1
|
Yang J, Chang Y, Qiao L, Dama G, Lou Y, Lin J. Npc1 gene mutation impairs multilineage differentiation potential of hepatic telocytes in murine models. Cell Biol Toxicol 2025; 41:71. [PMID: 40257496 PMCID: PMC12011650 DOI: 10.1007/s10565-025-10018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE To investigate the effect of the Npc1 gene on the biological activity of Telocytes (TCs) in the liver and to provide theoretical support for further research on the biological activity of TCs. METHODS Primary liver tissue cultures (TCs) from neonatal Npc1+/+ and Npc1-/- mice were extracted and cultured using an optimized type II collagenase-digestion protocol, and subsequently purified through a differential adhesion method. The growth state of TCs in both Npc1+/+ and Npc1-/- groups was regularly observed under an inverted microscope, and the morphology of TCs under normal growth conditions was documented. The TCs were identified using scanning electron microscopy and immunofluorescence staining. To investigate the impact of the Npc1 gene on the multilineage differentiation potential of TCs, liver TCs from Npc1+/+ and Npc1-/- groups were induced with adipogenic, osteogenic, and cardiomyoblastic differentiation solutions, respectively. RESULTS TCs cell surface markers such as co-expression of vimentin/CD34, vimentin/PDGF-α, and vimentin/c-Kit in Npc1+/+ and Npc1-/- groups. "Combined light and scanning electron microscopy revealed that the cellular structure of TCs from Npc1+/+ and Npc1-/- groups was mainly composed of cell bodies and Telopodes (Tps). TCs exhibited small somata with fusiform, stellate, or spindle-shaped nuclei, depending on the number of Tps. The surface of TCs cell membrane was uneven, and there was no difference in morphology between the two groups. TCs had multilineage differentiation potential, and the positive rate of TCs induced in Npc1-/- group was significantly lower than that in the Npc1+/+ group. CONCLUSION Our findings demonstrate that NPC1 deficiency markedly attenuates hepatic TCs' multipotency of liver TCs to differentiate into adipocytes, osteoblasts, and cardiocytes, suggesting that NPC1 protein might affect the pluripotency of TCs by regulating the lipid transport pathway. This finding provides novel insights into TC-mediated mechanisms in NPC pathology and lays a theoretical foundation for regenerative medicine strategies targeting TCs.
Collapse
Affiliation(s)
- Jichao Yang
- Department of Neurospine Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ganesh Dama
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongli Lou
- Department of Neurospine Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Rosa I, Fioretto BS, Andreucci E, Biagioni A, Romano E, Manetti M. Skin Telocyte Secretome as Conditioned Medium Prevents Profibrotic Differentiation of Skin Fibroblasts into Myofibroblasts. Int J Mol Sci 2025; 26:1284. [PMID: 39941052 PMCID: PMC11818514 DOI: 10.3390/ijms26031284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Telocytes (TCs) are distinctive cells widely localized in the stromal compartment of several human organs, including the skin. By means of their peculiar prolongations named telopodes, skin TCs are organized in networks interconnected with a variety of adjacent cells, being thus supposed to take part in skin homeostasis through both cell-to-cell contacts and the release of extracellular vesicles. A disarrangement/loss of the TC network was shown in human fibrotic skin as well as in the murine model of bleomycin-induced cutaneous fibrosis, but whether such TC alterations may represent just a consequence or a trigger of the fibrotic process still remains to be clarified. Thus, we investigated the effects of skin TC secretome as conditioned medium (TC-CM) on the transition of skin fibroblasts into myofibroblasts promoted by the master profibrotic cytokine transforming growth factor β1 (TGFβ1). Primary cultures of both adult human skin TCs and fibroblasts were obtained by means of immunomagnetic cell separation. Nanoparticle tracking analysis was carried out to measure extracellular vesicles in TC-CM. The combination of multiple morphological, gene/protein expression, and functional assessments demonstrated that TC-CM was able to significantly prevent TGFβ1-induced fibroblast-to-myofibroblast transition. TC-CM did not influence cell viability, while it effectively inhibited TGFβ1-induced fibroblast proliferation, migration, and morphological changes. Indeed, TC-CM was able to reduce TGFβ1-mediated skin fibroblast phenotypic and functional differentiation into myofibroblasts, as shown by a significant decrease in FAP, ACTA2, COL1A1, COL1A2, FN1, and CTGF gene expression, α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, and collagen gel matrix contraction. Furthermore, TC-CM significantly lowered TGFβ1-mediated ERK1/2 signaling pathway activation. This in vitro study proves for the first time that TCs may play an important role in skin homeostasis through the prevention of fibroblast-to-myofibroblast transition via paracrine mechanisms and affords the necessary basis to investigate in the future the feasibility of TC secretome as an innovative antifibrotic therapeutic tool.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.A.); (A.B.)
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.A.); (A.B.)
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
3
|
Panganiban RP, McAninch C, Chulkina M, Pinchuk IV. Telocytes in inflammatory bowel diseases: contributions to pathology and therapeutic potentials. Front Cell Dev Biol 2025; 12:1452258. [PMID: 39872845 PMCID: PMC11770051 DOI: 10.3389/fcell.2024.1452258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Telocytes, a novel mesenchymal cell population, are characterized by their distinctive long and slender projections known as telopodes and have garnered significant interest since their formal introduction to the literature in 2010. These cells have been identified in various tissues, including the gastrointestinal (GI) tract, where they are suggested to play important roles in maintaining structural integrity, immune modulation, and barrier function. Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic inflammation and fibrosis. While limited information is available on the fate of telocytes in this group of diseases, it has been suggested that loss/plasticity of telocytes can be among the key factors contributing to their pathogenesis. This review focuses on the current understanding of telocytes, their structural features, and their distribution within the GI tract under gut homeostasis and IBD. We also discuss the roles of these cells in immune regulation and intestinal repair. We highlight evidence implicating telocytes in the pathogenesis of IBD and other chronic inflammatory diseases that share similar pathophysiological processes with IBD. Lastly, we discuss the current challenges in gut telocyte biology and the potential therapeutic implications of telocytes in IBD.
Collapse
Affiliation(s)
| | | | | | - Irina V. Pinchuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Li F, Tang X, Cao H, Wang W, Geng C, Sun Z, Shen X, Li S. Vascular endothelial growth factor facilitates the effects of telocytes on tumor cell proliferation and migration. Front Cell Dev Biol 2024; 12:1474682. [PMID: 39605983 PMCID: PMC11599237 DOI: 10.3389/fcell.2024.1474682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Background Telocytes, recently recognized as interstitial cells with a diverse range of potential functions, have attracted considerable attention for their involvement in tumorigenesis. Nevertheless, owing to certain challenges in the isolation and cultivation of telocytes, the research on telocytes has advanced rather slowly. Therefore, it is imperative to study the role and mechanisms of telocytes in tumors. Methods We improved the separation method and successfully isolated telocytes by exploiting the combination of cell adhesion and magnetic bead sorting. Telocytes conditioned medium was collected to culture tumor cells and explore the role and mechanisms of telocytes in tumors. Results MTT and colony formation assays demonstrated that telocytes promoted tumor cell proliferation. Wound healing experiments and transwell assays indicated that telocytes enhanced tumor cell migration. Real-time reverse transcriptase PCR analysis showed that the expression of E-cadherin was decreased, and that of Vimentin was notably increased. ELISA results revealed that telocytes secreted high levels of vascular endothelial growth factor (VEGF). And the promoting effects were alleviated by the VEGF inhibitor bevacizumab. Conclusion Our findings revealed that telocytes promoted tumor cell proliferation, migration, and angiogenesis through VEGF. Notably, these effects were inhibited by the addition of bevacizumab. In conclusion, our findings illuminated the role of telocytes in promoting tumor progression, and confirmed their crucial regulatory role in the growth of tumor cells.
