1
|
Sikorskaya TV, Ginanova TT, Ermolenko EV, Boroda AV. Lipidomic and physiological changes in the coral Acropora aspera during bleaching and recovery. Sci Rep 2025; 15:5870. [PMID: 39966672 PMCID: PMC11836136 DOI: 10.1038/s41598-025-90484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Heat stress and other factors cause the loss of endosymbiotic dinoflagellates by corals, and is known as coral bleaching. Coral reef bleaching is a global environmental problem. To better understand corals' responses and adaptability to stressful conditions, we applied a lipidomic approach in combination with cytometry and microscopy to study the coral bleaching of Acropora aspera under heat stress (32 °C) and subsequent recovery. For eight days of bleaching, the coral lost 50% of its symbiont population and 100% after a week of recovery. It took 126 days to fully recover the symbiont population, content of chlorophyll a and reserve lipids. There were degradations in symbionts' thylakoids and disruption of thylakoid lipid homeostasis. Variations in the content of phosphatidylinositols involved in apoptosis and autophagy and changes in the molecular profile of glycosylceramides that may be involved in the sphingosine rheostat were observed. However, upon A. aspera bleaching, the loss of symbionts was compensated by increased mucociliary nutrition. An increase in the content of hydroxylated ceramideaminoethylphosphonates for membrane stabilization and a decrease in ether phosphatidylethanolamines for providing protection from oxidative stress may have been used as adaptation mechanisms by the coral host. Thus, the coral undergoes physiological and biochemical changes during heat stress that are aimed at mitigating the adverse destructive effects, which may be key to successful recovery.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation.
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation
| |
Collapse
|
2
|
Wu L, Zhu SC, He Y, Zhu YX, Ou-Yang XL, Zhang D, Li CM. Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review. Front Med (Lausanne) 2025; 11:1538373. [PMID: 39882523 PMCID: PMC11774704 DOI: 10.3389/fmed.2024.1538373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV. Recent research in metabolomics and lipidomics has been propelled by rapid advancements in technologies including computational methods and mass spectrometry. Using metabolomics and lipidomics approach, a broad range of structurally diverse lipid species were detected and important lipid biomarkers were identified that are vital to the pathogenesis of AV. In this review, we will describe the recent progress in dyslipidemia of AV using metabolomics and lipidomics advances. We will begin with a literature overview of dyslipidemia of AV, followed by a short introduction of metabolomics and lipidomics. Finally, we will focus on applying metabolomics and lipidomics in dyslipidemia of AV.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sheng-Cai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang He
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Xia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Liang Ou-Yang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Fifth People's Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Wu L, Zhu Y, Zhu S, Zhang D, Wang X, Xiao Z, Tan Y, Ouyang X, Li C. Untargeted Lipidomics Analysis to Discover Lipid Profiles and Biomarkers of Rabbit Acne Model and Reveal Action Mechanism of Isotretinoin. Drug Des Devel Ther 2024; 18:4003-4016. [PMID: 39258275 PMCID: PMC11386034 DOI: 10.2147/dddt.s476649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Background Acne vulgaris (AV), a chronic inflammatory pilosebaceous disorder, affects 80-90% of teenagers. This study aimed to discover lipid profiles and biomarkers of the rabbit ear acne model, and investigate the mechanism of isotretinoin in treating acne at the lipid level. Methods Untargeted lipidomic analysis using ultra-high performance liquid chromatography system (UHPLC) coupled to q-extraction plus was performed to identify skin lipid metabolites in blank control (groups C), model group (group M) and isotretinoin group (group T). Multivariate statistical analysis was used to process the lipidomics data. Results A total of 43 lipid classes comprising 6989 lipid species were identified from the mass spectrometry data. The orthogonal partial least squares discriminant analysis (OPLS-DA) model demonstrated significant separation in skin lipidomic profiles between group M and group C. With variable influence on projection (VIP) > 1.0 and P-value < 0.05, 299 significantly different lipid metabolites were identified. These lipid metabolites consisted mainly of ceramides (Cer) (53.85%), phosphatidylethanolamines (PE) (9.03%), phosphatidylcholines (PC)(5.35%), and sphingomyelin (SM)(4.01%). Combining with AUC ≥ 0.9 as the elected criteria, Cer (d18;1_24:0), zymosterol (ZyE)(33:5), Cer (t43:1), ZyE (33:6), ZyE (24:7), and ZyE (35:6) have "high" accuracy. Isotretinoin treatment normalized 25 lipid metabolites in the acne model. Conclusion Our findings provide new insights into the role of lipid metabolism in the pathogenesis of acne and the action mechanism of isotretinoin.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yunxia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shengcai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiuping Wang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Xiao
