1
|
Zhang W, Jing X, Li B, Wu X. Clearance of Cell-Free DNA: A Novel Target for Therapeutic Utilization in Multiple Systemic Disorders. ACS Biomater Sci Eng 2025; 11:2069-2079. [PMID: 40178087 DOI: 10.1021/acsbiomaterials.5c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Cell-free DNA (cfDNA) holds significant promise for diagnostic and therapeutic advancements in medicine. This review delineates the utility of cfDNA in diagnostics and its therapeutic potential through clearance mechanisms for an array of diseases. Damage-associated molecular patterns (DAMPs) are endogenous molecules released by host cells during stress, or injury. As a trigger for inflammatory responses via damage-associated molecular patterns (DAMPs), cfDNA's removal via nanotechnological approaches can attenuate inflammation and promote tissue repair. While the application of cfDNA clearance is particularly auspicious in cancer, sepsis, and inflammatory conditions, it is confronted with challenges including toxicity, specificity, and the rigors of clinical trial validation. Collectively, this review delineates novel therapeutic targets to inform the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Wenjun Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| |
Collapse
|
2
|
Singh R, Gaur SK, Nagar R, Kaul R. Insights into the different mechanisms of Autophagy and Apoptosis mediated by Morbilliviruses. Virology 2025; 603:110371. [PMID: 39742556 DOI: 10.1016/j.virol.2024.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Viruses are obligate intracellular parasites that have co-evolved with the host. During the course of evolution, viruses have acquired abilities to abrogate the host's immune responses by modulating the host proteins which play a pivotal role in various biological processes. One such process is the programmed cell death in virus-infected cells, which can occur via autophagy or apoptosis. Morbilliviruses are known to modulate both autophagy and apoptosis. Upon infecting a cell, the morbilliviruses can utilize autophagosomes as their nest and delay the host defense apoptotic response, and/or can promote apoptosis to escalate the virus dissemination. Moreover, there is an active interplay between these two pathways which eventually decides the fate of a virus-infected cell. Recent advances in our understanding of these processes provide a potential rationale to further explore morbilliviruses for therapeutic purposes.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rakhi Nagar
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
3
|
Popović ME, Tadić V, Popović M. (R)evolution of Viruses: Introduction to biothermodynamics of viruses. Virology 2025; 603:110319. [PMID: 39642612 DOI: 10.1016/j.virol.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
As of 26 April 2024, the International Committee on Taxonomy of Viruses has registered 14690 virus species. Of these, only several dozen have been chemically and thermodynamically characterized. Every virus species is characterized by a specific empirical formula and thermodynamic properties - enthalpy, entropy and Gibbs energy. These physical properties are used in a mechanistic model of virus-host interactions at the cell membrane and in the cytoplasm. This review article presents empirical formulas and Gibbs energies for all major variants of SARS-CoV-2. This article also reports and suggests a mechanistic model of evolutionary changes, with the example of time evolution of SARS-CoV-2 from 2019 to 2024.
