1
|
Zhang S, Zhu M, Chen S. Exploring the Interconnections Between Mitochondrial Dysfunction and Polycystic Ovary Syndrome: A Comprehensive Integrated Analysis. Biochem Genet 2025:10.1007/s10528-025-11104-4. [PMID: 40259200 DOI: 10.1007/s10528-025-11104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a leading cause of anovulatory infertility and is strongly linked to mitochondrial dysfunction (MD) in reproductive-age women. MD contributes to excessive reactive oxygen species (ROS) accumulation, exacerbating disease progression. This study aimed to identify key MD-related genes (MDRGs) involved in PCOS through bioinformatics analyses and experimental validation. Two PCOS transcriptome datasets (GSE34526 and GSE5850) were analyzed to identify differentially expressed genes (DEGs), which were then intersected with MDRGs to obtain MD-related DEGs (MDDEGs). Functional enrichment (GO, KEGG, GSEA) and protein-protein interaction (PPI) network analyses identified eight hub MDDEGs (MMP9, PPP1 CA, PSMD12, LIFR, PRKAA1, ITGAM, SUCLA2, GPBAR1). A rat PCOS model was established to validate hub gene expression via RT-qPCR, western blotting, and immunohistochemistry. The experimental data confirmed that seven hub genes exhibited consistent expression patterns with GSE34526 (P < 0.05), while only PRKAA1 and LIFR matched GSE5850 findings. Additionally, ROC analysis for the five most significant genes (LIFR, PBK, PRKAA1, RCAN1, MMP9) demonstrated promising diagnostic value (AUC > 0.85). This study highlights the role of MD in shaping the immune microenvironment of PCOS and identifies novel molecular targets for potential therapeutic interventions.
Collapse
Affiliation(s)
- Suqin Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Mingyue Zhu
- Department of Gynecology and Obstetrics Zhujiang Hospital, Southern Medical University, No.253 Guangzhou Industrial Avenue Road, Guangzhou, 510515, Guangdong, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Gao Q, Qian X, Zhang J, Zhang F, Xu X. Body image disturbances in women of childbearing age with polycystic ovary syndrome: a cross-sectional study. BMC Womens Health 2025; 25:186. [PMID: 40241131 PMCID: PMC12001658 DOI: 10.1186/s12905-025-03693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
DISIGN This is a cross-sectional study. OBJECTIVES This study aimed to identify the risk factors associated with body image disturbances in patients with polycystic ovary syndrome (PCOS). METHODS This study included married women diagnosed with PCOS who required fertility assistance. Participants were recruited from the reproductive centers of three tertiary hospitals in Jiangsu Province between December 2022-June 2023. We collected 333 patient data through an online questionnaire, body image was assessed by the Chinese version of Body Image Disturbance Questionnaire (BIDQ). The demographic information and clinical data of patients were collected. At the same time, the relevant information of sleep quality, personality traits, intimate relationship, family care and psychological resilience of the patients were collected through various scales. Univariate analysis and a generalized linear model were employed to analyze the factors affecting body image disturbances in women with PCOS. RESULTS This cross-sectional study included 333 women of childbearing age with PCOS. Univariate analysis revealed that body image was associated with factors such as the body mass index (BMI), occupation, menstrual disturbances, a family history of PCOS, hair loss, acne, hirsutism, scores on the Family Apgar Index, psychological resilience levels, sleep quality, intimate relationship, and personality traits. The generalized linear model demonstrated that occupation, BMI, hair loss, acne, hirsutism, intimate relationship, family care, and psychological resilience were independent risk factors for body image issues. CONCLUSION The influencing factors of body image disturbance in patients with polycystic ovary syndrome of childbearing age come from many aspects, including occupation, acne, hair loss, hirsutism, BMI, intimate relationship, family care and psychological resilience. Consequently, medical professionals in obstetrics and gynecology should recognize the body image concerns of women with PCOS and implement specific interventions to support these women during their childbearing years.
Collapse
Affiliation(s)
- Qian Gao
- Department of Nursing, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xuan Qian
- Department of Nursing, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jie Zhang
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Zhang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xujuan Xu
- Department of Nursing, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
3
|
Dharani V, Nishu S, Hariprasath L. PCOS and genetics: Exploring the heterogeneous role of potential genes in ovarian dysfunction, a hallmark of PCOS - A review. Reprod Biol 2025; 25:101017. [PMID: 40222066 DOI: 10.1016/j.repbio.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
PCOS is an endocrine disorder that affects women of reproductive age. The root of PCOS is ovarian dysfunction, which presents as hormonal disturbances affecting normal ovarian function to cause the symptoms and complications of the disease. This dysfunction causes symptoms like impaired maturation of follicles and disorders of various origins with multiple treatment regimens that are not always clear. Therefore, the present review mainly concentrates on the genetic level of ovarian dysfunction of PCOS. The articles were identified through a vigorous literature search where search engines such as PubMed, Google Scholar, databases, and Science Direct were used, and the articles published from 2015 to 2025 were referred. We identified that the key genes involved in the ovarian dysfunctions in PCOS include CYP11A1, CYP17A1, CYP19A1, AR, FSHR, LHCGR, AMH, INSR, SHBG, IRS1, GATA4, ADIPOQ, YAP1, TCF7L2, and DENND1A, which play a role in gonadotropin action, steroidogenesis, and folliculogenesis. Furthermore, epigenetic factors and miRNAs miR-93, 222, 155, 146a, 132, 320, 27a, 483, 21, 378, 17-92 Cluster, and 375, 221 are also involved in it. Abnormal expression of these genes is known to play a critical role in the etiology and pathogenesis of PCOS. Present treatment includes the use of oral contraceptives, anti-androgen agents, insulin-sensitizing agents, and ovulation-inducing agents, and future treatment may consist of miRNA therapy, drug repositioning, and genetic markers that might be used for early identification and better management of ovarian dysfunction. Thus, the current review discusses ovarian dysfunction in PCOS, the involvement of potential genes and epigenetic factors, and miRNAs concerning ovulation and its therapeutic implications.