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yanping Tan
- Department of Dermatology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoliang Ouyang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
4
|
Sikorskaya TV, Ermolenko EV, Ginanova TT, Boroda AV, Efimova KV, Bogdanov M. Membrane vectorial lipidomic features of coral host cells' plasma membrane and lipid profiles of their endosymbionts Cladocopium. Commun Biol 2024; 7:878. [PMID: 39025984 PMCID: PMC11258240 DOI: 10.1038/s42003-024-06578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The symbiotic relationships between coral animal host and autotrophic dinoflagellates are based on the mutual exchange and tight control of nutritional inputs supporting successful growth. The corals Sinularia heterospiculata and Acropora aspera were cultivated using a flow-through circulation system supplying seawater during cold and warm seasons of the year, then sorted into host cells and symbionts and subjected to phylogenetic, morphological, and advanced lipid analyses. Here we show, that the lipidomes of the dinoflagellates Cladocopium C1/C3 and acroporide-specific Cladocopium hosted by the corals, are determined by lipidomic features of different thermosensitivity and unique betaine- and phospholipid molecular species. Phosphatidylserines and ceramiaminoethylphosphonates are not detected in the symbionts and predominantly localized on the inner leaflet of the S. heterospiculata host plasma membrane. The transmembrane distribution of phosphatidylethanolamines of S. heterospiculata host changes during different seasons of the year, possibly contributing to mutualistic nutritional exchange across this membrane complex to provide the host with a secure adaptive mechanism and ecological benefits.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Kseniya V Efimova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
Xu Y, Luo X, Masanja F, Deng Y, Zhao L. Transcriptomic insights into cessation of clam embryonic development following transgenerational exposure to ocean acidity extreme. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106561. [PMID: 38788476 DOI: 10.1016/j.marenvres.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ocean acidity extremes (OAX) events are becoming more frequent and intense in coastal areas in the context of climate change, generating widespread consequences on marine calcifying organisms and ecosystems they support. While transgenerational exposure to end-of-century scenario of ocean acidification (i.e., at pH 7.7) can confer calcifiers resilience, whether and to what extent such resilience holds true under OAX conditions is still poorly understood. Here, we found that transgenerational exposure of Ruditapes philippinarum to OAX resulted in cessation of embryonic development at the trochophore stage, implying devastating consequences of OAX on marine bivalves. We identified a large number of differentially expressed genes in embryos following transgenerationally exposed to OAX, which were mainly significantly enriched in KEGG pathways related to energy metabolism, immunity and apoptosis. These pathways were significantly activated, and genes involved in these processes were up-regulated, indicating strong cellular stress responses to OAX. These findings demonstrate that transgenerational exposure to OAX can result in embryonic developmental cessation by severe cellular damages, implying that transgenerational acclimation maybe not a panacea for marine bivalves to cope with OAX, and hence urgent efforts are required to understand consequences of intensifying OAX events in coastal ecosystems.
Collapse
Affiliation(s)
- Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Science and Technology Innovation Center of Marine Invertebrate, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
6
|
Wood PL, Wood MD, Kunigelis SC. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain. Life (Basel) 2023; 13:2335. [PMID: 38137936 PMCID: PMC10744631 DOI: 10.3390/life13122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Michael D. Wood
- Child and Adolescent Psychiatry, BC Children’s and Women’s Hospital & Provincial Health Services Authority, Vancouver, BC V5Z 4H4, Canada;
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
7
|