Collapse
Affiliation(s)
- Marko E Popović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Vojin Tadić
- Department for Experimental Testing of Precious Metals, Mining and Metallurgy Institute, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Marta Popović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
4
|
Tu Z, Tang L, Shen H, Hu M, Chen F, Wang X, Abo-Raya MH, Wang Y. Molecular insights into the physiological impact of low-frequency noise on sea slug Onchidium reevesii: Activation of p53 signaling and oxidative stress response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123481. [PMID: 39626391 DOI: 10.1016/j.jenvman.2024.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
To investigate the regulatory role of tumor protein p53 of sea slug (Onchidium reevesii) under oxidative stress conditions, we examined the response mechanisms of O. reevesii to low-frequency noise pollution (1000 Hz) using molecular and cellular biology techniques. We successfully cloned the O. reevesii p53 gene (Orp53) from O. reevesii, obtaining a 3356 bp sequence containing a 2727 bp open reading frame (ORF). Phylogenetic analysis revealed that O. reevesii shares a close evolutionary relationship with other molluscs, including Bulinus truncatus and Elysia marginata. Expression analysis showed that Orp53 is expressed across various tissues, with the highest expression levels in the hepatopancreas. Using RNA interference (RNAi) to silence the Orp53 gene, we found that the mRNA expressions of Orp53 and its downstream apoptosis-related genes, including cytochrome C (Cyt_C), Caspase 9, and Caspase 3, were significantly suppressed until the third day of interference (P < 0.05). Moreover, sip53 treatment resulted in significant reductions in the mRNA expression and protein levels of all studied genes (P < 0.05) compared to the noise-exposed group. In addition, the low-frequency noise exposure decreased central nervous system (CNS) viability while increasing oxidative stress markers, including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST). On the other hand, silencing Orp53 expression via siRNA resulted in significant reductions in CNS cell viability (P < 0.05). Our study establishes a molecular basis for evaluating the consequences of marine noise pollution, confirming that low-frequency noise activates the p53 signaling pathway, oxidative stress, and that p53 can regulate oxidative stress and apoptosis-related genes.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Feng Chen
- Fisheries Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Xiaotong Wang
- Yantai Engineering Laboratory of Development and Utilization of Characteristic Marine Organisms, Ludong University, Yantai, 264025, China
| | - Mohamed H Abo-Raya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China.
| |
Collapse
|
5
|
Yang HJ, Kwon EB, Kim YS, Choi JG, Li W, Na M. Antiviral-effect of nitrogen-containing compounds isolated from Sarcodon imbricatus on influenza A virus through regulation of ZBP-1 mediated necroptosis. Biomed Pharmacother 2025; 182:117732. [PMID: 39671721 DOI: 10.1016/j.biopha.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
This study focuses on the elucidation of the structure and antiviral properties of six nitrogen-containing compounds including amino acid derivates (1 and 2) and heterocyclic compounds (3-6) isolated from the fruiting bodies of Sarcodon imbricatus, particularly Compound 2, an (S)-2-(hydroxyimino)-3-methylpentanoic acid ethyl ester. Their antiviral effects were tested against influenza A virus (IAV) in A549 cells. Particularly, Compound 2 exhibited significant antiviral activity in post-treatment assays, reducing viral protein expression and inhibiting viral replication with an IC50 of 14.9 μmol/L. Additionally, it demonstrated anti-inflammatory effects by reducing levels of cytokines such as TNF-α, IL-6 and IL-1β as well as the oxidative stress induced by IAV infection, while inhibiting necroptosis, a form of programmed cell death associated with inflammation. Thus, our findings demonstrate the antiviral and anti-inflammatory properties of Compound 2, making it a promising candidate for further research as an anti-influenza agent.
Collapse
Affiliation(s)
- Hye Jin Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Okura T, Takahashi T, Kameya T, Mizukoshi F, Nakai Y, Kakizaki M, Nishi M, Otsuki N, Kimura H, Miyakawa K, Shirato K, Kamitani W, Ryo A. MARCH8 Restricts RSV Replication by Promoting Cellular Apoptosis Through Ubiquitin-Mediated Proteolysis of Viral SH Protein. Viruses 2024; 16:1935. [PMID: 39772241 PMCID: PMC11680241 DOI: 10.3390/v16121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein. We demonstrated that MARCH8 directly interacts with RSV-SH and catalyzes its ubiquitination at lysine 13, leading to SH degradation via the ubiquitin-lysosomal pathway. Functionally, MARCH8 expression enhances RSV-induced apoptosis through SH degradation, ultimately reducing viral titers. Conversely, an RSV strain harboring the SH-K13R mutation exhibited prolonged SH protein stability and attenuated apoptosis in infected cells, even in the presence of MARCH8. Targeted depletion of MARCH8 enhances cellular survival and potentially increases viral persistence. These findings demonstrate that MARCH8 promotes the early elimination of virus-infected cells by abrogating the anti-apoptotic function of SH, thereby reducing viral transmission. Our study provides novel insights into the interplay between host restriction factors and viral evasion strategies, potentially providing new therapeutic approaches for RSV infections.