Collapse
Affiliation(s)
- Fujie Li
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Xueying Tang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Haitao Cao
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Wenya Wang
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Chengyue Geng
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Zuyao Sun
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Xiaokun Shen
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | - Shinan Li
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Sanches BDA, Rocha LC, Neto JP, Beguelini MR, Ciena AP, Carvalho HF. Telocytes of the male reproductive system: dynamic tissue organizers. Front Cell Dev Biol 2024; 12:1444156. [PMID: 39469114 PMCID: PMC11513265 DOI: 10.3389/fcell.2024.1444156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Telocytes are CD34+ interstitial cells that have long cytoplasmic projections (called telopodes), and have been detected in several organs, including those of the male reproductive system. In this brief review we evaluate the role of telocytes in tissue organization of the different organs of the male reproductive system in which these cells were studied. In general terms, telocytes act in the tissue organization through networks of telopodes that separate the epithelia from the stroma, as well as dividing the stroma into different compartments. In addition to this contribution to the structural integrity, there is direct and indirect evidence that such "walls" formed by telocytes also compartmentalize paracrine factors that they or other cells produce, which have a direct impact on morphogenesis and the maintenance of organ cell differentiation, as well as on their normal physiology. Moreover, alterations in telocytes and telopode networks are correlated with pathological conditions in the male reproductive system, in response to profound changes in structural organization of the organs, in inflammation, hyperplasia and cancer. Further studies are necessary to evaluate the molecular pathways telocytes employ in different contexts of physiology and disease.
Collapse
Affiliation(s)
- Bruno D. A. Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lara C. Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - J. Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Adriano P. Ciena
- Center of Biological and Health Science, Federal University of Western Bahia (UFOB), Barreiras, Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Ma L, Yuan L, Qi Y, Zeng J, Lv J, Qie X. Morphological characteristics and distribution identification of telocytes in Tibetan sheep testis and epididymis. Sci Rep 2024; 14:22783. [PMID: 39353982 PMCID: PMC11445498 DOI: 10.1038/s41598-024-73432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Telocytes (TCs) are a type of stromal cell discovered in the various organs of different animals and have many potential functions, including angiogenesis, signalling, and substance transport. However, the TCs have not been detected in the testis or epididymis of Tibetan sheep. This study investigated the position, characteristics, and distribution of TCs in the testis and epididymis of Tibetan sheep using transmission electron microscopy (TEM), toluidine blue staining, immunohistochemistry, and double immunofluorescence to elucidate their possible functions. TEM revealed that TCs were often found near basement membranes and capillaries and were characterised by large nuclei, elongated cytoplasmic protrusions, and many secretory vesicles. We also observed via toluidine staining that TCs were present near basement membrane and interstitial capillaries. Immunohistochemistry and double immunofluorescence revealed the positive expression of CD117, vimentin, platelet derived growth factor receptor α(PDGFRα), PDGFRα + CD117, and PDGFRα + vimentin in TCs. Additionally, we inferred that TCs participates in the formation of the blood-testis and blood-epididymis barriers, as well as in material transport and a stable microenvironment. This study presents the first evidence of the presence of TCs near the basement membrane and blood vessels in the testis and epididymis of Tibetan sheep. These findings provide new insights into the function of TCs in the reproductive systems of plateau animals.
Collapse
Affiliation(s)
- Long Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China.
| | - Yumei Qi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinhan Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolong Qie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
7
|
Ren G, Zhong R, Zou G, Du H, Zhang Y. Presence and significance of telocytes in cholelithiasis and biliary dilatation in benign biliary disorders. Sci Rep 2024; 14:14904. [PMID: 38942924 PMCID: PMC11213881 DOI: 10.1038/s41598-024-65776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Telocytes are closely associated with the regulation of tissue smooth muscle dynamics in digestive system disorders. They are widely distributed in the biliary system and exert their influence on biliary motility through mechanisms such as the regulation of CCK and their electrophysiological effects on smooth muscle cells. To investigate the relationship between telocytes and benign biliary diseases,such as gallbladder stone disease and biliary dilation syndrome, we conducted histopathological analysis on tissues affected by these conditions. Additionally, we performed immunohistochemistry and immunofluorescence double staining experiments for telocytes. The results indicate that the quantity of telocytes in the gallbladder and bile duct is significantly lower in pathological conditions compared to the control group. This reveals a close association between the decrease in telocyte quantity and impaired gallbladder motility and biliary fibrosis. Furthermore, further investigations have shown a correlation between telocytes in cholesterol gallstones and cholecystokinin-A receptor (CCK-AR), suggesting that elevated cholesterol levels may impair telocytes, leading to a reduction in the quantity of CCK-AR and ultimately resulting in impaired gallbladder motility.Therefore, we hypothesize that telocytes may play a crucial role in maintaining biliary homeostasis, and their deficiency may be associated with the development of benign biliary diseases, including gallstone disease and biliary dilation.
Collapse
Affiliation(s)
- Gongqing Ren
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Ruizi Zhong
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Gang Zou
- Department of Burns and Plastic Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Hongling Du
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Yue Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shenzhen People's Hospital, No.1017 Dongmen North Road, Shenzhen, 518020, Guangdong Province, China.
| |
Collapse
|
8
|
Wang S, Cheng Y, Liu L, Chen R, Li Y, Wang H, Zhang R. The Morphology and Ultrastructure of Dermal Telocytes Characterized by TEM and AFM. Cell Biochem Biophys 2024; 82:705-713. [PMID: 38300374 DOI: 10.1007/s12013-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
This investigation delves into the structural foundation of human dermal telocytes (TCs) with the aim of elucidating their role in signal transmission. Dermal TCs were isolated from human foreskins via enzymatic digestion and flow cytometric sorting, and identified by immunohistochemical staining with an antibody against CD34. The ultrastructure of TCs was examined using transmission electron microscopy (TEM). The proliferation rates of sorted TCs and CD34-negative fibroblasts were compared using the MTS assay (Cell Proliferation Assay). Images of viable cultured TCs were analyzed using atomic force microscopy (AFM) under normal atmospheric pressure and temperature. Results demonstrated that dermal TCs were positive for CD34 and vimentin, predominantly distributed in the reticular dermis and subcutaneous tissue, forming interwoven networks. Each TC had a small body with a high nuclear-plasma ratio and two or three extremely long and thin telopodes (TPs), exhibiting a typical 'moniliform' appearance. Compared with CD34-negative fibroblasts, dermal TCs exhibited significantly lower proliferation rates. Cultured TCs displayed typical moniliform projections (namely, TPs) in the AFM images. The distal ends of TPs were enlarged, shaped like a broom, and extended multiple pseudopods to contact other cell bodies. Slender filamentary pseudopodia and thick, short cone-like structures were observed on the surfaces of the dilated segments and terminals of TPs. These structures are assumed to be evidence of the secretion and release of endosomes, such as exosomes, and the communication between cells. TCs form interstitial networks in the reticular dermis and subcutaneous tissue, providing a structural basis for contacts between cells and the secretion of signal-carrying substances, involving intercellular connections and communication.