Laudicella VA, Carboni S, Whitfield PD, Doherty MK, Hughes AD. Sexual dimorphism in the gonad lipidome of blue mussels (Mytilus sp.): New insights from a global lipidomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101150. [PMID: 37913700 DOI: 10.1016/j.cbd.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/08/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Blue mussels (Mytilus sp.) are an economically important species for European aquaculture. Their importance as a food source is expected to increase in the coming net-zero society due to their low environmental footprint; however, their production is affected by anthropogenic stressors and climate change. During reproduction, lipids are key molecules for mussels as they are the main source of energy on which newly hatched embryos depend in the first days of their development. In this work, blue mussels of different origins are analysed, focusing on the differences in lipid composition between the ovary (BMO) and the testis (BMT). The lipidome of blue mussel gonads (BMG) is studied here by combining traditional lipid profiling methods, such as fatty acid and lipid class analysis, with untargeted liquid chromatography-mass spectrometry (LC-MS) lipidomics. The approach used here enabled the identification of 770 lipid molecules from 23 different lipid classes in BMG. BMT, which consists of billions of spermatocytes, had greater amounts of cell membrane and membrane lipid components such as FA18:0, C20 polyunsaturated fatty acids (PUFA), free sterols (ST), ceramide phosphoethanolamines (CerPE), ceramide aminoethylphosphonates (CAEP), cardiolipins (CL), glycerophosphocholines (PC), glycerophosphoethanolamines (PE) and glycerophosphoserines (PS). In BMO, saturated fatty acids (FA14:0 and FA16:0), monounsaturated fatty acids (MUFA) and other storage components such as C18-PUFA accumulated in triradylglycerolipids (TG) and alkyldiacylglycerols (neutral plasmalogens, TG O-), which, together with terpenes, wax esters and cholesterol esters, make up most of oocytes yolk reserves. BMO also had higher levels of ceramides (Cer) and generally alkyl/alkenyl glycerophospholipids (mainly plasmanyl/plasmenyl PC), suggesting a role for these lipids in vitellogenesis. Non-methylene interrupted dienoic fatty acids (NMID FA), typically found in plasmalogens, were the only membrane-forming PUFA predominantly detected in BMO. The results of this study are of great importance for clarifying the lipid composition of BMG and provide an important basis for future studies on the reproductive physiology of these organisms.
Collapse
Affiliation(s)
- Vincenzo Alessandro Laudicella
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, PA34 1QA Oban, United Kingdom; National Institute for Oceanography and Applied Geophysics - OGS, via Auguste Piccard 54, 34151 Trieste (TS), Italy.
| | - Stefano Carboni
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK9 4LA Stirling, United Kingdom; International Marine Center Foundation, Località Sa Mardini 09170, Oristano (Or), Italy
| | - Phillip D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Sciences, IV2 3JH Inverness, United Kingdom; Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow G61 1QH, United Kingdom
| | - Mary K Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Sciences, IV2 3JH Inverness, United Kingdom
| | - Adam D Hughes
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, PA34 1QA Oban, United Kingdom. https://twitter.com/@aquacultureadam
| |
Collapse
|
8
|
Balbi T, Trenti F, Guella G, Miglioli A, Sepčić K, Ciacci C, Canesi L. Changes in phospholipid profiles in early larval stages of the marine mussel Mytilus galloprovincialis indicate a role of ceramides in bivalve development. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 14:87-100. [PMID: 38020445 PMCID: PMC10658153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Phospholipids are highly diverse molecules with pleiotropic biological roles, from membrane components and signaling molecules, whose composition can change in response to both endogenous and external stimuli. Recent lipidomic studies on edible bivalve mollusks were focused on lipid nutritional value and growth requirements. However, no data are available on phospholipid profiles during bivalve larval development. In the model marine bivalve Mytilus galloprovincialis, early larvae (up to 48 hours post fertilization-hpf) undergo dramatic molecular and functional changes, including shell biogenesis and neurogenesis, that are sustained by egg lipid reserves. Changes in phospholipid composition may also occur participating in the complex processes of early development. OBJECTIVE The lipidome of M. galloprovincialis eggs and early larval stages (24 and 48 hpf) was investigated in order to identify possible changes in phospholipid classes and related metabolic pathways that may play a role in key steps of development. MATERIALS AND METHODS Lipidomic analysis were performed by NMR spectroscopy and liquid chromatography-mass spectrometry (LC-MS), with focus on phospholipids. Shifts in relative species composition of phosphatidylcholine, phosphatidylethanolamine, plasmalogen, and ceramide aminoethylphosphonate-CAEP, the bivalve analogue of the main mammalian ceramide sphingomyelin, were observed. Expression of genes involved in ceramide homeostasis was also modulated from eggs to early larval stages. RESULTS The results represent the first data on changes in phospholipid composition in bivalve larvae and suggest a functional role of phospholipids in mussel early development. CONCLUSION The results underline the importance of lipidomic studies in bivalve larvae, in both physiological conditions and in response to environmental stress.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of GenoaGenoa, Italy