Collapse
Affiliation(s)
- Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Tatsuki Takahashi
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (T.T.); (W.K.)
| | - Taichi Kameya
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Chuo-ku 259-1146, Kanagawa, Japan
| | - Fuminori Mizukoshi
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Yusuke Nakai
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Masatoshi Kakizaki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Mayuko Nishi
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Noriyuki Otsuki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki 370-0006, Gunma, Japan;
| | - Kei Miyakawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan;
- Department of Microbiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan; (T.T.); (W.K.)
| | - Akihide Ryo
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (T.K.); (F.M.); (Y.N.); (M.K.); (M.N.); (N.O.); (K.S.)
- Department of Microbiology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| |
Collapse
|
7
|
Manna S, Agrawal R, Yadav T, Kumar TA, Kumari P, Dalai A, Kanade S, Balasubramanian N, Singh A, Chakrapani H. Orthogonal Persulfide Generation through Precision Tools Provides Insights into Mitochondrial Sulfane Sulfur. Angew Chem Int Ed Engl 2024; 63:e202411133. [PMID: 39091222 DOI: 10.1002/anie.202411133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
The sulfane sulfur pool, comprised of persulfide (RS-SH) and polysulfide (RS-SnH) derived from hydrogen sulfide (H2S), has emerged as a major player in redox biochemistry. Mitochondria, besides energy generation, serve as significant cellular redox hubs, mediate stress response and cellular health. However, the effects of endogenous mitochondrial sulfane sulfur (MSS) remain largely uncharacterized as compared with their cytosolic counterparts, cytosolic sulfane sulfur (CSS). To investigate this, we designed a novel artificial substrate for mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST), a key enzyme involved in MSS biosynthesis. Using cells expressing a mitochondrion-localized persulfide biosensor, we demonstrate this tool's ability to selectively enhance MSS. While H2S was previously known to suppress human immunodeficiency virus (HIV-1), we found that MSS profoundly affected the HIV-1 life cycle, mediating viral reactivation from latency. Additionally, we provide evidence for the role of the host's mitochondrial redox state, membrane potential, apoptosis, and respiration rates in managing HIV-1 latency and reactivation. Together, dynamic fluctuations in the MSS pool have a significant and possibly conflicting effect on HIV-1 viral latency. The precision tools developed herein allow for orthogonal generation of persulfide within both mitochondria and the cytosol and will be useful in interrogating disease biology.
Collapse
Affiliation(s)
- Suman Manna
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Pooja Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Aadishakti Dalai
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Shaunak Kanade
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Nagaraj Balasubramanian
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| |
Collapse
|
8
|
Gong Y, Yong D, Liu G, Xu J, Ding J, Jia W. A Novel Self-Amplifying mRNA with Decreased Cytotoxicity and Enhanced Protein Expression by Macrodomain Mutations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402936. [PMID: 39313862 DOI: 10.1002/advs.202402936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/13/2024] [Indexed: 09/25/2024]
Abstract
The efficacy and safety of self-amplifying mRNA (saRNA) have been demonstrated in COVID-19 vaccine applications. Unlike conventional non-replicating mRNA (nrmRNA), saRNA offers a key advantage: its self-replication mechanism fosters efficient expression of the encoded protein, leading to substantial dose savings during administration. Consequently, there is a growing interest in further optimizing the expression efficiency of saRNA. In this study, in vitro adaptive passaging of saRNA is conducted under exogenous interferon pressure, which revealed several mutations in the nonstructural protein (NSP). Notably, two stable mutations, Q48P and I113F, situated in the NSP3 macrodomain (MD), attenuated its mono adenosine diphosphate ribose (MAR) hydrolysis activity and exhibited decreased replication but increased payload expression compared to wild-type saRNA (wt saRNA). Transcriptome sequencing analysis unveils diminished activation of the double-stranded RNA (dsRNA) sensor and, consequently, a significantly reduced innate immune response compared to wt saRNA. Furthermore, the mutant saRNA demonstrated less translation inhibition and cell apoptosis than wt saRNA, culminating in higher protein expression both in vitro and in vivo. These findings underscore the potential of reducing saRNA replication-dependent dsRNA-induced innate immune responses through genetic modification as a valuable strategy for optimizing saRNA, enhancing payload translation efficiency, and mitigating saRNA cytotoxicity.
