1
|
Chang H, Li C, Zhu T, Cai S, Chen J, Zhan F, Zeng L, Fang Y, Ye G, Li J, Su J. GLR3.6 T807I Mutation of Casuarina equisetifolia Is Associated With a Decreased JA Response to Insect Feeding by Lymantria xylina. PLANT, CELL & ENVIRONMENT 2025; 48:3185-3198. [PMID: 39718115 DOI: 10.1111/pce.15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Lymantria xylina is the most important defoliator, damaging the effective coastal windbreak tree species Casuarina equisetifolia. However, the underlying genetic mechanisms through which C. equisetifolia responds to L. xylina attacks remain unknown. Here, we compared the transcriptional, phytohormone and metabolic differences between susceptible (S) and resistant (R) C. equisetifolia cultivars in response to L. xylina feeding. The main L. xylina-induced resistance in C. equisetifolia was a jasmonate (JA) response and JA synthesis was highly induced by L. xylina feeding at both the transcriptional and metabolic levels, thus promoting flavonoid accumulation. The JA response was highly activated by L. xylina feeding on the R but not in the S cultivar, although the JA signalling pathway was intact in both cultivars. We found a single amino acid mutation in the homologues of glutamate receptor-like protein 3.6 (CeGLR3.6T807I) in the S cultivar. Compared with the GLR3.6 homologues in the R cultivar, phosphorylation of CeGLR3.6T807I was not induced by insect feeding, leading to a decreased JA response in the S cultivar. Collectively, this study provides new insights into the function of CeGLR3.6 in regulating the JA response of C. equisetifolia to L. xylina feeding.
Collapse
Affiliation(s)
- Huan Chang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Chengli Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Tengfei Zhu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Jie Chen
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Fangfang Zhan
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Liqiong Zeng
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Gongfu Ye
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Jian Li
- Key Laboratory of Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Run W, Li T, Wang S, Xiao S, Wu Y, Gu W. Methyl jasmonate induces the regulation of protostane triterpene biosynthesis by microRNAs in Alisma orientale. PROTOPLASMA 2025; 262:619-633. [PMID: 39776246 DOI: 10.1007/s00709-024-02029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Protostane triterpenes are medicinally important components found in members of the Alismataceae botanical family, notably Alisma orientale. Methyl jasmonate (MeJA) is known to regulate protostane triterpene biosynthesis in A. orientale, but the microRNA (miRNA) mechanism underlying MeJA response to promote triterpene biosynthesis remains unknown. In this study, we conducted miRNA sequencing analysis after MeJA induction in A. orientale to uncover the role of miRNAs in protostane triterpene biosynthesis. We identified 222 known miRNAs and 379 novel miRNAs, including 16 differentially expressed miRNAs (DEMs) between control and MeJA-treated leaf samples. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis, four DEMs and eight miRNA target genes were significantly enriched in the triterpene biosynthesis pathway. Integrated analysis of the transcriptome and miRNAome revealed a negative expression pattern between miRNAs and their target genes. We then constructed a regulatory network of miRNA-target gene relationships involved in the triterpene biosynthesis pathway. We found miRNAs may be involved in the response of A. orientale to exogenous MeJA by regulating the expression of key biosynthesis enzymes, leading to increased accumulation of medically important protostane triterpenes.
Collapse
Affiliation(s)
- Wenyuan Run
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Shengyuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Shan Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - YuHeng Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
3
|
Yang H, Jiang L, Bao X, Liu H, Xu Q, Yao X, Cai S, Fang Y, Su J, Li J. CeJAZ3 suppresses longifolene accumulation in Casuarina equisetifolia, affecting the host preference of Anoplophora chinensis. PEST MANAGEMENT SCIENCE 2025; 81:2202-2214. [PMID: 39723485 DOI: 10.1002/ps.8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Casuarina equisetifolia, a crucial species of coastal windbreaks, is highly susceptible to infestation by Anoplophora chinensis. This stem-boring pest poses a significant threat to the health and sustainability of Casuarina equisetifolia forests. Understanding the molecular mechanisms underlying the host preference of A. chinensis to Casuarina equisetifolia is essential for developing effective pest management strategies. RESULTS Through field surveys, we identified two cultivars of Casuarina equisetifolia that exhibited differing levels of host preference for A. chinensis. Further analysis of multi-omics data (phenomics, transcriptomics, and metabolomics) from these cultivars revealed that longifolene plays a significant role in attracting A. chinensis to Casuarina equisetifolia. Additionally, the jasmonic acid (JA) signaling pathway was found to suppress longifolene accumulation, primarily through the interaction between the jasmonate ZIM-domain (JAZ) proteins and the terpene synthase (TPS) gene. Moreover, we identified a critical JAZ component, CeJAZ3, whose overexpression led to the down-regulation of TPS expression levels and, consequently, a reduced release of longifolene. CONCLUSION We confirmed that the negative regulator of host preference, CeJAZ3, in the JA signaling pathway can suppress the expression of TPSs, thereby down-regulating the accumulation of longifolene in Casuarina equisetifolia and indirectly suppressing the attraction of host plants to A. chinensis, which provides a basis for the integrated management of A. chinensis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijuan Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaochun Bao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haolan Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianle Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingliang Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Gupta P, Srivastava H, Kumar K, Nirgude M, Arpita K, Vadassery J, Sharma S, Abdin MZ, Gaikwad K. Potential regulation of cleistogamy in pigeonpea through jasmonic acid and bHLH transcription factor interactions. PLANT REPRODUCTION 2025; 38:10. [PMID: 40140020 DOI: 10.1007/s00497-025-00520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 03/28/2025]
Abstract
KEY MESSAGE This study provides insights into the molecular and hormonal control of cleistogamy in pigeonpea, focusing on bHLH transcription factors and jasmonic acid pathway. Pigeonpea, an annual diploid (2n = 22) grain legume, holds significant nutritional value in cereal-dominated diets. The chasmogamous flowers of pigeonpea have a typical 9 + 1 diadelphous stamen where flowers open pre-fertilization resulting in cross-pollination. In contrast, a cleistogamous genotype characterized by polyadelphous stamens and flowers that open post-fertilization ensuring seed purity was analyzed for identifying causal pathways. Subsequent analysis focused on a set of transcription factors and their interaction with the hormonal networks associated with cleistogamy. Genes of the Jasmonic acid (JA) signaling pathway have been established to play a significant role in inducing cleistogamy and one of the key regulators of the JA pathway is bHLH (basic helix loop helix). A genome-wide survey identified 176 bHLH genes in the pigeonpea genome. Phylogenetic analysis classified 176 bHLH genes into 21 subfamilies distributed randomly across the genome. Gene ontology, cis-motifs analysis in the upstream region, and protein-protein interaction network implied the involvement of these genes in various biological processes. Expression analysis of key genes of the jasmonic acid pathway which includes MYC2 (Cc_bHLH135) along with its interacting partners TIFY/JAZ in chasmogamous and cleistogamous floral tissues revealed their potential role in flower opening. The results of UHPLC-MS/MS quantitation of Jasmonic acid and its bioactive form JA-Ile align with the expression analysis. The congruence of gene expression and hormone profiling highlights the involvement of the JA pathway in regulating flower opening, implying their potential role in cleistogamy in pigeonpea.
Collapse
Affiliation(s)
- Palak Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Jamia Hamdard University, New Delhi, 110062, India
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Jamia Hamdard University, New Delhi, 110062, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, Kanpur, 208024, India
| | - Machindra Nirgude
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kumari Arpita
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
5
|
Shen S, Wu Y, Luo Y, Li Y, Gao W, Huang L, Hu Y, Chen K, Tong Y. The Dynamic Changes in Biosynthesis and Spatiotemporal Distribution of Phytohormones Under Jasmonic Acid Treatment Provide Insights into Hormonal Regulation in Sinopodophyllum hexandrum. PLANTS (BASEL, SWITZERLAND) 2025; 14:1001. [PMID: 40219069 PMCID: PMC11990078 DOI: 10.3390/plants14071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 04/14/2025]
Abstract
Sinopodophyllum hexandrum (Royle) Ying, the only species of Sinopodophyllum in Berberidaceae, is an endangered traditional Tibetan medicine. The harsh plateau growth environment makes S. hexandrum tough to breed and meet the global demand for clinical medications such as podophyllotoxin (PTOX) and etoposide. Jasmonic acid (JA) is acknowledged as a key phytohormone that modulates stress responses by activating defense mechanisms and promoting the production of specialized metabolites, which offers valuable insights for developing varieties that are more resilient to stress or yield higher amounts of secondary metabolites. In this study, JA treatment was used as a simulated source of stress to investigate the spatiotemporal changes in phytohormones, such as JA, cis-(+)-12-oxo-10, 15(Z)-phytodienoic acid (cis-(+)-OPDA), and abscisic acid (ABA), and transcriptional regulation following hormonal regulation in intact plants. Some correlations through changes in phytohormone levels and the expression level of related signaling pathway genes were observed to confirm the overall regulatory effect after the JA treatment. Furthermore, the JA treatment caused the differential expression of various genes including transcription factors (TFs), of which the most typical one is myelocytomatosis oncogene like protein 2 (MYC2), ShMYC2_3. Therefore, we proposed that a plant hormone-mediated regulatory network exists endogenously in S. hexandrum, enabling it to respond to JA treatment. This study provides a new direction for the germplasm improvement and the sustainable utilization of S. hexandrum when facing exogenous stimulation.
