1
|
Sperdouli I, Giannousi K, Moustaka J, Antonoglou O, Dendrinou-Samara C, Moustakas M. Responses of Tomato Photosystem II Photochemistry to Pegylated Zinc-Doped Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:288. [PMID: 39997850 PMCID: PMC11858530 DOI: 10.3390/nano15040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Various metal-based nanomaterials have been the focus of research regarding their use in controlling pests and diseases and in improving crop yield and quality. In this study, we synthesized via a solvothermal procedure pegylated zinc-doped ferrite (ZnFer) NPs and characterized their physicochemical properties by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), FT-IR and UV-Vis spectroscopies, as well as transmission electron microscopy (TEM). Subsequently, their impact on tomato photosynthetic efficiency was evaluated by using chlorophyll a fluorescence imaging analysis to estimate the light energy use efficiency of photosystem II (PSII), 30, 60, and 180 min after foliar spray of tomato plants with distilled water (control plants) or 15 mg L-1 and 30 mg L-1 ZnFer NPs. The PSII responses of tomato leaves to foliar spray with ZnFer NPs showed time- and dose-dependent biphasic hormetic responses, characterized by a short-time inhibitory effect by the low dose and stimulatory effect by the high dose, while at a longer exposure period, the reverse phenomenon was recorded by the low and high doses. An inhibitory effect on PSII function was observed after more than ~120 min exposure to both ZnFer NPs concentrations, implying a negative effect on PSII photochemistry. We may conclude that the synthesized ZnFer NPs, despite their ability to induce hormesis of PSII photochemistry, have a negative impact on photosynthetic function.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Julietta Moustaka
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Tryfon P, Sperdouli I, Moustaka J, Adamakis IDS, Giannousi K, Dendrinou-Samara C, Moustakas M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int J Mol Sci 2024; 25:8350. [PMID: 39125918 PMCID: PMC11312163 DOI: 10.3390/ijms25158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m-2 s-1) and at high irradiance (HI) (1000 μmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | | | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Matraszek-Gawron R, Hawrylak-Nowak B, Rubinowska K. The effect of sulphur supplementation on cadmium phytotoxicity in wheat and lettuce: changes in physiochemical properties of roots and accumulation of phytochelatins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16375-16387. [PMID: 38315336 DOI: 10.1007/s11356-024-32259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Intensive sulphur fertilisation has been reported to improve the nutrient balance and growth of Cd-exposed plants, but the reasons of this phenomenon and the role of sulphur compounds in the resistance to cadmium are unclear. We investigated sulphur supplementation-induced changes in the surface properties of roots and the level of thiol peptides (PCs) in Cd-stressed Triticum aestivum L. (monocots clade) and Lactuca sativa L. (dicots clade) grown in nutrient solution. The combination of three sulphur (2 mM S-basic level, 6 or 9 mM S-elevated levels) and four cadmium (0, 0.0002, 0.02 or 0.04 mM Cd) concentrations was used. The physicochemical parameters of the roots were determined based on the apparent surface area (Sr), total variable surface charge (Q), cation exchange capacity (CEC) and surface charge density (SCD). In Cd-exposed plants supplied with sulphur, a different character and trend in the physicochemical changes (adsorption and ion exchange) of roots were noted. At the increased sulphur levels, as a rule, the Sr, CEC, Q and SCD values clearly increased in the lettuce but decreased in the wheat in the entire range of the Cd concentrations, except the enhanced Sr of wheat supplied with 6 mM S together with elevated (0.0002 mM) and unchanged (0.02, 0.04 mM Cd) value of this parameter at 9 mM S. This indicates a clade-specific and/or species-specific plant reaction. The 6 mM S appears to be more effective than 9 mM S in alleviation of the cadmium's toxic effects on roots. It was found that at 0.02 and 0.04 mM Cd, the use of 6 mM S limits the Cd accumulation in the roots of both species in comparison with the basic S fertilisation. Moreover, PC accumulation was much more efficient in wheat than in lettuce, and intensive sulphur nutrition generally induced biosynthesis of these chelating compounds. Physicochemical parameters together with quantitative and qualitative assessment of thiol peptides can be important indicators of the efficiency of root system functioning under cadmium stress. The differences between the species and the multidirectional character of the changes are a result of the involvement of a number of multi-level mechanisms engaged in the defence against metal toxicity.
Collapse
Affiliation(s)
- Ranata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Katarzyna Rubinowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
4
|
Moola N, Jardine A, Audenaert K, Rafudeen MS. 6-deoxy-6-amino chitosan: a preventative treatment in the tomato/ Botrytis cinerea pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1282050. [PMID: 37881612 PMCID: PMC10595175 DOI: 10.3389/fpls.2023.1282050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
6-deoxy-6-amino chitosan (aminochitosan) is a water-soluble chitosan derivative with an additional amine group at the C-6 position. This modification has improved aqueous solubility, in vitro antifungal activity and is hypothesized to have enhanced in vivo antifungal activity compared to native chitosan. Gray mold disease in tomatoes is caused by the fungus, Botrytis cinerea, and poses a severe threat both pre- and post-harvest. To investigate the optimal concentration of aminochitosan and its lower molecular weight fractions for antifungal and priming properties in the tomato/B. cinerea pathosystem, different concentrations of aminochitosan were tested in vitro on B. cinerea growth and sporulation and in vivo as a foliar pre-treatment in tomato leaves. The leaves were monitored for photosynthetic changes using multispectral imaging and hydrogen peroxide accumulation using DAB. Despite batch-to-batch variations in aminochitosan, it displayed significantly greater inhibition of B. cinerea in vitro than native chitosan at a minimum concentration of 1 mg/mL. A concentration-dependent increase in the in vitro antifungal activities was observed for radial growth, sporulation, and germination with maximum in vitro inhibition for all the biopolymer batches and lower MW fractions at 2.5 and 5 mg/mL, respectively. However, the inhibition threshold for aminochitosan was identified as 1 mg/mL for spores germinating in vivo, compared to the 2.5 mg/mL threshold in vitro. The pre-treatment of leaves displayed efficacy in priming direct and systemic resistance to B. cinerea infection at 4, 6 and 30 days post-inoculation by maintaining elevated Fv/Fm activity and chlorophyll content due to a stronger and more rapid elicitation of the defense systems at earlier time points. Moreover, these defense systems appear to be ROS-independent at higher concentrations (1 and 2.5 mg/mL). In addition, aminochitosan accumulates in the cell membrane and therefore acts to increase the membrane permeability of cells after foliar spray. These observations corroborate the notion that aminochitosan biopolymers can exert their effects through both direct mechanisms of action and indirect immunostimulatory mechanisms. The contrast between in vitro and in vivo efficacy highlights the bimodal mechanisms of action of aminochitosan and the advantageous role of primed plant defense systems.
Collapse
Affiliation(s)
- Naadirah Moola
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Anwar Jardine
- Department of Chemistry, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mohamed Suhail Rafudeen
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Moustaka J, Moustakas M. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. BIOSENSORS 2023; 13:796. [PMID: 37622882 PMCID: PMC10452221 DOI: 10.3390/bios13080796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll a fluorescence imaging, which can evaluate spatiotemporal leaf changes, permitting the pre-symptomatic monitoring of plant physiological status long before any visible symptoms develop, allowing for high-throughput assessment. Here, we review different examples of how chlorophyll a fluorescence imaging analysis can be used to evaluate biotic and abiotic stress. Chlorophyll a is able to detect biotic stress as early as 15 min after Spodoptera exigua feeding, or 30 min after Botrytis cinerea application on tomato plants, or on the onset of water-deficit stress, and thus has potential for early stress detection. Chlorophyll fluorescence (ChlF) analysis is a rapid, non-invasive, easy to perform, low-cost, and highly sensitive method that can estimate photosynthetic performance and detect the influence of diverse stresses on plants. In terms of ChlF parameters, the fraction of open photosystem II (PSII) reaction centers (qp) can be used for early stress detection, since it has been found in many recent studies to be the most accurate and appropriate indicator for ChlF-based screening of the impact of environmental stress on plants.