Collapse
Affiliation(s)
- Yue Gong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Danni Yong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Gensheng Liu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jiang Xu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| | - William Jia
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| |
Collapse
|
9
|
Zheng X, Zhang Y, Zhang L, Yang T, Zhang F, Wang X, Zhu SJ, Cui N, Lv H, Zhang X, Li H, Liu W. Taurolithocholic acid protects against viral haemorrhagic fever via inhibition of ferroptosis. Nat Microbiol 2024; 9:2583-2599. [PMID: 39294459 DOI: 10.1038/s41564-024-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
Bile acids are microbial metabolites that can impact infection of enteric and hepatitis viruses, but their functions during systemic viral infection remain unclear. Here we show that elevated levels of the secondary bile acid taurolithocholic acid (TLCA) are associated with reduced fatality rates and suppressed viraemia in patients infected with severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging tick-borne haemorrhagic fever virus. TLCA inhibits viral replication and mitigates host inflammation during SFTSV infection in vitro, and indirectly suppresses SFTSV-mediated induction of ferroptosis by upregulating fatty acid desaturase 2 via the TGR5-PI3K/AKT-SREBP2 axis. High iron and ferritin serum levels during early infection were correlated with decreased TLCA levels and fatal outcomes in SFTSV-infected patients, indicating potential biomarkers. Furthermore, treatment with either ferroptosis inhibitors or TLCA protected mice from lethal SFTSV infection. Our findings highlight the therapeutic potential of bile acids to treat haemorrhagic fever viral infection.
Collapse
Affiliation(s)
- Xiaojie Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Lingyu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Faxue Zhang
- School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Xi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- Graduate School of Anhui Medical University, Hefei, People's Republic of China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ning Cui
- The 154th Hospital, Xinyang, People's Republic of China
| | - Hongdi Lv
- The 154th Hospital, Xinyang, People's Republic of China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- School of Public Health, Wuhan University, Wuhan, People's Republic of China.
- Graduate School of Anhui Medical University, Hefei, People's Republic of China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- School of Public Health, Wuhan University, Wuhan, People's Republic of China.
- Graduate School of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
10
|
Cao S, Zhang L, Zhou M, Zhu S. Transcriptomic insights into pseudorabies virus suppressed cell death pathways in neuroblastoma cells. Front Microbiol 2024; 15:1430396. [PMID: 39364165 PMCID: PMC11447949 DOI: 10.3389/fmicb.2024.1430396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Pseudorabies virus (PRV) exhibits a complex interplay of host-pathogen interactions, primarily by modulating host cell death pathways to optimize its replication and spread in Neuro-2a cells. Using high-throughput RNA sequencing, we identified 2,382 upregulated differentially expressed genes (DEGs) and 3,998 downregulated DEGs, indicating a intricate interaction between viral pathogenesis and host cellular responses. This research offers valuable insights into the molecular processes involved in PRV infection, highlighting the substantial inhibition of crucial cell death pathways in Neuro-2a cells, including necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. Cells infected with PRV exhibit decreased expression of genes critical in these pathways, potentially as a mechanism to avoid host immune reactions and ensure cell survival to support ongoing viral replication. This extensive inhibition of apoptosis and metabolic alterations highlights the sophisticated tactics utilized by PRV, enhancing our comprehension of herpesvirus biology and the feasibility of creating specific antiviral treatments. This research contributes to our understanding of how viruses manipulate host cell death and presents potential opportunities for therapeutic interventions to disrupt the virus's lifecycle.