Collapse
Affiliation(s)
- Siyu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; (S.S.); (Y.L.); (W.G.)
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (Y.L.)
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; (S.S.); (Y.L.); (W.G.)
| | - Yang Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (Y.L.)
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; (S.S.); (Y.L.); (W.G.)
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; (S.S.); (Y.L.); (W.G.)
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Kang Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (Y.L.)
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| |
Collapse
|
6
|
Wang J, Fan F, Zhao Y, Li H, Liu S, Li G, Zhang P. PnOPR6 from Antarctic moss mediates JA-ABA crosstalk and enhances abiotic stress tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109730. [PMID: 40080970 DOI: 10.1016/j.plaphy.2025.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
Jasmonates (JAs) and abscisic acid (ABA) are vital plant hormones that are integral to the plant's response mechanisms against various abiotic stresses. These hormones also function in an antagonistic manner to regulate seed germination and dormancy. However, little is known about the molecular mechanism underlying the interaction between ABA and JA signaling. Here, seven 12-oxo-phytodienoic acid reductase genes (PnOPR1-7), a key enzyme in the JA biosynthesis pathway, were identified in the Antarctic moss Pohlia nutans transcriptome, and their expressions in response to abiotic stress were examined. Among these, PnOPR6 expression levels rose most under cold and UV-B stresses. Transgenic Arabidopsis overexpressing PnOPR6 demonstrated increased tolerance to salt, cold, dehydration, glucose, and ABA, but also greater sensitivity to methyl jasmonate (MeJA) during seed germination or early root growth. Furthermore, in the transgenic Arabidopsis, PnOPR6 suppressed the expression of genes involved in the ABA pathway and ABI3/5-responsive JA receptor COI1. Additionally, phytohormone metabolomics investigations revealed a significant rise in JA precursor (OPDA, OPC-6, and OPC-4), JA, and its derivative 12-OH-JA in PnOPR6-overexpressing line. Moreover, the accumulation of flavonoid in Arabidopsis was enhanced by heterologous expression of PnOPR6. These findings imply that PnOPR6 functions as a signaling regulator, improving plant resistance to abiotic stress through flavonoid accumulation and JA-ABA antagonistic crosstalk, therefore aiding P. nutans in adjusting to polar climates.
Collapse
Affiliation(s)
- Jing Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China; Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, PR China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China; School of Basic Medical Sciences, Qilu Medical University, Zibo, 255300, Shandong Province, PR China
| | - Yu Zhao
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China
| | - Han Li
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China
| | - Guangyao Li
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, PR China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, Shandong Province, PR China.
| |
Collapse
|
7
|
Camisón Á, Monteiro P, Dorado FJ, Sánchez-Bel P, Leitão F, Meijón M, Pinto G. Choosing the right signaling pathway: hormone responses to Phytophthora cinnamomi during compatible and incompatible interactions with chestnut (Castanea spp.). TREE PHYSIOLOGY 2025; 45:tpaf016. [PMID: 39883087 DOI: 10.1093/treephys/tpaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids, which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.-Pc interactions. Susceptible (S) C. sativa and resistant (R) C. sativa × C. crenata ramets were inoculated with Pc in roots and assessed for disease progression, leaf physiology and biochemistry at 1, 3, 5 and 8 days after inoculation (d.a.i.). In S chestnuts, Pc increasingly deteriorated the leaf physiological functioning by decreasing leaf CO2 assimilation, stomatal conductance, transpiration rate, chlorophylls content and the maximum quantum yield of the photosystem II over time, triggering aerial symptoms (leaf wilting and chlorosis) 8 d.a.i. Pc had little impact on the leaf physiological functioning of R chestnuts, which remained asymptomatic. In roots of S chestnuts, Pc transiently induced jasmonates signaling (5 d.a.i.) while impairing root carbohydrates metabolism over time. In leaves, a transient antioxidant burst (5 d.a.i.) followed by abscisic acid (ABA) accumulation (8 d.a.i.) was observed. R chestnuts responded to Pc by up-regulating root salicylic acid (SA) at early (1 d.a.i.) and late (8 d.a.i.) infection stages, in an antagonistic crosstalk with root ABA. Overall, the results pinpoint an important role of SA in mediating the resistant response of chestnuts to Pc, but also show that the specific hormone pathways induced by Pc are genotype dependent. The study also highlights that the dynamic nature of hormone responses over time must be considered when elucidating hormone-regulated responses to Pc.
Collapse
Affiliation(s)
- Álvaro Camisón
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Pedro Monteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - F Javier Dorado
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avenida Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Frederico Leitão
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- Faculty of Sciences and Technology, Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, CC Martim de Freitas, Coimbra 3000-456, Portugal
| | - Mónica Meijón
- Faculty of Biology/Biotechnology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Calle Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
8
|
Oubohssaine M, Rabeh K, Hnini M. Symbiosis vs pathogenesis in plants: Reflections and perspectives. Microb Pathog 2025; 200:107333. [PMID: 39870251 DOI: 10.1016/j.micpath.2025.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens. Understanding the fundamental molecular mechanisms governing these associations is crucial, given the notable susceptibility of plants to external environmental influences. Based on quorum sensing signals, phytohormone, and volatile organic carbon (VOC) production and others molecules, microorganisms influence plant growth, health, and defense responses. This review explores the multifaceted relationships between plants and their associated microorganisms, encompassing mutualism, commensalism, and antagonism. The molecular mechanisms of symbiotic and pathogenic interactions share similarities but lead to different outcomes. While symbiosis benefits both parties, pathogenesis harms the host. Genetic adaptations optimize these interactions, involving coevolution driving process. Environmental factors influence outcomes, emphasizing the need for understanding and manipulation of microbial communities for beneficial results. Research directions include employing multi-omics techniques, functional studies, investigating environmental factors, understanding evolutionary trajectories, and harnessing knowledge to engineer synthetic microbial consortia for sustainable agriculture and disease management.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Karim Rabeh
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural research, PO. Box 415, Rabat, 10090, Morocco
| | - Mohamed Hnini
- Research Team in Science and Technology, High School of Technology Laayoune, Ibn Zohr University, Morocco
| |
Collapse
|
9
|
Feng H, Zhang J, Powell AF, Buttelmann GL, Yang L, Yan E, Wang F, Broyles SB, Jander G, Strickler SR. Genome and Tissue-Specific Transcriptome of the Tropical Milkweed ( Asclepias curassavica). PLANT DIRECT 2025; 9:e70031. [PMID: 40103632 PMCID: PMC11914377 DOI: 10.1002/pld3.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 03/20/2025]
Abstract
Tropical milkweed (Asclepias curassavica) serves as a host plant for monarch butterflies (Danaus plexippus) and other insect herbivores that can tolerate the abundant cardiac glycosides that are characteristic of this species. Cardiac glycosides, along with additional specialized metabolites, also contribute to the ethnobotanical uses of A. curassavica. To facilitate further research on milkweed metabolism, we assembled the 197-Mbp genome of a fifth-generation inbred line of A. curassavica into 619 contigs, with an N50 of 10 Mbp. Scaffolding resulted in 98% of the assembly being anchored to 11 chromosomes, which are mostly colinear with the previously assembled common milkweed (A. syriaca) genome. Assembly completeness evaluations showed that 98% of the BUSCO gene set is present in the A. curassavica genome assembly. The transcriptomes of six tissue types (young leaves, mature leaves, stems, flowers, buds, and roots), with and without defense elicitation by methyl jasmonate treatment, showed both tissue-specific gene expression and induced expression of genes that may be involved in cardiac glycoside biosynthesis. Expression of a CYP87A gene, the predicted first gene in the cardiac glycoside biosynthesis pathway, was observed only in the stems and roots and was induced by methyl jasmonate. Together, this genome sequence and transcriptome analysis provide important resources for further investigation of the ecological and medicinal uses of A. curassavica.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute Ithaca New York USA
- Department of Entomology Louisiana State University AgCenter Baton Rouge Louisiana USA
| | - Jing Zhang
- Boyce Thompson Institute Ithaca New York USA
| | | | - Gretta L Buttelmann
- Plant Biology and Conservation Program Northwestern University Evanston Illinois USA
| | - Lily Yang
- Boyce Thompson Institute Ithaca New York USA
| | - Ethan Yan
- Boyce Thompson Institute Ithaca New York USA
| | - Fumin Wang
- Boyce Thompson Institute Ithaca New York USA
| | - Steven B Broyles
- Biological Sciences Department State University of New York Cortland New York USA
| | | | - Susan R Strickler
- Plant Biology and Conservation Program Northwestern University Evanston Illinois USA
- Negaunee Institute for Plant Conservation Science and Action Glencoe Illinois USA
| |
Collapse
|
10
|
Guo YW, Liu Y, Huang PC, Rong M, Wei W, Xu YH, Wei JH. Adaptive Changes and Genetic Mechanisms in Organisms Under Controlled Conditions: A Review. Int J Mol Sci 2025; 26:2130. [PMID: 40076752 PMCID: PMC11900562 DOI: 10.3390/ijms26052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Adaptive changes encompass physiological, morphological, or behavioral modifications occurring in organisms in response to specific environmental conditions. These modifications may become established within a population through natural selection. While adaptive changes can influence individuals or populations over short timeframes, evolution involves the inheritance and accumulation of these changes over extended periods under environmental pressures through natural selection. At present, addressing climate change, emerging infectious diseases, and food security are the main challenges faced by scientists. A comprehensive and profound understanding of the mechanisms of adaptive evolution is of great significance for solving these problems. The genetic basis of these adaptations can be examined through classical genetics, which includes stochastic gene mutations and chromosomal instability, as well as epigenetics, which involves DNA methylation and histone modifications. These mechanisms not only govern the rate and magnitude of adaptive changes but also affect the transmission of adaptive traits to subsequent generations. In the study of adaptive changes under controlled conditions, short-term controlled experiments are commonly utilized in microbial and animal research to investigate long-term evolutionary trends. However, the application of this approach in plant research remains limited. This review systematically compiles the findings on adaptive changes and their genetic foundations in organisms within controlled environments. It aims to provide valuable insights into fundamental evolutionary processes, offering novel theoretical frameworks and research methodologies for future experimental designs, particularly in the field of plant studies.