Collapse
Affiliation(s)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
Liu Z, An J, Lu Q, Yang C, Mu Y, Wei J, Hou Y, Meng X, Zhao Z, Lin M. Effects of Cadmium Stress on Carbon Sequestration and Oxygen Release Characteristics in A Landscaping Hyperaccumulator- Lonicera japonica Thunb. PLANTS (BASEL, SWITZERLAND) 2023; 12:2689. [PMID: 37514303 PMCID: PMC10385468 DOI: 10.3390/plants12142689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg-1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg-1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Yitao Mu
- College of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Yongxia Hou
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangyu Meng
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Zhuo Zhao
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
7
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Stefanov M, Rashkov G, Borisova P, Apostolova E. Sensitivity of the Photosynthetic Apparatus in Maize and Sorghum under Different Drought Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091863. [PMID: 37176921 PMCID: PMC10180982 DOI: 10.3390/plants12091863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Drought is one of the main environmental stress factors affecting plant growth and yield. The impact of different PEG concentrations on the photosynthetic performance of maize (Zea mays L. Mayflower) and sorghum (Sorghum bicolor L. Foehn) was investigated. The activity of the photosynthetic apparatus was assessed using chlorophyll fluorescence (PAM and JIP test) and photooxidation of P700. The data revealed that water deficiency decreased the photochemical quenching (qP), the ratio of photochemical to nonphotochemical processes (Fv/Fo), the effective quantum yield of the photochemical energy conversion in PSII (ΦPSII), the rate of the electron transport (ETR), and the performance indexes PItotal and PIABS, as the impact was stronger in sorghum than in maize and depended on drought level. The PSI photochemistry (P700 photooxidation) in sorghum was inhibited after the application of all studied drought levels, while in maize, it was registered only after treatment with higher PEG concentrations (30% and 40%). Enhanced regulated energy losses (ΦNPQ) and activation of the state transition under drought were also observed in maize, while in sorghum, an increase mainly in nonregulated energy losses (ΦNO). A decrease in pigment content and relative water content and an increase in membrane damage were also registered after PEG treatment. The experimental results showed better drought tolerance of maize than sorghum. This study provides new information about the role of regulated energy losses and state transition for the protection of the photosynthetic apparatus under drought and might be a practical approach to the determination of the drought tolerance of plants.
Collapse
Affiliation(s)
- Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Rashkov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Hu Y, Zhou X, Shi A, Yu Y, Rensing C, Zhang T, Xing S, Yang W. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum alfredii Hance by enhancing Cd uptake and alleviating Cd toxicity. FRONTIERS IN PLANT SCIENCE 2023; 14:1134370. [PMID: 36895873 PMCID: PMC9988946 DOI: 10.3389/fpls.2023.1134370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soil Cadmium (Cd) pollution has become a serious environmental problem. Silicon (Si) plays key roles in alleviating Cd toxicity in plants. However, the effects of Si on mitigation of Cd toxicity and accumulation of Cd by hyperaccumulators are largely unknown. This study was conducted to investigate the effect of Si on Cd accumulation and the physiological characteristics of Cd hyperaccumulator Sedum alfredii Hance under Cd stress. Results showed that, exogenous Si application promoted the biomass, Cd translocation and concentration of S. alfredii, with an increased rate of 21.74-52.17% for shoot biomass, and 412.39-621.00% for Cd accumulation. Moreover, Si alleviated Cd toxicity by: (i) increasing chlorophyll contents, (ii) improving antioxidant enzymes, (iii) enhancing cell wall components (lignin, cellulose, hemicellulose and pectin), (iv) raising the secretion of organic acids (oxalic acid, tartaric acid and L-malic acid). The RT-PCR analysis of genes that involved in Cd detoxification showed that the expression of SaNramp3, SaNramp6, SaHMA2 and SaHMA4 in roots were significantly decreased by 11.46-28.23%, 6.61-65.19%, 38.47-80.87%, 44.80-69.85% and 33.96-71.70% in the Si treatments, while Si significantly increased the expression of SaCAD. This study expanded understanding on the role of Si in phytoextraction and provided a feasible strategy for assisting phytoextraction Cd by S. alfredii. In summary, Si facilitated the Cd phytoextraction of S. alfredii by promoting plant growth and enhancing the resistance of plants to Cd.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanshuang Yu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taoxiang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
11
|
Wang HR, Zhao XY, Zhang JM, Lu C, Feng FJ. Arbuscular mycorrhizal fungus regulates cadmium accumulation, migration, transport, and tolerance in Medicago sativa. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129077. [PMID: 35650732 DOI: 10.1016/j.jhazmat.2022.129077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution in croplands is a global environmental problem. Measures to improve the tolerance of sensitive crops and reduce pollutant absorption and accumulation are needed in contaminated agricultural areas, and inoculation with rhizosphere microorganisms to regulate plant resistance and heavy metal transport can provide an effective solution. A pot experiment was conducted to analyse the impact of arbuscular mycorrhizal fungi (AMF) on alfalfa oxidase activity, heavy metal resistance genes and transport proteins, metabolism, and other biochemical regulation mechanisms that lead to complexation, compartmentalisation, efflux, enrichment, and antioxidant detoxification pathways. The AMF reduced shoot and protoplasm Cd inflow, and promoted organic compound production (e.g., by upregulating HM-Res4 for 1.2 times), to complex with Cd, reducing its biological toxicity. The AMF increased the ROS scavenging efficiency and osmotic regulatory substance content of the alfalfa plants, reduced oxidative stress (ROS dereased), and maintained homeostasis. It also alleviated Cd inhibition of photosynthetic electron transport, tricarboxylic acid circulation, and nitrogen assimilation. These AMF effects improved leaf and root biomass by 43.87% and 59.71% and facilitated recovery of a conservative root economic strategy. It is speculated that AMF induces the resistance signal switch by regulating the negative feedback regulation mode of indole acetic acid upward transport and methyl jasmonate downward transmission in plants.
Collapse
Affiliation(s)
- Hong-Rui Wang
- College of Life Science, Northeast Forestry University, Harbin, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin-Yu Zhao
- College of Life Science, Northeast Forestry University, Harbin, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jia-Ming Zhang
- College of Life Science, Northeast Forestry University, Harbin, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chang Lu
- College of Life Science, Northeast Forestry University, Harbin, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Fu-Juan Feng
- College of Life Science, Northeast Forestry University, Harbin, China; Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
12
|
Shahbazi M, Tohidfar M, Aliniaeifard S, Yazdanpanah F, Bosacchi M. Transgenic tobacco co-expressing flavodoxin and betaine aldehyde dehydrogenase confers cadmium tolerance through boosting antioxidant capacity. PROTOPLASMA 2022; 259:965-979. [PMID: 34686944 DOI: 10.1007/s00709-021-01714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Excessive heavy metal (HM) levels in soil have become a source of concern due to their adverse effects on human health and the agriculture industry. Soil contamination by HMs leads to an accumulation of reactive oxygen species (ROSs) within the plant cell and disruption of photosynthesis-related proteins. The response of tobacco lines overexpressing flavodoxin (Fld) and betaine aldehyde dehydrogenase (BADH) to cadmium (Cd) toxicity was investigated in this study. PCR results demonstrated the expected amplicon length of each gene in the transgenic lines. Absolute qRT-PCR demonstrates a single copy of T-DNA integration into each transgenic line. Relative qRT-PCR confirmed overexpression of Fld and BADH in transgenic lines. The maximum quantum yield of photosystem II (Fv/Fm) was measured under Cd toxicity stress and revealed that transgenic lines had a higher Fv/Fm than wild-type (WT) plants. Accumulation of proline, glycine betaine (GB), and higher activity of antioxidant enzymes alongside lower levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) was indicative of a robust antioxidant system in transgenic plants. Therefore, performing a loop in reducing the ROS produced in the photosynthesis electron transport chain and stimulating the ROS scavenger enzyme activity improved the plant tolerance to Cd stress.