- NBFC, National Biodiversity Future CenterPalermo, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of TrentoTrento, Italy
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of TrentoTrento, Italy
| | - Angelica Miglioli
- Laboratoire de Biologie du Développement, Sorbonne Université/CNRSVillefranche-sur-Mer, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University “Carlo Bo” of UrbinoUrbino, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of GenoaGenoa, Italy
- NBFC, National Biodiversity Future CenterPalermo, Italy
| |
Collapse
|
9
|
Imbs AB, Dembitsky VM. Coral Lipids. Mar Drugs 2023; 21:539. [PMID: 37888474 PMCID: PMC10608786 DOI: 10.3390/md21100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Reef-building corals, recognized as cornerstone species in marine ecosystems, captivate with their unique duality as both symbiotic partners and autotrophic entities. Beyond their ecological prominence, these corals produce a diverse array of secondary metabolites, many of which are poised to revolutionize the domains of pharmacology and medicine. This exhaustive review delves deeply into the multifaceted world of coral-derived lipids, highlighting both ubiquitous and rare forms. Within this spectrum, we navigate through a myriad of fatty acids and their acyl derivatives, encompassing waxes, sterol esters, triacylglycerols, mono-akyl-diacylglycerols, and an array of polar lipids such as betaine lipids, glycolipids, sphingolipids, phospholipids, and phosphonolipids. We offer a comprehensive exploration of the intricate biochemical variety of these lipids, related fatty acids, prostaglandins, and both cyclic and acyclic oxilipins. Additionally, the review provides insights into the chemotaxonomy of these compounds, illuminating the fatty acid synthesis routes inherent in corals. Of particular interest is the symbiotic bond many coral species nurture with dinoflagellates from the Symbiodinium group; their lipid and fatty acid profiles are also detailed in this discourse. This exploration accentuates the vast potential and intricacy of coral lipids and underscores their profound relevance in scientific endeavors.
Collapse
Affiliation(s)
- Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia
| | - Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
10
|
Ermolenko EV, Sikorskaya TV, Grigorchuk VP. Crabs Eriocheir japonica and Paralithodes camtschaticus Are a Rich Source of Lipid Molecular Species with High Nutritional Value. Foods 2023; 12:3359. [PMID: 37761068 PMCID: PMC10527590 DOI: 10.3390/foods12183359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Due to their valuable meat and hepatopancreas, the world's most famous delicacies, crabs, have become target species of commercial fisheries and aquaculture. By methods of supercritical fluid and high-performance liquid chromatography, coupled with high resolution mass spectrometry, we analyzed triacylglycerols (TG) and phospholipids (PL)-glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)-in the hepatopancreas and muscles of the Japanese mitten crab Eriocheir japonica and the red king crab Paralithodes camtschaticus inhabiting the Sea of Japan. TGs were the main class of lipids in the crab hepatopancreas, while they were found in trace amounts in muscle. TGs of E. japonica differed from those of P. camtschaticus by a higher content of 16:0, 16:1, 18:2, and 20:4 FA and a lower content of eicosapentaenoic and docosahexaenoic acids. The Japanese mitten crab differed from the red king crab by a lower content of molecular species with eicosapentaenoic acid in PC and PI; an increased content of arachidonic acid in PE, PS, and PI; and a lower content of molecular species with docosahexaenoic acid in PE in the hepatopancreas and muscles. The high nutritional value of the crabs E. japonica and P. camtschaticus was confirmed by a high content of molecular species of lipids with n-3 polyunsaturated fatty acids. The data of the lipid molecular species profile provide new background information for future studies on biochemistry and aquaculture of crabs.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia;
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia;
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Pr-t 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia;
| |
Collapse
|
11
|
Sakai R, Goto-Inoue N, Yamashita H, Aimoto N, Kitai Y, Maruyama T. Smart utilization of betaine lipids in the giant clam Tridacna crocea. iScience 2023; 26:107250. [PMID: 37485344 PMCID: PMC10362313 DOI: 10.1016/j.isci.2023.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The giant clam Tridacna crocea thrives in poorly nourished coral reef water by forming a holobiont with zooxanthellae and utilizing photosynthetic products of the symbiont. However, detailed metabolic crosstalk between clams and symbionts is elusive. Here, we discovered that the nonphosphorous microalgal betaine lipid DGCC (diacylglycerylcarboxy-hydroxymethylcholine) and its deacylated derivative GCC are present in all tissues and organs, including algae-free sperm and eggs, and are metabolized. Colocalization of DGCC and PC (phosphatidylcholine) evidenced by MS imaging suggested that DGCC functions as a PC substitute. The high content of GCC in digestive diverticula (DD) suggests that the algal DGCC was digested in DD for further utilization. Lipidomics analysis showing the organ-specific distribution pattern of DGCC species suggests active utilization of DGCC as membrane lipids in the clam. Thus, the utilization of zooxanthellal DGCC in animal cells is a unique evolutionary outcome in phosphorous-deficient coral reef waters.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukai-Ohta, Ishigaki, Okinawa 907-0451, Japan