Collapse
Affiliation(s)
- Yu-Wei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Yang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Peng-Cheng Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Wei Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| |
Collapse
|
11
|
Danso Ofori A, Su W, Zheng T, Datsomor O, Titriku JK, Xiang X, Kandhro AG, Ahmed MI, Mawuli EW, Awuah RT, Zheng A. Jasmonic Acid (JA) Signaling Pathway in Rice Defense Against Chilo suppressalis Infestation. RICE (NEW YORK, N.Y.) 2025; 18:7. [PMID: 39964588 PMCID: PMC11836255 DOI: 10.1186/s12284-025-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Jasmonic acid (JA) signaling plays a crucial role in rice defense against the striped stem borer, Chilo suppressalis, a notorious pest causing significant yield losses. This review explores the current understanding of JA-mediated defense mechanisms in rice, focusing on the molecular basis, regulatory elements, and practical implications for pest management. JA biosynthesis and signaling pathways are induced upon C. suppressalis infestation, leading to the activation of various defense responses. These include upregulation of JA-responsive genes involved in the production of proteinase inhibitors, volatile organic compounds, and other defensive compounds. The review also discusses the crosstalk between JA and other hormonal pathways, such as salicylic acid and ethylene, in fine-tuning defense responses. Structural modifications in rice plants, such as cell wall reinforcement and accumulation of secondary metabolites, have been highlighted as key components of JA-mediated defense against C. suppressalis. Furthermore, the practical applications of this knowledge in breeding insect-resistant rice varieties and developing sustainable pest management strategies were explored. Future research directions are proposed to further elucidate the complexities of JA signaling in rice-insect interactions and harness this knowledge to enhance crop protection.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Su
- Renshou County Agricultural and Rural Bureau, Meishan, 620500, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Osmond Datsomor
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Edzesi Wisdom Mawuli
- Biotechnology Unit, Plant Improvement and Productivity Division, Council for Scientific and Industrial Research, Fumesua, Kumasi, Ghana.
| | - Richard Tuyee Awuah
- Crop and Soil Science Department, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Aziz RB, Wei J, Wu Q, Song S, Yang H, Chen X, Wang Y, Chao R, Baz NM, Chen H, Song Y, Fang J, Wang C. Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage. Int J Mol Sci 2025; 26:1102. [PMID: 39940872 PMCID: PMC11817196 DOI: 10.3390/ijms26031102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Paclobutrazol (PAC) is a significant inhibitor of gibberellin biosynthesis that profoundly influences grape seed development (GSD) through the modulation of key molecular pathways. Here, we identified 6659 differentially expressed genes (DEGs) in GSD under PAC treatment, with 3601 up-regulated and 3058 down-regulated. An analysis of hormone-associated DEGs revealed that auxin-related genes (16) were the most up-regulated, followed by genes associated with brassinosteroid and ABA. In contrast, cytokinin- and gibberellin-related genes exhibited a suppressive response. PAC treatment also triggered extensive reprogramming of metabolic pathways, including 44 genes involved in starch and sucrose metabolism (24 up-regulated, 20 down-regulated), 101 cell wall-related genes (53 up-regulated, 48 down-regulated), and 110 transcription factors (77 up-regulated, 33 down-regulated). A cis-element analysis of the promoters of 76 hormone-responsive genes identified 14 types of hormone-responsive cis-elements, with ABRE being the most prevalent. Genes responsible for inactivating active hormones, such as ABA-VvPP2CA, IAA-VvGH3.1, and CK-VvARR9-1, were also identified. Concurrently, PAC negatively regulated hormone-active genes, including BR-VvXTH25, SA-VvTGA21-3, and JA-VvTIFY3B, leading to reduced levels of these hormones. PAC modulates GSD by mediating the dynamic balance of multi-hormone accumulations. Furthermore, development-related cis-elements such as the AACA-motif, AAGAA-motif, AC-I, AC-II, O2-site, as-1, CAT-box, CCAAT-box, circadian, GCN4-motif, RY-element, HD-Zip 1, HD-Zip 3, MSA-like, MYB-like sequence, MYB-binding site, and MYB recognition site, were found in key DEGs involved in starch and sucrose metabolism, cell wall remodeling, and epigenetic regulation. This indicates that these pathways are responsive to PAC modulation during GSD. Finally, we developed a comprehensive regulatory network to illustrate the PAC-mediated pathways involved in GSD. This network integrates multi-hormonal signaling, cell wall remodeling, epigenetic regulation, and transcription factors, highlighting PAC's pivotal role in GSD. Our findings provide new insights into the complex mechanisms underlying PAC's effects on grapevine development.
Collapse
Affiliation(s)
- Rana Badar Aziz
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Ji Wei
- College of Horticulture, Shanxi Agricultural University, Taigu 030031, China;
| | - Qiqi Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Siyan Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Hui Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Xinpeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Ying Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Ruiqiang Chao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Naila Mir Baz
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China;
| | - Haitao Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Yuxuan Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.B.A.); (Q.W.); (S.S.); (H.Y.); (X.C.); (Y.W.); (R.C.); (H.C.); (Y.S.); (J.F.)
| |
Collapse
|
13
|
Wang C, Ahsan T, Ding A, Han D, Gao J, Liang CH, Du ST, Wei Y, Huang YQ, Zhang SH. Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L. World J Microbiol Biotechnol 2025; 41:28. [PMID: 39789344 DOI: 10.1007/s11274-024-04244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S. indica suppressed the growth of P. arachidicola. Additionally, scanning electron microscopy illustrated that S. indica adversely affected the pathogen's hyphae. LSi treatment showed the highest stem height (35 cm), root length (15.533 cm), shoot fresh weight (9.33 g), shoot dry weight (1.30085 g), root dry weight (0.1990 g), and chlorophyll a (1.3253) and b (1.8316), while BPa had the lowest values of these parameters. The highest MDA value was observed at 96 h for BPa with (3.14598 nmol/g), and the highest proline value was observed at 72 h for LSi-Pa with (56.42851 µmol/g). Antioxidant enzymes, catalase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyase, increased significantly after 48 h in cultivar L. The most significant result is observed in salicylic acid with LSi-Pa at 72 h (702.10 µg/mL), showing a consistent significant difference. RNA-seq analysis revealed more pronounced transcriptomic changes in cultivar L, with enriched pathways related to flavonoid biosynthesis and defense responses. The LSi-Pa treatment significantly upregulated gene expression at 96 h, with AhNPR1 (0.05807), AhNPR10 (0.10536), AhPAL1 (4.30831), and Ahcapx (0.22074), demonstrating a strong regulatory effect. These results demonstrate that S. indica enhances peanut plant growth and resilience against P. arachidicola, mainly through modulation of oxidative stress and immune responses.
Collapse
Affiliation(s)
- Chen Wang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Ao Ding
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Han
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Gao
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chun-Hao Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Si-Tong Du
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu-Qian Huang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
14
|
Jiang Q, Ding C, Feng L, Wu Z, Liu Y, He L, Liu C, Wang L, Zeng J, Huang J, Ye M. Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants. HORTICULTURE RESEARCH 2025; 12:uhae281. [PMID: 39850371 PMCID: PMC11756293 DOI: 10.1093/hr/uhae281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/21/2024] [Indexed: 01/25/2025]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants (Camellia sinensis) and identified a total of 307 CsLRR-RLK members. Phylogenetic analysis grouped these CsLRR-RLKs into 14 subgroups along with their Arabidopsis homologs. Gene structure and conserved domain analyses revealed notable similarities among subgroup members. Among the identified CsLRR-RLKs, we focused on two plasma membrane-localized LRR-RLKs, CsLRR-RLK44, and CsLRR-RLK239, which do not form homodimers or heterodimers with each other. Both respond strongly to herbivory, and their expression patterns significantly correlate with herbivore resistance phenotypes across different tea accessions. CsLRR-RLK44 and CsLRR-RLK239 act upstream of mitogen-activated protein kinase (MPK) cascades and modulate the expression of defense-related MPKs and WRKY transcription factors. Additionally, silencing CsLRR-RLK44 or CsLRR-RLK239 reduced the levels of herbivory-induced jasmonates, thereby weakening the plant resistance to tea geometrid larvae (Ectropis obliqua). Our work is the first to demonstrate that in woody plants, LRR-RLKs are essential for enhancing herbivore resistance through the activation of the canonical signaling, including MPKs, WRKYs, and jasmonates. Furthermore, our study extends mechanistic insights into how LRR-RLKs initiate plant defenses from grasses to economically important tree species.