Collapse
Affiliation(s)
- Mehrdad Shahbazi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Masoud Tohidfar
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, 1417935840, Tehran, Iran
| | - Farzaneh Yazdanpanah
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Massimo Bosacchi
- Park at the, Danforth Plant Science Center, KWS Gateway Research Center, LLC, BRDG, Saint Louis, MO, USA
| |
Collapse
|
13
|
Moustakas M, Sperdouli I, Adamakis IDS, Moustaka J, İşgören S, Şaş B. Harnessing the Role of Foliar Applied Salicylic Acid in Decreasing Chlorophyll Content to Reassess Photosystem II Photoprotection in Crop Plants. Int J Mol Sci 2022; 23:ijms23137038. [PMID: 35806045 PMCID: PMC9266436 DOI: 10.3390/ijms23137038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA), an essential plant hormone, has received much attention due to its role in modulating the adverse effects of biotic and abiotic stresses, acting as an antioxidant and plant growth regulator. However, its role in photosynthesis under non stress conditions is controversial. By chlorophyll fluorescence imaging analysis, we evaluated the consequences of foliar applied 1 mM SA on photosystem II (PSII) efficiency of tomato (Solanum lycopersicum L.) plants and estimated the reactive oxygen species (ROS) generation. Tomato leaves sprayed with 1 mM SA displayed lower chlorophyll content, but the absorbed light energy was preferentially converted into photochemical energy rather than dissipated as thermal energy by non-photochemical quenching (NPQ), indicating photoprotective effects provided by the foliar applied SA. This decreased NPQ, after 72 h treatment by 1 mM SA, resulted in an increased electron transport rate (ETR). The molecular mechanism by which the absorbed light energy was more efficiently directed to photochemistry in the SA treated leaves was the increased fraction of the open PSII reaction centers (qp), and the increased efficiency of open reaction centers (Fv’/Fm’). SA induced a decrease in chlorophyll content, resulting in a decrease in non-regulated energy dissipated in PSII (ΦNO) under high light (HL) treatment, suggesting a lower amount of triplet excited state chlorophyll (3Chl*) molecules available to produce singlet oxygen (1O2). Yet, the increased efficiency, compared to the control, of the oxygen evolving complex (OEC) on the donor side of PSII, associated with lower formation of hydrogen peroxide (H2O2), also contributed to less creation of ROS. We conclude that under non stress conditions, foliar applied SA decreased chlorophyll content and suppressed phototoxicity, offering PSII photoprotection; thus, it can be regarded as a mechanism that reduces photoinhibition and photodamage, improving PSII efficiency in crop plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Correspondence:
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (J.M.); (S.İ.); (B.Ş.)
| |
Collapse
|
14
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|
15
|
Jiang SJ, Sun J, Tong G, Ding H, Ouyang J, Zhou Q, Fu Y, Zhong ME. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review. CHEMOSPHERE 2022; 290:133266. [PMID: 34914959 DOI: 10.1016/j.chemosphere.2021.133266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phytoextraction is an effective approach for remediation of heavy metal (HM) contaminated soil. After the enhancement of phytoextraction efficiency has been systematically investigated and illustrated, the harmless disposal and value-added use of harmful phytoextraction biomass (HPB) become the major issue to be addressed. Therefore, in recent years, a large number of studies have focused on the disposal technologies for HPB, such as composting, enzyme hydrolysis, hydrothermal conversion, phyto-mining, and pyrolysis. The present review introduces their operation process, reaction parameters, economic/ecological advantages, and especially the migration and transformation behavior of HMs/biomass. Since plenty of plants possess comparable extraction abilities for HMs but with discrepancy constitution of biomass, the phytoextraction process should be combined with the disposal of HPB after harvested in the future, and thus a grading handling strategy for HPB is also presented. Hence, this review is significative for disposing of HPB and popularizing phytoextraction technologies.
Collapse
Affiliation(s)
- Si-Jie Jiang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jingchun Sun
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Gongsong Tong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiewei Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yunxiang Fu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
16
|
|
17
|
Sperdouli I, Adamakis IDS, Dobrikova A, Apostolova E, Hanć A, Moustakas M. Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants. TOXICS 2022; 10:36. [PMID: 35051078 PMCID: PMC8778245 DOI: 10.3390/toxics10010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Salvia sclarea L. is a Cd2+ tolerant medicinal herb with antifungal and antimicrobial properties cultivated for its pharmacological properties. However, accumulation of high Cd2+ content in its tissues increases the adverse health effects of Cd2+ in humans. Therefore, there is a serious demand to lower human Cd2+ intake. The purpose of our study was to evaluate the mitigative role of excess Zn2+ supply to Cd2+ uptake/translocation and toxicity in clary sage. Salvia plants were treated with excess Cd2+ (100 μM CdSO4) alone, and in combination with Zn2+ (900 μM ZnSO4), in modified Hoagland nutrient solution. The results demonstrate that S. sclarea plants exposed to Cd2+ toxicity accumulated a significant amount of Cd2+ in their tissues, with higher concentrations in roots than in leaves. Cadmium exposure enhanced total Zn2+ uptake but also decreased its translocation to leaves. The accumulated Cd2+ led to a substantial decrease in photosystem II (PSII) photochemistry and disrupted the chloroplast ultrastructure, which coincided with an increased lipid peroxidation. Zinc application decreased Cd2+ uptake and translocation to leaves, while it mitigated oxidative stress, restoring chloroplast ultrastructure. Excess Zn2+ ameliorated the adverse effects of Cd2+ on PSII photochemistry, increasing the fraction of energy used for photochemistry (ΦPSII) and restoring PSII redox state and maximum PSII efficiency (Fv/Fm), while decreasing excess excitation energy at PSII (EXC). We conclude that excess Zn2+ application eliminated the adverse effects of Cd2+ toxicity, reducing Cd2+ uptake and translocation and restoring chloroplast ultrastructure and PSII photochemical efficiency. Thus, excess Zn2+ application can be used as an important method for low Cd2+-accumulating crops, limiting Cd2+ entry into the food chain.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, 57001 Thessaloniki, Greece
| | | | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
18
|
Cadmium Uptake and Growth Responses of Seven Urban Flowering Plants: Hyperaccumulator or Bioindicator? SUSTAINABILITY 2022. [DOI: 10.3390/su14020619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The application of flowering plants is the basis of urban forest construction. A newly-found flowering hyperaccumulator is crucial for remediating urban contaminated soil sustainably by cadmium (Cd). This study evaluated growth responses, Cd uptake and bioaccumulation characteristics of seven urban flowering plants. Based on growth responses of these plants, Calendula officinalis L. showed high tolerance to at least 100 mg kg−1 Cd, in terms of significant increase in biomass and with no obvious changes in height. After 60 d exposure to 100 mg kg−1 Cd, the accumulated Cd in shoots of the plant reached 279.51 ± 13.67 μg g−1 DW, which is above the critical value defined for a hyperaccumulator (100 μg g−1 DW for Cd). Meanwhile, the plant could accumulate Cd to as much as 926.68 ± 29.11 μg g−1 DW in root and 1206.19 ± 23.06 μg g−1 DW in plant, and had higher Cd uptake and bioaccumulation values. According to these traits, it is shown that Calendula officinalis L. can become a potential Cd-hyperaccumulator for phytoremediation. By contrast, Dianthus caryophyllus L. is very sensitive to Cd stress in terms of significantly decreased biomass, height and Cd uptake, indicating the plant is considered as a Cd-bioindicator.