Collapse
Affiliation(s)
| | | | - Mo Zhou
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Shanyuan Zhu
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| |
Collapse
|
11
|
Guo M, Ye YD, Cai JP, Xu HT, Wei W, Sun JY, Wang CY, Wang CB, Li YH, Zhu B. PEG-SeNPs as therapeutic agents inhibiting apoptosis and inflammation of cells infected with H1N1 influenza A virus. Sci Rep 2024; 14:21318. [PMID: 39266597 PMCID: PMC11393426 DOI: 10.1038/s41598-024-71486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
The rapid variation of influenza challenges vaccines and treatments, which makes an urgent task to develop the high-efficiency and low-toxicity new anti-influenza virus drugs. Selenium is one of the essential trace elements for the human body that possesses a good antiviral activity. In this study, we assessed anti-influenza A virus (H1N1) activity of polyethylene glycol (PEG)-modified gray selenium nanoparticles (PEG-SeNPs) on Madin-Darby Canine Kidney (MDCK) cells in vitro. CCK-8 assay showed that PEG-SeNPs had a protective effect on H1N1-infected MDCK cells. Moreover, PEG-SeNPs significantly reduced the mRNA level of H1N1. TUNEL-DAPI test showed that DNA damage reached a high level but effectively prevented after PEG-SeNPs treatment. Meanwhile, JC-1, Annexin V-FITC and cell cycle assay demonstrated the apoptosis induced by H1N1 was reduced greatly when treated with PEG-SeNPs. Furthermore, the downregulation of p-ATM, p-ATR and P53 protein, along with the upregualation of AKT protein indicated that PEG-SeNPs could inhibit H1N1-induced cell apoptosis through reactive oxygen species (ROS)-mediated related signaling pathways. Finally, Cytokine detection demonstrated PEG-SeNPs inhibited the production of pro-inflammatory factors after infection, including IL-1β, IL-5, IL-6, and TNF-α. To sum up, PEG-SeNPs might become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.
Collapse
Affiliation(s)
- Min Guo
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Yu-Dan Ye
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Tong Xu
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Wei Wei
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Jia-Yu Sun
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Chen-Yang Wang
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Chang-Bing Wang
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Ying-Hua Li
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China.
| | - Bing Zhu
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China.
| |
Collapse
|
12
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
13
|
Roohi A, Gharagozlou S. Vitamin D supplementation and calcium: Many-faced gods or nobody in fighting against Corona Virus Disease 2019. Clin Nutr ESPEN 2024; 62:172-184. [PMID: 38901939 DOI: 10.1016/j.clnesp.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
In December 2019, Corona Virus Disease 2019 (COVID-19) was first identified and designated as a pandemic in March 2020 due to rapid spread of the virus globally. At the beginning of the pandemic, only a few treatment options, mainly focused on supportive care and repurposing medications, were available. Due to its effects on immune system, vitamin D was a topic of interest during the pandemic, and researchers investigated its potential impact on COVID-19 outcomes. However, the results of studies about the impact of vitamin D on the disease are inconclusive. In the present narrative review, different roles of vitamin D regarding the COVID-19 have been discussed to show that vitamin D supplementation should be recommended carefully.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
14
|
Ulupinar P, Çağlayan E, Rayaman E, Nagata K, Turan K. The mitochondrial carrier homolog 2 is involved in down-regulation of influenza A virus replication. Mol Biol Rep 2024; 51:642. [PMID: 38727866 DOI: 10.1007/s11033-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.
Collapse
Affiliation(s)
- Pınar Ulupinar
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Elif Çağlayan
- University of Health Sciences, Kartal Koşuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
| | - Erkan Rayaman
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| |
Collapse
|
15
|
Cheng W, Ren Y, Yu C, Zhou T, Zhang Y, Lu L, Liu Y, Xu D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109400. [PMID: 38253137 DOI: 10.1016/j.fsi.2024.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.