| | - Naoya Aimoto
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Yuto Kitai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
12
|
Sikorskaya TV. Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids. Mar Drugs 2023; 21:335. [PMID: 37367660 DOI: 10.3390/md21060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| |
Collapse
|
13
|
Rodrigues JA, Bispo DSC, Silva MG, Araújo R, Soares AMVM, Freitas R, Gil AM. Impact of Sea Warming and 17-α-Ethinylestradiol Exposure on the Lipid Metabolism of Ruditapes philippinarum Clams. Int J Mol Sci 2023; 24:ijms24119485. [PMID: 37298436 DOI: 10.3390/ijms24119485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This paper reports on an NMR metabolomics study of lipophilic extracts of Ruditapes philippinarum clams exposed to the hormonal contaminant 17-α-ethinylestradiol (EE2), at 17 °C and 21 °C. The results reveal that exposure at 17 °C triggers a weak response at low EE2 concentrations, suggestive of a slight increase in membrane rigidity, followed by lipid metabolic stability at higher EE2 concentrations. On the other hand, at 21 °C, lipid metabolism begins to respond at 125 ng/L EE2, with antioxidant docosahexaenoic acid (DHA) helping to tackle high-oxidative-stress conditions, in tandem with enhanced storage of triglycerides. Exposure to 625 ng/L EE2 (highest concentration) enhances phosphatidylcholine (PtdCho) and polyunsaturated fatty acid (PUFA) levels, their direct intercorrelation suggesting PUFA incorporation in new membrane phospholipids. This should lead to increased membrane fluidity, probably aided by a decrease in cholesterol. PUFA levels, considered a measure of membrane fluidity, were strongly (and positively) correlated to intracellular glycine levels, thus identifying glycine as the main osmolyte entering the cells under high stress. Membrane fluidity also seems to elicit the loss of taurine. This work contributes to the understanding of the mechanisms of response of R. philippinarum clams to EE2 in tandem with warming while unveiling novel potential markers of stress mitigation, namely high levels of PtdCho, PUFAs (or PtdCho/glycerophosphocholine and PtdCho/acetylcholine ratios) and linoleic acid and low PUFA/glycine ratios.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela S C Bispo
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica G Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Araújo
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Gu L, Hu B, Fu Y, Zhou W, Li X, Huang K, Zhang Q, Fu J, Zhang H, Zhang A, Fu J, Jiang G. Occurrence and risk assessment of organophosphate esters in global aquatic products. WATER RESEARCH 2023; 240:120083. [PMID: 37224669 DOI: 10.1016/j.watres.2023.120083] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Organophosphate esters (OPEs), as an important class of new pollutants, have been pervasively detected in global aquatic products, arousing widespread public concern due to their potential bioaccumulative behavior and consequent risks. With the continuous improvement of living standards of citizens, there have been constant increment of the proportion of aquatic products in diets of people. The levels of OPEs exposed to residents may also be rising due to the augmented consumption of aquatic products, posing potential hazards on human health, especially for people in coastal areas. The present study integrated the concentrations, profiles, bioaccumulation, and trophic transfer of OPEs in global aquatic products, including Mollusca, Crustacea, and fish, evaluated health risks of OPEs through aquatic products in daily diets by Mont Carol Simulation (MCS), and found Asia has been the most polluted area in terms of the concentration of OPEs in aquatic products, and would have been increasingly polluted. Among all studied OPEs, chlorinated OPEs generally showed accumulation predominance. It is worth noting that some OPEs were found bioaccumulated and/or biomagnified in aquatic ecosystems. Though MCS revealed relative low exposure risks of residents, sensitive and special groups such as children, adolescents, and fishermen may face more serious health risks than the average residents. Finally, knowledge gaps and recommendations for future research are discussed encouraging more long-term and systematic global monitoring, comprehensive studies of novel OPEs and OPEs metabolites, and more toxicological studies to completely evaluate the potential risks of OPEs.