Collapse
|
19
|
Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. CLIMATE 2021. [DOI: 10.3390/cli9110154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. Μ82, the introgression line IL12-4 (from cv. M82 Χ LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (QA), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanumpennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. Μ82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of QA, as it can be estimated by the chlorophyll fluorescence parameter 1 - qL, is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation.
Collapse
|
20
|
Nogueira ML, Carvalho MEA, Ferreira JMM, Bressanin LA, Piotto KDB, Piotto FA, Marques DN, Barbosa S, Azevedo RA. Cadmium-induced transgenerational effects on tomato plants: A gift from parents to progenies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147885. [PMID: 34323842 DOI: 10.1016/j.scitotenv.2021.147885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 05/22/2023]
Abstract
The present study aimed to investigate the Cd-induced transgenerational effects on plants. Grafted tomato plants, which exhibited the same cultivar as scion and distinct cultivars with contrasting Cd-tolerance as rootstocks, were grown in soil without and with artificial addition of Cd (less than 2.0, and 6.9 mg kg-1 of Cd, respectively) in a pot experiment carried out in a greenhouse. Their fruits were harvested to extract seeds (i.e., the progenies), which were sown over either Cd-free (control) or Cd-containing germitest paper (germination testing paper with 0 and 35 μM of CdCl2, respectively) and grown in a growth chamber. The immediate progeny of all grafting combinations from stressed plants presented an elevated germinability, despite high internal Cd concentration. When sown in Cd-containing germitest paper, the immediate progeny of plants grown in soil with no Cd addition was generally able to maintain or even increase the content of carotenoids and chlorophylls a and b (up to 93.3, 62.8 and 76.1%, respectively), indicating a Cd-induced hormetic effect on photosynthetic pigments. Two of the grafting combinations from stressed plants yielded seeds that generated seedlings with enhanced dry mass when they were sown in Cd-free media (~41%), suggesting a Cd-induced transgenerational enhancement of biomass production. Because only one tomato cultivar was used as scion, data indicated that type and degree of Cd-induced transgenerational effects depend strongly on signals generated and/or processed in roots of the parental plants. When sown in Cd-contaminated germitest paper, the immediate progeny of Cd-treated plants presented major reductions in the leaf area (35-69%) and content of photosynthetic pigments (57-93%) in comparison to the progeny from control plants. However, one of the grafting combinations exhibited satisfactory performance after "double" exposure to Cd, showing 91% of the biomass that was produced in the seedlings of control seeds from control plants. Further investigation indicated that adjustments in the chlorophyll fluorescence behavior might counterbalance losses in leaf pigments and area. Taken together, our data provide new insights on the origin, outcomes and mode of action of the Cd-induced transgenerational effects.
Collapse
Affiliation(s)
- Marina Lima Nogueira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - João Marcos Martins Ferreira
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Rua Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Leticia Aparecida Bressanin
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Rua Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Katherine Derlene Batagin Piotto
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Deyvid Novaes Marques
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | - Sandro Barbosa
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas (UNIFAL), Rua Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
21
|
Hu T, Wang T, Wang G, Bi A, Wassie M, Xie Y, Xu H, Chen L. Overexpression of FaHSP17.8-CII improves cadmium accumulation and tolerance in tall fescue shoots by promoting chloroplast stability and photosynthetic electron transfer of PSII. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125932. [PMID: 34020353 DOI: 10.1016/j.jhazmat.2021.125932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Genetic improvement could play a significant role in enhancing the Cd accumulation, translocation and tolerance in plants. In this study, for the first time, we constructed transgenic tall fescue overexpressing a class II (CII) sHSP gene FaHSP17.8-CII, which enhanced Cd tolerance and the root-to-shoot Cd translocation. After exposed to 400 μM CdCl2, two FaHSP17.8-CII overexpressing lines (OE#3 and OE#7) exhibited 30% and 40% more shoot fresh weight, respectively, relative to the wild-type (WT). Both transgenic lines showed higher tolerance to Cd, as evidenced by lower levels of electrolyte leakage and malondialdehyde compared to the WT plants under Cd stress. FaHSP17.8-CII overexpression increased shoot Cd contents 49-59% over the WT plants. The Cd translocation factor of root-to-shoot in OE grasses was 69-85% greater than WT under Cd stress. Furthermore, overexpression of FaHSP17.8-CII reduced Cd-induced damages of chloroplast ultra-structure and chlorophyll synthesis, and then improved photosystem II (PSII) function under Cd stress, which resulted in less reactive oxygen species (ROS) accumulation in OE grasses than that in WT exposed to Cd stress. The study suggests a novel FaHSP17.8-CII-PSII-ROS module to understand the mechanisms of Cd detoxification and tolerance, which provides a new strategy to improve phytoremediation efficiency in Cd-stressed grasses.
Collapse
Affiliation(s)
- Tao Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Guangyang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Aoyue Bi
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
22
|
Leaf Age-Dependent Photosystem II Photochemistry and Oxidative Stress Responses to Drought Stress in Arabidopsis thaliana Are Modulated by Flavonoid Accumulation. Molecules 2021; 26:molecules26144157. [PMID: 34299433 PMCID: PMC8307756 DOI: 10.3390/molecules26144157] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
We investigated flavonoid accumulation and lipid peroxidation in young leaves (YL) and mature leaves (ML) of Arabidopsis thaliana plants, whose watering stopped 24 h before sampling, characterized as onset of drought stress (OnDS), six days before sampling, characterized as mild drought stress (MiDS), and ten days before sampling, characterized as moderate drought stress (MoDS). The response to drought stress (DS) of photosystem II (PSII) photochemistry, in both leaf types, was evaluated by estimating the allocation of absorbed light to photochemistry (ΦPSII), to heat dissipation by regulated non-photochemical energy loss (ΦNPQ) and to non-regulated energy dissipated in PSII (ΦNO). Young leaves were better protected at MoDS than ML leaves, by having higher concentration of flavonoids that promote acclimation of YL PSII photochemistry to MoDS, showing lower lipid peroxidation and excitation pressure (1 - qp). Young leaves at MoDS possessed lower 1 - qp values and lower excess excitation energy (EXC), not only compared to MoDS ML, but even to MiDS YL. They also possessed a higher capacity to maintain low ΦNO, suggesting a lower singlet oxygen (1O2) generation. Our results highlight that leaves of different developmental stage may display different responses to DS, due to differential accumulation of metabolites, and imply that PSII photochemistry in Arabidopsis thaliana may not show a dose dependent DS response.
Collapse
|
23
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
24
|
Role of Glutathione-Ascorbate Cycle and Photosynthetic Electronic Transfer in Alternative Oxidase-Manipulated Waterlogging Tolerance in Watermelon Seedlings. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alternative oxidase (AOX) has been documented to mitigate the oxidative stress caused by abiotic stresses. However, it remains unknown how AOX regulates the antioxidant system and photosynthesis under waterlogging. To address this issue, we used two watermelon (Citrullus lanatus L.) cultivars (waterlogging tolerant cultivar ‘YL’ and sensitive cultivar ‘Zaojia8424’) as materials and the AOX inhibitor salicylhydroxamic acid (SHAM) to investigate the effects of AOX on photosynthesis and reactive oxygen species metabolism under waterlogging. We found that waterlogging decreased leaf photosynthesis and quantum yield of photosynthesis in watermelon, and the waterlogging tolerant cultivar ‘YL’ showed higher expression level of ClaAOX than the sensitive cultivar ‘Zaojia8424’. Net photosynthesis rate was higher in ‘YL’ than ‘Zaojia8424’. Moreover, waterlogging induced photoinhibition in ‘Zaojia8424’ but not in ‘YL’. Meanwhile, waterlogging promoted the accumulation of superoxide and peroxide hydrogen, and triggered oxidative damage. ‘YL’ suffered from less severe oxidative damage due to increased contents of ascorbate, a higher ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), a higher activity of ascorbate peroxidase (APX) and catalase (CAT), and enhanced levels of CAT and APX expression, relative to ‘Zaojia8424’. However, the alleviation of photosynthesis and oxidative damage, increased content of ascorbate and higher GSH/GSSG ratio were abolished by SHAM. Our results suggested that photosynthetic electronic transfer and glutathione-ascorbate cycle are involved in waterlogging tolerance mediated by the AOX pathway in watermelon.