Collapse
Affiliation(s)
- Wenjie Cheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yilin Ren
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Zhao Z, Zhang Y, Luo B. The role of pyroptosis in viral infection. Arch Virol 2024; 169:69. [PMID: 38456965 DOI: 10.1007/s00705-024-05978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024]
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death, which is an important natural immune response. Pyroptosis plays a major role in combating pathogenic infections. The mechanism of pyroptosis is distinct from other forms of cell death and is characterized by its dependence on inflammatory caspases (mainly caspases 1, 4, 5, and 11). Activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory vesicles is involved in caspase-1 activation and cleavage, which in turn triggers cleavage and multimerization of multiple gasdermin family members, including gasdermin-D (GSDMD). This further leads to cell perforation and cellular distension, causing cell membrane rupture, resulting in a massive efflux of cell contents, which triggers inflammatory reactions. In recent years, detailed study of viral diseases, has demonstrated that pyroptosis is closely associated with the development of viral diseases. This article focuses on the mechanism of pyroptosis and the connection between pyroptosis and viral infection.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
17
|
He X, You R, Shi Y, Zeng Z, Tang B, Yu J, Xiao Y, Xiao R. Pyroptosis: the potential eye of the storm in adult-onset Still's disease. Inflammopharmacology 2023; 31:2269-2282. [PMID: 37429997 DOI: 10.1007/s10787-023-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Pyroptosis, a form of programmed cell death with a high pro-inflammatory effect, causes cell lysis and leads to the secretion of countless interleukin-1β (IL-1β) and IL-18 cytokines, resulting in a subsequent extreme inflammatory response through the caspase-1-dependent pathway or caspase-1-independent pathway. Adult-onset Still's disease (AOSD) is a systemic inflammatory disease with extensive disease manifestations and severe complications such as macrophage activation syndrome, which is characterized by high-grade inflammation and cytokine storms regulated by IL-1β and IL-18. To date, the pathogenesis of AOSD is unclear, and the available therapy is unsatisfactory. As such, AOSD is still a challenging disease. In addition, the high inflammatory states and the increased expression of multiple pyroptosis markers in AOSD indicate that pyroptosis plays an important role in the pathogenesis of AOSD. Accordingly, this review summarizes the molecular mechanisms of pyroptosis and describes the potential role of pyroptosis in AOSD, the therapeutic practicalities of pyroptosis target drugs in AOSD, and the therapeutic blueprint of other pyroptosis target drugs.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Beilinson HA, Sevilleja A, Spring J, Benavides F, Beilinson V, Neokosmidis N, Golovkina T. A single dominant locus restricts retrovirus replication in YBR/Ei mice. J Virol 2023; 97:e0068523. [PMID: 37578238 PMCID: PMC10506465 DOI: 10.1128/jvi.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Differential responses to viral infections are influenced by the genetic makeup of the host. Studies of resistance to retroviruses in human populations are complicated due to the inability to conduct proof-of-principle studies. Inbred mouse lines, which have a range of susceptible phenotypes to retroviruses, are an ideal tool to identify and characterize mechanisms of resistance and define their genetic underpinnings. YBR/Ei mice become infected with Mouse Mammary Tumor Virus, a mucosally transmitted murine retrovirus, but eliminate the virus from their pedigrees. Virus elimination correlates with a lack of virus-specific neonatal oral tolerance, which is a major mechanism for blocking the anti-virus response in susceptible mice. Virus control is unrelated to virus-neutralizing antibodies, cytotoxic CD8+ T cells, NK cells, and NK T cells, which are the best characterized mechanisms of resistance to retroviruses. We identified a single, dominant locus that controls the resistance mechanism, which we provisionally named attenuation of virus titers (Avt) and mapped to the distal region of chromosome 18. IMPORTANCE Elucidation of the mechanism that mediates resistance to retroviruses is of fundamental importance to human health, as it will ultimately lead to knowledge of the genetic differences among individuals in susceptibility to microbial infections.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Amanda Sevilleja
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
20
|
Erdik B. Antiviral treatment of COVID-19 is associated with lack of immune response. J Med Virol 2023; 95:e28233. [PMID: 36257836 PMCID: PMC9874897 DOI: 10.1002/jmv.28233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Baran Erdik
- CCM HealthBoard of AdvisorsBrooklynNew YorkUSA
| |
Collapse
|
21
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
22
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|