Collapse
Affiliation(s)
- V Dharani
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| | - S Nishu
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India.
| | - L Hariprasath
- Department of Biochemistry, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| |
Collapse
|
4
|
Liu Y, Dong Y, Jiang Y, Han S, Liu X, Xu X, Zhu A, Zhao Z, Gao Y, Zou Y, Zhang C, Bian Y, Zhang Y, Liu J, Zhao S, Zhao H, Chen ZJ. Caloric restriction prevents inheritance of polycystic ovary syndrome through oocyte-mediated DNA methylation reprogramming. Cell Metab 2025; 37:920-935.e6. [PMID: 39986273 DOI: 10.1016/j.cmet.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/17/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent metabolic and reproductive endocrine disorder with strong heritability. However, the independent role of oocytes in mediating this heritability remains unclear. Utilizing in vitro fertilization-embryo transfer and surrogacy, we demonstrated that oocytes from androgen-exposed mice (F1) transmitted PCOS-like traits to F2 and F3 generations. Notably, caloric restriction (CR) in F1 or F2 effectively prevented this transmission by restoring disrupted DNA methylation in oocyte genes related to insulin secretion and AMPK signaling pathways. Further detection in adult tissues of offspring revealed dysregulated DNA methylation and expression of those genes (e.g., Adcy3, Gnas, and Srebf1) were reversed by maternal CR. Moreover, similar benefits of CR were observed in aberrant embryonic methylome of women with PCOS. These findings elucidate the essential role of CR in preventing PCOS transmission via methylation reprogramming, emphasizing the importance of preconception metabolic management for women with PCOS.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Center for Reproductive Medicine, Gusu School, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing 212028, Jiangsu, China
| | - Yi Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yonghui Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Shan Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Aiqing Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Zihe Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yang Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Chuanxin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Jiang Liu
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan 250012, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan 250012, Shandong, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Center for Reproductive Medicine, Gusu School, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing 212028, Jiangsu, China; Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan 250012, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan 250012, Shandong, China.
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan 250012, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan 250012, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200025, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Han Y, Dai Y, Wang K, Zhang X, Shao Z, Zhu X. Post-pandemic insights on COVID-19 and premature ovarian insufficiency. Open Life Sci 2025; 20:20221028. [PMID: 39886482 PMCID: PMC11780258 DOI: 10.1515/biol-2022-1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 02/01/2025] Open
Abstract
The COVID-19 pandemic has raised concerns regarding its potential impact on premature ovarian insufficiency (POI). This overview examines the possible interactions between COVID-19 and POI, while also suggesting preventive measures. The viral infection's inflammatory response and immune dysregulation may adversely affect ovarian tissues, leading to inflammation and damage. Additionally, alterations in vascular function could impair ovarian blood flow and hormonal imbalances may disrupt normal ovarian function. Long-term health effects, such as "long COVID," may exacerbate these issues through chronic inflammation and immune dysfunction. Public health measures, such as vaccination and home isolation, may indirectly protect ovarian health by reducing systemic inflammation. Vaccines could mitigate the severity of COVID-19's impact on ovarian function, while isolation may reduce stress and inflammation. However, further research is needed to validate these mechanisms.
Collapse
Affiliation(s)
- Yaguang Han
- Department of Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Dai
- Department of Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Kexin Wang
- Department of Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xin Zhang
- Department of Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Zishen Shao
- Department of Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaolin Zhu
- Department of Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411 Guogeli Street, Nangang District, Harbin, Heilongjiang, 150006, P.R. China
| |
Collapse
|
6
|
Zhu X, Han Y, Feng Y, Shan Y, Liu C, Wang K, Li X, Zhang S, Han Y. Identification of molecular characteristics in polycystic ovary syndrome using single-cell and transcriptome analysis. Sci Rep 2025; 15:2970. [PMID: 39848950 PMCID: PMC11757995 DOI: 10.1038/s41598-024-81110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder affecting women of childbearing age, and we aimed to reveal its underlying molecular mechanisms. Gene expression profiles from GSE138518 and GSE155489, and single-cell RNA sequencing (scRNA-seq) data from PRJNA600740 were collected and subjected to bioinformatics analysis to identify the complex molecular mechanisms of PCOS. The expression of genes was detected by RT-qPCR. Through differential analysis, we identified 230 common differentially expressed genes (DEGs) in GSE138518 and GSE155489. GSEA results showed significant enrichment of purine metabolism and oocyte meiosis in the control group, while GSVA results indicated significant activation of ECM receptor interaction, and antigen processing and presentation in PCOS. Weighted gene co-expression network analysis revealed 7 co-expression modules, with the bisque4 module showing the highest positive correlation with PCOS. Enrichment analysis revealed that genes in the bisque4 module were mainly involved in the PI3K-Akt signaling pathway, calcium signaling pathway, and Ras signaling pathway. Pseudotime trajectory analysis of cell subpopulations revealed the potential developmental trajectory of PCOS. The gene expression consistent with the potential developmental trajectory was validated by RT-qPCR. Our study, by analyzing multiple datasets, has revealed the complex molecular network of PCOS, offering new insights into understanding its pathophysiological basis.
Collapse
Affiliation(s)
- Xiaolin Zhu
- The Second Affiliated Hospital of Heilongjiang, University of Traditional Chinese Medicine, 411 Guogoli Street, Harbin, Heilongjiang, 150001, China
| | - Yanhua Han
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, 150040, Heilongjiang, China
| | - Yuenan Feng
- Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, Heilongjiang, 150040, China
| | - Yuanli Shan
- The Second Affiliated Hospital of Heilongjiang, University of Traditional Chinese Medicine, 411 Guogoli Street, Harbin, Heilongjiang, 150001, China
| | - Chang Liu
- Department of Traditional Chinese Medicine, Beijing University Third Hospital, Haidian District, Beijing, 100089, China
| | - Kexin Wang
- Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, Heilongjiang, 150040, China
| | - Xiaoke Li
- Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, Heilongjiang, 150040, China
| | - Shidi Zhang
- Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, Heilongjiang, 150040, China
| | - Yaguang Han
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 26 Heping Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
7
|
Dai R, Sun Y. Altered GnRH neuron-glia networks close to interface of polycystic ovary syndrome: Molecular mechanism and clinical perspectives. Life Sci 2025; 361:123318. [PMID: 39719166 DOI: 10.1016/j.lfs.2024.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) has been noticed as a neuroendocrine syndrome manifested by reproductive hormone dysregulation involving increased luteinizing hormone (LH) pulse frequency and an increased LH to follicle-stimulating hormone ratio, yet theory is just beginning to be established. Neuroglia located in the arcuate nucleus and median eminence (ARC-ME) that are close to gonadotropin-releasing hormone (GnRH) axon terminals, comprise the blood-brain barrier and fenestrated vessels implying their putative roles in the modulation of the abnormal GnRH pulse in PCOS. This review outlines the disturbances of neuron-glia networks that underlie hypothetically the deregulation of GnRH-LH release and impaired sex hormone negative feedback in PCOS. We then discuss chronic and low-grade inflammatory status together with gut dysbiosis and how the detriments may intrude the hypothalamus by virtue of violating interfaces between the brain and periphery, which might contribute to the etiology of the impaired neural circuits in the ARC-ME to induce PCOS.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Sun
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China.
