1
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
2
|
Kalenik S, Zaczek A, Rodacka A. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders. Int J Mol Sci 2025; 26:3402. [PMID: 40244238 PMCID: PMC11989335 DOI: 10.3390/ijms26073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
Collapse
Affiliation(s)
- Sebastian Kalenik
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237 Lodz, Poland
| | - Agnieszka Zaczek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| | - Aleksandra Rodacka
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| |
Collapse
|
3
|
Zeng J, Indajang J, Pitt D, Lo CH. Lysosomal acidification impairment in astrocyte-mediated neuroinflammation. J Neuroinflammation 2025; 22:72. [PMID: 40065324 PMCID: PMC11892208 DOI: 10.1186/s12974-025-03410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Astrocytes are a major cell type in the central nervous system (CNS) that play a key role in regulating homeostatic functions, responding to injuries, and maintaining the blood-brain barrier. Astrocytes also regulate neuronal functions and survival by modulating myelination and degradation of pathological toxic protein aggregates. Astrocytes have recently been proposed to possess both autophagic activity and active phagocytic capability which largely depend on sufficiently acidified lysosomes for complete degradation of cellular cargos. Defective lysosomal acidification in astrocytes impairs their autophagic and phagocytic functions, resulting in the accumulation of cellular debris, excessive myelin and lipids, and toxic protein aggregates, which ultimately contributes to the propagation of neuroinflammation and neurodegenerative pathology. Restoration of lysosomal acidification in impaired astrocytes represent new neuroprotective strategy and therapeutic direction. In this review, we summarize pathogenic factors, including neuroinflammatory signaling, metabolic stressors, myelin and lipid mediated toxicity, and toxic protein aggregates, that contribute to lysosomal acidification impairment and associated autophagic and phagocytic dysfunction in astrocytes. We discuss the role of lysosomal acidification dysfunction in astrocyte-mediated neuroinflammation primarily in the context of neurodegenerative diseases along with other brain injuries. We then highlight re-acidification of impaired lysosomes as a therapeutic strategy to restore autophagic and phagocytic functions as well as lysosomal degradative capacity in astrocytes. We conclude by providing future perspectives on the role of astrocytes as phagocytes and their crosstalk with other CNS cells to impart neurodegenerative or neuroprotective effects.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
4
|
Santos DE, Silva Lima SA, Moreira LS, Lima Costa S, de Sampaio Schitine C. New perspectives on heterogeneity in astrocyte reactivity in neuroinflammation. Brain Behav Immun Health 2025; 44:100948. [PMID: 40028234 PMCID: PMC11871470 DOI: 10.1016/j.bbih.2025.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The inflammatory response is a fundamental aspect of all insults to the central nervous system (CNS), which includes acute trauma, infections, and chronic neurodegenerative conditions. As methods for investigating astrocytes have progressed, recent findings indicate that astrocytes can react to a diverse spectrum of insults affecting the central nervous system. Astrocytes respond to external and internal stimuli from the nervous system in a process called glial reactivity. Astrocyte reactivity, previously considered uniform and functionally inactive, is currently a very diverse event in different inflammatory processes. These differences can occur due to the nature, the intensity of the stimulus, the brain region involved and can range from subtle changes in astrocytic morphology to protein expression alteration, gene transcription profile shifts, and variations in the secretory pattern of molecules. The elucidation of the diverse roles of astrocytes in both normal and pathological conditions has led to increased interest in the notion that various astrocyte subtypes may exist, each contributing with distinct functions. Our study will prioritize the characterization of astrocytic response patterns in the context of the development and progression of neurodegenerative diseases, particularly Alzheimer's and Parkinson's. In addition, we will investigate the astrocyte's response during bacterial and viral infections, given the potential to enhance specific therapeutic interventions based on the reactivity profiles of astrocytes.
Collapse
Affiliation(s)
| | | | - Leticia Santos Moreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Clarissa de Sampaio Schitine
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| |
Collapse
|
5
|
Zhu CC, Zheng YL, Gong C, Chen BL, Guo JB. Role of Exercise on Neuropathic Pain in Preclinical Models: Perspectives for Neuroglia. Mol Neurobiol 2025; 62:3684-3696. [PMID: 39316356 DOI: 10.1007/s12035-024-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
The benefits of exercise on neuropathic pain (NP) have been demonstrated in numerous studies. In recent studies, inflammation, neurotrophins, neurotransmitters, and endogenous opioids are considered as the main mechanisms. However, the role of exercise in alleviating NP remains unclear. Neuroglia, widely distributed in both the central and peripheral nervous systems, perform functions such as support, repair, immune response, and maintenance of normal neuronal activity. A large number of studies have shown that neuroglia play an important role in the occurrence and development of NP, and exercise can alleviate NP by regulating neuroglia. This article reviewed the involvement of neuroglia in the development of NP and their role in the exercise treatment of NP, intending to provide a theoretical basis for the exercise treatment strategy of NP.
