1
|
Patyal P, Azhar G, Zhang X, Verma A, Wei JY. Cardiac-specific overexpression of serum response factor regulates age-associated decline in mitochondrial function. GeroScience 2025:10.1007/s11357-025-01629-2. [PMID: 40164849 DOI: 10.1007/s11357-025-01629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Cardiac aging is an intrinsic process that leads to impaired heart function, along with cellular and molecular changes. Recent research highlights the important role of mitochondria in cardiac function, due to the heart's high energy demands. Serum response factor (SRF), a transcription factor involved in regulating actin and smooth muscle gene expression, is well known as a regulator of various aspects of cardiac function. However, its role in mitochondrial regulation and cardiac aging is poorly understood. Our laboratory generated a transgenic mouse model with cardiac-specific overexpression of SRF, which exhibits characteristics of diastolic dysfunction and accelerated cardiac aging in young adult transgenic mice. In this study, we tested how cardiac-specific overexpression of SRF affects age associated mitochondrial dysfunction in the heart. Our results showed that cardiac specific SRF overexpression reduced the lifespan of mice and induced cardiomyopathy. Histological analysis revealed cardiac hypertrophy and fibrosis in transgenic mice hearts. SRF overexpression led to significant alterations in mitochondrial structure and function, including reduced mitochondrial biogenesis and dysregulation of oxidative phosphorylation. These changes were accompanied by increased oxidative stress, a decline in antioxidant enzyme activity, and disrupted calcium handling. Moreover, cardiac-specific SRF overexpression activated the MAPK signaling pathway. Our findings were further corroborated by similar mitochondrial dysfunction observed in a human cardiomyocyte cells transfected with SRF plasmid. Taken together, these findings suggest that SRF plays a novel role in cardiac aging, thus establishing SRF as a potential therapeutic target for mitigating age-associated decline in mitochondrial function and preserving cardiac health in older adults.
Collapse
Affiliation(s)
- Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Wang D, Wu J, Xu Z, Jia J, Lai Y, He Z. Increased Matrix Stiffness Promotes Slow Muscle Fibre Regeneration After Skeletal Muscle Injury. J Cell Mol Med 2025; 29:e70423. [PMID: 39969079 PMCID: PMC11837045 DOI: 10.1111/jcmm.70423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
The global prevalence of skeletal muscle diseases has progressively escalated in recent years. This study aimed to explore the potential role of matrix stiffness in the repair mechanisms following skeletal muscle injury. We observed an increase in muscle stiffness, a significant rise in the number of type I muscle fibres and a notable elevation in mRNA expression levels of Myh7/2 alongside a decrease in Myh1/4 on day 3 post tibialis anterior muscle injury. To replicate these in vivo changes, C2C12 cells were cultured under high matrix stiffness conditions, and compared to those on low matrix stiffness, the C2C12 cells cultured on high matrix stiffness showed increased expression levels of Myh7/2 mRNA and production levels of MYH7/2, indicating differentiation into slow-twitch muscle fibre types. Furthermore, up-regulation of DRP1 phosphorylation along with elevated F-actin fluorescence intensity and RHOA and ROCK1 production indicates that high matrix stiffness induces cytoskeletal remodelling to regulate mitochondrial fission processes. Our data also revealed up-regulation in mRNA expression level for Actb, phosphorylation level for DRP1, mitochondrial quantity and MYH7/2 production level. Importantly, these effects were effectively reversed by the application of ROCK inhibitor Y-27632, highlighting that targeting cytoskeletal dynamics can modulate myogenic differentiation pathways within C2C12 cells. These findings provide valuable insights into how matrix stiffness influences fibre type transformation during skeletal muscle injury repair while suggesting potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Physical EducationAnhui University of TechnologyMaanshanAnhuiChina
| | - Jiahong Wu
- Department of MedicineSun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Zeyu Xu
- Department of MedicineSun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Jinning Jia
- Department of PathologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Yimei Lai
- Department of PathologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Zhihua He
- Institute of UrologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
3
|
Chen Z, Zhou Z, Deng Q, Zou Y, Wang B, Huang S, Tian J, Zheng L, Peng X, Tang C. Type 2 Diabetes Induces Mitochondrial Dysfunction in Zebrafish Skeletal Muscle Leading to Diabetic Myopathy via the miR-139-5p/NAMPT Pathway. Int J Mol Sci 2025; 26:752. [PMID: 39859466 PMCID: PMC11765840 DOI: 10.3390/ijms26020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that is frequently accompanied by multiple complications, including diabetic myopathy, a muscle disorder that is mainly manifested as decreased muscle function and reduced muscle mass. Diabetic myopathy is a relatively common complication among patients with diabetes that is mainly attributed to mitochondrial dysfunction. Therefore, we investigated the mechanisms underlying diabetic myopathy development, focusing on the role of microRNAs (miRs). Zebrafish were fed a high-sugar diet for 8 weeks and immersed in a glucose solution to establish a model of T2DM. Notably, the fish exhibited impaired blood glucose homeostasis, increased lipid accumulation in the skeletal muscles, and decreased insulin levels in the skeletal muscle. Additionally, we observed various symptoms of diabetic myopathy, including a decreased cross-sectional area of skeletal muscle fibers, increased skeletal muscle fibrosis, a significant decline in exercise capacity, and a significant decrease in mitochondrial respiratory function. Mechanistically, bioinformatic analysis combined with various molecular analyses showed that the miR-139-5p/NAMPT pathway was involved in long-term high-glucose-induced mitochondrial dysfunction in the skeletal muscle, leading to diabetic myopathy. Conclusively, this study provides a basis for the development of novel strategies for the prevention and treatment of diabetic myopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (Z.C.); (Z.Z.); (Q.D.); (Y.Z.); (B.W.); (S.H.); (J.T.); (L.Z.)