| |
Collapse
|
8
|
Moustakli E, Stavros S, Katopodis P, Skentou C, Potiris A, Panagopoulos P, Domali E, Arkoulis I, Karampitsakos T, Sarafi E, Michaelidis TM, Zachariou A, Zikopoulos A. Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health. Cells 2025; 14:36. [PMID: 39791737 PMCID: PMC11720220 DOI: 10.3390/cells14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Chronic inflammation is increasingly recognized as a critical factor in female reproductive health; influencing natural conception and the outcomes of assisted reproductive technologies such as in vitro fertilization (IVF). An essential component of innate immunity, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is one of the major mediators of inflammatory responses, and its activation is closely linked to oxidative stress. This interaction contributes to a decline in oocyte quality, reduced fertilization potential, and impaired embryo development. In the ovarian milieu, oxidative stress and NLRP3 inflammasome activation interact intricately, and their combined effects on oocyte competence and reproductive outcomes are significant. The aims of this review are to examine these molecular mechanisms and to explore therapeutic strategies targeting oxidative stress and NLRP3 inflammasome activity, with the goal of enhancing female fertility and improving clinical outcomes in reproductive health.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (A.P.); (P.P.); (I.A.); (T.K.); (A.Z.)
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (A.P.); (P.P.); (I.A.); (T.K.); (A.Z.)
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (A.P.); (P.P.); (I.A.); (T.K.); (A.Z.)
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Ioannis Arkoulis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (A.P.); (P.P.); (I.A.); (T.K.); (A.Z.)
| | - Theodoros Karampitsakos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (A.P.); (P.P.); (I.A.); (T.K.); (A.Z.)
| | - Eleftheria Sarafi
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.S.); (T.M.M.)
| | - Theologos M. Michaelidis
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.S.); (T.M.M.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (A.P.); (P.P.); (I.A.); (T.K.); (A.Z.)
| |
Collapse
|
9
|
Qin L, Tian C, Huang L, Qin X, Ling S, Wei J, Huang B, Li L, Luo X. Clinical significance and biological roles of lncRNA CTBP1-AS in polycystic ovary syndrome. J Ovarian Res 2024; 17:248. [PMID: 39702404 DOI: 10.1186/s13048-024-01571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is among the most prevalent endocrine and metabolic disorders affecting women of reproductive age. Multiple factors, including genetic predisposition, environmental influences, and lifestyle choices, are considered significant contributors to the development of PCOS. A kind of long noncoding RNA-C-Terminal binding protein 1 antisense (lncRNA CTBP1-AS) has been proven to be a new androgen receptor regulator. Previous studies showed that the lncRNA CTBP1-AS gene was highly expressed in a small sample of PCOS patients and was associated with the risk of PCOS, but its specific function and mechanism have not been clearly reported. In this study, the expression of lncRNA CTBP1-AS was detected by real-time quantitative PCR (RT-qPCR) in PCOS patients. In addition, lncRNA CTBP1-AS was overexpressed in KGN cells to explore its effect on granulocyte function. The results showed that the expression levels of lncRNA CTBP1-AS were increased in peripheral blood mononuclear cells and follicular fluid granulosa cells of PCOS patients compared with controls, which correlated with androgen levels and sinus follicle number; overexpression of lncRNA CTBP1-AS increased apoptosis and decreased cell migration ability, thus promoting the progression of PCOS. This study explores new biomarkers and therapeutic targets for the clinical individualized diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Li Qin
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Key Laboratory of Research on Environment and Population Health in Aluminium Mining Areas, Department of Guangxi Zhuang Autonomous Region, Baise, 533000, Education, Guangxi, China
| | - Chun Tian
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Liying Huang
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiao Qin
- Reproductive Medicine Center, The Southwest Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shaohua Ling
- Reproductive Medicine Center, The Southwest Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Jingxi Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Bingsheng Huang
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lining Li
- Reproductive Medicine Center, The Southwest Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiaoqiong Luo
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
10
|
Dilliyappan S, Kumar AS, Venkatesalu S, Palaniyandi T, Baskar G, Sivaji A, Rab SO, Saeed M, Shivaranjani KS. Polycystic ovary syndrome: Recent research and therapeutic advancements. Life Sci 2024; 359:123221. [PMID: 39521272 DOI: 10.1016/j.lfs.2024.123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Polycystic ovary syndrome is often characterized by the appearance of several tiny cysts (fluid-filled sacs) in the ovaries. It is the most significant endocrinopathy affecting 8-13 % of women during their lifetime. Within the dynamic domain of women's health, this syndrome is a widespread issue that presents with an array of signs, including insulin resistance, hirsutism, androgen development, and menstrual flaws prompted by genetic, diet/lifestyle, gut microbiota dysbiosis, and environmental toxins. Impaired folliculogenesis, aberrant cortisol metabolism, and genes associated with steroidogenesis contribute to the pathophysiology of the disease. Moreover, it combines with various concurrent metabolic and idiopathic conditions specifically type 2 diabetes, heart disease, cancer, and infertility. On persuading the reproductive framework of women from ontogeny to menopause, the complexity of the syndrome hereditates generations due to maternal inheritance of hyperandrogenism. The advancement in diagnostic norms paved the way from the Rotterdam criteria to metabolomics, 3D ultrasound, and assisted reproductive technologies. The management and treatment of this hormonal disorder can be prevailed through lifestyle modifications and prompt medications. This review entails the aforementioned benchmarks of the syndrome's complexity and its ongoing research in alleviating its intricate behavioral changes in women from in-utero to menopause.