Collapse
Affiliation(s)
- Shengyi Wang
- Department of Dermatology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Yan Cheng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Renhe Chen
- Department of Dermatology, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, China
| | - Yue Li
- Department of Dermatology, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, China
| | - Huiying Wang
- Department of Dermatology, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, China
| | - Ruzhi Zhang
- Department of Dermatology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
9
|
Wishahi M, Hassan S, Kamal N, Badawy M, Hafiz E. Is bladder outlet obstruction rat model to induce overactive bladder (OAB) has similarity to human OAB? Research on the events in smooth muscle, collagen, interstitial cell and telocyte distribution. BMC Res Notes 2024; 17:22. [PMID: 38212840 PMCID: PMC10785408 DOI: 10.1186/s13104-023-06681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cellular and cytoskeletal events of overactive bladder (OAB) have not been sufficiently explored in human bladder due to different limitations. Bladder outlet obstruction (BOO) had been induced in different animal models with different methods to induce (OAB). Similarity of the animal models of BOO to the human OAB is postulated but has not been confirmed. The interstitial cells of Cajal (ICCs), and telocytes (TCs) are an important players in smooth muscles conductivity, they had not been well investigated in the previous BOO models. Objectives are to investigate the morphological pattern of cellular, cytoskeleton and telocytes distribution in BOO rat model and to match the events in two time periods and compare it to the findings in real-world human OAB. METHODS Female Sprague-Dawley rats (Rattus norvegicus) were randomly divided into: sham (n = 10), BOO 6 W (n = 10), BOO 8 W (n = 10). Operative procedure to Induce BOO was done under anesthesia with intraperitoneal Ketamine administration. The Effect of induction of BOO was evaluated after 6 and 8 weeks. The rats were anesthetized, and the urinary bladder was removed, while the rat was unconscious under anaesthesia it was transferred to the inhalation anaesthesia cage for euthanasia, rats were sacrificed under light anesthesia using isoflurane. Care of animals, surgical procedure, and euthanasia adhered to Guide for the Care and Use of Laboratory Animals, and AVMA Guidelines for the Euthanasia of Animals. The retrieved bladder was processed for examination with histopathology, immunohistochemistry (IHC), and transmission electron microscopy (EM). RESULTS Histological examination of the bladder shows thinner urothelium, condensation of collagen between muscle bundles. IHC with c-kit shows the excess distribution of ICCs between smooth muscle bundles. EM shows frequent distribution of TCs that were situated between collagen fibers. Finings in BOO 6 W group and BOO 8 W group were comparable. CONCLUSION The animal model study demonstrated increased collagen/ smooth muscle ratio, high intensity of ICCs and presence of TCs. Findings show that a minimally invasive procedure to induce BOO in rats had resulted in an OAB that has morphological changes that were stable in 6 & 8 weeks. We demonstrated the distribution of TCs and ICCs in the rat animal model and defined them. The population of TCs in the BOO rat model is described for the first time, suggests that the TCs and ICCs may contribute to the pathophysiology of OAB. Similarity of animal model to human events OAB was demonstrated. These findings warrant further study to define the role of TCs in OAB. CLINICAL TRIAL REGISTRY The study does not require a clinical trial registration; it is an experimental animal study in basic science and does not include human subjects.
Collapse
Affiliation(s)
- Mohamed Wishahi
- Department of Urology, Theodor Bilharz Research Institute, P.O. 30, Warrak El-Hadar, Cairo, Imbaba, Giza, 12411, Egypt.
| | - Sarah Hassan
- Department of Pathology and Electron microscopy, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Nabawya Kamal
- Department of Anesthesia, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mohamed Badawy
- Department of Urology, Theodor Bilharz Research Institute, P.O. 30, Warrak El-Hadar, Cairo, Imbaba, Giza, 12411, Egypt
| | - Ehab Hafiz
- Department of Pathology and Electron microscopy, Theodor Bilharz Research Institute, Cairo, Egypt
| |
Collapse
|
10
|
Zhang Y, Tian H. Telocytes and inflammation: A review. Medicine (Baltimore) 2023; 102:e35983. [PMID: 37986278 PMCID: PMC10659634 DOI: 10.1097/md.0000000000035983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Telocytes are a new type of interstitial cell with a diverse morphology and important functions, such as mechanical support, signal transduction, immune regulation, and tissue repair. In this paper, the origin and physiological and pathological functions of telocytes as well as their role in inflammation will be discussed, and the functions and targets of telocytes in inflammation will be fully reviewed, which may contribute to a new therapeutic strategy for inflammatory diseases in the future.
Collapse
Affiliation(s)
- Yuhua Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Hu Tian
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Key Laboratory of Metabolism and Gastrointestinal Tumor, Jinan, Shandong, China
| |
Collapse
|
11
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco JL, Madrid JF, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in the Normal, Hyperplastic, and Adenomatous Human Parathyroid Glands. Int J Mol Sci 2023; 24:12118. [PMID: 37569493 PMCID: PMC10419317 DOI: 10.3390/ijms241512118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Telocytes/CD34+ stromal cells (TCs/CD34+ SCs) have been studied in numerous organs and tissues, but their presence and characteristics in the parathyroid glands have not been explored. Using immunological and ultrastructural procedures, we assess the location, arrangement, and behavior of TCs/CD34+ SCs in normal human parathyroids, during their development and in their most frequent pathologic conditions. In normal parathyroids, TCs/CD34+ SCs show a small somatic body and long thin processes with a moniliform aspect, form labyrinthine systems, connect other neighboring TCs/CD34+ SCs, vessels, adipocytes, and parenchymal cells directly or by extracellular vesicles, and associate with collagen I. TCs/CD34+ SCs and collagen I are absent around vessels and adipocytes within parenchymal clusters. In developing parathyroids, TCs/CD34+ SC surround small parenchymal nests and adipocytes. In hyperplastic parathyroids, TCs/CD34+ SCs are prominent in some thickened internodular septa and surround small extraglandular parenchymal cell nests. TCs/CD34+ SCs are present in delimiting regions with compressed parathyroids and their capsule in adenomas but absent in most adenomatous tissue. In conclusion, TCs/CD34+ SCs are an important cellular component in the human parathyroid stroma, except around vessels within parenchymal nests. They show typical characteristics, including those of connecting cells, are present in developing parathyroids, and participate in the most frequent parathyroid pathology, including hyperplastic and adenomatous parathyroids.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
- Canary Biomedical Technology Institute, University of La Laguna, 38071 La Laguna, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 La Laguna, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| |
Collapse
|
12
|
Ahmed AM, Hussein MR. Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T229-T239. [PMID: 36690154 DOI: 10.1016/j.ad.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
Affiliation(s)
- A M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto
| | - M R Hussein
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto.
| |
Collapse
|
13
|
Lapides L, Varga I, Klein M, Rybánska L, Belušáková V, Babál P. When Less Is More – Pipelle Endometrial Sampling for Quantification of Uterine Natural Killer Cells in Patients With Recurrent Implantation Failure or Habitual Abortion. Physiol Res 2022. [DOI: 10.33549/physiolres.934961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite recent advancements in reproductive medicine, recurrent implantation failure and habitual abortion remain ongoing issues. One of the most important aspects of successful implantation is the intricate immune response and regulation necessary for the acceptance of the hemiallogenic embryo. The most numerous immune cells in the decidua are uterine natural killer cells (uNK). Studies suggest that changes in the uNK count and physiology may be responsible for the aforementioned pathological conditions. Thus, testing for uNK may provide valuable insights into their pathogenesis. The study compared Pipelle endometrial sampling with conventional curettage to find out whether the less invasive Pipelle method is a viable alternative of tissue collection. Tissue samples from 14 patients obtained by both methods were examined. The average size of tissue samples obtained with Pipelle was 17 mm2, samples obtained with curettage had on average 34 mm2. Using immunohistochemical visualization of CD56 (NK cells) and granzyme B antigens (serine protease-expressing activation state of NK cells), it was found that the average total count of CD56 / mm2 was 115 for Pipelle and 120 for curettage, respectively. The study also proved a correlation between granzyme B positivity and identification of NK cells clusters. The results indicated that Pipelle endometrial sampling seems a suitable method of tissue harvesting for the purpose of uNK cells examination. Pipelle endometrial sampling is safe, cost-effective and can be performed on an outpatient basis without the need of anesthesia or analgesia. Several issues remain yet to be solved: how to standardize the subsequent uNK testing, how to interpret the results and finally yet importantly, how to use this knowledge in personalized treatment protocols.
Collapse
Affiliation(s)
| | - I Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
14
|
Tarasov KV, Chakir K, Riordon DR, Lyashkov AE, Ahmet I, Perino MG, Silvester AJ, Zhang J, Wang M, Lukyanenko YO, Qu JH, Barrera MCR, Juhaszova M, Tarasova YS, Ziman B, Telljohann R, Kumar V, Ranek M, Lammons J, Bychkov R, de Cabo R, Jun S, Keceli G, Gupta A, Yang D, Aon MA, Adamo L, Morrell CH, Otu W, Carroll C, Chambers S, Paolocci N, Huynh T, Pacak K, Weiss R, Field L, Sollott SJ, Lakatta EG. A remarkable adaptive paradigm of heart performance and protection emerges in response to marked cardiac-specific overexpression of ADCY8. eLife 2022; 11:e80949. [PMID: 36515265 PMCID: PMC9822292 DOI: 10.7554/elife.80949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.