Collapse
|
25
|
Changes in Light Energy Utilization in Photosystem II and Reactive Oxygen Species Generation in Potato Leaves by the Pinworm Tuta absoluta. Molecules 2021; 26:molecules26102984. [PMID: 34069787 PMCID: PMC8157303 DOI: 10.3390/molecules26102984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv′/Fm′) did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.
Collapse
|
26
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
27
|
Adamakis IDS, Malea P, Sperdouli I, Panteris E, Kokkinidi D, Moustakas M. Evaluation of the spatiotemporal effects of bisphenol A on the leaves of the seagrass Cymodocea nodosa. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124001. [PMID: 33059254 DOI: 10.1016/j.jhazmat.2020.124001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 05/23/2023]
Abstract
The organic pollutant bisphenol A (BPA) causes adverse effects on aquatic biota. The present study explored the toxicity mechanism of environmentally occurring BPA concentrations (0.03-3 μg L-1) on the seagrass Cymodocea nodosa intermediate leaf photosynthetic machinery. A "mosaic" type BPA effect pattern was observed, with "unaffected" and "affected"" leaf areas. In negatively affected leaf areas cells had a dark appearance and lost their chlorophyll auto-fluorescence, while hydrogen peroxide (H2O2) content increased time-dependently. In the "unaffected" leaf areas, cells exhibited increased phenolic compound production. At 1 μg L-1 of BPA exposure, there was no effect on the fraction of open reaction centers (qP) compared to control and also no significant effect on the quantum yield of non-regulated non-photochemical energy loss in PSII (ΦΝΟ). However, a 3 μg L-1 BPA application resulted in a significant ΦΝΟ increase, even from the first exposure day. Ultrastructural observations revealed electronically dense damaged thylakoids in the plastids, while effects on Golgi dictyosomes and the endoplasmic reticulum were also observed at 3 μg L-1 BPA. The up-regulated H2O2 BPA-derived production seems to be a key factor causing both oxidative damages but probably also triggering retrograde signalling, conferring tolerance to BPA in the "unaffected" leaf areas.
Collapse
Affiliation(s)
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, 57001 Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danae Kokkinidi
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
28
|
Dobrikova AG, Apostolova EL, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IDS, Moustakas M. Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111851. [PMID: 33421673 DOI: 10.1016/j.ecoenv.2020.111851] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 05/03/2023]
Abstract
The herbal plant Salvia sclarea L. (clary sage) is classified to cadmium (Cd) accumulators and considered as a potential plant for phytoremediation of heavy metal polluted soil. However, the effect of Cd only treatment on the function of the photosynthetic apparatus of S. sclarea, as well as the mechanisms involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of S. sclarea plants exposed to a high Cd supply (100 µM) for 3 and 8 days by investigating element nutrient uptake, oxidative stress markers, pigment composition, photosynthetic performance and leaf structure. Measurements of the functional activities of photosystem I (PSI, by P700 photooxidation), photosystem II (PSII, by chlorophyll fluorescence parameters), the oxygen-evolving complex (oxygen evolution by Joliot- and Clark-type electrodes), as well as the leaf pigment and phenolic contents, were used to evaluate the protective mechanisms of the photosynthetic apparatus under Cd stress. Data suggested that the molecular mechanisms included in the photosynthetic tolerance to Cd toxicity involve strongly increased phenolic and anthocyanin contents, as well as an increased non-photochemical quenching and accelerated cyclic electron transport around PSI up to 61%, which protect the function of the photosynthetic apparatus under stress. Furthermore, the tolerance of S. sclarea to Cd stress is also associated with increased accumulation of Fe in leaves by 25%. All the above, clearly suggest that S. sclarea plants employ several different mechanisms to protect the function of the photosynthetic apparatus against Cd stress, which are discussed here.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, 57001 Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
29
|
The Role of Metal Ions in Biology, Biochemistry and Medicine. MATERIALS 2021; 14:ma14030549. [PMID: 33498822 PMCID: PMC7866148 DOI: 10.3390/ma14030549] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
|
30
|
Dobrikova A, Apostolova E, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IDS, Moustakas M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. PLANTS (BASEL, SWITZERLAND) 2021; 10:194. [PMID: 33494177 PMCID: PMC7909794 DOI: 10.3390/plants10020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 05/03/2023]
Abstract
In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess) Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for the phytoextraction and/or phytostabilization of Zn-contaminated soils.
Collapse
Affiliation(s)
- Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter, Thermi, 57001 Thessaloniki, Greece;
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
31
|
Moustakas M, Calatayud Á, Guidi L. Editorial: Chlorophyll Fluorescence Imaging Analysis in Biotic and Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:658500. [PMID: 33936144 PMCID: PMC8079803 DOI: 10.3389/fpls.2021.658500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Michael Moustakas
| | - Ángeles Calatayud
- Departamento de Horticultura, Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. Int J Mol Sci 2020; 22:E41. [PMID: 33375193 PMCID: PMC7793146 DOI: 10.3390/ijms22010041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.
Collapse
Affiliation(s)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
33
|
Szopiński M, Sitko K, Rusinowski S, Zieleźnik-Rusinowska P, Corso M, Rostański A, Rojek-Jelonek M, Verbruggen N, Małkowski E. Different strategies of Cd tolerance and accumulation in Arabidopsis halleri and Arabidopsis arenosa. PLANT, CELL & ENVIRONMENT 2020; 43:3002-3019. [PMID: 32890409 DOI: 10.1111/pce.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Pseudometallophytes are commonly used to study the evolution of metal tolerance and accumulation traits in plants. Within the Arabidopsis genus, the adaptation of Arabidopsis halleri to metalliferous soils has been widely studied, which is not the case for the closely related species Arabidopsis arenosa. We performed an in-depth physiological comparison between the A. halleri and A. arenosa populations from the same polluted site, together with the geographically close non-metallicolous (NM) populations of both species. The ionomes, growth, photosynthetic parameters and pigment content were characterized in the plants that were growing on their native site and in a hydroponic culture under Cd treatments. In situ, the metallicolous (M) populations of both species hyperaccumulated Cd and Zn. The NM population of A. halleri hyperaccumulated Cd and Zn while the NM A. arenosa did not. In the hydroponic experiments, the NM populations of both species accumulated more Cd in their shoots than the M populations. Our research suggests that the two Arabidopsis species evolved different strategies of adaptation to extreme metallic environments that involve fine regulation of metal homeostasis, adjustment of the photosynthetic apparatus and accumulation of flavonols and anthocyanins.