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China; (Z.C.); (Z.Z.); (Q.D.); (Y.Z.); (B.W.); (S.H.); (J.T.); (L.Z.)
| |
Collapse
|
4
|
Wong D, Qiu H. New insights into the pharmacological inhibition of SRF activity: Key inhibitory targets and mechanisms. Vascul Pharmacol 2024; 157:107443. [PMID: 39586415 PMCID: PMC11648470 DOI: 10.1016/j.vph.2024.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Serum Response Factor (SRF) is a critical regulatory transcription factor widely expressed across cell types and is essential for animal survival. Excessive SRF activity has been linked to various pathological conditions and diseases, including cardiovascular diseases, cancers and neurodegenerative disorders, making the inhibition of SRF hyperactivity a promising therapeutic strategy. This review summarizes recent advancements in the discovery and development of SRF inhibitors, their regulatory mechanisms, and their respective molecular foundations. These insights deepen our understanding of current therapeutic potentials, paving the way for novel approaches to treat diseases associated with SRF hyperactivity.
Collapse
Affiliation(s)
- Daniel Wong
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 8572, USA.
| |
Collapse
|
5
|
Verma A, Azhar G, Patyal P, Zhang W, Zhang X, Wei JY. Proteomic analysis of P. gingivalis-Lipopolysaccharide induced neuroinflammation in SH-SY5Y and HMC3 cells. GeroScience 2024; 46:4315-4332. [PMID: 38507186 PMCID: PMC11336124 DOI: 10.1007/s11357-024-01117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic periodontitis and its keystone pathogen, Porphyromonas gingivalis, have increasingly been linked with Alzheimer's disease (AD). However, P.gingivalis-lipopolysaccharide (LPS) mediated release of neuroinflammatory proteins contributes to AD remains underexplored. In this study, we utilized data-independent acquisition mass spectrometry to characterize P.gingivalis-LPS induced profile of differentially expressed proteins associated with the neuroinflammatory response in human neuroblastoma (SH-SY5Y) and human microglial (HMC3) cells. We reported a set of 124 proteins in SH-SY5Y cells and 96 proteins in HMC3 cells whose levels were significantly upregulated or downregulated by exposure to P. gingivalis-LPS. Our findings demonstrate that P. gingivalis-LPS contributed to the elevated expressions of dementia biomarkers and pro-inflammatory cytokines that include APP, Aβ1-42, Aβ1-40, T-Tau, p-Tau, VEGF, TGF-β, IL-1β, IL-6 and TNF-α through 2 distinct pathways of extracellular sensing by cell surface receptors and intracellular cytosolic receptors. Interestingly, intracellular signaling proteins activated with P. gingivalis-LPS transfection using Lipofectamine™ 2000 had significantly higher fold change protein expression compared to the extracellular signaling with P. gingivalis-LPS treatment. Additionally, we also explored P. gingivalis-LPS mediated activation of caspase-4 dependent non canonical inflammasome pathway in both SH-SY5Y and HMC3 cells. In summary, P. gingivalis-LPS induced neuroinflammatory protein expression in SH-SY5Y and HMC3 cells, provided insights into the specific inflammatory pathways underlying the potential link between P. gingivalis-LPS infection and the pathogenesis of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Ambika Verma
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Gohar Azhar
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Pankaj Patyal
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Wei Zhang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Xiaomin Zhang
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|
6
|
Patyal P, Ameer FS, Verma A, Zhang X, Azhar G, Shrivastava J, Sharma S, Zhang R, Wei JY. The Role of Sirtuin-1 Isoforms in Regulating Mitochondrial Function. Curr Issues Mol Biol 2024; 46:8835-8851. [PMID: 39194739 DOI: 10.3390/cimb46080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The sirtuin-1 (SIRT1) gene contains multiple exons that usually undergo alternative splicing. The exclusion of one or more exons causes domain loss in the alternatively spliced isoforms and may change their functions. However, it is not completely established to what extent the loss of a non-catalytic domain could affect its regulatory function. Using muscle cells and SIRT1-knockout cells, we examined the function of the constitutively spliced isoform (SIRT1-v1) versus the alternatively spliced isoforms SIRT1-v2 and SIRT1-v3 that had lost part of the N-terminal region. Our data indicate that partial loss of the N-terminal domains in SIRT1-v2 and SIRT1-v3 attenuated their function. The full-length SIRT1-v1 significantly increased the oxidative phosphorylation and ATP production rate. Furthermore, SIRT1-v1 specifically upregulated the mitochondrial respiratory complex I without affecting the activity of complexes II, III, and IV. Additionally, domain loss affected the regulation of site-specific lysine acetylation in the histone H4 protein, the gene expression of respiratory complex I subunits, and the metabolic balance of oxidative phosphorylation versus glycolysis. Since alternatively spliced isoforms tend to increase with advancing age, the impact of SIRT1 isoforms on mitochondrial respiratory complexes warrants further investigation.