Collapse
Affiliation(s)
- Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Alexey E Lyashkov
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Allwin Jennifa Silvester
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yevgeniya O Lukyanenko
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jia-Hua Qu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel Calvo-Rubio Barrera
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Vikas Kumar
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mark Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - John Lammons
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Seungho Jun
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ashish Gupta
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Walter Otu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Cameron Carroll
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Shane Chambers
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Thanh Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Robert Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loren Field
- Kraennert Institute of Cardiology, Indiana University School of MedicineIdianapolisUnited States
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
15
|
Kim JE, Li B, Fei L, Horne R, Lee D, Loe AK, Miyake H, Ayar E, Kim DK, Surette MG, Philpott DJ, Sherman P, Guo G, Pierro A, Kim TH. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity 2022; 55:2300-2317.e6. [PMID: 36473468 DOI: 10.1016/j.immuni.2022.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Rachael Horne
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dorothy Lee
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adrian Kwan Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiromu Miyake
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Eda Ayar
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dae-Kyum Kim
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, Department of Medicine, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4L8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip Sherman
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Agostino Pierro
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Manole CG, Gherghiceanu M, Ceafalan LC, Hinescu ME. Dermal Telocytes: A Different Viewpoint of Skin Repairing and Regeneration. Cells 2022; 11:3903. [PMID: 36497161 PMCID: PMC9736852 DOI: 10.3390/cells11233903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Fifteen years after their discovery, telocytes (TCs) are yet perceived as a new stromal cell type. Their presence was initially documented peri-digestively, and gradually throughout the interstitia of many (non-)cavitary mammalian, human, and avian organs, including skin. Each time, TCs proved to be involved in diverse spatial relations with elements of interstitial (ultra)structure (blood vessels, nerves, immune cells, etc.). To date, transmission electron microscopy (TEM) remained the single main microscopic technique able to correctly and certainly attest TCs by their well-acknowledged (ultra)structure. In skin, dermal TCs reiterate almost all (ultra)structural features ascribed to TCs in other locations, with apparent direct implications in skin physiology and/or pathology. TCs' uneven distribution within skin, mainly located in stem cell niches, suggests involvement in either skin homeostasis or dermatological pathologies. On the other hand, different skin diseases involve different patterns of disruption of TCs' structure and ultrastructure. TCs' cellular cooperation with other interstitial elements, their immunological profile, and their changes during remission of diseases suggest their role(s) in tissue regeneration/repair processes. Thus, expanding the knowledge on dermal TCs could offer new insights into the natural skin capacity of self-repairing. Moreover, it would become attractive to consider that augmenting dermal TCs' presence/density could become an attractive therapeutic alternative for treating various skin defects.
Collapse
Affiliation(s)
- Catalin G. Manole
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
17
|
LAPIDES L, VARGA I, KLEIN M, RYBÁNSKA L, BELUŠÁKOVÁ V, BABÁL P. When Less Is More - Pipelle Endometrial Sampling for Quantification of Uterine Natural Killer Cells in Patients With Recurrent Implantation Failure or Habitual Abortion. Physiol Res 2022; 71:S65-S73. [PMID: 36592442 PMCID: PMC9854003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite recent advancements in reproductive medicine, recurrent implantation failure and habitual abortion remain ongoing issues. One of the most important aspects of successful implantation is the intricate immune response and regulation necessary for the acceptance of the hemiallogenic embryo. The most numerous immune cells in the decidua are uterine natural killer cells (uNK). Studies suggest that changes in the uNK count and physiology may be responsible for the aforementioned pathological conditions. Thus, testing for uNK may provide valuable insights into their pathogenesis. The study compared Pipelle endometrial sampling with conventional curettage to find out whether the less invasive Pipelle method is a viable alternative of tissue collection. Tissue samples from 14 patients obtained by both methods were examined. The average size of tissue samples obtained with Pipelle was 17 mm2, samples obtained with curettage had on average 34 mm2. Using immunohistochemical visualization of CD56 (NK cells) and granzyme B antigens (serine protease-expressing activation state of NK cells), it was found that the average total count of CD56 / mm2 was for Pipelle 115 and 120 for curettage, respectively. The study also proved a correlation between granzyme B positivity and identification of NK cells clusters. The results indicated that Pipelle endometrial sampling seems a suitable method of tissue harvesting for the purpose of uNK cells examination. Pipelle endometrial sampling is safe, cost-effective and can be performed on an outpatient basis without the need of anesthesia or analgesia. Several issues remain yet to be solved: how to standardize the subsequent uNK testing, how to interpret the results and finally yet importantly, how to use this knowledge in personalized treatment protocols.
Collapse
Affiliation(s)
- Lenka LAPIDES
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia,ISCARE, Reproduction Clinic, Gynaecology & Urology, Bratislava, Slovakia
| | - Ivan VARGA
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin KLEIN
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lenka RYBÁNSKA
- ISCARE, Reproduction Clinic, Gynaecology & Urology, Bratislava, Slovakia
| | - Viera BELUŠÁKOVÁ
- ISCARE, Reproduction Clinic, Gynaecology & Urology, Bratislava, Slovakia
| | - Pavel BABÁL
- Institute of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
18
|
Semiz F, Lokaj AS, Tanriverdi G, Caliskan G, Hima-Musa N, Semiz CE. Fresh Human Myopic Lenticule Intrastromal Implantation for Keratoconus Using SMILE Surgery in a Long-term Follow-up Study: Ultrastructural Analysis by Transmission Electron Microscopy. J Refract Surg 2022; 38:520-528. [PMID: 35947000 DOI: 10.3928/1081597x-20220713-02] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate new intrastromal histological structures that develop after myopic human lenticular implantation in keratoconus with femtosecond laser-assisted small incision lenticule extraction (SMILE) surgery using transmission electron microscopy. METHODS Sixty eyes with advanced keratoconus indicated for corneal transplantation were included in this study. Fresh myopic lenticular implants were placed in all eyes through SMILE surgery. Lenticular implants were extracted from patients with myopic refractive errors of the cornea, untreated keratoconus, and treated keratoconus following 1, 2, and 3 years of surgery. These five lenticular samples were examined under the electron microscope and compared. RESULTS Disorganized and thinned collagen fibers were observed in the stroma with degenerative stromal cells (telocyte-like cells and keratocytes) in the keratoconic cornea. Apoptotic bodies and cell debris were easily observed near the disorganized fibers. In contrast, the myopic refractive error of the control and treatment groups demonstrated well-organized parallel lamellar structures. Healthy keratocytes and telocyte-like cells were observed in samples obtained 1, 2, and 3 years after lenticular implantation. Thus, telocyte-like cells may be activated by appropriate stimuli, such as stem cells, and be involved in stromal regeneration. CONCLUSIONS Fresh myopic intrastromal lenticular implantation is a safe, economical, and reliable technique that leads to increased corneal thickness, improved visual acuity, and the regeneration of healthy keratocytes and telocyte-like cells that are involved in stromal regeneration. [J Refract Surg. 2022;38(8):520-528.].
Collapse
|
19
|
Mustafa FEZA. The Cellular Architecture of the Primo Vascular System. J Acupunct Meridian Stud 2022; 15:4-11. [DOI: 10.51507/j.jams.2022.15.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022] Open
|
20
|
Klein M, Csöbönyeiová M, Danišovič Ľ, Lapides L, Varga I. Telocytes in the Female Reproductive System: Up-to-Date Knowledge, Challenges and Possible Clinical Applications. Life (Basel) 2022; 12:267. [PMID: 35207554 PMCID: PMC8874826 DOI: 10.3390/life12020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models and human subjects. TCs, with their extremely long cytoplasmic processes called telopodes, play a pivotal role in the morphological and functional interconnection of all the components of the interstitial compartment, but also with constituents of the parenchyma. Although there is no specific immunohistochemical marker for their identification, the most cited are CD 117, CD 34, platelet-derived growth factor receptor (PDGFR), vimentin, and specific markers typical for the female reproductive system (FRS)-estrogen and progesterone receptors (ER and PR). This immunophenotype provides important clues to their physiological roles. Their main functions include the regulation of hormone-dependent processes, intercellular signaling, immune surveillance, microenvironmental maintenance, and the nursing of stem cells. In a situation where TCs are functionally or morphologically decimated, many disease entities may develop, including premature ovarian failure, endometriosis, ectopic pregnancy, infertility, preeclampsia, or even breast cancer. The common denominator of many of these conditions is that their etiopathogenesis is either partially known or completely obscure. Even though the exact role of TCs in these conditions is yet to be revealed, multiple lines of research indicate that their future clinical application may enrich diagnostic-therapeutic strategies of countless conditions. TCs are also heavily debated in terms of their possible use in regenerative medicine and tissue engineering. Some of the concepts related to TC research are strongly substantiated by experimental data, while others are highly speculative. Only future research endeavors will clearly distinguish dead-end lines of research from genuine contributions to the field.