Collapse
Affiliation(s)
- Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049 China
| |
Collapse
|
15
|
Dinh TKH, Nguyen PH, Phuong DL, Dang TPL, Quan PM, Dao TKD, Grigorchuk VP, Long PQ. Component and Content of Lipid Classes and Phospholipid Molecular Species of Eggs and Body of the Vietnamese Sea Urchin Tripneustes gratilla. Molecules 2023; 28:molecules28093721. [PMID: 37175131 PMCID: PMC10180406 DOI: 10.3390/molecules28093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Sea urchins (Tripneustes gratilla) are among the most highly prized seafood products in Vietnam because of their nutritional value and medicinal properties. In this research, lipid classes and the phospholipid (PL) molecular species compositions from the body and eggs of T. gratilla collected in Hon Tam, Nha Trang, Khanh Hoa, Vietnam, were investigated. Hydrocarbon and wax (HW), triacylglycerol (TG), mono- and diacylglycerol (MDAG), free fatty acid (FFA), sterol (ST), polar lipid (PoL), and monoalkyl-diacylglycerol are the major lipid classes. In PL, five main glycerophospholipid classes have been identified, in which 137 PL molecular species were detected in the body and eggs of T. gratilla, including 20 inositol glycerophospholipids (PI), 11 serine glycerophospholipids (PS), 22 ethanolamine glycerophospholipids (PE), 11 phosphatidic acids (PA), and 73 choline glycerophospholipids (PC). PI 18:0/20:4, PS 20:1/20:1, PE 18:1e/20:4, PA 20:1/20:1, and PC 18:0e/20:4 are the most abundant species with the highest content values of 38.65-48.19%, 42.48-44.41%, 41.21-40.03%, 52.42-52.60%, and 7.77-7.18% in each class of the body-eggs, respectively. Interestingly, PL molecules predominant in the body sample were also found in the egg sample. The molecular species with the highest content account for more than 40% of the total species in each molecular class. However, in the PC class containing 73 molecular species, the highest content species amounted to only 7.77%. For both the body and egg TL samples of the sea urchin T. gratilla, a substantial portion of C20:4n polyunsaturated fatty acid was found in PI, PE, and PC, but C16, C18, C20, and C22 saturated fatty acids were reported at low levels. The most dominant polyunsaturated fatty acid in PI, PE, and PC was tetracosapolyenoic C20, while unsaturated fatty acid C20:1 was the most dominant in PS and PA. To our knowledge, this is the first time that the chemical properties of TL and phospholipid molecular species of the PoL of Vietnamese sea urchin (T. gratilla) have been studied.
Collapse
Affiliation(s)
- Thi-Kim-Hoa Dinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- College of Agriculture and Forestry, Thai Nguyen University (TUAF), Quyet Thang, Thai Nguyen 24119, Vietnam
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| | - Doan Lan Phuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| | - Thi-Phuong-Ly Dang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| | - Pham Minh Quan
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| | - Thi-Kim-Dung Dao
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch, Russian Academy of Sciences, Pr-t 100-let Vladivostoka 159, 690022 Vladivostok, Russia
| | - Pham Quoc Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| |
Collapse
|
16
|
Yang S, Wang X, Li H, Wang X, Song Y, Cong P, Xu J, Xue C. Sea Cucumber Phospholipids Regulate Cholesterol Metabolism in High-Fat Diet-induced ApoE -/- Mice. J Nutr 2023:S0022-3166(23)37560-6. [PMID: 37105382 DOI: 10.1016/j.tjnut.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Sea cucumber phospholipids, marine-derived lipids with high nutritional functions, have been proven to exhibit various biological activities. However, it is unclear how sea cucumber phospholipids regulate cholesterol (Chol) metabolism in atherosclerosis (AS). OBJECTIVE This study aimed to investigate the effects and mechanism of sea cucumber phospholipids on the metabolism of Chol and cholesterol esters (CE) in ApoE-/- mice, including plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O). METHODS Male ApoE-/- mice were fed with chow diet, high-fat diet (HFD), and high-fat diet supplemented with PC-O or PE-P, respectively. We integrated a targeted lipidomics strategy to classify and compare the cholesteryl esters according to their fatty acid types, then analyzed the individual cholesteryl ester molecular species in the liver and serum of mice. Furthermore, the Chol metabolism-related genes and pathways were analyzed in high-fat-induced ApoE-/- mice. RESULTS Biochemical analysis showed that sea cucumber phospholipids significantly inhibit the generation of arterial plaque in ApoE-/- mice. Compared with the HFD group, PE-P significantly reduced the contents of saturated fatty acid-cholesterol esters (SFA-CE) and monounsaturated fatty acid-cholesterol esters (MUFA-CE) in mice liver (P < 0.05), whereas PC-O particularly upregulated CE20:5 and CE22:6 in serum of mice (P < 0.001). Furthermore, PC-O and PE-P inhibited the Chol synthesis pathway (Cyp7A1 and Cyp27A1), as well as promoted the catabolism of Chol by upregulating gene expressions of bile acid synthesis (Abcb11) and lysosomal activity (Lamp1), respectively. CONCLUSIONS Sea cucumber phospholipids could ameliorate the AS symptoms by regulating Chol metabolism.