Collapse
Affiliation(s)
- Chen-Chen Zhu
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Chan Gong
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Bing-Lin Chen
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jia-Bao Guo
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Gill AJ, Smith MD, Galleguillos D, Garton T, Mace JW, Gadani SP, Kumar S, Pokharel A, Solem K, Potluri S, Hussein O, Rogines GS, Singh A, Clark A, Calabresi PA, Gharagozloo M. NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway. J Neuroinflammation 2025; 22:21. [PMID: 39875919 PMCID: PMC11773851 DOI: 10.1186/s12974-025-03339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1-/- and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1-/- mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models. To minimize the effects of Nlrx1-/- on peripheral lymphocyte priming during EAE, we performed adoptive transfer experiments, in which activated myelin-specific T cells were transferred into lymphocyte-deficient Rag-/- or Nlrx1-/-Rag-/- mice. In this model, we found more severe microgliosis and astrogliosis in the optic nerve of Nlrx1-/-Rag-/- mice compared to Rag-/- mice, suggesting a regulatory role of NLRX1 in innate immune cells. Transcriptome analysis in primary astrocytes activated with LPS and IFNγ demonstrated that NLRX1 suppresses NF-κB activation and regulates mitochondrial oxidative phosphorylation in inflammatory reactive astrocytes. The novel pharmacologic NLRX1 activators NX-13 and LABP-66 decreased LPS-mediated gene expression of inflammatory cytokines and chemokines in mixed glial cultures. Moreover, treating EAE mice with oral LABP-66, compared to vehicle, after the onset of paralysis resulted in less anterior visual pathway neurodegeneration. These data suggest that pharmacologic NLRX1 activators have the potential to limit inflammatory neurodegeneration. This study highlights that NLRX1 could serve as a promising target for neuroprotection in progressive MS and other neurodegenerative diseases. Further studies are needed to better understand the cell-specific mechanisms underlying the neuroprotective role of NLRX1 in response to inflammation in the CNS.
Collapse
Affiliation(s)
- Alexander J Gill
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Danny Galleguillos
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Thomas Garton
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jackson W Mace
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sachin P Gadani
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Swati Kumar
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Aayush Pokharel
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Krista Solem
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Saahith Potluri
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Omar Hussein
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Giuliana Sardi Rogines
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Arihant Singh
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Annatje Clark
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Marjan Gharagozloo
- Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
9
|
Wang R, Ren L, Wang Y, Hu N, Tie F, Dong Q, Wang H. Multi-Protective Effects of Petunidin-3-O-( trans-p-coumaroylrutinoside)-5-O-glucoside on D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:11014. [PMID: 39456797 PMCID: PMC11506951 DOI: 10.3390/ijms252011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Petunidin-3-O-(trans-p-coumaroylrutinoside)-5-O-glucoside (PtCG), the primary anthocyanin ingredient in Lycium ruthenicum Murr., possesses a range of biological activities, including antioxidative properties and melanin inhibition. This study aimed to investigate the protective effect of PtCG on D-galactose (D-gal)-induced aging in female mice and elucidate the underlying molecular pathways. Behavioral experiments, including the MWW and Y-maze tests, revealed that PtCG significantly ameliorated cognitive decline and enhanced learning and memory abilities in aging mice. Regarding biochemical indicators, PtCG considerably improved superoxide dismutase (SOD) and glutathione (GSH) activity while reducing malondialdehyde (MDA) and acetylcholinesterase (AChE) levels in the hippocampus and serum. Furthermore, PtCG ingestion alleviated liver injury by decreasing alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (AKP) levels, and attenuated renal damage by reducing blood urea nitrogen (BUN) and uric acid (UA) levels. Transmission electron microscopy (TEM) results demonstrated that PtCG restored the function and quantity of synapses in the hippocampus. Hematoxylin and eosin (H&E), Masson's trichrome, and Nissl staining revealed that PtCG significantly improved the relevant pathological characteristics of liver and hippocampal tissues in aging mice. The molecular mechanism investigation showed that PtCG downregulated the protein expression of microglial marker ionized calcium-binding adapter molecule 1 (Iba1), astrocytic marker glial fibrillary acidic protein (GFAP), β-secretase 1 (BACE-1), and amyloid-beta1-42 (Aβ1-42) in the hippocampus of aging mice. The protein expression of inflammatory pathway components, including nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), and interleukin-1 beta (IL-1β), was also suppressed. These findings suggest that PtCG may possess anti-aging properties, with its mechanism of action potentially linked to the attenuation of neuroinflammation, oxidative stress, and liver and kidney damage. PtCG may have future applications as a functional food for the treatment of aging-related disorders.