Collapse
Affiliation(s)
- Qi Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Lingjia Feng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Zhenwei Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Lintong He
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Chuande Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| | - Meng Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
15
|
Chen Q, Zhang J, Ye L, Liu N, Wang F. Methyl jasmonate induced tolerance effect of Pinus koraiensis to Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2025; 81:80-92. [PMID: 39258814 DOI: 10.1002/ps.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Methyl jasmonate (MeJA) can affect the balance of hormones and regulate the disease resistance of plants. Exploring the application and mechanism of MeJA in inducing the tolerance of Pinus koraiensis to pine wood nematode (PWN) infection is of great significance for developing new strategies for pine wilt disease control. RESULTS Different concentrations (0.1, 1, 5 and 10 mm) of MeJA treatment groups showed differences in relative tolerance index and relative anti-nematode index of P. koraiensis seedlings to PWN infection. The treatment of 5 mm MeJA solution induced the best tolerance effect, followed by the 1 mm MeJA solution. Transcriptome analysis indicated that many plant defense-related genes upregulated after treatment with 1, 5 and 10 mm MeJA solutions. Among them, genes such as jasmonate ZIM domain-containing protein, phenylalanine ammonia-lyase and peroxidase also continuously upregulated after PWN infection. Metabolome analysis indicated that jasmonic acid (JA) was significantly increased at 7 days postinoculation with PWN, and after treatment with both 1 and 5 mm MeJA solutions. Integrated analysis of transcriptome and metabolome indicated that differences in JA accumulation might lead to ubiquitin-mediated proteolysis, and expression changes in trans-caffeic acid and trans-cinnamic acid-related genes, leading to the abundance differences of these two metabolisms and the formation of multiple lignin and glucosides. CONCLUSIONS MeJA treatment could activate the expression of defense-related genes that correlated with JA, regulate the abundance of defense-related secondary metabolites, and improve the tolerance of P. koraiensis seedlings to PWN infection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiaoli Chen
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Lingfang Ye
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Nian Liu
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Feng Wang
- Key Laboratory of Alien Forest Pests Detection and Control-Heilongjiang Province, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Nation Forestry and Grassland Administration on Northeast Area Forest and Grass Dangerous Pest Management and Control, Shenyang Institute of Technology, Shenfu Reform and Innovation Demonstration Zone, Fushun, P. R. China
| |
Collapse
|
16
|
Seta-Koselska A, Szczuka E, Koselski M. Localization and activity of lipoxygenase in the ovule of Larix kaempferi (Lamb.) Carr. during female gametophyte maturation. PLANT REPRODUCTION 2024; 37:507-520. [PMID: 39060546 PMCID: PMC11511710 DOI: 10.1007/s00497-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
KEY MESSAGE Lipoxygenase activity and localization vary throughout the development of Larix kaempferi ovules, with the highest enzyme activity observed in ovules at the cellular stage and the most intense immunogold reaction noted at the mature archegonium stage of gametophyte development. Lipoxygenases are a family of oxidoreductases with a significant role in biological systems, widespread in living organisms e.g. mammals, fish, corals, plants, mosses, algae, fungi, yeasts, and bacteria. Lipoxygenase activity in plants leads to the formation of phytooxylipins, i.e. signaling molecules, which play a crucial role in many significant physiological processes such as male and female gametophyte maturation, germination and seedling growth, pathogen resistance, abiotic stress response, fruit ripening, and senescence. The activity and localization of lipoxygenase change during plant growth and development. The localization of lipoxygenase in a developing ovule of Larix kaempferi was analyzed using the immunogold labeling method, and the activity was determined spectrophotometrically with linolenic acid as a substrate. Among the investigated stages, the immunogold reaction was the most intense at the mature archegonium stage in the ovule. Lipoxygenase was found in all parts of the L. kaempferi ovule. The largest number of immunogold particles was detected in the integument cells of all the analyzed stages of ovule development. Only one isoform of lipoxygenase with an optimum at pH 8 was active in the ovules during female gametophyte maturation. The highest enzyme activity was determined at the cellular stage, whereas the mature archegonium stage was characterized by its lowest level, which means that LOX activity in developing ovules of the Japanese larch is not correlated with the number of antibody-labeled molecules of the enzyme.
Collapse
Affiliation(s)
- Aleksandra Seta-Koselska
- Department of Plant Physiology and Biotechnology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-708, Lublin, Poland.
| | - Ewa Szczuka
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| |
Collapse
|
17
|
Fu C, Fu Q, Wang S, Wu F, Jiang N, Zhou R, Yang Y, Xue Y. Genome-wide analysis of fatty acid desaturase genes in moso bamboo (Phyllostachys edulis) reveal their important roles in abiotic stresses responses. BMC Genomics 2024; 25:1138. [PMID: 39587486 PMCID: PMC11590352 DOI: 10.1186/s12864-024-11065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Bamboo is an important nontimber forestry product worldwide, while growth, development and geographic distribution of bamboo are often affected by abiotic stresses. Fatty acid desaturases have important roles in regulating plant abiotic stress tolerance, especially low-temperature. However, there is no report on genome-wide of FAD genes in bamboo under abiotic stresses. RESULTS A toltal of 43 PeFAD genes were identified in moso bamboo genome, which were unevenly located in 17 scaffolds. Phylogenetic analysis indicated that PeFAD genes were divided into 6 groups and ADS/FAD5 group was absence in momo bamboo, and gene structure and histidine-motifs remained highly conserved in each group. The expansion of PeFAD genes was mainly caused by tandem and segmental duplications of SAD/FAB2 group. We also identified 59 types of miRNAs targeting PeFAD genes. RNA-seq data indicated that PeFAD genes were transcribed in various organs/tissues with different degrees, and responded to abiotic stresses and hormone treatments, including cold, salt, drought, SA, ABA, BR, NAA and GA. Co-expression analysis under cold stress showed that PeCBF3 might directly bind the promoter of top cold-responsive PeSLD1 gene that contained LTR cis-element and DRE core element. The qRT-PCR assay also validated the expression pattern of PeSLD1 and its upstream regulatory gene PeCBF3. CONCLUSION In this study, we performed comprehensive genome-wide survey of PeFAD genes in moso bamboo and analyzed their expression patterns in various tissues and organs, and under abiotic stresses and phytohormones treatment. The qRT-PCR assay validated the cold inducibility of PeSLD1 and PeCBF3. This work showed critical roles of PeFAD genes in abiotic stresses responses. This is the first report on genome-wide analysis of PeFAD genes in moso bamboo, which will provide critical gene resources for molecular breeding of stress-toleranct moso bamboo.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China
| | - Qinchao Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China
| | - Shanshan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fangzhou Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, Leshan, China
| | - Ruoqi Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yaojun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan, China
| | - Yufei Xue
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Mu YP, Chen DY, Liu YJ, Zhu MY, Zhang X, Tang Y, Lin JL, Wang MY, Shangguan XX, Chen XY, Wang C, Mao YB. Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants. MOLECULAR PLANT 2024; 17:1687-1701. [PMID: 39318096 DOI: 10.1016/j.molp.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.
Collapse
Affiliation(s)
- Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dian-Yang Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming-Yu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Xia Shangguan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Lv W, Yang H, Zheng Q, Liao W, Chen L, Lian Y, Lin Q, Huo S, Rehman OU, Liu W, Zheng K, Zhang Y, Cao S. Identification and Expression Analysis of TCP Transcription Factors Under Abiotic Stress in Phoebe bournei. PLANTS (BASEL, SWITZERLAND) 2024; 13:3095. [PMID: 39520013 PMCID: PMC11548437 DOI: 10.3390/plants13213095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The TCP gene family encodes plant transcription factors crucial for regulating growth and development. While TCP genes have been identified in various species, they have not been studied in Phoebe bournei (Hemsl.). This study identified 29 TCP genes in the P. bournei genome, categorizing them into Class I (PCF) and Class II (CYC/TB1 and CIN). We conducted analyses on the PbTCP gene at both the protein level (physicochemical properties) and the gene sequence level (subcellular localization, chromosomal distribution, phylogenetic relationships, conserved motifs, and gene structure). Most P. bournei TCP genes are localized in the nucleus, except PbTCP9 in the mitochondria and PbTCP8 in both the chloroplast and nucleus. Chromosomal mapping showed 29 TCP genes unevenly distributed across 10 chromosomes, except chromosome 8 and 9. We also analyzed the promoter cis-regulatory elements, which are mainly involved in plant growth and development and hormone responses. Notably, most PbTCP transcription factors respond highly to light. Further analysis revealed three subfamily genes expressed in five P. bournei tissues: leaves, root bark, root xylem, stem xylem, and stem bark, with predominant PCF genes. Using qRT-PCR, we examined six representative genes-PbTCP16, PbTCP23, PbTCP7, PbTCP29, PbTCP14, and PbTCP15-under stress conditions such as high temperature, drought, light exposure, and dark. PbTCP14 and PbTCP15 showed significantly higher expression under heat, drought, light and dark stress. We hypothesize that TCP transcription factors play a key role in growth under varying light conditions, possibly mediated by auxin hormones. This work provides insights into the TCP gene family's functional characteristics and stress resistance regulation in P. bournei.