Collapse
Affiliation(s)
- Michał Szopiński
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Paulina Zieleźnik-Rusinowska
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Adam Rostański
- Botany and Nature Protection Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
34
|
Zhang H, Xu Z, Huo Y, Guo K, Wang Y, He G, Sun H, Li M, Li X, Xu N, Sun G. Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122899. [PMID: 32450465 DOI: 10.1016/j.jhazmat.2020.122899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 05/11/2023]
Abstract
Cadmium stress causes a decrease in chlorophyll content and inhibits photosynthesis in tobacco leaves. The role of thioredoxin-like protein CDSP32 expressed in plant chloroplasts is to alleviates the reduced enzymes expression involved in chlorophyll synthesis of tobacco leaves due to Cd exposure, effectively preventing chlorophyll degradation and promoting increased tobacco biomass. Overexpression of Trx CDSP32 can protect the oxygen-evolving complex on the PSII donor side and promote electron transfer on the PSII acceptor side of tobacco leaves under Cd stress. Trx CDSP32 not only significantly increase the PSI activity of tobacco leaves, but also alleviate cadmium-induced PSI photoinhibition. Although Trx CDSP32 has no significant effect on the expression of PC and FNR proteins in tobacco leaves under Cd stress, it can alleviate the decreased expression of protein subunits involved in photosynthetic electron transfer such as Cyt b6/f complex subunits, Fd, and ATP synthase subunits. Trx CDSP32 can promote the synthesis of chlorophyll, stabilize the electron transfer chain, and promote ATP synthase activity to alleviate cadmium-induced photoinhibition of PSII and PSI in tobacco leaves.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuze Huo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Wang
- College of Life Science, Northeast Forest University, Harbin, Heilongjiang, China
| | - Guoqiang He
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Hongwei Sun
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Mabo Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Nan Xu
- Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Guangyu Sun
- College of Life Science, Northeast Forest University, Harbin, Heilongjiang, China
| |
Collapse
|
35
|
Yotsova E, Dobrikova A, Stefanov M, Misheva S, Bardáčová M, Matušíková I, Žideková L, Blehová A, Apostolova E. Effects of cadmium on two wheat cultivars depending on different nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:789-799. [PMID: 32877878 DOI: 10.1016/j.plaphy.2020.06.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/24/2020] [Accepted: 06/24/2020] [Indexed: 05/12/2023]
Abstract
Heavy metal pollution as well as improper fertilization management represent serious threats to a clean environment and healthy food. This study was conducted to investigate how nitrogen supply influences a plant's ability to cope with cadmium stress in the two wheat cultivars - the modern cv. Katya (carrier of the semi-dwarfing gene Rht8) and the old cv. Slomer. Here we examined the effects of 100 μM CdCl2 on both wheat genotypes grown hydroponically under three different nutrition regimes of 5.5, 10 and 20 mM NO3- by investigating plant growth, pigment content and the functional activity of the photosynthetic apparatus through a combination of PAM chlorophyll fluorescence, P700 photooxidation, oxygen evolution and oxidative stress markers. Data showed that the different genetic background affects the different strategies for metal uptake and allocation, as well as abilities to deal with oxidative stress. The modern cv. Katya restricts the entry of the metal to the roots, but allows its translocation to the shoots. Nevertheless, the photosynthetic performance indicated better protection, possibly mediated by the Rht8 allele. In contrast, the old cv. Slomer tolerates higher cadmium levels in roots and possesses efficient barriers against its transfer to the shoots, but still showed more impaired photosynthetic activity. In general, the impact of cadmium on the photosynthetic apparatus was most deleterious under the lowest nitrogen concentration which was applied, while the highest nitrogen supply alleviated the negative effects of cadmium. The data suggest that the modern breeding allele (Rht8), as well as a better nutrition might contribute to the tolerance to heavy metal stress in the wheat.
Collapse
Affiliation(s)
- Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, 1113, Sofia, Bulgaria
| | - Monika Bardáčová
- University of SS. Cyril and Methodius, Faculty of Natural Sciences, Department of Ecochemistry and Radioecology, Námestie J. Herdu 2, Trnava, SK-917 01, Slovak Republic
| | - Ildikó Matušíková
- University of SS. Cyril and Methodius, Faculty of Natural Sciences, Department of Ecochemistry and Radioecology, Námestie J. Herdu 2, Trnava, SK-917 01, Slovak Republic
| | - Laura Žideková
- University of SS. Cyril and Methodius, Department of Biochemistry, Námestie J. Herdu 2, Trnava, SK-917 01, Slovak Republic
| | - Alžbeta Blehová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Plant Physiology, Ilkovičova 6, Mlynská dolina, 84 215, Bratislava, Slovak Republic
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
| |
Collapse
|
36
|
Moustakas M, Bayçu G, Sperdouli I, Eroğlu H, Eleftheriou EP. Arbuscular Mycorrhizal Symbiosis Enhances Photosynthesis in the Medicinal Herb Salvia fruticosa by Improving Photosystem II Photochemistry. PLANTS 2020; 9:plants9080962. [PMID: 32751534 PMCID: PMC7463761 DOI: 10.3390/plants9080962] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
We investigated the influence of Salvia fruticosa colonization by the arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis on photosynthetic function by using chlorophyll fluorescence imaging analysis to evaluate the light energy use in photosystem II (PSII) of inoculated and non-inoculated plants. We observed that inoculated plants used significantly higher absorbed energy in photochemistry (ΦPSII) than non-inoculated and exhibited significant lower excess excitation energy (EXC). However, the increased ΦPSII in inoculated plants did not result in a reduced non-regulated energy loss in PSII (ΦNO), suggesting the same singlet oxygen (1O2) formation between inoculated and non-inoculated plants. The increased ΦPSII in inoculated plants was due to an increased efficiency of open PSII centers to utilize the absorbed light (Fv'/Fm') due to a decreased non-photochemical quenching (NPQ) since there was no difference in the fraction of open reaction centers (qp). The decreased NPQ in inoculated plants resulted in an increased electron-transport rate (ETR) compared to non-inoculated. Yet, inoculated plants exhibited a higher efficiency of the water-splitting complex on the donor side of PSII as revealed by the increased Fv/Fo ratio. A spatial heterogeneity between the leaf tip and the leaf base for the parameters ΦPSII and ΦNPQ was observed in both inoculated and non-inoculated plants, reflecting different developmental zones. Overall, our findings suggest that the increased ETR of inoculated S. fruticosa contributes to increased photosynthetic performance, providing growth advantages to inoculated plants by increasing their aboveground biomass, mainly by increasing leaf biomass.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Hilal Eroğlu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Biology Division, Institute of Graduate Studies in Science, Istanbul University, 34134 Istanbul, Turkey
| | - Eleftherios P. Eleftheriou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| |
Collapse
|
37
|
Huihui Z, Xin L, Zisong X, Yue W, Zhiyuan T, Meijun A, Yuehui Z, Wenxu Z, Nan X, Guangyu S. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110469. [PMID: 32179235 DOI: 10.1016/j.ecoenv.2020.110469] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 05/03/2023]
Abstract