Collapse
Affiliation(s)
- Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fathima S Ameer
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jyotsna Shrivastava
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Mori K, Nakagawa Y, Watanabe B, Miyata H, Morita T, Hayashi K. Novel ability of diflubenzuron as an inhibitor of mitochondrial function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104088. [PMID: 38342197 DOI: 10.1016/j.ibmb.2024.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Compounds classified as benzoylphenylurea (BPU), such as diflubenzuron (DFB), are used as insecticides. Although BPU disrupts molting by inhibiting chitin biosynthesis and exhibits insecticidal activity, their exact mode of action remains unknown. Since epidermal cells proliferate and morphologically change from squamous to columnar cells during the early stages of insect molting, we speculate that a transition similar to that from epithelium to mesenchyme occurs and that BPU may inhibit this transition. Here, we addressed this possibility. We found that DFB decreases actin expression in insect cells (the tissue cultures of insect integument). Detailed analysis in Schneider S2 cells reveals that DFB inhibits the expression of actin isoforms (Act5C and Act42A) and the Drosophila ortholog of myocardin-related transcription factor (Mrtf), leading to cell growth suppression. Proteomics identified the Drosophila ortholog of prohibitin (Phb1D and Phb2E) as one of the DFB-binding proteins. DFB inhibits the interaction between Phb1D and Phb2E and induces mitochondrial dysfunction. The knock-down of Phb2E suppresses the expression of Act5C, Act42A, and Mrtf, leading to cell growth inhibition. Thus, the disruption of Phb function is a possible novel target of DFB.
Collapse
Affiliation(s)
- Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Hiroshi Miyata
- Department of Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Patyal P, Zhang X, Verma A, Azhar G, Wei JY. Inhibitors of Rho/MRTF/SRF Transcription Pathway Regulate Mitochondrial Function. Cells 2024; 13:392. [PMID: 38474356 PMCID: PMC10931493 DOI: 10.3390/cells13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
RhoA-regulated gene transcription by serum response factor (SRF) and its transcriptional cofactor myocardin-related transcription factors (MRTFs) signaling pathway has emerged as a promising therapeutic target for pharmacological intervention in multiple diseases. Altered mitochondrial metabolism is one of the major hallmarks of cancer, therefore, this upregulation is a vulnerability that can be targeted with Rho/MRTF/SRF inhibitors. Recent advances identified a novel series of oxadiazole-thioether compounds that disrupt the SRF transcription, however, the direct molecular target of these compounds is unclear. Herein, we demonstrate the Rho/MRTF/SRF inhibition mechanism of CCG-203971 and CCG-232601 in normal cell lines of human lung fibroblasts and mouse myoblasts. Further studies investigated the role of these molecules in targeting mitochondrial function. We have shown that these molecules hyperacetylate histone H4K12 and H4K16 and regulate the genes involved in mitochondrial function and dynamics. These small molecule inhibitors regulate mitochondrial function as a compensatory mechanism by repressing oxidative phosphorylation and increasing glycolysis. Our data suggest that these CCG molecules are effective in inhibiting all the complexes of mitochondrial electron transport chains and further inducing oxidative stress. Therefore, our present findings highlight the therapeutic potential of CCG-203971 and CCG-232601, which may prove to be a promising approach to target aberrant bioenergetics.