Collapse
Affiliation(s)
- Wenzhuo Lv
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hao Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Li Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanzi Zhang
- Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| |
Collapse
|
20
|
Acevedo FE. The Spotted Lanternfly Contains High Concentrations of Plant Hormones in its Salivary Glands: Implications in Host Plant Interactions. J Chem Ecol 2024; 50:799-806. [PMID: 39138763 DOI: 10.1007/s10886-024-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.
Collapse
Affiliation(s)
- Flor E Acevedo
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
21
|
Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6110-6124. [PMID: 38758708 PMCID: PMC11480657 DOI: 10.1093/jxb/erae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defences that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defence activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into their vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defence compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extensive periods, we address the question of whether during this time a constitutively regulated defence programme is switched on to provide further protection, via the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signalling pathways that might be involved in the interplay between dormancy and defence and point out questions that need further attention.
Collapse
Affiliation(s)
- Benjamin Hubert
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| |
Collapse
|
22
|
Asgari D, Stewart AJ, Meisel RP. The role of uncertainty and negative feedback loops in the evolution of induced immune defenses. G3 (BETHESDA, MD.) 2024; 14:jkae182. [PMID: 39106431 PMCID: PMC11457078 DOI: 10.1093/g3journal/jkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander J Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
23
|
Chen Y, Wang Y, Fu H, Zeng W, Wang P, Zheng X, Yang F. A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. PLANT MOLECULAR BIOLOGY 2024; 114:110. [PMID: 39361185 DOI: 10.1007/s11103-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.
Collapse
Affiliation(s)
- Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yanbo Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Zeng
- School of Economies and Management, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
24
|
Man KY, Chan CO, Wan SW, Kwok KWH, Capozzi F, Dong NP, Wong KH, Mok DKW. Untargeted foodomics for authenticating the organic farming of water spinach (Ipomoea aquatica). Food Chem 2024; 453:139545. [PMID: 38772304 DOI: 10.1016/j.foodchem.2024.139545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
This study aimed to conduct a comprehensive analysis of the primary and secondary metabolites of water spinach (Ipomoea aquatica) using hydrophilic interaction liquid chromatography coupled with Orbitrap high-resolution mass spectrometry (HILIC-Orbitrap-HRMS). Certified samples from two cultivars, Green stem water spinach (G) and White stem water spinach (W) cultivated using organic and conventional farming methods, were collected from the Hong Kong market. Multivariate analysis was used to differentiate water spinach of different cultivars and farming methods. We identified 12 metabolites to distinguish between G and W, 26 metabolites to identify G from organic farming and 8 metabolites to identify W from organic farming. Then, two metabolites, isorhamnetin and jasmonic acid, have been proposed to serve as biomarkers for organic farming (in both G and W). Our foodomics findings provide useful tools for improving the crop performance of water spinach under abiotic/biotic stressesand authentication of organic produce.
Collapse
Affiliation(s)
- Ka-Yi Man
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chi-On Chan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Siu-Wai Wan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kevin Wing Hin Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
| | - Nai-Ping Dong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China.
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Daniel Kam-Wah Mok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
25
|
Wang GL, Wu JQ, Chen YY, Xu YJ, An YH, Ren XQ, Xiong AS. Integrated volatile metabolome and transcriptome analyses provide insights into the warm aroma formation elicited by methyl jasmonate in carrot root. FRONTIERS IN PLANT SCIENCE 2024; 15:1467957. [PMID: 39376232 PMCID: PMC11457697 DOI: 10.3389/fpls.2024.1467957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Carrot is a highly significant vegetable cultivated worldwide and possesses a unique aroma with abundant edible and medicinal values. However, it remains largely unknown whether jasmonic acid could regulate aroma formation in carrot. Here, an integrated analysis of the volatile metabolome and transcriptome of carrot roots exposed to different concentrations of methyl jasmonate (MeJA) was performed. The results revealed 1,227 volatile organic compounds and 972 differential accumulated metabolites, with terpenes representing the largest portion. MeJA treatment evidently increased the relative odor activity values as well as the accumulation of most volatile compounds. In addition, 4,787 differentially expressed genes were identified and subjected to function enrichment analysis, indicating a role of terpene biosynthesis and metabolism in response to MeJA application. A network consisting of 4,680 transcription factor-structural pairs that showed highly significant positive correlations was constructed, which may be utilized as genetic targets for examining terpene accumulation and aroma formation elicited by methyl jasmonate. The results from the present work substantially improved our understanding of MeJA-mediated aroma formation in carrot.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaiyin Institute of Technology, Huaian, China
| | - Jia-Qi Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yang-Yang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yu-Jie Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaiyin Institute of Technology, Huaian, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
27
|
Kiani HS, Noudehi MS, Shokrpour M, Zargar M, Naghavi MR. Investigation of genes involved in scent and color production in Rosa damascena Mill. Sci Rep 2024; 14:20576. [PMID: 39242697 PMCID: PMC11379714 DOI: 10.1038/s41598-024-71518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.
Collapse
Affiliation(s)
- Hoda Sadat Kiani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Manijeh Sabokdast Noudehi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198.
| |
Collapse
|
28
|
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int J Mol Sci 2024; 25:9491. [PMID: 39273439 PMCID: PMC11395649 DOI: 10.3390/ijms25179491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.
Collapse
Affiliation(s)
- Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
29
|
Chen S, De Zutter N, Meijer A, Gistelinck K, Wytynck P, Verbeke I, Osterne VJS, Kondeti S, De Meyer T, Audenaert K, Van Damme EJM. Overexpression of the ribosome-inactivating protein OsRIP1 modulates the jasmonate signaling pathway in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1385477. [PMID: 39206039 PMCID: PMC11349648 DOI: 10.3389/fpls.2024.1385477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Ribosome-inactivating proteins (RIPs) are plant enzymes that target the rRNA. The cytoplasmic RIP, called OsRIP1, plays a crucial role in regulating jasmonate, a key plant hormone. Understanding the role of OsRIP1 can provide insights into enhancing stress tolerance and optimizing growth of rice. Transcription profiling by mRNA sequencing was employed to measure the changes in gene expression in rice plants in response to MeJA treatment. Compared to wild type (WT) plants, OsRIP1 overexpressing rice plants showed a lower increase in mRNA transcripts for genes related to jasmonate responses when exposed to MeJA treatment for 3 h. After 24 h of MeJA exposure, the mRNA transcripts associated with the gibberellin pathway occurred in lower levels in OsRIP1 overexpressing plants compared to WT plants. We hypothesize that the mechanism underlying OsRIP1 antagonization of MeJA-induced shoot growth inhibition involves cytokinin-mediated leaf senescence and positive regulation of cell cycle processes, probably via OsRIP1 interaction with 40S ribosomal protein S5 and α-tubulin. Moreover, the photosystem II 10kDa polypeptide was identified to favorably bind to OsRIP1, and its involvement may be attributed to the reduction of photosynthesis in OsRIP1-overexpressing plants subjected to MeJA at the early timepoint (3 h).
Collapse
Affiliation(s)
- Simin Chen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anikó Meijer
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Gistelinck
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pieter Wytynck
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Isabel Verbeke
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vinicius J. S. Osterne
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Subramanyam Kondeti
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Department of Data Analysis & Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Abbey L, Asiedu SK, Chada S, Ofoe R, Amoako PO, Owusu-Nketia S, Ajeethan N, Kumar AP, Nutsukpo EB. Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites 2024; 14:400. [PMID: 39195496 DOI: 10.3390/metabo14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Compost residue enriches soil health with the potential to enhance plant metabolism and hormonal balance, but has not yet been studied. A study was performed to determine how prevailing compost residue induces tomato (Solanum lycopersicum 'Scotia') plant morpho-physiology, phytohormones, and secondary metabolites. Plants were grown in soils with a previous history of annual (AN) and biennial (BI) compost amendments. The controls were soil without compost (C) amendment and municipal solid waste compost (MSWC) alone. The MSWC- and AN-plants had similar and significantly (p < 0.05) highest growth and photosynthetic activities compared to the BI- or C-plants. Total phenolics and lipid peroxidase activity were significantly (p < 0.001) high in BI-plants, while hydrogen peroxide and antioxidant capacity were significantly (p < 0.001) high in AN-plants. MSWC-plants recorded the highest cis-abscisic acid, followed by AN-, and then BI- and C-plants. Cis-zeatin, trans-zeatin, and isopentenyladenine ribosides were detected in the MSWC- and AN-plants but not in the BI- or C-plants. Furthermore, gibberellins GA53, GA19, and GA8 were high in the MSWC-plants, but only GA8 was detected in the AN plants and none in the others. Besides, MSWC plants exhibited the highest content of 1-aminocyclopropane-1-carboxylic acid. Conjugated salicylic acid was highest in the BI-plants, while jasmonic acid-isoleucine was highest in MSWC-plants and C plants. In conclusion, prevailing compost chemical residues upregulate plant growth, phytohormones, and metabolic compounds that can potentially increase plant growth and abiotic stress defense. Future work should investigate the flow of these compounds in plants under abiotic stress.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Samuel Kwaku Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Sparsha Chada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Peter Ofori Amoako
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Stella Owusu-Nketia
- Biotechnology Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon, Ghana
| | - Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Anagha Pradeep Kumar
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Efoo Bawa Nutsukpo
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| |
Collapse
|
31
|
Wang X, Luo X, Guo J, Yang N, Wan F, Lü Z, Liu W. An effector of Phthorimaea absoluta oral secretions inhibits host plant defense. iScience 2024; 27:110154. [PMID: 39050704 PMCID: PMC11267060 DOI: 10.1016/j.isci.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Insects have evolved effectors to regulate host defenses for efficient feeding, yet their impact on chewing insects, like the tomato leaf miner (Phthorimaea absoluta), a significant pest, is poorly understood. We used RNAi to target the REPAT38 gene in larvae, monitoring changes at 0.5, 1, 2, and 4 h in leaf stomata, plant hormone concentrations (jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA)), and 12 hormone-responsive genes to explore the molecular mechanism of REPAT38-mediated plant-insect interactions. The results showed that the effector induced stomatal closure at 0.5 h and inhibited the synthesis of JA, ET, and ABA at 1 h. Additionally, seven plant hormone-responsive genes-AOC, MYC2, ACS1A, PAL, PR1, EIL2, and SRK2E-were inhibited at various time points. Our data suggest that REPAT38, as an effector with conserved functions, can weaken tomato host defenses and conducive to insect adaptation to host plants.