Collapse
Affiliation(s)
| | - Avanthika Satish Kumar
- Department of Biotechnology, Dr.M.G.R. Educational and Research Institute, Chennai, India
| | - Sneha Venkatesalu
- Department of Biotechnology, Dr.M.G.R. Educational and Research Institute, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr.M.G.R. Educational and Research Institute, Chennai, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Maduravoyal, Chennai 600095, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr.M.G.R. Educational and Research Institute, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - K S Shivaranjani
- Department of Gynecology, Sri Lalithambigai Medical College and Hospital, Chennai, India
| |
Collapse
|
11
|
Erdogan-Yildirim Z, Carlson JC, Krishnan M, Zhang JZ, Lambert-Messerlian G, Naseri T, Viali S, Hawley NL, McGarvey ST, Weeks DE, Minster RL. A genome-wide association study of anti-Müllerian hormone (AMH) levels in Samoan women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318457. [PMID: 39677481 PMCID: PMC11643216 DOI: 10.1101/2024.12.05.24318457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Study question Can a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) help identify genetic variation or genes associated with circulating anti-Müllerian hormone (AMH) levels in Samoan women? Summary answer We identified eleven genome-wide suggestive loci (strongest association signal in ARID3A 19-946163-G-C [ p = 2.32 × 10⁻⁷]) and seven transcriptome-wide significant genes ( GINS2, SENP3, USP7, TUSC3, MAFA, METTL4, NDFIP1 [all with a p < 2.50 × 10⁻⁶]) associated with circulating AMH levels in Samoan women. What is known already Three prior GWASs of AMH levels identified eight loci in premenopausal women of European ancestry (AMH, MCM8, TEX41 , CHECK2, CDCA7 , EIF4EBP1, BMP4 and an uncharacterized non-coding RNA gene CTB-99A3.1 ), among which the MCM8 locus was shared among all three studies. Study design size duration We included a sample of 1,185 women from two independently recruited samples: a family study ( n = 212; [age: 18 to 40 years]) recruited in 2002-03 from Samoa and American Samoa; and the Soifua Manuia Study ( n = 973; age: 25 to 51 years), a crosssectional population-based study recruited in 2010 from Samoa. Participants/materials setting methods Serum AMH levels were measured using enzyme linked immunosorbent assays (ELISA). We performed GWASs in the two participant samples using a Cox mixed-effects model to account for AMH levels below detectable limits and adjusted for centered age, centered age², polity, and kinship via kinship matrix. The summary statistics were then meta-analyzed using a fixed-effect model. We annotated the variants with p < 1 × 10⁻⁵ and calculated posterior probability of causality for prioritization. We further annotated variants using FUMA and performed colocalization and transcriptome-wide association analysis. We also assessed whether any previously reported loci were replicated in our GWAS. Main results and the role of chance We identified eleven novel genome-wide suggestive loci ( p < 1 × 10⁻⁵) associated with AMH levels and replicated EIF4EBP1, a previously reported AMH locus, in the GWAS. The lead variant in ARID3A , 19-946163-G-C is in high linkage disequilibrium ( r ² = 0.79) with the known age-at-menopause variant 19-950694-G-A. Nearby KISS1R is a biologically plausibility causal gene in the region; kisspeptin regulates ovarian follicle development and has been linked to AMH levels. Further investigation of the ARID3A locus is warranted. Limitations reasons for caution The main limitations of our study are the small sample size for a GWAS and the use of the transcription model trained on mostly European samples from the Genotype Tissue Expression (GTEx) project, which may have led to reduced power to detect genotype-expression associations. Our findings need to be validated in larger Polynesian cohorts. Wider implications of the findings In addition to replicating one of the eight previously discovered AMH loci, we identified new suggestive associations. It is known that the inclusion of founder populations aids in the discovery of novel loci. These findings could enhance our understanding of AMH and AMH-related reproductive phenotypes (ovarian reserve, age at menopause, premature ovarian failure, and polycystic ovary syndrome) and help build a screening approach for women at risk for these phenotypes using genetically predicted AMH levels. Study funding/competing interests This work was funded by NIH grants R01-HL093093 (PI: S.T.M.), R01-HL133040 (PI: R.L.M.), and T90-DE030853 (PI: C.S. Sfeir). Molecular data for the Trans-Omics in Precision Medicine (TOPMed) Program was supported by the National Heart, Lung and Blood Institute (NHLBI). The content is solely the responsibility of the authors and does not represent the official views of the National Institutes of Health.
Collapse
|
12
|
Jia MJ, Zhou L, Liu XN, Li HL. Genetically predicted serum metabolites mediate the association between inflammatory proteins and polycystic ovary syndrome: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1433612. [PMID: 39691364 PMCID: PMC11649973 DOI: 10.3389/fmed.2024.1433612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Objective To investigate the association between polycystic ovary syndrome (PCOS) and inflammatory proteins, and to identify and quantify the role of serum metabolites as potential mediators. Methods Utilizing summary-level data from a genome-wide association study (GWAS), we conducted a two-sample Mendelian Randomization (MR) analysis, a genetic approach that uses genetic variants as instrumental variables to assess the causal relationships between risk factors and outcomes. This analysis involved genetically predicted PCOS (1,639 cases and 218,970 controls) and inflammatory proteins (14,824 participants of primarily European descent). Additionally, a two-step MR analysis was performed to quantify the proportion of the effect of serum metabolites-mediated inflammatory proteins on PCOS. The Inverse Variance Weighted (IVW) method, a statistical technique used within MR to combine data from multiple genetic variants, was used to estimate the causal effects. Results The IVW method revealed that the inflammatory proteins IFN-γ (p-value = 0.037, OR = 1.396, 95% CI = 1.020-1.910) and CCL7 (p-value = 0.033, OR = 1.294, 95% CI = 1.021-1.641) were associated with an increased risk of PCOS, while IL-6 (p-value = 0.015, OR = 0.678, 95% CI = 0.495-0.929) and MMP-10 (p-value = 0.025, OR = 0.753, 95% CI = 0.587-0.967) were associated with a decreased risk. No significant evidence suggested an effect of genetically predicted PCOS on inflammatory proteins. The serum metabolite X-11444 was found to mediate 5.44% (95% CI: 10.8-0.0383%) of the effect of MMP-10 on PCOS. Conclusion This study not only introduces novel causal associations between inflammatory proteins and PCOS but also highlights the mediating role of serum metabolites in these associations. By applying MR, we were able to minimize confounding and reverse causality, offering robust insights into the biological mechanisms underlying PCOS. These findings advance the understanding of PCOS pathogenesis, particularly in relation to inflammatory pathways and serum metabolite interactions, and suggest potential therapeutic targets that could inform future clinical interventions aimed at mitigating inflammation-related PCOS risks.
