by mild/scanty COVID-19 (T = 13.456; r = 0.711; p = 0.02191). CONCLUSIONS The study's hypothesis was supported. Respondents characterized by a normal dietary pattern and taking supplements commonly recognized as immune "boosters" were more likely to mildly survive COVID-19. Moreover, it was shown that the pandemic in most of the respondents did not significantly affect their dietary strategy. It is reasonable to conclude that the dietary patterns adopted may be a common way to prevent SARS-CoV-2 infections and their possible complications.
Collapse
|
20
|
Transcriptomic Analysis of Circulating Leukocytes Obtained during the Recovery from Clinical Mastitis Caused by Escherichia coli in Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12162146. [PMID: 36009735 PMCID: PMC9404729 DOI: 10.3390/ani12162146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Escherichia coli is a bacterium which infects cow udders causing clinical mastitis, a potentially severe disease with welfare and economic consequences. During an infection, white blood cells (leukocytes) enter the udder to provide immune defence and assist tissue repair. We sequenced RNA derived from circulating leukocytes to investigate which genes are up- or down-regulated in dairy cows with naturally occurring cases of clinical mastitis in comparison with healthy control cows from the same farm. We also looked for genetic variations between infected and healthy cows. Blood samples were taken either EARLY (around 10 days) or LATE (after 4 weeks) during the recovery phase after diagnosis. Many genes (1090) with immune and inflammatory functions were up-regulated during the EARLY phase. By the LATE phase only 29 genes were up-regulated including six haemoglobin subunits, possibly important for the production of new red blood corpuscles. Twelve genetic variations which were associated with an increased or decreased expression of some important immune genes were identified between the infected and control cows. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite the cows having received prompt veterinary treatment, but they had largely recovered within 4 weeks. Genetic differences between cows may predispose some animals to infection. Abstract The risk and severity of clinical infection with Escherichia coli as a causative pathogen for bovine mastitis is influenced by the hosts’ phenotypic and genotypic variables. We used RNA-Seq analysis of circulating leukocytes to investigate global transcriptomic profiles and genetic variants from Holstein cows with naturally occurring cases of clinical mastitis, diagnosed using clinical symptoms and milk microbiology. Healthy lactation-matched cows served as controls (CONT, n = 6). Blood samples were collected at two time periods during the recovery phase post diagnosis: EARLY (10.3 ± 1.8 days, n = 6) and LATE (46.7 ± 11 days, n = 3). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21 and subjected to enrichment analysis. Variant calling was performed following GATKv3.8 best practice. The comparison of E. coli(+) EARLY and CONT cows found the up-regulation of 1090 DEGs, mainly with immune and inflammatory functions. The key signalling pathways involved NOD-like and interleukin-1 receptors and chemokines. Many up-regulated DEGs encoded antimicrobial peptides including cathelicidins, beta-defensins, S100 calcium binding proteins, haptoglobin and lactoferrin. Inflammation had largely resolved in the E. coli(+) LATE group, with only 29 up-regulated DEGs. Both EARLY and LATE cows had up-regulated DEGs encoding ATP binding cassette (ABC) transporters and haemoglobin subunits were also up-regulated in LATE cows. Twelve candidate genetic variants were identified in DEGs between the infected and CONT cows. Three were in contiguous genes WIPI1, ARSG and SLC16A6 on BTA19. Two others (RAC2 and ARHGAP26) encode a Rho-family GTPase and Rho GTPase-activating protein 26. These results show that the initial inflammatory response to E. coli continued for at least 10 days despite prompt treatment and provide preliminary evidence for genetic differences between cows that may predispose them to infection.