Collapse
Affiliation(s)
| | | | | | | | - Jeanne Y. Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (P.P.); (X.Z.); (A.V.); (G.A.)
| |
Collapse
|
9
|
Pearce WJ. Mitochondrial influences on smooth muscle phenotype. Am J Physiol Cell Physiol 2024; 326:C442-C448. [PMID: 38009196 PMCID: PMC11932527 DOI: 10.1152/ajpcell.00354.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.
Collapse
Affiliation(s)
- William J Pearce
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States
| |
Collapse
|
10
|
Sharma S, Zhang X, Azhar G, Patyal P, Verma A, KC G, Wei JY. Valine improves mitochondrial function and protects against oxidative stress. Biosci Biotechnol Biochem 2024; 88:168-176. [PMID: 38093456 PMCID: PMC10807754 DOI: 10.1093/bbb/zbad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 01/26/2024]
Abstract
Among the branched-chain amino acids, leucine and isoleucine have been well studied for their roles in improving mitochondrial function and reducing oxidative stress. However, role of valine in mitochondrial function regulation and oxidative stress management remains elusive. This study investigated valine effect on mitochondrial function and oxidative stress in vitro. Valine increased expression of genes involved in mitochondrial biogenesis and dynamics. It upregulates mitochondrial function at complexes I, II, and IV levels of electron transport chain. Flow cytometry studies revealed, valine reduced oxidative stress by significantly lowering mitochondrial reactive oxygen species and protein expression of 4-hydroxynonenal. Functional role of valine against oxidative stress was analyzed by XFe96 Analyzer. Valine sustained oxidative phosphorylation and improved ATP generation rates during oxidative stress. In conclusion, our findings shed more light on the critical function of valine in protecting mitochondrial function thereby preventing mitochondrial/cellular damage induced by oxidative stress.
Collapse
Affiliation(s)
- Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Grishma KC
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
11
|
Reguera-Gomez M, Dores MR, Martinez LR. Innovative and potential treatments for fungal central nervous system infections. Curr Opin Microbiol 2023; 76:102397. [PMID: 37898052 DOI: 10.1016/j.mib.2023.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
Fungal infections of the central nervous system (FI-CNS) are a problematic and important medical challenge considering that those most affected are immunocompromised. Individuals with systemic cryptococcosis (67-84%), candidiasis (3-64%), blastomycosis (40%), coccidioidomycosis (25%), histoplasmosis (5-20%), mucormycosis (12%), and aspergillosis (4-6%) are highly susceptible to develop CNS involvement, which often results in high mortality (15-100%) depending on the mycosis and the affected immunosuppressed population. Current antifungal drugs are limited, prone to resistance, present host toxicity, and show reduced brain penetration, making FI-CNS very difficult to treat. Given these limitations and the rise in FI-CNS, there is a need for innovative strategies for therapeutic development and treatments to manage FI-CNS in at-risk populations. Here, we discuss standards of care, antifungal drug candidates, and novel molecular targets in the blood-brain barrier, which is a protective structure that regulates movement of particles in and out of the brain, to prevent and combat FI-CNS.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Michael R Dores
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Center for Immunology and Transplantation, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
P. gingivalis-LPS Induces Mitochondrial Dysfunction Mediated by Neuroinflammation through Oxidative Stress. Int J Mol Sci 2023; 24:ijms24020950. [PMID: 36674463 PMCID: PMC9861869 DOI: 10.3390/ijms24020950] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, is associated with neuroinflammation. Periodontal disease increases with age; 70.1% of adults 65 years and older have periodontal problems. However, the P. gingivalis- lipopolysaccharide (LPS)induced mitochondrial dysfunction in neurodegenerative diseases remains elusive. In this study, we investigated the possible role of P. gingivalis-LPS in mitochondrial dysfunction during neurodegeneration. We found that P. gingivalis-LPS treatment activated toll-like receptor (TLR) 4 signaling and upregulated the expression of Alzheimer's disease-related dementia and neuroinflammatory markers. Furthermore, the LPS treatment significantly exacerbated the production of reactive oxygen species and reduced the mitochondrial membrane potential. Our study highlighted the pivotal role of P. gingivalis-LPS in the repression of serum response factor (SRF) and its co-factor p49/STRAP that regulate the actin cytoskeleton. The LPS treatment repressed the genes involved in mitochondrial function and biogenesis. P. gingivalis-LPS negatively altered oxidative phosphorylation and glycolysis and reduced total adenosine triphosphate (ATP) production. Additionally, it specifically altered the mitochondrial functions in complexes I, II, and IV of the mitochondrial electron transport chain. Thus, it is conceivable that P. gingivalis-LPS causes mitochondrial dysfunction through oxidative stress and inflammatory events in neurodegenerative diseases.
Collapse
|