Collapse
Affiliation(s)
- Ming-Jie Jia
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li Zhou
- Institute of Depression and Comorbidity, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xing-Ning Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hui-Lin Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
13
|
Danduga RCSR, Kurapati AS, Shaik RA, Kola PK, Konidala SK, Varada HB. Synergistic Amelioration of Letrozole-induced Polycystic Ovary Syndrome in Rats: A Therapeutic Approach with Apple Cider Vinegar and Metformin Combination. Reprod Sci 2024; 31:2861-2876. [PMID: 38777948 DOI: 10.1007/s43032-024-01545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
The present study was conducted to evaluate the combination effect of apple cider vinegar (ACV) and metformin against letrozole-induced polycystic ovary syndrome (PCOS). Female Wistar rats were administered letrozole (1 mg/kg/day, p.o) for 21 days, except for the control group of animals. On the 22nd day, PCOS-induced animals were segregated into 4 groups and administered with CMC, ACV, metformin, and a combination of ACV and metformin, respectively. The treatments were continued for 15 days, and on the 36th day, all the animals were sacrificed for biochemical (blood glucose, lipid profile), hormonal (sex hormones and adiponectin), and pro-inflammatory mediator estimations in blood samples. The ovarian tissue samples were used for oxidative stress parameters and histological alterations. The PCOS control animals showed a significant alteration in the estrous cycle. The administration of letrozole resulted in the alteration of hormonal balance and elevation of body weights, glycemic state, lipid profile, pro-inflammatory mediators in serum, and oxidative stress in ovarian samples. Individual treatment groups and combination treatment groups reversed the letrozole-induced alterations in PCOS animals, and more promising results were observed with combination therapy than with individual treatment groups. Further, the therapeutic potential of the combination treatment group was also confirmed by the histological observations in the ovarian samples. The study showed that the combination of ACV and metformin significantly alleviated letrozole-induced PCOS complications in rats. This might have been achieved by mitigating the hormonal imbalance, pro-inflammatory, hyperglycemic, and hyperlipidemic states in serum, and oxidative stress in the ovary samples.
Collapse
Affiliation(s)
- Ravi Chandra Sekhara Reddy Danduga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Aarathi Shalom Kurapati
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, 522510, India
| | - Roohi Anju Shaik
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, 522510, India
| | - Phani Kumar Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Sathish Kumar Konidala
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Sciences, Technology, and Research, Vadlamudi, Guntur, 522213, India
| | - Hema Bharathi Varada
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, 522510, India
| |
Collapse
|
14
|
Chen K, Geng H, Ye C, Liu J. Dysbiotic alteration in the fecal microbiota of patients with polycystic ovary syndrome. Microbiol Spectr 2024; 12:e0429123. [PMID: 38990031 PMCID: PMC11302149 DOI: 10.1128/spectrum.04291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/13/2024] [Indexed: 07/12/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disease associated with high androgen and infertility. The gut microbiota plays an important role in metabolic diseases including obesity, hyperglycemia, and fatty liver. Although the gut microbiota has been associated with PCOS, little is known about the gut microbial structure and function in individuals with PCOS from Northeast China. In this study, 17 PCOS individuals and 17 age-matched healthy individuals were recruited for community structure and function analysis of the gut microbiota. The results showed that PCOS individuals have reduced diversity and richness of the gut microbiota compared with healthy individuals. Beta diversity analysis showed that the community structure of the gut microbiota of individuals with PCOS was significantly separated from healthy individuals. At the phylum level, PCOS individuals have reduced Firmicutes and Bacteroidota and increased Actinobacteriota and Proteobacteria compared with healthy individuals. At the family and genus levels, the composition of the gut microbiota between PCOS patients and healthy individuals was also significantly different. In addition, PICRUSt2 showed that individuals with PCOS have different microbial functions in the gut compared with healthy individuals. We finally confirmed that Bifidobacterium was enriched in the fecal samples of PCOS patients, while other 11 genera including Bacteroides, UCG_002, Eubacterium__coprostanoligenes_group_unclassified, Dialister, Firmicutes_unclassified, Ruminococcus, Alistipes, Christensenellaceae_R_7_group, Clostridia_UCG_014_unclassified, Roseburia, and Lachnospiraceae_unclassified were depleted compared with healthy individuals. These results indicate that individuals with PCOS have altered community structure and functions of the gut microbiota, which suggests that targeting the gut microbiota might be a potential strategy for PCOS intervention. IMPORTANCE Gut microbiota plays a critical role in the development of PCOS. There is a complex and close interaction between PCOS and gut microbiota. The relationship between the pathogenesis and pathophysiological processes of PCOS and the structure and function of the gut microbiota needs further investigation.
Collapse
Affiliation(s)
- Ke Chen
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Chandra Sekar PK, Veerabathiran R. Genes linked to obesity-related infertility: bridging the knowledge gap. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2024; 8:121-129. [DOI: 10.1097/rd9.0000000000000096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Genetic factors play a pivotal role in the complex relationship between obesity and infertility. This article delves into the genetics of obesity-related infertility, focusing on the essential genes and mechanisms in both sexes. We explored infertility factors in obese females, focusing on polycystic ovary syndrome (PCOS) and the influence of genes like insulin receptor (INSR), androgen receptor (AR), and follicle-stimulating hormone receptor (FSHR). Epigenetic changes are believed to contribute to PCOS-related infertility. The impact of adipokines and inflammation on obesity-related infertility has been discussed, with genes such as fat mass and obesity (FTO) and melanocortin-4-receptor (MC4R) playing significant roles. Genetic factors affecting sperm quality and function, including nuclear receptor subfamily 3 group C member 1 (NR3C1) and methylenetetrahydrofolate reductase (MTHFR), have been investigated in obesity-related infertility in males. Hormonal dysregulation influenced by genetic markers, such as leptin receptor (LEPR), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), was also examined. Genetic factors play a vital role in obesity-related infertility in both sexes. Genes involved in metabolism, hormonal regulation, and inflammation contribute to the complex association between obesity and infertility. Epigenetic changes further complicate the relationship. Understanding these genetic mechanisms is essential to address obesity-related infertility and develop personalized interventions.