Collapse
Affiliation(s)
- Ruinan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichengcheng Ren
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Yue Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Fangfang Tie
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (R.W.); (L.R.); (Y.W.); (N.H.); (F.T.); (Q.D.)
| |
Collapse
|
10
|
Zieger K, Cao C, Engele J. Evaluating CXCL12 for Effects on Reactive Gene Expression in Primary Astrocytes. J Mol Neurosci 2024; 74:57. [PMID: 38802573 DOI: 10.1007/s12031-024-02231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Upon injury to the CNS, astrocytes undergo morphological and functional changes commonly referred to as astrocyte reactivity. Notably, these reactive processes include altered expression of factors that control immune processes and neuronal survival, as well as increased expression of the CXCL12 receptor, CXCR7/ACKR3. We now asked whether these events are related in that the astrocytic CXCL12 system modulates immune responses and/or neuronal survival. Short-term exposure of astrocytes cultured from the postnatal rat cortex to CXCL12 prominently increased the expression of serpine1/PAI1 on the mRNA level, but showed either no or only minor effects on the expression of additional reactive genes, selected from previous array studies. CXCL12-induced increases in PAI1 protein levels were only detectable in the additional presence of chemokines/cytokines, suggesting that translation of serpine1 mRNA depends on the cooperation of various factors. As expected, expression of most of the selected genes increased after acute or chronic activation of astrocytes with either LPS or a combination of IL-1β and TNFα. CXCL12 partially attenuated expression of some of the LPS and IL-1β/TNFα-induced genes under acute conditions, in particular those encoding CXCL9, CXCL10, CXCL11, and CCL5. Taken together, these findings argue for the involvement of the astrocyte CXCL12 system in the control of the immune response of the injured CNS, where it may control distinct steps.
Collapse
Affiliation(s)
- Konstanze Zieger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Carolina Cao
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
12
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
13
|
Gargas J, Janowska J, Gebala P, Maksymiuk W, Sypecka J. Reactive Gliosis in Neonatal Disorders: Friend or Foe for Neuroregeneration? Cells 2024; 13:131. [PMID: 38247822 PMCID: PMC10813898 DOI: 10.3390/cells13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
A developing nervous system is particularly vulnerable to the influence of pathophysiological clues and injuries in the perinatal period. Astrocytes are among the first cells that react to insults against the nervous tissue, the presence of pathogens, misbalance of local tissue homeostasis, and a lack of oxygen and trophic support. Under this background, it remains uncertain if induced astrocyte activation, recognized as astrogliosis, is a friend or foe for progressing neonatal neurodevelopment. Likewise, the state of astrocyte reactivity is considered one of the key factors discriminating between either the initiation of endogenous reparative mechanisms compensating for aberrations in the structures and functions of nervous tissue or the triggering of neurodegeneration. The responses of activated cells are modulated by neighboring neural cells, which exhibit broad immunomodulatory and pro-regenerative properties by secreting a plethora of active compounds (including interleukins and chemokines, neurotrophins, reactive oxygen species, nitric oxide synthase and complement components), which are engaged in cell crosstalk in a paracrine manner. As the developing nervous system is extremely sensitive to the influence of signaling molecules, even subtle changes in the composition or concentration of the cellular secretome can have significant effects on the developing neonatal brain. Thus, modulating the activity of other types of cells and their interactions with overreactive astrocytes might be a promising strategy for controlling neonatal astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.G.); (J.J.)