Collapse
Affiliation(s)
- Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Lenka Lapides
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
- ISCARE, Reproduction Clinic, Gynaecology & Urology, 821 09 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| |
Collapse
|
21
|
Mirancea N, Mirancea GV, Moroşanu AM, Moroşanu AM. Telocytes inside of the peripheral nervous system - a 3D endoneurial network and putative role in cell communication. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:335-347. [PMID: 36374139 PMCID: PMC9804078 DOI: 10.47162/rjme.63.2.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we developed the hypothesis concerning the reasons to assimilate endoneurial fibroblast-like dendritic phenotype [shortly termed endoneurial dendritic cells (EDCs)] to the endoneurial telocytes (TCs). We reviewed the literature concerning EDCs status and report our observations on ultrastructure and some immune electron microscopic aspects of the cutaneous peripheral nerves. Our data demonstrate that EDCs long time considered as fibroblasts or fibroblast-like, with an ovoidal nucleus and one or more moniliform cell extensions [telopodes (Tps)], which perform homocellular junctions, also able to shed extracellular microvesicles can be assimilated to TC phenotype. Sometimes, small profiles of basement membrane accompany to some extent Tps. Altogether data resulted from scientific literature and our results strength the conclusion EDCs are really TCs inside of the peripheral nervous system. The inner three-dimensional (3D) network of endoneurial TCs by their homo- and heterocellular communications appears as a genuine cell-to-cell communication system inside of each peripheral nerve.
Collapse
Affiliation(s)
- Nicolae Mirancea
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania;
| | | | - Ana-Maria Moroşanu
- Department of Developmental Biology, Institute of
Biology Bucharest of Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
22
|
Scleroderma-like Impairment in the Network of Telocytes/CD34 + Stromal Cells in the Experimental Mouse Model of Bleomycin-Induced Dermal Fibrosis. Int J Mol Sci 2021; 22:ijms222212407. [PMID: 34830288 PMCID: PMC8620338 DOI: 10.3390/ijms222212407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Considerable evidence accumulated over the past decade supports that telocytes (TCs)/CD34+ stromal cells represent an exclusive type of interstitial cells identifiable by transmission electron microscopy (TEM) or immunohistochemistry in various organs of the human body, including the skin. By means of their characteristic cellular extensions (telopodes), dermal TCs are arranged in networks intermingled with a multitude of neighboring cells and, hence, they are thought to contribute to skin homeostasis through both intercellular contacts and releasing extracellular vesicles. In this context, fibrotic skin lesions from patients with systemic sclerosis (SSc, scleroderma) appear to be characterized by a disruption of the dermal network of TCs, which has been ascribed to either cell degenerative processes or possible transformation into profibrotic myofibroblasts. In the present study, we utilized the well-established mouse model of bleomycin-induced scleroderma to gain further insights into the TC alterations found in cutaneous fibrosis. CD34 immunofluorescence revealed a severe impairment in the dermal network of TCs/CD34+ stromal cells in bleomycin-treated mice. CD31/CD34 double immunofluorescence confirmed that CD31-/CD34+ TC counts were greatly reduced in the skin of bleomycin-treated mice compared with control mice. Ultrastructural signs of TC injury were detected in the skin of bleomycin-treated mice by TEM. The analyses of skin samples from mice treated with bleomycin for different times by either TEM or double immunostaining and immunoblotting for the CD34/α-SMA antigens collectively suggested that, although a few TCs may transition to α-SMA+ myofibroblasts in the early disease stage, most of these cells rather undergo degeneration, and then are lost. Taken together, our data demonstrate that TC changes in the skin of bleomycin-treated mice mimic very closely those observed in human SSc skin, which makes this experimental model a suitable tool to (i) unravel the pathological mechanisms underlying TC damage and (ii) clarify the possible contribution of the TC loss to the development/progression of dermal fibrosis. In perspective, these findings may have important implications in the field of skin regenerative medicine.
Collapse
|
23
|
Mustafa FEZA, Abdelhafez EA, Abd-Elhafeez HH. Characterization of the primo vascular system in rabbit vagina. Microsc Res Tech 2021; 85:799-806. [PMID: 34590388 DOI: 10.1002/jemt.23951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
The primo vascular system (PVS) is observed in different parts of the body under different physiological and disease conditions. Previously, the PVS was not observed in the vagina. The vaginal samples of this study were collected from the female genitalia of healthy New Zealand white rabbits from the animal house, Faculty of Medicine, Assiut University. The vaginal samples were fixed in Bouin's solution. The sections were stained with hematoxylin and eosin and Crossmon's trichrome. Additionally, the sections were immunohistochemically stained with neuron-specific enolase (NSE) and vascular endothelial growth factor (VEGF). A primo node was observed on the lymph vessel of the vagina and has several characteristics that resemble those of the previously discovered primo nodes. The primo node in this study was surrounded by mesothelial cells that provide positive immunoreactivity to NSE and VEGF. Sinuses of different sizes, floating cells, telocyte-like cell, and primo microcells were observed as the main constituents of the primo node. Additionally, migratory cells were detected, which passed from the primo node to the enclosing lymph vessel.
Collapse
Affiliation(s)
- Fatma El-Zahraa A Mustafa
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Enas A Abdelhafez
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Rodríguez-Rodriguez R, Hernández-León N, Díaz-Flores L, Carrasco JL. Cd34+ Stromal Cells/Telocytes in Normal and Pathological Skin. Int J Mol Sci 2021; 22:ijms22147342. [PMID: 34298962 PMCID: PMC8307573 DOI: 10.3390/ijms22147342] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
We studied CD34+ stromal cells/telocytes (CD34+SCs/TCs) in pathologic skin, after briefly examining them in normal conditions. We confirm previous studies by other authors in the normal dermis regarding CD34+SC/TC characteristics and distribution around vessels, nerves and cutaneous annexes, highlighting their practical absence in the papillary dermis and presence in the bulge region of perifollicular groups of very small CD34+ stromal cells. In non-tumoral skin pathology, we studied examples of the principal histologic patterns in which CD34+SCs/TCs have (1) a fundamental pathophysiological role, including (a) fibrosing/sclerosing diseases, such as systemic sclerosis, with loss of CD34+SCs/TCs and presence of stromal cells co-expressing CD34 and αSMA, and (b) metabolic degenerative processes, including basophilic degeneration of collagen, with stromal cells/telocytes in close association with degenerative fibrils, and cutaneous myxoid cysts with spindle-shaped, stellate and bulky vacuolated CD34+ stromal cells, and (2) a secondary reactive role, encompassing dermatitis—e.g., interface (erythema multiforme), acantholytic (pemphigus, Hailey–Hailey disease), lichenoid (lichen planus), subepidermal vesicular (bullous pemphigoid), psoriasiform (psoriasis), granulomatous (granuloma annulare)—vasculitis (leukocytoclastic and lymphocytic vasculitis), folliculitis, perifolliculitis and inflammation of the sweat and sebaceous glands (perifolliculitis and rosacea) and infectious dermatitis (verruca vulgaris). In skin tumor and tumor-like conditions, we studied examples of those in which CD34+ stromal cells are (1) the neoplastic component (dermatofibrosarcoma protuberans, sclerotic fibroma and solitary fibrous tumor), (2) a neoplastic component with varying presentation (fibroepithelial polyp and superficial myxofibrosarcoma) and (3) a reactive component in other tumor/tumor-like cell lines, such as those deriving from vessel periendothelial cells (myopericytoma), epithelial cells (trichoepithelioma, nevus sebaceous of Jadassohn and seborrheic keratosis), Merkel cells (Merkel cell carcinoma), melanocytes (dermal melanocytic nevi) and Schwann cells (neurofibroma and granular cell tumor).