Collapse
Affiliation(s)
- Praveen Kumar Chandra Sekar
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
16
|
Amuzescu A, Tampa M, Matei C, Georgescu SR. Adult Female Acne: Recent Advances in Pathophysiology and Therapeutic Approaches. COSMETICS 2024; 11:74. [DOI: 10.3390/cosmetics11030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Adult acne is a chronic inflammatory disease of the pilosebaceous unit characterized by the excessive production of abnormal sebum favoring an imbalance of the skin microbiota and the hyperproliferation of Cutibacterium acnes and other virulent microbial strains, leading to an inflammatory environment, innate immunity overactivation, and keratinocyte hyperproliferation in hair follicles pores. Degraded keratinocytes plug the pores, consequently forming microcomedons, which can later evolve to papules, nodules, pustules and scars. Distinct from juvenile acne, in adult female acne (AFA) the symptomatology occurs or persists in postadolescence (after age 25). Although hyperandrogenism or the excessive sensitivity of androgen receptors are the main causes, AFA can be triggered by multiple factors, either including or not including androgen disturbances. The prevalence in adult women is 15–20%. Hyperandrogenism is present in 50% of cases; 70% of hyperandrogenism cases feature polycystic ovary syndrome (PCOS), a complex endocrine and metabolic condition. Genetic susceptibility occurs in 80% of acne cases, often with familial inheritance. Beyond classical stepwise therapeutic protocols (topical agents, isotretinoin, antibiotics, hormonal therapy with estrogens, progestins, spironolactone), novel approaches include the highly effective topical antiandrogen clascoterone, the management of insulin resistance by diet, exercise, stress avoidance, and adjuvant therapies such as berberine. Vaccines against the pathogenic proinflammatory C. acnes hyaluronidase A are in development.
Collapse
Affiliation(s)
- Andreea Amuzescu
- Department of Dermatology, “Victor Babes” Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, “Victor Babes” Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Roxana Georgescu
- Department of Dermatology, “Victor Babes” Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
17
|
Parker J, O’Brien CL, Yeoh C, Gersh FL, Brennecke S. Reducing the Risk of Pre-Eclampsia in Women with Polycystic Ovary Syndrome Using a Combination of Pregnancy Screening, Lifestyle, and Medical Management Strategies. J Clin Med 2024; 13:1774. [PMID: 38541997 PMCID: PMC10971491 DOI: 10.3390/jcm13061774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/04/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multisystem disorder that presents with a variety of phenotypes involving metabolic, endocrine, reproductive, and psychological symptoms and signs. Women with PCOS are at increased risk of pregnancy complications including implantation failure, miscarriage, gestational diabetes, fetal growth restriction, preterm labor, and pre-eclampsia (PE). This may be attributed to the presence of specific susceptibility features associated with PCOS before and during pregnancy, such as chronic systemic inflammation, insulin resistance (IR), and hyperandrogenism, all of which have been associated with an increased risk of pregnancy complications. Many of the features of PCOS are reversible following lifestyle interventions such as diet and exercise, and pregnant women following a healthy lifestyle have been found to have a lower risk of complications, including PE. This narrative synthesis summarizes the evidence investigating the risk of PE and the role of nutritional factors in women with PCOS. The findings suggest that the beneficial aspects of lifestyle management of PCOS, as recommended in the evidence-based international guidelines, extend to improved pregnancy outcomes. Identifying high-risk women with PCOS will allow targeted interventions, early-pregnancy screening, and increased surveillance for PE. Women with PCOS should be included in risk assessment algorithms for PE.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong 2522, Australia
| | - Claire Louise O’Brien
- Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia;
| | - Christabelle Yeoh
- Next Practice Genbiome, 2/2 New McLean Street, Edgecliff 2027, Australia;
| | - Felice L. Gersh
- College of Medicine, University of Arizona, Tucson, AZ 85004, USA;
| | - Shaun Brennecke
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
18
|
Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci 2024; 25:1976. [PMID: 38396659 PMCID: PMC10889014 DOI: 10.3390/ijms25041976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Gao S, Wang J, Wei L, Luo C, Qian F, Bo L, Mao C. Trehalosemodulates OVRAS to improve oxidative stress and apoptosis in KGN cells and ovaries of PCOS mice. J Ovarian Res 2024; 17:11. [PMID: 38195648 PMCID: PMC10775634 DOI: 10.1186/s13048-023-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
The etiology of polycystic ovary syndrome (PCOS) is complex and variable, and there is no exact cause or good treatment method. Most of the methods of hormones are used to temporarily meet the needs of patients. Experimental evidence has shown that trehalose has, anti-apoptotic, anti-oxidative, glucose-lowering, and insulin resistance effects. However, whether trehalose has a therapeutic effect on PCOS is unknown. It has been reported that the ovarian renin-angiotensin system (OVRAS) is involved in the development of PCOS, but it has not been fully elucidated. This study aims to explore the effect of trehalose on PCOS and elucidate the related OVRAS mechanism. We first observed that body weight, estrous cycle, ovarian follicles at all levels, glucose tolerance, serum hormones, and insulin resistance were improved by trehalose treatment in the PCOS mouse model. Moreover, trehalose treatment also ameliorated ovarian oxidative stress and apoptosis in PCOS mice, as determined by TUNNEL apoptosis staining, total SOD in ovarian homogenate, and WB assay. OVRAS mainly involves two classic pathways, namely the ACE/AngII/AT1R/AT2R, and ACE2 / Ang1-7/ MASR, Which play different functions. In PCOS mouse ovaries, we found that ACE/AngII/AT1R was up-regulated and ACE2/Ang1-7/MASR and AT2R were down-regulated by PCR and WB experiments, However, trehalose treatment changed its direction. In addition, we also found that trehalose ameliorated DHEA-induced oxidative stress and apoptosis in KGN by PCR and WB experiments, mainly by down-regulating ACE/AngII/AT1R. Our study shows that trehalose improves symptoms of PCOS mainly by down-regulating ACE/AngII/AT1R, revealing a potential therapeutic target for PCOS.