To explore the mechanism of how lead (Pb) and cadmium (Cd) stress affects photosynthesis of mulberry (Morus alba L.), we looked at the effects of different concentrations of Pb and Cd stress (at 100 and 200 μmol L-1), which are two heavy metal elements, on leaf chlorophyll (Chl), photosynthesis gas exchange, Chl fluorescence, and reactive oxygen species (ROS) metabolism in mulberry leaves. The results showed that higher concentrations of Pb and Cd reduced leaf Chl content, especially in Chl a where content was more sensitive than in Chl b. Under Pb and Cd stress, the photosynthetic carbon assimilation capacity of mulberry leaves was reduced, which was a consequence of combined limitations of stomatal and non-stomatal factors. The main non-stomatal factors were decreased photosystem II (PSII) and photosystem I (PSI) activity and carboxylation efficiency (CE). Damage to the donor side of the PSII reaction center was greater than the acceptor side. After being treated with 100 μmol L-1 of Pb and Cd, mulberry leaves continued to be able to dissipate excess excitation energy by starting non-photochemical quenching (NPQ), but when Pb and Cd concentrations were increased to 200 μmol L-1, the protection mechanism that depends on NPQ was impaired. Excessive excitation energy from chloroplasts promoted a great increase of ROS, such as superoxide anion (O2•-) and H2O2. Moreover, under high Pb and Cd stress, superoxide dismutase (SOD) and ascorbate peroxidase (APX) were also inhibited to some extent, and excessive ROS also resulted in a significantly higher degree of oxidative damage. Compared with Cd, the effect of Pb stress at the same concentration level displayed a significantly lower impact on Chl content, photosynthetic carbon assimilation, and stomatal conductance. Meanwhile, Pb stress mainly damaged activity of the oxygen-evolving complex (OEC) located on PSII donor side, but it reduced the electronic pressure on the PSII acceptor side and PSI. Furthermore, under Pb stress, the NPQ, SOD, and APX activity were all significantly higher than those under Cd stress. Thus under Pb stress, the degree of photoinhibition and oxidative damage of PSII and PSI in mulberry leaves were significantly lower than under Cd stress.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Zisong
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Teng Zhiyuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - An Meijun
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhang Yuehui
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhu Wenxu
- School of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
38
|
Agathokleous E, Saitanis CJ. Plant susceptibility to ozone: A tower of Babel? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134962. [PMID: 31734499 DOI: 10.1016/j.scitotenv.2019.134962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In a world with climate change and environmental pollution, modern Biology is concerned with organismic susceptibility. At the same time, policy and decision makers seek information about organismic susceptibility. Therefore, information about organismic susceptibility may have far-reaching implications to the entire biosphere that can extend to several forthcoming generations. Here, we review a sample of approximately 200 published peer-reviewed articles dealing with plant response to ground-level ozone to understand how the information about susceptibility is communicated. A fuzzy and often incorrect terminology was used to describe the responsiveness of plants to ozone. Susceptibility was classified too arbitrarily and this was reflected to the approximately 50 descriptive words that were used to characterize susceptibility. The classification of susceptibility was commonly based on calculated probability (p) value. This practice is inappropriate as p values do not provide any basis for effect or susceptibility magnitude. To bridge the gap between science and policy decision making, classification of susceptibility should be done using alternative approaches, such as effect size estimates in conjunction with multivariate ordination statistics.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
39
|
Beć KB, Grabska J, Bonn GK, Popp M, Huck CW. Principles and Applications of Vibrational Spectroscopic Imaging in Plant Science: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1226. [PMID: 32849759 PMCID: PMC7427587 DOI: 10.3389/fpls.2020.01226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
Detailed knowledge about plant chemical constituents and their distributions from organ level to sub-cellular level is of critical interest to basic and applied sciences. Spectral imaging techniques offer unparalleled advantages in that regard. The core advantage of these technologies is that they acquire spatially distributed semi-quantitative information of high specificity towards chemical constituents of plants. This forms invaluable asset in the studies on plant biochemical and structural features. In certain applications, non-invasive analysis is possible. The information harvested through spectral imaging can be used for exploration of plant biochemistry, physiology, metabolism, classification, and phenotyping among others, with significant gains for basic and applied research. This article aims to present a general perspective about vibrational spectral imaging/micro-spectroscopy in the context of plant research. Within the scope of this review are infrared (IR), near-infrared (NIR) and Raman imaging techniques. To better expose the potential and limitations of these techniques, fluorescence imaging is briefly overviewed as a method relatively less flexible but particularly powerful for the investigation of photosynthesis. Included is a brief introduction to the physical, instrumental, and data-analytical background essential for the applications of imaging techniques. The applications are discussed on the basis of recent literature.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| | - Justyna Grabska
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | - Günther K. Bonn
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- ADSI, Austrian Drug Screening Institute, Innsbruck, Austria
| | - Michael Popp
- Michael Popp Research Institute for New Phyto Entities, University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| |
Collapse
|
40
|
Luo J, Yang G, Igalavithana AD, He W, Gao B, Tsang DCW, Ok YS. Effects of elevated CO 2 on the phytoremediation efficiency of Noccaea caerulescens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113169. [PMID: 31539847 DOI: 10.1016/j.envpol.2019.113169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
Concentrations of atmospheric carbon dioxide have been continuously increasing, and more investigations are needed in regard to the responses of various plants to the corresponding climatic conditions. In particular, potential variations in phytoremediation efficiency induced by global warming have rarely been investigated. Objective of this research was to evaluate the changes in phytoremediation efficiency of Noccaea caerulescens exposed to different concentrations of CO2. The concentrations of CO2 in the elevated CO2 treatments were adjusted to 550 ± 50 ppm to match the level of atmospheric CO2 predicted in 2050-2070. Compared to ambient controls (400 ppm), biomass yields and metal concentrations of N. caerulescens increased under elevated CO2 conditions, thus indicating that the phytoremediation efficiency of the species could increase in higher CO2 environment. In addition, water soluble and exchangeable Pb and Cu concentrations in soils decreased under elevated CO2 conditions, which reduced the leaching risks of the metals. The concentrations of malondialdehyde (MDA) of N. caerulescens decreased to different degrees with the increased CO2 concentrations. The overall findings suggested that elevations in CO2 can reduce the oxidative damage caused by metals in this species. The phytoremediation efficiency of N. caerulescens grown in multiple metal-enriched soils could be enhanced with global warming.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Ge Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
41
|
Yan BF, Nguyen C, Pokrovsky OS, Candaudap F, Coriou C, Bussière S, Robert T, Cornu JY. Cadmium allocation to grains in durum wheat exposed to low Cd concentrations in hydroponics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109592. [PMID: 31499445 DOI: 10.1016/j.ecoenv.2019.109592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 05/22/2023]
Abstract
This study aims to characterize the response of durum wheat to different concentrations of Cd found in agricultural soils. One French durum wheat cultivar (i.e. Sculptur) was exposed to low concentrations of Cd (5 nM or 100 nM) in hydroponics. After anthesis, the plants were fed with a solution enriched with the stable isotope 111Cd to trace the newly absorbed Cd. Plants were sampled at anthesis and grain maturity to assess how plant growth, Cd uptake and partitioning among organs, as well as Cd remobilization, differed between the two Cd exposure levels. Durum wheat did not show any visual symptoms of Cd toxicity, regardless of which Cd treatment was applied. However, post-anthesis durum wheat growth was 14% penalized at 100 nM due to the large transpiration-based accumulation of Cd in leaves at this stage. The allocation of Cd to the grains was not restricted but enhanced at 100 nM compared to 5 nM. Both the root-to-shoot Cd translocation and the fraction of aboveground Cd allocated to grains were higher in plants exposed to 100 nM. Cadmium was remobilized exclusively from roots and stems, and remobilized Cd contributed on average to 40-45% of the Cd accumulated in mature grains, regardless of which Cd treatment was applied. The relevance of these results to decreasing the concentration of Cd in durum wheat grains is discussed.