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
- Correspondence: ; Tel.: +34-922-319-317; Fax: +34-922-319-279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Rosa Rodríguez-Rodriguez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Nieves Hernández-León
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| | - José Luís Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (R.R.-R.); (N.H.-L.); (L.D.-F.J.); (J.L.C.)
| |
Collapse
|
25
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Identification of PDGFRα-positive interstitial cells in the distal segment of the murine vas deferens. Sci Rep 2021; 11:7553. [PMID: 33824385 PMCID: PMC8024294 DOI: 10.1038/s41598-021-87049-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/23/2021] [Indexed: 01/17/2023] Open
Abstract
Platelet-derived growth factor receptor-α (PDGFRα)-positive interstitial cells (ICs) are widely distributed in various organs and may be involved in the motility of various tubular organs. We, for the first time, aimed to investigate the distribution, immunohistochemical characteristics, and ultrastructure of PDGFRα-positive ICs in murine vas deferens, using confocal laser scanning microscopy, transmission electron microscopy (TEM), and immuno-electron microscopy (immuno-EM). For immunofluorescence, we used antibodies against PDGFRα and other markers of ICs. PDGFRα-positive ICs were distributed widely in the lamina propria, smooth muscles, and serosal layers. Although most PDGFRα-positive ICs labeled CD34, they did not label CD34 in the subepithelial layers. Additionally, PDGFRα-positive ICs were in close proximity to each other, as also to the surrounding cells. TEM and immuno-EM findings revealed that PDGFRα-positive ICs established close physical interactions with adjacent ICs. Extracellular vesicles were also detected around the PDGFRα-positive ICs. Our morphological findings suggest that PDGFRα-positive ICs may have several subpopulations, which can play an important role in intercellular signaling via direct contact with the IC network and the extracellular vesicles in the murine vas deferens. Further investigation on PDGFRα-positive ICs in the vas deferens may lead to understanding the vas deferens mortility.
Collapse
|
27
|
Mihalcea CE, Moroşanu AM, Murăraşu D, Puiu L, Cinca SA, Voinea SC, Mirancea N. Analysis of TP53 gene and particular infrastructural alterations in invasive ductal mammary carcinoma. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:441-447. [PMID: 33544795 PMCID: PMC7864295 DOI: 10.47162/rjme.61.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted in order to determine the mutational status of TP53 gene and to determine some particular aspects from ultrastructural level in invasive mammary ductal carcinoma. The cellular signaling pathway involving the TP53 gene acts in biological deoxyribonucleic acid (DNA) repair processes and cell cycle arrest following a signal transmitted to the p53 protein when posttranslational changes occur in the cell due to stress induced in the cell by both intrinsic and extrinsic factors. Cellular stress activates the transcription factor function of the protein that initiates, as the case may be, either DNA repair or programmed cell death (apoptosis). The TP53 gene is commonly mutated in many human cancers and also has a highly polymorphic grade. To determine the mutational status of the exons 4–9 of the TP53 gene, we used extracted DNA from fresh breast tissue, and we analyzed it through direct sequencing. In mammary carcinoma, the mutation frequency of TP53 is running between 20–40% and, in regards the polymorphism, at least 14 different forms were identified, that are associated with cancer risk. The mutation type distribution showed a predominance of deletions and a reduced frequency of substitutions comparing with International Agency for Research on Cancer (IARC) database. Taken in consideration the importance of the tumor associated stroma in tumor development, we have also investigated some particular aspects at the infrastructural level of invasive mammary ductal carcinoma, notably concerning telocytes as tumor stroma interstitial cells by transmission electron microscopy analysis.
Collapse
Affiliation(s)
- Corina Elena Mihalcea
- Department of Plant and Animal Cytobiology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania;
| | | | | | | | | | | | | |
Collapse
|
28
|
Klein M, Lapides L, Fecmanova D, Varga I. From TELOCYTES to TELOCYTOPATHIES. Do Recently Described Interstitial Cells Play a Role in Female Idiopathic Infertility? ACTA ACUST UNITED AC 2020; 56:medicina56120688. [PMID: 33322273 PMCID: PMC7764341 DOI: 10.3390/medicina56120688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Martin Klein
- Faculty of Medicine, Institute of Histology and Embryology, Comenius University in Bratislava, 81372 Bratislava, Slovakia;
| | - Lenka Lapides
- ISCARE, Reproduction Clinic, Gyneacology & Urology, 82109 Bratislava, Slovakia;
| | - Denisa Fecmanova
- First Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 81372 Bratislava, Slovakia;
| | - Ivan Varga
- Faculty of Medicine, Institute of Histology and Embryology, Comenius University in Bratislava, 81372 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-90-119-547
| |
Collapse
|
29
|
Romano E, Rosa I, Fioretto BS, Lucattelli E, Innocenti M, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. A Two-Step Immunomagnetic Microbead-Based Method for the Isolation of Human Primary Skin Telocytes/CD34+ Stromal Cells. Int J Mol Sci 2020; 21:ijms21165877. [PMID: 32824287 PMCID: PMC7461544 DOI: 10.3390/ijms21165877] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Telocytes (TCs), commonly referred to as TCs/CD34+ stromal cells, are a peculiar type of interstitial cells with distinctive morphologic traits that are supposed to exert several biological functions, including tissue homeostasis regulation, cell-to-cell signaling, immune surveillance, and reparative/regenerative effects. At present, the majority of studies investigating these cells are mainly descriptive and focus only on their morphology, with a consequent paucity of functional data. To gain relevant insight into the possible functions of TCs, in vitro analyses are clearly required, but currently, the protocols for TC isolation are only at the early stages and not fully standardized. In the present in vitro study, we describe a novel methodology for the purification of human primary skin TCs through a two-step immunomagnetic microbead-based cell separation (i.e., negative selection for CD31 followed by positive selection for CD34) capable of discriminating these cells from other connective tissue-resident cells on the basis of their different immunophenotypic features. Our experiments clearly demonstrated that the proposed method allows a selective purification of cells exhibiting the peculiar TC morphology. Isolated TCs displayed very long cytoplasmic extensions with a moniliform silhouette (telopodes) and presented an immunophenotypic profile (CD31−/CD34+/PDGFRα+/vimentin+) that unequivocally differentiates them from endothelial cells (CD31+/CD34+/PDGFRα−/vimentin+) and fibroblasts (CD31−/CD34−/PDGFRα+/vimentin+). This novel methodology for the isolation of TCs lays the groundwork for further research aimed at elucidating their functional properties and possible translational applications, especially in the field of regenerative medicine.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Elena Lucattelli
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50134 Florence, Italy; (E.L.); (M.I.)
| | - Marco Innocenti
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50134 Florence, Italy; (E.L.); (M.I.)
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (I.R.); (L.I.-M.)
- Correspondence: ; Tel.: +39-055-2758077
| |
Collapse
|
30
|
Nicolescu MI, Rusu MC, Voinea LM, Vrapciu AD, Bâră RI. Lymphatic lacunae of the human eye conjunctiva embedded within a stroma containing CD34 + telocytes. J Cell Mol Med 2020; 24:8871-8875. [PMID: 32578954 PMCID: PMC7412391 DOI: 10.1111/jcmm.15354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
An accurate identification of telocytes (TCs) was limited because of the heterogeneity of cell types expressing the markers attributed to TCs. Some endothelial lineage cells also could fit within the pattern of TCs. Such endothelial cells could line conjunctival lacunae previously assessed by laser confocal microscopy. We have been suggested that an accurate distinction of TCs from endothelial cells in the human eye conjunctiva could be achieved by use of CD31, CD34 and D2‐40 (podoplanin); and that the conjunctival lacunae are in fact lymphatic. We aimed as testing the hypothesis by an immunohistochemical study on human eye conjunctiva biopsy samples. Samples of human eye conjunctiva from 30 patients were evaluated immunohistochemically by use of the primary antibodies: CD34, D2‐40 and CD31. D2‐40 was equally expressed within epithelia and laminae propria. Basal epithelial cells were D2‐40 positive. Within the stromal compartment, the lymphatic marker D2‐40 labelled several lymphatic vessels. CD31 labelled both vascular and lymphatic endothelial cells within the lamina propria. When capillary lymphatics were tangentially cut, they gave the false appearance of telocytes. Blood endothelial cells expressed CD34, whereas lymphatic endothelial cells did not. Stromal CD34‐expressing cells/telocytes were found building a consistent pan‐stromal network which was equally CD31‐negative and D2‐40‐negative. The conjunctival lymphatic lacunae seem to represent a peculiar anatomic feature of eye conjunctiva. They are embedded within a CD34‐expressing stromal network of TCs. The negative expression of CD31 and D2‐40 should be tested when discriminating CD34‐expressing TCs.