Collapse
Affiliation(s)
- Shasha Gao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Juan Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Lun Wei
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Chao Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Fei Qian
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Le Bo
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China
| | - Caiping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
20
|
Shafiei G, Saheli M, Ganjalikhan-Hakemi S, Haghpanah T, Nematollahi-Mahani SN. Administration of adipose-derived mesenchymal stem cell conditioned medium improves ovarian function in polycystic ovary syndrome rats: involvement of epigenetic modifiers system. J Ovarian Res 2023; 16:238. [PMID: 38102694 PMCID: PMC10722730 DOI: 10.1186/s13048-023-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a widespread heterogeneous disease that is in association with genetic, epigenetic, endocrine and environmental factors. Adipose-derived mesenchymal stem cell (ASC) and ASC-conditioned medium (ASC-CM) have shown promising abilities in tissue regeneration. In the present study, we aimed to investigate the effects of ASC and ASC-CM on epigenetic regulators, steroidal function and folliculogenesis in the letrozole-induced PCOS rats. RESULTS Based on the measurement of the oral glucose tolerance test and physical parameters including body weight, estrus cycle pattern as well as ovary dimensions, PCOS-induced rats in sham and control (CTRL) groups showed signs of reproductive dysfunctions such as lack of regular estrus cyclicity, metabolic disorders such as increased ovary dimension, body weight and blood glucose level alteration which were improved especially by ASC-CM administration.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Saheli
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Ganjalikhan-Hakemi
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Seyed Noureddin Nematollahi-Mahani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
21
|
Sudhakaran G, Priya PS, Jagan K, Haridevamuthu B, Meenatchi R, Arockiaraj J. Osteoporosis in polycystic ovary syndrome (PCOS) and involved mechanisms. Life Sci 2023; 335:122280. [PMID: 37981226 DOI: 10.1016/j.lfs.2023.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Polycystic Ovary Syndrome (PCOS) and osteoporosis, though seemingly unrelated, exhibit intricate connections influenced by genetic and epigenetic factors. PCOS, characterized by elevated androgen levels, insulin resistance, and increased body weight, has historically been considered protective against bone fragility disorders. However, emerging research suggests that chronic inflammation, prevalent in PCOS, can adversely affect bone health. Studies have demonstrated variable bone mineral density loss in PCOS, often associated with leptin resistance and hyperinsulinemia. Key genes such as INS, IGF1, CTNNB1, AKT1, and STAT3 play pivotal roles in the complex interplay between PCOS and osteoporosis, influencing insulin signaling, oxidative stress, and inflammatory pathways. Oxidative stress, a prominent element in PCOS, can lead to osteoporosis through hormonal imbalances, chronic inflammation, insulin resistance, and lifestyle factors. The insulin signaling pathway also significantly impacts both conditions by contributing to hormonal imbalances and bone health alterations. This intricate network of genetic and epigenetic factors underscores the need for a deeper understanding of their interrelationships. Thus, this review elucidates the multifaceted genetic, epigenetic, and inflammatory connections between PCOS and osteoporosis, highlighting their implications for bone health management in individuals with PCOS.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Kannan Jagan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
22
|
Zou L, Li W, Xu D, Zhu S, Jiang B. Alteration of the N 6-methyladenosine methylation landscape in a mouse model of polycystic ovary syndrome. J Ovarian Res 2023; 16:157. [PMID: 37550765 PMCID: PMC10408202 DOI: 10.1186/s13048-023-01246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
OBJECTIVE To explore the N6-methyladenosine (m6A) methylation abnormality of mRNAs and its potential roles in the mouse model of polycystic ovary syndrome (PCOS). METHODS The mouse model of PCOS were induced by injecting dehydroepiandrosterone (DHEA), and confirmed by observing the morphological structures of ovarian follicles. Subsequently, m6A-tagged mRNAs were identified via m6A epitranscriptomic microarray and its potential functional pathways were predicted in KEGG database. The expression and modification levels of key mRNAs in the most enriched pathway were evaluated and compared using western blot and methylated RNA immunoprecipitation-quantitative PCR (MeRIP-qPCR). RESULTS Compared with the control group, 415 hypermethylated and downregulated mRNAs, 8 hypomethylated and upregulated mRNAs, and 14 hypermethylated and upregulated mRNAs were identified in the PCOS group (Fold change ≥ 1.5). Those mRNAs were mainly involved in insulin signaling pathway, type II diabetes mellitus, Fc epsilon RI signaling pathway, inositol phosphate metabolism, and GnRH secretion. In insulin signaling pathway, the expression levels of phosphorylated protein kinase B (p-AKT) were decreased, whereas that of upstream phosphorylated phosphatidylinositol 3-kinase (p-PI3K) were increased in PCOS group. Moreover, skeletal muscle and kidney-enriched inositol polyphosphate 5-phosphatease (SKIP), one of PIP3 phosphatases, was verified to be overexpressed, and Skip mRNAs were hypermethylated in PCOS group. CONCLUSION The altered m6A modification of mRNAs might play a critical role in PCOS process. The PI3K/AKT pathway is inhibited in the mouse model of PCOS. Whether it is caused by the m6A modification of Skip mRNAs is worthy of further exploration.