Collapse
Affiliation(s)
- Shuo Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - He Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong 266237, China.
| |
Collapse
|
17
|
Yao J, Zhu J, Zhao M, Zhou L, Marchioni E. Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics. Molecules 2023; 28:molecules28093653. [PMID: 37175063 PMCID: PMC10179896 DOI: 10.3390/molecules28093653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, ultra-high-performance liquid chromatography high-resolution accurate mass-mass spectrometry (UHPLC-HRAM/MS) was applied to characterize the lipid profiles of five crab species. A total of 203 lipid molecular species in muscle tissue and 176 in edible viscera were quantified. The results indicate that Cancer pagurus contained high levels of lipids with a docosahexaenoic acid (DHA) and eicosapntemacnioc acid (EPA) structure in the muscle tissue and edible viscera. A partial least squares discriminant analysis (PLS-DA) showed that PE 16:0/22:6, PE P-18:0/20:5, PA 16:0/22:6 and PC 16:0/16:1 could be used as potential biomarkers to discriminate the five kinds of crabs. In addition, some lipids, such as PE 18:0/20:5, PC 16:0/16:1, PE P-18:0/22:6 and SM 12:1;2O/20:0, could be used as characteristic molecules to distinguish between Cancer magister and Cancer pagurus, which are similar in appearance. This study provides a new perspective on discriminating crab species from MS-based lipidomics.
Collapse
Affiliation(s)
- Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| |
Collapse
|
18
|
Zhang S, Jiao S, Liu D, Xie C, Dong Y, Zheng K, Liu B, Pang Q. Characterization of the lipidomic profile of clam Meretrix petechialis in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108602. [PMID: 36758655 DOI: 10.1016/j.fsi.2023.108602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Vibrio parahaemolyticus is a devastating pathogen of clam Meretrix petechialis, which brings about huge economic losses in aquaculture breeding industry. In our previous study, we have found that Vibrio infection is closely associated with lipid metabolism of clams. In this study, an untargeted lipidomics approach was used to explore the lipid profiling changes upon Vibrio infection. The results demonstrated that the hepatopancreas of clams was composed of five lipid categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. And the content of lipid classes altered during Vibrio infection, implying that Vibrio infection altered intracellular lipid homeostasis in clams. Meanwhile, a total of 200 lipid species including 82 up-regulated and 118 down-regulated significantly were identified in response to Vibrio infection, of which ceramide (Cer), phosphatidylcholine (PC) and triglyceride (TG) accounted for the largest proportion. Notably, all Cers showed a significantly decreased trend while nearly all TG species were increased significantly during Vibrio infection, which suggested that Cer and TG could be determined as effective biomarkers. Furthermore, these differentially expressed lipid species were enriched in 20 metabolic pathways and sphingolipid metabolism was one of the most enriched pathways. These results evidenced how the lipid metabolism altered in the process of Vibrio infection and opened a new perspective on the response of marine bivalves to pathogen infection.
Collapse
Affiliation(s)
- Shujing Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Shuang Jiao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Changjian Xie
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuling Dong
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Kang Zheng
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| |
Collapse
|
19
|
Light modulates the lipidome of the photosynthetic sea slug Elysia timida. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159249. [PMID: 36336252 DOI: 10.1016/j.bbalip.2022.159249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Long-term kleptoplasty, the capability to retain functional stolen chloroplasts (kleptoplasts) for several weeks to months, has been shown in a handful of Sacoglossa sea slugs. One of these sea slugs is Elysia timida, endemic to the Mediterranean, which retains functional chloroplasts of the macroalga Acetabularia acetabulum. To understand how light modulates the lipidome of E. timida, sea slug specimens were subjected to two different 4-week light treatments: regular light and quasi-dark conditions. Lipidomic analyses were performed by HILIC-HR-ESI-MS and MS/MS. Quasi-dark conditions caused a reduction in the amount of essential lipids for photosynthetic membranes, such as glycolipids, indicating high level of kleptoplast degradation under sub-optimal light conditions. However, maximum photosynthetic capacities (Fv/Fm) were identical in both light treatments (≈0.75), showing similar kleptoplast functionality and suggesting that older kleptoplasts were targeted for degradation. Although more stable, the phospholipidome showed differences between light treatments: the amount of certain lipid species of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylglycerol (PG) decreased under quasi-dark conditions, while other lipid species of phosphatidylcholine (PC), PE and lyso-PE (LPE) increased. Quasi-dark conditions promoted a decrease in the relative abundance of polyunsaturated fatty acids. These results suggest a light-driven remodelling of the lipidome according to the functions of the different lipids and highlight the plasticity of polar lipids in the photosynthetic sea slug E. timida.