| |
Collapse
|
14
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
15
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
17
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
18
|
Łach A, Wnuk A, Wójtowicz AK. Experimental Models to Study the Functions of the Blood-Brain Barrier. Bioengineering (Basel) 2023; 10:bioengineering10050519. [PMID: 37237588 DOI: 10.3390/bioengineering10050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this paper was to discuss the achievements of in vitro modeling in terms of the blood-brain barrier [BBB] and to create a clear overview of this research area, which is useful in research planning. The text was divided into three main parts. The first part describes the BBB as a functional structure, its constitution, cellular and noncellular components, mechanisms of functioning and importance for the central nervous system, in terms of both protection and nourishment. The second part is an overview of parameters important in terms of establishing and maintaining a barrier phenotype that allows for formulating criteria of evaluation of the BBB in vitro models. The third and last part discusses certain techniques for developing the BBB in vitro models. It describes subsequent research approaches and models, as they underwent change alongside technological advancement. On the one hand, we discuss possibilities and limitations of different research approaches: primary cultures vs. cell lines and monocultures vs. multicultures. On the other hand, we review advantages and disadvantages of specific models, such as models-on-a-chip, 3D models or microfluidic models. We not only attempt to state the usefulness of specific models in different kinds of research on the BBB but also emphasize the significance of this area of research for advancement of neuroscience and the pharmaceutical industry.
Collapse
Affiliation(s)
- Andrzej Łach
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, 30-059 Kraków, Poland
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Anna Katarzyna Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, 30-059 Kraków, Poland
| |
Collapse
|
19
|
ELBini I, Neili NE. Potassium channels at the crossroads of neuroinflammation and myelination in experimental models of multiple sclerosis. Biochem Biophys Res Commun 2023; 653:140-146. [PMID: 36870238 DOI: 10.1016/j.bbrc.2023.02.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS), characterized by the presence of localized demyelinating lesions accompanied by an inflammatory reaction, evidently leading to neurodegeneration. A number of ion channels have been implicated in the progression of MS, most notably in cell types involved in the immune response. In the present study, we investigated the implication of two ion channel isoforms, Kv1.1 and Kv1.3, in experimental models of neuroinflammation and demyelination. Immunohistochemical staining of brain sections from the mouse cuprizone model displayed high levels Kv1.3 expression. In an astroglial cellular model of inflammation, stimulation with LPS resulted also in a higher expression of Kv1.1 and Kv1.3, while the introduction of 4-Aminopyridine (4-AP) exacerbated the release of pro-inflammatory chemokine CXCL10. In the oligodendroglial cellular model of demyelination, the alteration in expression levels of Kv1.1 and Kv1.3 may be correlated with that of MBP levels. Indirect co-culture was attempted to further understand the communication between astrocytes and oligodendrocytes, The addition of reactive astrocytes' secretome significantly inhibited the production of MBP, this inhibition was accompanied by an alteration in the expression of Kv1.1 and Kv1.3. The addition of 4-AP in this case did not alleviate the decrease in MBP production. In conclusion, the use of 4-AP generated controversial results, suggesting 4-AP may be used in the early stages of the disease or in the remission phases to stimulate myelination, yet in induced toxic inflammatory environment, 4-AP exacerbated this effect.
Collapse
Affiliation(s)
- Ines ELBini
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, 1002, Tunisia.
| | - Nour-Elhouda Neili
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, 1002, Tunisia.
| |
Collapse
|
20
|
Unsaturated Fatty Acids and Their Immunomodulatory Properties. BIOLOGY 2023; 12:biology12020279. [PMID: 36829556 PMCID: PMC9953405 DOI: 10.3390/biology12020279] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Oils are an essential part of the human diet and are primarily derived from plant (or sometimes fish) sources. Several of them exhibit anti-inflammatory properties. Specific diets, such as Mediterranean diet, that are high in ω-3 polyunsaturated fatty acids (PUFAs) and ω-9 monounsaturated fatty acids (MUFAs) have even been shown to exert an overall positive impact on human health. One of the most widely used supplements in the developed world is fish oil, which contains high amounts of PUFAs docosahexaenoic and eicosapentaenoic acid. This review is focused on the natural sources of various polyunsaturated and monounsaturated fatty acids in the human diet, and their role as precursor molecules in immune signaling pathways. Consideration is also given to their role in CNS immunity. Recent findings from clinical trials utilizing various fatty acids or diets high in specific fatty acids are reviewed, along with the mechanisms through which fatty acids exert their anti-inflammatory properties. An overall understanding of diversity of polyunsaturated fatty acids and their role in several molecular signaling pathways is useful in formulating diets that reduce inflammation and increase longevity.
Collapse
|