Collapse
Affiliation(s)
- Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuqing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, P.R. China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
32
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
33
|
Erazo-Lara A, García-Pastor ME, Padilla-González PA, Valero D, Serrano M. Preharvest Elicitors as a Tool to Enhance Bioactive Compounds and Quality of Both Peel and Pulp of Yellow Pitahaya ( Selenicereus megalanthus Haw.) at Harvest and during Postharvest Storage. Int J Mol Sci 2024; 25:5435. [PMID: 38791472 PMCID: PMC11121277 DOI: 10.3390/ijms25105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.
Collapse
Affiliation(s)
- Alex Erazo-Lara
- Escuela Politécnica Superior de Chimborazo (ESPOCH), Sede Morona Santiago, Macas 140101, Ecuador;
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - María Emma García-Pastor
- Department of Applied Biology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - Pedro Antonio Padilla-González
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - Daniel Valero
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - María Serrano
- Department of Applied Biology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| |
Collapse
|
34
|
Lu H, Zheng S, Ma C, Gao X, Ji J, Luo J, Hua H, Cui J. Integrated Omics Analysis Reveals Key Pathways in Cotton Defense against Mirid Bug ( Adelphocoris suturalis Jakovlev) Feeding. INSECTS 2024; 15:254. [PMID: 38667384 PMCID: PMC11049813 DOI: 10.3390/insects15040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
The recent dominance of Adelphocoris suturalis Jakovlev as the primary cotton field pest in Bt-cotton-cultivated areas has generated significant interest in cotton pest control research. This study addresses the limited understanding of cotton defense mechanisms triggered by A. suturalis feeding. Utilizing LC-QTOF-MS, we analyzed cotton metabolomic changes induced by A. suturalis, and identified 496 differential positive ions (374 upregulated, 122 downregulated) across 11 categories, such as terpenoids, alkaloids, phenylpropanoids, flavonoids, isoflavones, etc. Subsequent iTRAQ-LC-MS/MS analysis of the cotton proteome revealed 1569 differential proteins enriched in 35 metabolic pathways. Integrated metabolome and proteome analysis highlighted significant upregulation of 17 (89%) proteases in the α-linolenic acid (ALA) metabolism pathway, concomitant with a significant increase in 14 (88%) associated metabolites. Conversely, 19 (73%) proteases in the fructose and mannose biosynthesis pathway were downregulated, with 7 (27%) upregulated proteases corresponding to the downregulation of 8 pathway-associated metabolites. Expression analysis of key regulators in the ALA pathway, including allene oxidase synthase (AOS), phospholipase A (PLA), allene oxidative cyclase (AOC), and 12-oxophytodienoate reductase3 (OPR3), demonstrated significant responses to A. suturalis feeding. Finally, this study pioneers the exploration of molecular mechanisms in the plant-insect relationship, thereby offering insights into potential novel control strategies against this cotton pest.
Collapse
Affiliation(s)
- Hui Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Green Agricultural Products Safety and Warning Laboratory, Research Center of Soil Resource Comprehensive Utilization and Ecological Environment in Western Inner Mongolia, Hetao College, Bayannur 015000, China
| | - Shuaichao Zheng
- Henan Institute of Science and Technology, College of Life Science, Hualan St. 90, Xinxiang 453003, China;
| | - Chao Ma
- Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China;
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| |
Collapse
|
35
|
Wu S, Hu C, Zhu C, Fan Y, Zhou J, Xia X, Shi K, Zhou Y, Foyer CH, Yu J. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. MOLECULAR PLANT 2024; 17:598-613. [PMID: 38341757 DOI: 10.1016/j.molp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanfen Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Horticulture, Northwest Agriculture & Forestry University, Xianyang 712100, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaojia Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Xie X, Lin M, Xiao G, Wang Q, Li Z. Identification and Characterization of the AREB/ABF Gene Family in Three Orchid Species and Functional Analysis of DcaABI5 in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:774. [PMID: 38592811 PMCID: PMC10974128 DOI: 10.3390/plants13060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
AREB/ABF (ABA response element binding) proteins in plants are essential for stress responses, while our understanding of AREB/ABFs from orchid species, important traditional medicinal and ornamental plants, is limited. Here, twelve AREB/ABF genes were identified within three orchids' complete genomes and classified into three groups through phylogenetic analysis, which was further supported with a combined analysis of their conserved motifs and gene structures. The cis-element analysis revealed that hormone response elements as well as light and stress response elements were widely rich in the AREB/ABFs. A prediction analysis of the orchid ABRE/ABF-mediated regulatory network was further constructed through cis-regulatory element (CRE) analysis of their promoter regions. And it revealed that several dominant transcriptional factor (TF) gene families were abundant as potential regulators of these orchid AREB/ABFs. Expression profile analysis using public transcriptomic data suggested that most AREB/ABF genes have distinct tissue-specific expression patterns in orchid plants. Additionally, DcaABI5 as a homolog of ABA INSENSITIVE 5 (ABI5) from Arabidopsis was selected for further analysis. The results showed that transgenic Arabidopsis overexpressing DcaABI5 could rescue the ABA-insensitive phenotype in the mutant abi5. Collectively, these findings will provide valuable information on AREB/ABF genes in orchids.
Collapse
Affiliation(s)
- Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Miaoyan Lin
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| |
Collapse
|
37
|
Wang R, Zhou T, Wang Y, Dong J, Bai Y, Huang X, Chen C. Exploring the allelopathic autotoxicity mechanism of ginsenosides accumulation under ginseng decomposition based on integrated analysis of transcriptomics and metabolomics. Front Bioeng Biotechnol 2024; 12:1365229. [PMID: 38515624 PMCID: PMC10955472 DOI: 10.3389/fbioe.2024.1365229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Continuous cropping obstacles seriously constrained the sustainable development of the ginseng industry. The allelopathic autotoxicity of ginsenosides is the key "trigger" of continuous cropping obstacles in ginseng. During harvest, the ginseng plants could be broken and remain in the soil. The decomposition of ginseng residue in soil is one of the important release ways of ginsenosides. Therefore, the allelopathic mechanism of ginsenosides through the decomposed release pathway needs an in-depth study. To investigate this allelopathic regulation mechanism, the integrated analysis of transcriptomics and metabolomics was applied. The prototype ginsenosides in ginseng were detected converse to rare ginsenosides during decomposition. The rare ginsenosides caused more serious damage to ginseng hairy root cells and inhibited the growth of ginseng hairy roots more significantly. By high-throughput RNA sequencing gene transcriptomics study, the significantly differential expressed genes (DEGs) were obtained under prototype and rare ginsenoside interventions. These DEGs were mainly enriched in the biosynthesis of secondary metabolites and metabolic pathways, phytohormone signal transduction, and protein processing in endoplasmic reticulum pathways. Based on the functional enrichment of DEGs, the targeted metabolomics analysis based on UPLC-MS/MS determination was applied to screen endogenous differential metabolized phytohormones (DMPs). The influence of prototype and rare ginsenosides on the accumulation of endogenous phytohormones was studied. These were mainly involved in the biosynthesis of diterpenoid, zeatin, and secondary metabolites, phytohormone signal transduction, and metabolic pathways. After integrating the transcriptomics and metabolomics analysis, ginsenosides could regulate the genes in phytohormone signaling pathways to influence the accumulation of JA, ABA, and SA. The conclusion was that the prototype ginsenosides were converted into rare ginsenosides by ginseng decomposition and released into the soil, which aggravated its allelopathic autotoxicity. The allelopathic mechanism was to intervene in the response regulation of genes related to the metabolic accumulation of endogenous phytohormones in ginseng. This result provides a reference for the in-depth study of continuous cropping obstacles of ginseng.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
38
|
Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. Int J Biol Macromol 2024; 262:129954. [PMID: 38336329 DOI: 10.1016/j.ijbiomac.2024.129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
A wide variety of microorganisms secretes extracellular polymeric substances or commonly known as exopolysaccharides (EPS), which have been studied to influence plant growth via various mechanisms. EPS-producing microorganisms have been found to have positive effects on plant health such as by facilitating nutrient entrapment in the soil, or by improving soil quality, especially by helping in mitigating various abiotic stress conditions. The various types of microbial polysaccharides allow for the compartmentalization of the microbial community enabling them to endure undressing stress conditions. With the growing population, there is a constant need for developing sustainable agriculture where we could use various PGPR to help the plant cope with various stress conditions and simultaneously enhance the crop yield. These polysaccharides have also found application in various sectors, especially in the biomedical fields, manifesting their potential to act as antitumor drugs, play a significant role in immune evasion, and reveal various therapeutic potentials. These constitute high levels of bioactive polysaccharides which possess a wide range of implementation starting from industrial applications to novel food applications. In this current review, we aim at presenting a comprehensive study of how these microbial extracellular polymeric substances influence agricultural productivity along with their other commercial applications.