Collapse
|
20
|
Ermolenko EV, Sikorskaya TV, Grigorchuk VP. The Phospholipid Molecular Species Profile of Apostichopus japonicus Tissues Modifies through Exposure to n-3 Polyunsaturated Fatty Acid-Deficient Diet. Mar Drugs 2022; 20:md20090578. [PMID: 36135767 PMCID: PMC9503100 DOI: 10.3390/md20090578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022] Open
Abstract
The sea cucumber Apostichopus japonicus, being a target species of commercial fisheries and aquaculture, is also used as a source of biologically active compounds with high pharmacological potential. By the methods of high-performance liquid chromatography with high resolution mass spectrometry, we analyzed the major structural phospholipids (PL)—glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)—in tissues of wild and cultured sea cucumbers. The intestines of the wild and cultured animals differed from the other tissues by an elevated content of molecular species of PE, PC, and PS with 22:6n-3 fatty acid. The respiratory trees of the studied animals contained a high level of odd-chain PI and PI with 20:4n-6. The exposure to n-3 PUFA-deficient diet resulted in substantial changes in the molecular species profile of PL of the wild and cultured animals. The cultured sea cucumbers showed a significant decrease in the 20:5n-3 content in all four studied PL classes. A replacement of 20:5n-3 by 20:4n-6 occurred in PE, PC, and PI. The decrease in the level of molecular species of PS with 20:5n-3 was compensated by an increase in the level of monounsaturated long-chain PS. The diet of cultured sea cucumbers is a crucial factor for enhancing the nutritional properties of the product obtained from them.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
- Correspondence:
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Pr-t 100-let Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
21
|
Bourceau P, Michellod D, Geier B, Liebeke M. Spatial metabolomics shows contrasting phosphonolipid distributions in tissues of marine bivalves. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipids are an integral part of cellular membranes that allow cells to alter stiffness, permeability, and curvature. Among the diversity of lipids, phosphonolipids uniquely contain a phosphonate bond between carbon and phosphorous. Despite this distinctive biochemical characteristic, few studies have explored the biological role of phosphonolipids, although a protective function has been inferred based on chemical and biological stability. We analyzed two species of marine mollusks, the blue mussel Mytilus edulis and pacific oyster Crassostrea gigas, and determined the diversity of phosphonolipids and their distribution in different organs. High-resolution spatial metabolomics revealed that the lipidome varies significantly between tissues within one organ. Despite their chemical similarity, we observed a high heterogeneity of phosphonolipid distributions that originated from minor structural differences. Some phosphonolipids are ubiquitously distributed, while others are present almost exclusively in the layer of ciliated epithelial cells. This distinct localization of certain phosphonolipids in tissues exposed to the environment could support the hypothesis of a protective function in mollusks. This study highlights that the tissue specific distribution of an individual metabolite can be a valuable tool for inferring its function and guiding functional analyses.
Collapse
Affiliation(s)
- Patric Bourceau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM—Center for Marine Environmental Sciences of the University of Bremen, Bremen, Germany
| | - Dolma Michellod
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
22
|
Popov RS, Ivanchina NV, Dmitrenok PS. Application of MS-Based Metabolomic Approaches in Analysis of Starfish and Sea Cucumber Bioactive Compounds. Mar Drugs 2022; 20:320. [PMID: 35621972 PMCID: PMC9147407 DOI: 10.3390/md20050320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.
Collapse
Affiliation(s)
- Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| |
Collapse
|
23
|
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MDRM. Applications of lipidomics in marine organisms: Progresses, challenges and future perspectives. Mol Omics 2022; 18:357-386. [DOI: 10.1039/d2mo00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine ecosystems comprise a high diversity of life forms, such as algae, invertebrates, and vertebrates. These organisms have adapted their physiology according to the conditions of the environments in which...
Collapse
|