Collapse
Affiliation(s)
- Mihnea I Nicolescu
- Division of Histology, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Radiobiology Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
| | - Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Liliana M Voinea
- Department of Ophthalmology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Ophthalmology, Bucharest University Emergency Hospital, Bucharest, Romania
| | - Alexandra D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca I Bâră
- Department of Ophthalmology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Ophthalmology, Bucharest University Emergency Hospital, Bucharest, Romania
| |
Collapse
|
31
|
Telocytes in the Normal and Pathological Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21124320. [PMID: 32560571 PMCID: PMC7352954 DOI: 10.3390/ijms21124320] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
We studied telocytes/CD34+ stromal cells in the normal and pathological peripheral nervous system (PNS), for which we reviewed the literature and contributed our observations under light and electron microscopy in this field. We consider the following aspects: (A) general characteristics of telocytes and the terminology used for these cells (e.g., endoneurial stromal cells) in PNS; (B) the presence, characteristics and arrangement of telocytes in the normal PNS, including (i) nerve epi-perineurium and endoneurium (e.g., telopodes extending into the endoneurial space); (ii) sensory nerve endings (e.g., Meissner and Pacinian corpuscles, and neuromuscular spindles); (iii) ganglia; and (iv) the intestinal autonomic nervous system; (C) the telocytes in the pathologic PNS, encompassing (i) hyperplastic neurogenic processes (neurogenic hyperplasia of the appendix and gallbladder), highly demonstrative of telocyte characteristics and relations, (ii) PNS tumours, such as neurofibroma, schwannoma, granular cell tumour and nerve sheath myxoma, and interstitial cell of Cajal-related gastrointestinal stromal tumour (GIST), (iii) tumour-invaded nerves and (iv) traumatic, metabolic, degenerative or genetic neuropathies, in which there are fewer studies on telocytes, e.g., neuroinflammation and nerves in undescended testicles (cryptorchidism), Klinefelter syndrome, crush injury, mucopolysaccharidosis II (Hunter’s syndrome) and Charcot–Marie–Tooth disease.
Collapse
|
32
|
Yonghong S, Ruizhi W, Yue Z, Xuebing B, Tarique I, Chunhua L, Ping Y, Qiusheng C. Telocytes in Different Organs of Vertebrates: Potential Essence Cells of the Meridian in Chinese Traditional Medicine. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:575-588. [PMID: 32390582 DOI: 10.1017/s1431927620001518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Telocytes (TCs) are very long, non-neuronal, somatic cells whose function is widely believed to be involved in providing connections between different cells within the body. The cellular characteristics of TCs in various organs have been studied by immunohistochemistry, double immunofluorescence and electron microscopy in different vertebrate species, and here we investigate the proposed properties of these cells in the context of the "meridian" in Chinese Traditional Medicine (CTM). The results show that TCs and their long extensions, telopodes (Tps) develop a complicated network by homo- and heterocellular junctions in the connective tissue throughout the body, which can connect the skin with distant organs. In concept, this is the analogue of ancient meridian maps connecting skin acupoints with the viscera. Various active cells and extracellular vesicles including exosomes move along Tps, which, along with developed mitochondria within the podoms of Tps, may account for the structural evidence for "Qi" (vital energy and signal communication) in CTM. Morphological associations of TCs with the nerve, vascular, endocrine, and immune systems are also compatible with previously proposed meridian theories in CTM. Close relationships exist between TCs and collagen fiber bundles and some structures in skin fascia provide the microanatomical support for acupuncture treatment based on the meridian principle. The dynamicity in the distribution and structure of TCs reflects the plasticity of the meridian at the cellular level. As the same attribute, both the meridian and the TC have been associated with various diseases. Here, we summarize structural analogues between the TC and the meridian, suggesting that TCs have the cytological characteristics of the CTM meridian. We, therefore, hypothesize that TCs are the "essence cells" of the CTM meridian, which can connect and integrate different cells and structures in the connective tissue.
Collapse
Affiliation(s)
- Shi Yonghong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Wu Ruizhi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Zhang Yue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Bai Xuebing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Liang Chunhua
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Yang Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Chen Qiusheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| |
Collapse
|
33
|
Usai-Satta P, Bellini M, Morelli O, Geri F, Lai M, Bassotti G. Gastroparesis: New insights into an old disease. World J Gastroenterol 2020. [DOI: 10.3748/wjg.v26.i19.2332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
|
34
|
Usai-Satta P, Bellini M, Morelli O, Geri F, Lai M, Bassotti G. Gastroparesis: New insights into an old disease. World J Gastroenterol 2020; 26:2333-2348. [PMID: 32476797 PMCID: PMC7243643 DOI: 10.3748/wjg.v26.i19.2333] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/08/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastroparesis (Gp) is a chronic disease characterized by a delayed gastric emptying in the absence of mechanical obstruction. Although this condition has been reported in the literature since the mid-1900s, only recently has there been renewed clinical and scientific interest in this disease, which has a potentially great impact on the quality of life. The aim of this review is to explore the pathophysiological, diagnostic and therapeutical aspects of Gp according to the most recent evidence. A comprehensive online search for Gp was carried out using MEDLINE and EMBASE. Gp is the result of neuromuscular abnormalities of the gastric motor function. There is evidence that patients with idiopathic and diabetic Gp may display a reduction in nitrergic inhibitory neurons and in interstitial cells of Cajal and/or telocytes. As regards diagnostic approach, 99-Technetium scintigraphy is currently considered to be the gold standard for Gp. Its limits are a lack of standardization and a mild risk of radiation exposure. The C13 breath testing is a valid and safe alternative method. 13C acid octanoic and the 13C Spirulina platensis recently approved by the Food and Drug Administration are the most commonly used diagnostic kits. The wireless motility capsule is a promising technique, but its use is limited by costs and scarce availability in many countries. Finally, therapeutic strategies are related to the clinical severity of Gp. In mild and moderate Gp, dietary modification and prokinetic agents are generally sufficient. Metoclopramide is the only drug approved by the Food and Drug Administration for Gp. However, other older and new prokinetics and antiemetics can be considered. As a second-line therapy, tricyclic antidepressants and cannabinoids have been proposed. In severe cases the normal nutritional approach can be compromised and artificial nutrition may be needed. In drug-unresponsive Gp patients some alternative strategies (endoscopic, electric stimulation or surgery) are available.