Collapse
Affiliation(s)
- Sushreeta Paul
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Anusree Goswami
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
39
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
40
|
Zhang X, Yu Y, Zhang J, Qian X, Li X, Sun X. Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses. Int J Mol Sci 2024; 25:1079. [PMID: 38256153 PMCID: PMC10816084 DOI: 10.3390/ijms25021079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tea plants have to adapt to frequently challenging environments due to their sessile lifestyle and perennial evergreen nature. Jasmonates regulate not only tea plants' responses to biotic stresses, including herbivore attack and pathogen infection, but also tolerance to abiotic stresses, such as extreme weather conditions and osmotic stress. In this review, we summarize recent progress about jasmonaic acid (JA) biosynthesis and signaling pathways, as well as the underlying mechanisms mediated by jasmontes in tea plants in responses to biotic stresses and abiotic stresses. This review provides a reference for future research on the JA signaling pathway in terms of its regulation against various stresses of tea plants. Due to the lack of a genetic transformation system, the JA pathway of tea plants is still in the preliminary stages. It is necessary to perform further efforts to identify new components involved in the JA regulatory pathway through the combination of genetic and biochemical methods.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaona Qian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
41
|
Samanta S, Seth CS, Roychoudhury A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108259. [PMID: 38154293 DOI: 10.1016/j.plaphy.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Drought is undoubtedly a major environmental constraint that negatively affects agricultural yield and productivity throughout the globe. Plants are extremely vulnerable to drought which imposes several physiological, biochemical and molecular perturbations. Increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in different plant organs is one of the inevitable consequences of drought. ROS and RNS are toxic byproducts of metabolic reactions and poise oxidative stress and nitrosative stress that are detrimental for plants. In spite of toxic effects, these potentially active radicals also play a beneficial role in mediating several signal transduction events that lead to plant acclimation and enhanced survival under harsh environmental conditions. The precise understanding of ROS and RNS signaling and their molecular paradigm with different phytohormones, such as auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroids, strigolactones, jasmonic acid, salicylic acid and melatonin play a pivotal role for maintaining plant fitness and resilience to counteract drought toxicity. Therefore, the present review provides an overview of integrated systemic signaling between ROS, RNS and phytohormones during drought stress based on past and recent advancements and their influential role in conferring protection against drought-induced damages in different plant species. Indeed, it would not be presumptuous to hope that the detailed knowledge provided in this review will be helpful for designing drought-tolerant crop cultivars in the forthcoming times.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | | | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
42
|
Bisht N, Anshu A, Singh PC, Chauhan PS. Comprehensive analysis of OsJAZ gene family deciphers rhizobacteria-mediated nutrient stress modulation in rice. Int J Biol Macromol 2023; 253:126832. [PMID: 37709234 DOI: 10.1016/j.ijbiomac.2023.126832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in jasmonic acid signaling pathway that are critical for plant growth. Therefore, the present study aimed to identify and characterize OsJAZs in the rice genome, revealing their structural attributes, regulatory elements, miRNA interactions, and subcellular localization. 23 JAZ transcripts across the 6 chromosomes of rice genome were identified having conserved domains and different physiochemical characteristics. Phylogenetically classified into five clades, they showed highest syntenic relationship with P. virgatum. The non-synonymous/synonymous values ranged from 0.44 to 1.21 suggesting purifying/stabilizing selection in OsJAZs. The study examined the 1.5 kb promoter region for cis-regulatory elements, and also identified 92 miRNAs targets. Furthermore, homology modeling provided insights into the 3D-structures of JAZ proteins while in-silico gene expression analysis revealed their functional diversity in various tissues and developmental stages. Additionally, qRT-PCR analysis highlighted their involvement in stress adaptation to sub-optimum nutrient conditions induced by plant-beneficial rhizobacteria Bacillus amyloliquefaciens (SN13) in two rice varieties. Distinct OsJAZ expression patterns in the two varieties correlated with altered root architecture, xylem structure, and lignification. These findings affirmed that specific up-or down-regulation of OsJAZs might play critical role in SN13 induced changes in the two varieties that enabled them to survive under stress.
Collapse
Affiliation(s)
- Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshu Anshu
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Poonam C Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
43
|
Rehman M, Saeed MS, Fan X, Salam A, Munir R, Yasin MU, Khan AR, Muhammad S, Ali B, Ali I, Khan J, Gan Y. The Multifaceted Role of Jasmonic Acid in Plant Stress Mitigation: An Overview. PLANTS (BASEL, SWITZERLAND) 2023; 12:3982. [PMID: 38068618 PMCID: PMC10708320 DOI: 10.3390/plants12233982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2025]
Abstract
Plants, being sessile, have developed complex signaling and response mechanisms to cope with biotic and abiotic stressors. Recent investigations have revealed the significant contribution of phytohormones in enabling plants to endure unfavorable conditions. Among these phytohormones, jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates (JAs), are of particular importance and are involved in diverse signal transduction pathways to regulate various physiological and molecular processes in plants, thus protecting plants from the lethal impacts of abiotic and biotic stressors. Jasmonic acid has emerged as a central player in plant defense against biotic stress and in alleviating multiple abiotic stressors in plants, such as drought, salinity, vernalization, and heavy metal exposure. Furthermore, as a growth regulator, JA operates in conjunction with other phytohormones through a complex signaling cascade to balance plant growth and development against stresses. Although studies have reported the intricate nature of JA as a biomolecular entity for the mitigation of abiotic stressors, their underlying mechanism and biosynthetic pathways remain poorly understood. Therefore, this review offers an overview of recent progress made in understanding the biosynthesis of JA, elucidates the complexities of its signal transduction pathways, and emphasizes its pivotal role in mitigating abiotic and biotic stressors. Moreover, we also discuss current issues and future research directions for JAs in plant stress responses.
Collapse
Affiliation(s)
- Muhammad Rehman
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Muhammad Sulaman Saeed
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Raheel Munir
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Muhammad Umair Yasin
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Sajid Muhammad
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Bahar Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| | - Imran Ali
- Department of Botany, Kohat University Science and Technology, Kohat 26000, Pakistan
| | - Jamshaid Khan
- Department of Biotechnology and Genetic Engineering, Kohat University Science and Technology, Kohat 26000, Pakistan
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.R.)
| |
Collapse
|
44
|
Xia R, Xu L, Hao J, Zhang L, Wang S, Zhu Z, Yu Y. Transcriptome Dynamics of Brassica juncea Leaves in Response to Omnivorous Beet Armyworm ( Spodoptera exigua, Hübner). Int J Mol Sci 2023; 24:16690. [PMID: 38069011 PMCID: PMC10706706 DOI: 10.3390/ijms242316690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
Cruciferous plants manufacture glucosinolates (GSLs) as special and important defense compounds against insects. However, how insect feeding induces glucosinolates in Brassica to mediate insect resistance, and how plants regulate the strength of anti-insect defense response during insect feeding, remains unclear. Here, mustard (Brassica juncea), a widely cultivated Brassica plant, and beet armyworm (Spodoptera exigua), an economically important polyphagous pest of many crops, were used to analyze the changes in GSLs and transcriptome of Brassica during insect feeding, thereby revealing the plant-insect interaction in Brassica plants. The results showed that the content of GSLs began to significantly increase after 48 h of herbivory by S. exigua, with sinigrin as the main component. Transcriptome analysis showed that a total of 8940 DEGs were identified in mustard challenged with beet armyworm larvae. The functional enrichment results revealed that the pathways related to the biosynthesis of glucosinolate and jasmonic acid were significantly enriched by upregulated DEGs, suggesting that mustard might provide a defense against herbivory by inducing JA biosynthesis and then promoting GSL accumulation. Surprisingly, genes regulating JA catabolism and inactivation were also activated, and both JA signaling repressors (JAZs and JAMs) and activators (MYCs and NACs) were upregulated during herbivory. Taken together, our results indicate that the accumulation of GSLs regulated by JA signaling, and the regulation of active and inactive JA compound conversion, as well as the activation of JA signaling repressors and activators, collectively control the anti-insect defense response and avoid over-stunted growth in mustard during insect feeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (R.X.); (L.X.); (J.H.); (L.Z.); (S.W.)
| | - Youjian Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (R.X.); (L.X.); (J.H.); (L.Z.); (S.W.)
| |
Collapse
|
45
|
Bai S, Long J, Cui Y, Wang Z, Liu C, Liu F, Wang Z, Li Q. Regulation of hormone pathways in wheat infested by Blumeria graminis f. sp. tritici. BMC PLANT BIOLOGY 2023; 23:554. [PMID: 37940874 PMCID: PMC10634187 DOI: 10.1186/s12870-023-04569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Wheat powdery mildew is an obligate biotrophic pathogen infecting wheat, which can pose a serious threat to wheat production. In this study, transcriptome sequencing was carried out on wheat leaves infected by Blumeria graminis f. sp. tritici from 0 h to 7 d. RESULTS KEGG and GO enrichment analysis revealed that the upstream biosynthetic pathways and downstream signal transduction pathways of salicylic acid, jasmonic acid, and ethylene were highly enriched at all infection periods. Trend analysis showed that the expressions of hormone-related genes were significantly expressed from 1 to 4 d, suggesting that 1 d-4 d is the main period in which hormones play a defensive role. During this period of time, the salicylic acid pathway was up-regulated, while the jasmonic acid and ethylene pathways were suppressed. Meanwhile, four key modules and 11 hub genes were identified, most of which were hormone related. CONCLUSION This study improves the understanding of the dynamical responses of wheat to Blumeria graminis f. sp. tritici infestation at the transcriptional level and provides a reference for screening core genes regulated by hormones.