Collapse
Affiliation(s)
- Lingxiao Zou
- Department of Obstetrics and Gynaecology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, China
| | - Waixing Li
- Department of Obstetrics and Gynaecology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, China
| | - Dabao Xu
- Department of Obstetrics and Gynaecology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, China
| | - Shujuan Zhu
- Department of Obstetrics and Gynaecology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, China.
| | - Bin Jiang
- Department of Obstetrics and Gynaecology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, China.
| |
Collapse
|
23
|
Dar MA, Maqbool M, Ara I. The PCOS puzzle: putting the pieces together for optimal care. Int J Adolesc Med Health 2023; 35:299-311. [PMID: 37596861 DOI: 10.1515/ijamh-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted hormonal disorder that has significant ramifications for both women's reproductive and metabolic well-being. This analysis aims to offer a thorough comprehension of PCOS by investigating the various contributing factors that are crucial for its effective management. We delve into the topic of hormonal imbalances, such as elevated androgens and disrupted estrogen-progesterone dynamics, and their effects on reproductive and metabolic health. Furthermore, we explore the intricate connection between insulin resistance, hyperinsulinemia, and PCOS, highlighting their pivotal role in metabolic dysfunction. Additionally, we examine fertility challenges, irregular menstrual patterns, and metabolic complications while also reviewing current treatment methodologies. Moreover, we address the latest research concerning genetic, environmental, and epigenetic influences on PCOS. By piecing together these essential elements, healthcare professionals can attain a comprehensive understanding of PCOS and deliver optimal care for those affected by the condition.
Collapse
Affiliation(s)
- Mohd Altaf Dar
- Department of Pharmacology, CT Institute of Pharmaceutical Sciences, PTU, Jalandhar, Punjab, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University Of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Irfat Ara
- Regional Research Institute of Unani Medicine, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
24
|
Jiang H, Chen L, Tian T, Shi H, Huang N, Chi H, Yang R, Long X, Qiao J. Inflammation mediates the effect of adiposity and lipid metabolism indicators on the embryogenesis of PCOS women undergoing in vitro fertilization/intracytoplasmic sperm injection. Front Endocrinol (Lausanne) 2023; 14:1198602. [PMID: 37560312 PMCID: PMC10408295 DOI: 10.3389/fendo.2023.1198602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex reproductive endocrine and metabolic disease affecting women of reproductive age. The low-grade chronic inflammation in PCOS is considered to be associated with obesity and dyslipidemia. We aim to investigate the potential mediating role of white blood cell (WBC) count, a representative inflammatory marker, in the effect of adiposity and lipid metabolism indicators on IVF/ICSI outcomes in PCOS women. Methods We conducted a retrospective cohort study of 1,534 PCOS women who underwent their first IVF/ICSI cycles with autologous oocytes at a reproductive center from January 2018 to December 2020. The associations between PCOS women's adiposity and lipid metabolism indicators and WBC count and IVF/ICSI outcomes were examined using multivariable generalized linear models. Mediation analyses were conducted to evaluate the possible mediating role of WBC count. Results We found significant dose-dependent correlations between adiposity and lipid metabolism indicators and IVF/ICSI outcomes (i.e., hormone levels on the ovulatory triggering day, oocyte development outcomes, fertilization, early embryo development outcomes, and pregnancy outcomes) (all p < 0.05), as well as between adiposity and lipid metabolism indicators and WBC count (all p < 0.001). Increasing WBC count was associated with adverse oocyte and embryonic development outcomes (all p < 0.05). Mediation analyses suggested that increasing serum TG and LDL-C levels and decreasing serum HDL-C level were significantly associated with reduced high-quality Day 3 embryo count in PCOS women, with 21.51%, 9.75%, and 14.10% mediated by WBC count, respectively (all p < 0.05). Conclusions We observed significant associations between lipid metabolism indicators and high-quality Day 3 embryo count in PCOS women, partially mediated by inflammation-related mechanisms, suggesting the potential intervention target for improving embryo quality in PCOS women.
Collapse
Affiliation(s)
- Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lixue Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Huifeng Shi
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
25
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
26
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
27
|
Adamczak A, Płotek W, Głowińska A, Sobol M, Wysocka E, Polak G, Dymanowska-Dyjak I, Spaczyńska J, Adamczak Ł, Banaszewska B. Time Perspective as a Mediator of Depressive Symptoms in Patients with Polycystic Ovary Syndrome. Healthcare (Basel) 2023; 11:healthcare11070993. [PMID: 37046920 PMCID: PMC10094433 DOI: 10.3390/healthcare11070993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is a chronic endocrinopathy characterized by oligo- or anovulation, clinical and/or biochemical markers of hyperandrogenism, and polycystic ovaries, and it is associated with an increased prevalence of depression. Research conducted on psychiatric patients has shown correlations between depression and decreased cognitive function. The aim of this study was to examine the possible mediation of the time perspective (TP) in the development of depressive symptoms in patients with PCOS. Methods: A study was conducted on 83 patients with PCOS and 65 healthy women. Standardized questionnaires were used to assess depressive symptoms (Beck Depression Inventory—BDI-II) and time perspective (Zimbardo Time Perspective Inventory—ZTPI). Results: Our study revealed an indirect influence of depressive symptoms on PCOS through the positive future time perspective. In the logistic regression model, which included depression and a given time perspective as predictors of PCOS, only the future TP (β = −0.004, p < 0.003, OR = 1.004, 95% CI [1.001, 1.008]) was significantly independently related to the occurrence of PCOS. Conclusions: Our result is another argument for the role of psychoeducation and appropriate communication with a patient from the risk group in a way that builds hope and allows to regain influence on life situation.
Collapse
|
28
|
Sun Y, Gao S, Ye C, Zhao W. Gut microbiota dysbiosis in polycystic ovary syndrome: Mechanisms of progression and clinical applications. Front Cell Infect Microbiol 2023; 13:1142041. [PMID: 36909735 PMCID: PMC9998696 DOI: 10.3389/fcimb.2023.1142041] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine diseases in women of childbearing age that leads to menstrual disorders and infertility. The pathogenesis of PCOS is complex and has not yet been fully clarified. Gut microbiota is associated with disorders of lipid, glucose, and steroid hormone metabolish. A large body of studies demonstrated that gut microbiota could regulate the synthesis and secretion of insulin, and affect androgen metabolism and follicle development, providing us a novel idea for unravelling the pathogenesis of PCOS. The relationship between gut microbiota and the pathogenesis of PCOS is particularly important. This study reviewed recent research advances in the roles of gut microbiota in the occurrence and development of PCOS. It is expected to provide a new direction for the treatment of PCOS based on gut microbiota.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Weiliang Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Weiliang Zhao,
| |
Collapse
|