Collapse
Affiliation(s)
- B F Yan
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France
| | - C Nguyen
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France
| | - O S Pokrovsky
- Université Toulouse, CNRS, GET, UMR 5563, F-31400, Toulouse, France; IO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenina Prospekt, Tomsk, 630050, Russia
| | - F Candaudap
- Université Toulouse, CNRS, GET, UMR 5563, F-31400, Toulouse, France
| | - C Coriou
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France
| | - S Bussière
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France
| | - T Robert
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France
| | - J Y Cornu
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France.
| |
Collapse
|
42
|
Moustakas M, Hanć A, Dobrikova A, Sperdouli I, Adamakis IDS, Apostolova E. Spatial Heterogeneity of Cadmium Effects on Salvia sclarea Leaves Revealed by Chlorophyll Fluorescence Imaging Analysis and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2953. [PMID: 31547238 PMCID: PMC6766342 DOI: 10.3390/ma12182953] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023]
Abstract
In this study, for a first time (according to our knowledge), we couple the methodologies of chlorophyll fluorescence imaging analysis (CF-IA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to investigate the effects of cadmium (Cd) accumulation on photosystem II (PSII) photochemistry. We used as plant material Salvia sclarea that grew hydroponically with or without (control) 100 μM Cd for five days. The spatial heterogeneity of a decreased effective quantum yield of electron transport (ΦPSΙΙ) that was observed after exposure to Cd was linked to the spatial pattern of high Cd accumulation. However, the high increase of non-photochemical quenching (NPQ), at the leaf part with the high Cd accumulation, resulted in the decrease of the quantum yield of non-regulated energy loss (ΦNO) even more than that of control leaves. Thus, S. sclarea leaves exposed to 100 μM Cd exhibited lower reactive oxygen species (ROS) production as singlet oxygen (1O2). In addition, the increased photoprotective heat dissipation (NPQ) in the whole leaf under Cd exposure was sufficient enough to retain the same fraction of open reaction centers (qp) with control leaves. Our results demonstrated that CF-IA and LA-ICP-MS could be successfully combined to monitor heavy metal effects and plant tolerance mechanisms.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University, 61 614 Poznań, Poland.
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria.
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece.
| | | | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria.
| |
Collapse
|
43
|
Sperdouli I, Moustaka J, Antonoglou O, Adamakis IDS, Dendrinou-Samara C, Moustakas M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2498. [PMID: 31390827 PMCID: PMC6695995 DOI: 10.3390/ma12152498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Young and mature leaves of Arabidopsis thaliana were exposed by foliar spray to 30 mg L-1 of CuZn nanoparticles (NPs). The NPs were synthesized by a microwave-assisted polyol process and characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). CuZn NPs effects in Arabidopsis leaves were evaluated by chlorophyll fluorescence imaging analysis that revealed spatiotemporal heterogeneity of the quantum efficiency of PSII photochemistry (ΦPSΙΙ) and the redox state of the plastoquinone (PQ) pool (qp), measured 30 min, 90 min, 180 min, and 240 min after spraying. Photosystem II (PSII) function in young leaves was observed to be negatively influenced, especially 30 min after spraying, at which point increased H2O2 generation was correlated to the lower oxidized state of the PQ pool.. Recovery of young leaves photosynthetic efficiency appeared only after 240 min of NPs spray when also the level of ROS accumulation was similar to control leaves. On the contrary, a beneficial effect on PSII function in mature leaves after 30 min of the CuZn NPs spray was observed, with increased ΦPSΙΙ, an increased electron transport rate (ETR), decreased singlet oxygen (1O2) formation, and H2O2 production at the same level of control leaves.An explanation for this differential response is suggested.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis-Dimosthenis S Adamakis
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
44
|
Malea P, Charitonidou K, Sperdouli I, Mylona Z, Moustakas M. Zinc Uptake, Photosynthetic Efficiency and Oxidative Stress in the Seagrass Cymodocea nodosa Exposed to ZnO Nanoparticles. MATERIALS 2019; 12:ma12132101. [PMID: 31261885 PMCID: PMC6651621 DOI: 10.3390/ma12132101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
We characterized zinc oxide nanoparticles (ZnO NPs) by dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM), while we evaluated photosystem II (PSII) responses, Zn uptake kinetics, and hydrogen peroxide (H2O2) accumulation, in C. nodosa exposed to 5 mg L−1 and 10 mg L−1 ZnO NPs for 4 h, 12 h, 24 h, 48 h and 72 h. Four h after exposure to 10 mg L−1 ZnO NPs, we noticed a disturbance of PSII functioning that became more severe after 12 h. However, after a 24 h exposure to 10 mg L−1 ZnO NPs, we observed a hormetic response, with both time and dose as the basal stress levels needed for induction of the adaptive response. This was achieved through the reduced plastoquinone (PQ) pool, at a 12 h exposure, which mediated the generation of chloroplastic H2O2; acting as a fast acclimation signaling molecule. Nevertheless, longer treatment (48 h and 72 h) resulted in decreasing the photoprotective mechanism to dissipate excess energy as heat (NPQ) and increasing the quantum yield of non-regulated energy loss (ΦNO). This increased the formation of singlet oxygen (1O2), and decreased the fraction of open reaction centers, mostly after a 72-h exposure at 10 mg L−1 ZnO NPs due to increased Zn uptake compared to 5 mg L−1.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Katerina Charitonidou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- School of Agricultural Sciences, University of Thessaly, GR-38446 Volos, Greece
| | - Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter, Thermi, GR-57001 Thessaloniki, Greece
| | - Zoi Mylona
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
45
|
Agathokleous E, Kitao M, Harayama H. On the Nonmonotonic, Hormetic Photoprotective Response of Plants to Stress. Dose Response 2019; 17:1559325819838420. [PMID: 31019428 PMCID: PMC6466465 DOI: 10.1177/1559325819838420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
Accumulated evidence show that reactive species play a dual role in plants as
well, with likely biphasic responses. This suggests that photoprotective
mechanisms may also show similar patterns because they are highly related to
reactive species. The nonphotochemical quenching (NPQ) is an index of heat
dissipation of excitation energy in the antenna system. We present here
preliminary evidence from some published studies showing significant biphasic
response of NPQ to increasing doses of stress, with U-shaped or inverted
U-shaped dose–response relationships, typical of hormesis. This evidence
provides a remarkable perspective for designing novel studies where the fate of
light energy will be seen through the lens of hormesis.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China.,Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Sapporo, Hokkaido, Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Sapporo, Hokkaido, Japan
| | - Hisanori Harayama
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Sapporo, Hokkaido, Japan
| |
Collapse
|
46
|
Moustakas M, Bayçu G, Gevrek N, Moustaka J, Csatári I, Rognes SE. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6613-6624. [PMID: 30623337 DOI: 10.1007/s11356-019-04126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
We investigated changes in mineral nutrient uptake and translocation and photosystem II (PSII) functionality, in the hyperaccumulator Noccaea caerulescens after exposure to 800 μM Zn in hydroponic culture. Exposure to Zn inhibited the uptake of K, Mn, Cu, Ca, and Mg, while the uptake of Fe and Zn enhanced. Yet, Ca and Mg aboveground tissue concentrations remain unchanged while Cu increased significantly. In the present study, we provide new data on the mechanism of N. caerulescens acclimation to Zn exposure by elucidating the process of photosynthetic acclimation. A spatial heterogeneity in PSII functionality in N. caerulescens leaves exposed to Zn for 3 days was detected, while a threshold time of 4 days was needed for the activation of Zn detoxification mechanism(s) to decrease Zn toxicity and for the stomatal closure to decrease Zn supply at the severely affected leaf area. After 10-day exposure to Zn, the allocation of absorbed light energy in PSII under low light did not differ compared to control ones, while under high light, the quantum yield of non-regulated energy loss in PSII (ΦNO) was lower than the control, due to an efficient photoprotective mechanism. The chlorophyll fluorescence images of non-photochemical quenching (NPQ) and photochemical quenching (qp) clearly showed spatial and temporal heterogeneity in N. caerulescens exposure to Zn and provided further information on the particular leaf area that was most sensitive to heavy metal stress. We propose the use of chlorophyll fluorescence imaging, and in particular the redox state of the plastoquinone (PQ) pool that was found to display the highest spatiotemporal heterogeneity, as a sensitive bio-indicator to measure the environmental pressure by heavy metals on plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Nurbir Gevrek
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - István Csatári
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Sven Erik Rognes
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|