Collapse
Affiliation(s)
- Shuangyu Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jiaohui Long
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yuanyuan Cui
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Zhaoyi Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Fenglou Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Zhangjun Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Qingfeng Li
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
46
|
Ren X, Chen J, Chen S, Zhang H, Li L. Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2023; 14:2046. [PMID: 38002989 PMCID: PMC10671770 DOI: 10.3390/genes14112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) genes encode signaling peptides that play important roles in various developmental and physiological processes. However, the systematic identification and characterization of CLE genes in foxtail millet (Setaria italica L.) remain limited. In this study, we identified and characterized 41 SiCLE genes in the foxtail millet genome. These genes were distributed across nine chromosomes and classified into four groups, with five pairs resulting from gene duplication events. SiCLE genes within the same phylogenetic group shared similar gene structure and motif patterns, while 34 genes were found to be single-exon genes. All SiCLE peptides harbored the conserved C-terminal CLE domain, with highly conserved positions in the CLE core sequences shared among foxtail millet, Arabidopsis, rice, and maize. The SiCLE genes contained various cis-elements, including five plant hormone-responsive elements. Notably, 34 SiCLE genes possessed more than three types of phytohormone-responsive elements on their promoters. Comparative analysis revealed higher collinearity between CLE genes in maize and foxtail millet, which may be because they are both C4 plants. Tissue-specific expression patterns were observed, with genes within the same group exhibiting similar and specific expression profiles. SiCLE32 and SiCLE41, classified in Group D, displayed relatively high expression levels in all tissues except panicles. Most SiCLE genes exhibited low expression levels in young panicles, while SiCLE6, SiCLE24, SiCLE25, and SiCLE34 showed higher expression in young panicles, with SiCLE24 down-regulated during later panicle development. Greater numbers of SiCLE genes exhibited higher expression in roots, with SiCLE7, SiCLE22, and SiCLE36 showing the highest levels and SiCLE36 significantly down-regulated after abscisic acid (ABA) treatment. Following treatments with ABA, 6-benzylaminopurine (6-BA), and gibberellic acid 3 (GA3), most SiCLE genes displayed down-regulation followed by subsequent recovery, while jasmonic acid (JA) and indole-3-acetic acid (IAA) treatments led to upregulation at 30 min in leaves. Moreover, identical hormone treatments elicited different expression patterns of the same genes in leaves and stems. This comprehensive study enhances our understanding of the SiCLE gene family and provides a foundation for further investigations into the functions and evolution of SiCLE genes in foxtail millet.
Collapse
|
47
|
Riboni N, Bianchi F, Mattarozzi M, Caldara M, Gullì M, Graziano S, Maestri E, Marmiroli N, Careri M. Ultra-high Performance Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry to Evaluate the Metabolomic Response of Durum Wheat to Sustainable Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15407-15416. [PMID: 37796632 PMCID: PMC10591464 DOI: 10.1021/acs.jafc.3c04532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Sustainable agriculture aims at achieving a healthy food production while reducing the use of fertilizers and greenhouse gas emissions using biostimulants and soil amendments. Untargeted metabolomics by ultra-high performance liquid chromatography-ion mobility-high-resolution mass spectrometry, operating in a high-definition MSE mode, was applied to investigate the metabolome of durum wheat in response to sustainable treatments, i.e., the addition of biochar, commercial plant growth promoting microbes, and their combination. Partial least squares-discriminant analysis provided a good discrimination among treatments with sensitivity, specificity, and a non-error rate close to 1. A total of 88 and 45 discriminant compounds having biological, nutritional, and technological implications were tentatively identified in samples grown in 2020 and 2021. The addition of biochar-biostimulants produced the highest up-regulation of lipids and flavonoids, with the glycolipid desaturation being the most impacted pathway, whereas carbohydrates were mostly down-regulated. The findings achieved suggest the safe use of the combined biochar-biostimulant treatment for sustainable wheat cultivation.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Federica Bianchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Center
for Energy and Environment (CIDEA), Centro Santa Elisabetta, University of Parma, Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Marina Caldara
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Elena Maestri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Centro
Santa Elisabetta, National Interuniversity
Center for Environmental Sciences (CINSA), Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Maria Careri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
48
|
Derevyanchuk M, Kretynin S, Bukhonska Y, Pokotylo I, Khripach V, Ruelland E, Filepova R, Dobrev PI, Martinec J, Kravets V. Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3586. [PMID: 37896049 PMCID: PMC10609748 DOI: 10.3390/plants12203586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.
Collapse
Affiliation(s)
- Michael Derevyanchuk
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Serhii Kretynin
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Yaroslava Bukhonska
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Igor Pokotylo
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Eric Ruelland
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Roberta Filepova
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Volodymyr Kravets
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| |
Collapse
|
49
|
Han S, Shen Z, Gao Q, Jin N, Lou Y. Knocking Out OsRLK7-1 Impairs Rice Growth and Development but Enhances Its Resistance to Planthoppers. Int J Mol Sci 2023; 24:14569. [PMID: 37834016 PMCID: PMC10572756 DOI: 10.3390/ijms241914569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are an important subfamily of receptor-like kinases (RLKs) in plants that play key roles in sensing different biotic and abiotic stress. However, the role of LRR-RLKs in herbivore-induced plant defense remains largely elusive. Here, we found that the expression of a rice gene, OsRLK7-1, was induced by mechanical wounding, but was slightly suppressed by the infestation of gravid females of brown planthopper (BPH, Nilaparvata lugens) or white-backed planthopper (WBPH, Sogatella furcifera). Through targeted disruption of OsRLK7-1 (resulting in the ko-rlk lines), we observed an augmentation in transcript levels of BPH-induced OsMPK3, OsWRKY30, OsWRKY33, and OsWRKY45, alongside heightened levels of planthopper-induced jasmonic acid, JA-isoleucine, and abscisic acid in plant tissues. These dynamic changes further facilitated the biosynthesis of multiple phenolamides within the rice plants, culminating in an enhanced resistance to planthopper infestations under both lab and field conditions. In addition, knocking out OsRLK7-1 impaired plant growth and reproduction. These results suggest that OsRLK7-1 plays an important role in regulating rice growth, development, and rice-planthopper interactions.
Collapse
Affiliation(s)
- Shanjie Han
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifan Shen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Gao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nuo Jin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
50
|
Yang L, Sun Q, Geng B, Shi J, Zhu H, Sun Y, Yang Q, Yang B, Guo Z. Jasmonate biosynthesis enzyme allene oxide cyclase 2 mediates cold tolerance and pathogen resistance. PLANT PHYSIOLOGY 2023; 193:1621-1634. [PMID: 37392433 DOI: 10.1093/plphys/kiad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 07/03/2023]
Abstract
Allene oxide cyclase (AOC) is a key enzyme in the biosynthesis of jasmonic acid (JA), which is involved in plant growth and development as well as adaptation to environmental stresses. We identified the cold- and pathogen-responsive AOC2 gene from Medicago sativa subsp. falcata (MfAOC2) and its homolog MtAOC2 from Medicago truncatula. Heterologous expression of MfAOC2 in M. truncatula enhanced cold tolerance and resistance to the fungal pathogen Rhizoctonia solani, with greater accumulation of JA and higher transcript levels of JA downstream genes than in wild-type plants. In contrast, mutation of MtAOC2 reduced cold tolerance and pathogen resistance, with less accumulation of JA and lower transcript levels of JA downstream genes in the aoc2 mutant than in wild-type plants. The aoc2 phenotype and low levels of cold-responsive C-repeat-binding factor (CBF) transcripts could be rescued by expressing MfAOC2 in aoc2 plants or exogenous application of methyl jasmonate. Compared with wild-type plants, higher levels of CBF transcripts were observed in lines expressing MfAOC2 but lower levels of CBF transcripts were observed in the aoc2 mutant under cold conditions; superoxide dismutase, catalase, and ascorbate-peroxidase activities as well as proline concentrations were higher in MfAOC2-expressing lines but lower in the aoc2 mutant. These results suggest that expression of MfAOC2 or MtAOC2 promotes biosynthesis of JA, which positively regulates expression of CBF genes and antioxidant defense under cold conditions and expression of JA downstream genes after pathogen infection, leading to greater cold tolerance and pathogen resistance.
Collapse
Affiliation(s)
- Lei Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiguo Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Bohao Geng
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|