Collapse
|
21
|
Wang L, Sun X, He J, Liu Z. Identification and Validation of Prognostic Related Hallmark ATP-Binding Cassette Transporters Associated With Immune Cell Infiltration Patterns in Thyroid Carcinoma. Front Oncol 2022; 12:781686. [PMID: 35837087 PMCID: PMC9273952 DOI: 10.3389/fonc.2022.781686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a large superfamily of membrane proteins that facilitate the translocation of heterogeneous substrates. Studies indicate that ABC transporters may play important roles in various carcinomas. However, the correlation between ABC transporters and immunomodulation in thyroid carcinoma (TC), as well as the prognoses for this disease, is poorly understood.TC data from The Cancer Genome Atlas (TCGA) database were used to identify prognostic hallmark ABC transporters associated with immune cell infiltration patterns via multiple bioinformatic analyses. Thereafter, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression of these selected hallmark ABC transporters in both TC and para-cancerous thyroid tissues. Of a total of 49 ABC transporters, five (ABCA8, ABCA12, ABCB6, ABCB8, and ABCC10) were identified as hallmark ABC transporters. All five were differentially expressed in TC and associated with the relapse-free survival rates of patients with TC. Immunoregulation by these five hallmark ABC transporters involved the modulation of various aspects of immune cell infiltration, such as hot or cold tumor subsets and the abundances of infiltrating immune cells, as well as specific immunomodulators and chemokines. Besides the diverse significantly correlated factors, the five hallmark ABC transporters and correlated genes were most highly enriched in plasma membrane, transporter activity, and transmembrane transport of small molecules. In addition, many chemicals, namely bisphenol A and vincristine, affected the expression of these five transporters. The qRT-PCR results of collected TC and para-cancerous thyroid tissues were consistent with those of TCGA. The findings in this study may reveal the role played by these five hallmark ABC transporters in regulating immune cell infiltration patterns in TC as well as the molecular mechanisms underlying their functions, leading to a better understanding of their potential prognostic and immunotherapeutic values.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
- Department of 1st Gynecologic Oncology Surgery, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
22
|
Metabolomic Analysis of Key Regulatory Metabolites in the Urine of Flavivirus-Infected Mice. J Trop Med 2022; 2022:4663735. [PMID: 35693845 PMCID: PMC9177292 DOI: 10.1155/2022/4663735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV) are several important flaviviruses, and infections caused by these flaviviruses remain worldwide health problems. Different flaviviruses exhibit different biological characteristics and pathogenicity. Metabolomics is an emerging research perspective to uncover and observe the pathogenesis of certain infections. Methods To improve the understanding of the specific metabolic changes that occur during infection with different flaviviruses, considering the principle of noninvasive sampling, this article describes our comprehensive analysis of metabolites in urine samples from the three kinds of flavivirus-infected mice using a liquid chromatography tandem mass spectrometry method to better understand their infection mechanisms. Results The urine of DENV-, JEV-, and ZIKV-infected mice had 68, 64, and 47 different differential metabolites, respectively, compared with the urine of control mice. Among the metabolic pathways designed by these metabolites, ABC transporters, arginine and proline metabolism, and regulation of lipolysis play an important role. Furthermore, we predicted and fitted potential relationships between metabolites and pathways. Conclusions These virus-specific altered metabolites may be associated with their unique biological properties and pathogenicity. The metabolomic analysis of urine is very important for the analysis of flavivirus infection.
Collapse
|
23
|
Chu PY, Tzeng YDT, Tsui KH, Chu CY, Li CJ. Downregulation of ATP binding cassette subfamily a member 10 acts as a prognostic factor associated with immune infiltration in breast cancer. Aging (Albany NY) 2022; 14:2252-2267. [PMID: 35247251 PMCID: PMC8954971 DOI: 10.18632/aging.203933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
The human ATP binding cassette (ABC) family of transporter proteins plays an important role in the maintenance of homeostasis in vivo. The aim of this study is to evaluate the potential diagnostic, prognostic, and therapeutic value of the ABCA10 gene in BRCA. We found that ABCA10 expression was downregulated in different subgroups of breast cancer and strongly correlated with pathological stage in BRCA patients. Low expression of ABCA10 was associated with BRCA patients showing shorter overall survival (OS). ABCA10 expression may be regulated by promoter methylation, copy number variation (CNV) and kinase, and is associated with immune infiltration. Our study also demonstrated the potential role of ABCA10 modifications in tumor microenvironment (TME) cellular infiltration. Nevertheless, the regulatory mechanism remains unknown and immunotherapy is marginal in BRCA. We demonstrate the expression of different ABCA10 modulators in breast cancer associated with genetic variants, deletions, tumor mutation burden (TMB) and TME. Mutations in ABCA10 are positively associated with different immune cells in six different immune databases and play an important role in immune cell infiltration in breast cancer. Overall, this study provides evidence that ABCA10 could become the potential targets for precision treatment and new biomarkers in the prognosis of breast cancer.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ching-Yu Chu
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|