Collapse
Affiliation(s)
- Paolo Usai-Satta
- Department of Internal Medicine, Division of Gastroenterology, Brotzu Hospital, Cagliari 09124, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56122, Italy
| | - Olivia Morelli
- Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia Medical School, Perugia 06123, Italy
| | - Francesca Geri
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56122, Italy
| | - Mariantonia Lai
- Gastroenterology Unit, University of Cagliari, Monserrato 09042, Italy
| | - Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia Medical School, Perugia 06123, Italy
| |
Collapse
|
35
|
Rosa I, Marini M, Sgambati E, Ibba-Manneschi L, Manetti M. Telocytes and lymphatic endothelial cells: Two immunophenotypically distinct and spatially close cell entities. Acta Histochem 2020; 122:151530. [PMID: 32115248 DOI: 10.1016/j.acthis.2020.151530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Telocytes (TCs) have recently emerged as a peculiar type of stromal cells located in both perivascular and interstitial compartments of multiple anatomical sites in humans, other mammals and vertebrates. Pioneer electron microscopy studies have ultrastructurally defined TCs as "stromal cells with telopodes" (i.e. very long and thin cell processes with a moniliform morphology conferred by the irregular alternation of slender segments and small, bead-like, dilated portions), whereupon it has become apparent that TCs largely correspond to the CD34+ stromal/interstitial cells detectable by immunohistochemical assays. Besides CD34, TCs are also characterized by the expression of platelet-derived growth factor receptor (PDGFR)α. Interestingly, recent works recommended that lymphatic endothelial cell (LEC) markers should be routinely assessed to discriminate with certainty TCs from LECs, because these two cell types may exhibit similar morphological traits, especially when initial lymphatics are sectioned longitudinally and appear as vascular profiles with no obvious lumen. Furthermore, it has been argued that lymphatic microvessels immunostained for the small mucin-type transmembrane glycoprotein podoplanin (PDPN), which is widely used as lymphatic endothelial marker, can be easily misidentified as TCs. Nevertheless, surprisingly these assumptions were not based on double tissue immunostaining for TC and LEC markers. Therefore, the present morphological study was undertaken to precisely investigate the mutual spatial organization and putative relationships of TCs and lymphatic vessels in tissues from different human organs. For this purpose, we carried out a series of double immunofluorescence analyses simultaneously detecting the CD34 or PDGFRα antigen and a marker of LECs, either PDPN or lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). In the connective tissue compartment of different organs, TCs were CD34+/PDGFRα+/PDPN-/LYVE-1- while LECs were CD34-/PDGFRα-/PDPN+/LYVE-1+, thus representing two definitely distinct, though spatially close, cell entities. The arrangement of telopodes to intimately surround the abluminal side of LECs suggests a possible role of TCs in the regulation of lymphatic capillary functionality, which is worth investigating further.
Collapse
|
36
|
Veress B, Ohlsson B. Spatial relationship between telocytes, interstitial cells of Cajal and the enteric nervous system in the human ileum and colon. J Cell Mol Med 2020; 24:3399-3406. [PMID: 31983076 PMCID: PMC7131924 DOI: 10.1111/jcmm.15013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Telocytes (TCs) are recently described interstitial cells, present in almost all human organs. Among many other functions, TCs regulate gastrointestinal motility together with the interstitial cells of Cajal (ICCs). TCs and ICCs have close localization in the human myenteric plexus; however, the exact spatial relationship cannot be clearly examined by previously applied double immunofluorescence/confocal microscopy. Data on TCs and submucosal ganglia and their relationship to intestinal nerves are scarce. The aim of the study was to analyse the spatial relationship among these components in the normal human ileum and colon with double CD34/CD117 and CD34/S100 immunohistochemistry and high‐resolution light microscopy. TCs were found to almost completely encompass both myenteric and submucosal ganglia in ileum and colon. An incomplete monolayer of ICCs was localized between the TCs and the longitudinal muscle cells in ileum, whereas only scattered ICCs were present on both surfaces of the colonic myenteric ganglia. TC‐telopodes were observed within colonic myenteric ganglia. TCs, but no ICCs, were present within and around the interganglionic nerve fascicles, submucosal nerves and mesenterial nerves, but were only observed along small nerves intramuscularly. These anatomic differences probably reflect the various roles of TCs and ICCs in the bowel function.
Collapse
Affiliation(s)
- Béla Veress
- Department of Pathology, Skåne University Hospital, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skane University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
37
|
Marini M, Ibba-Manneschi L, Rosa I, Sgambati E, Manetti M. Changes in the telocyte/CD34+ stromal cell and α-SMA+ myoid cell networks in human testicular seminoma. Acta Histochem 2019; 121:151442. [PMID: 31540712 DOI: 10.1016/j.acthis.2019.151442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022]
Abstract
Telocytes (TCs), also known as CD34+ stromal/interstitial cells, have recently been identified within the connective tissue of a variety of organs including the normal human testis. Testicular TCs appear to constitute a widespread reticular network distributed either in the peritubular or in the intertubular stromal spaces where they have been suggested to play different roles, such as participation to testis morphogenesis, postnatal preservation of the normal tissue/organ three-dimensional structure, and regulation of spermatogenesis and androgen hormone secretion and release. Although increasing evidence indicates that TCs may be involved in the pathophysiology of various diseases, no study has yet reported possible changes in these cells within the stromal compartment of seminoma, one of the most frequent malignant testicular cancers in humans. Therefore, here we carried out the first investigation of the presence and tissue distribution of TCs/CD34+ stromal cells in human testicular seminoma in comparison with normal human testis using either CD34 immunohistochemistry or CD34/CD31 and CD34/α-smooth muscle actin (α-SMA) double immunofluorescence analyses. In seminoma tissue sections, we observed an overall loss of TCs (CD34+/CD31- stromal cells) accompanying a severe degeneration of the normal architecture of seminiferous tubules and stromal tissue associated with dense cellularity increase and presence of interstitial fibrosis. Noteworthy, in the seminoma tissue the disappearance of TCs was paralleled by an expansion of α-SMA+ myoid cells. Moreover, the CD34+/CD31+ blood vessel network was greatly expanded, while steroidogenic Leydig cells were undetectable in seminoma specimens. Since TCs are emerging as important regulators of tissue and organ homeostasis, collectively the present findings indicate that the possible pathophysiologic implications of the loss of TCs in human testicular seminoma should not be further overlooked.
Collapse
Affiliation(s)
- Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (Isernia), Italy.
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
38
|
Abstract
The word diaphragm comes from the Greek (διάϕραγμα), which meant something that divides, but also expressed a concept related to emotions and intellect. Breath is part of a concept of symmorphosis, that is the maximum ability to adapt to multiple functional questions in a defined biological context. The act of breathing determines and defines our holobiont: how we react and who we are. The article reviews the fascial structure that involves and forms the diaphragm muscle with the aim of changing the vision of this complex muscle: from an anatomical and mechanistic form to a fractal and asynchronous form. Another step forward for understanding the diaphragm muscle is that it is not only covered, penetrated and made up of connective tissue, but the contractile tissue itself is a fascial tissue with the same embryological derivation. All the diaphragm muscle is fascia.
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi, Milan, ITA
| | | | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Milan, ITA
| |
Collapse
|
39
|
An Immunohistochemical Study of Gastric Mucosa and Critical Review Indicate that the Subepithelial Telocytes are Prelymphatic Endothelial Cells. ACTA ACUST UNITED AC 2019; 55:medicina55070316. [PMID: 31252668 PMCID: PMC6680827 DOI: 10.3390/medicina55070316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Background and Objectives: There are only a few studies regarding gut subepithelial telocytes (TCs). The telopodes, namely peculiar TCs’ prolongations described on two-dimensional cuts, are not enough to differentiate this specific cell type. Subepithelial TCs were associated with the intestinal stem niche but a proper differential diagnosis with lymphatic endothelial cells (LECs) was not performed. In this study, we will also critically review studies suggesting that distinctive TCs could be positioned within the lamina propria. Materials and Methods: We performed an immunohistochemical study of human gastric mucosa to test the expression of D2-40, the lymphatic marker, as well as that of CD31, CD34, CD44, CD117/c-kit, α-smooth muscle actin (α-SMA) and vimentin in the gastric subepithelial niche. Results: The results support the poorly investigated anatomy of intramural gastric lymphatics, with circumferential collectors located on both sides of the muscularis mucosae (mucosal and then submucosal) and myenteric collectors in the muscularis propria. We also found superficial epithelial prelymphatic channels bordered by D2-40+ but CD31–TC-like cells. Deep epithelial lymphatic collectors drain in collectors within the lamina propria. Blood endothelial cells expressed CD31, CD34, CD44, and vimentin. Conclusions: Therefore, the positive diagnosis of TC for subepithelial CD34+ cells should be regarded with caution, as they could also be artefacts, resulting from the two-dimensional examination of three dimensional structures, or as LECs. Lymphatic markers should be routinely used to discriminate TCs from LECs.
Collapse
|
40
|
El-Tahawy NFG, Rifaai RA. Immunohistochemical and ultrastructural evidence for telocytes in the different physiological stages of the female rat mammary gland. Life Sci 2019; 231:116521. [PMID: 31152814 DOI: 10.1016/j.lfs.2019.05.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Telocytes (TCs) are recently described to integrate a variety of different cells. AIM OF THE WORK The aim was to investigate the presence of TCs in the rat mammary gland at its different physiological stages. MATERIAL AND METHODS Twenty four adult female albino rats were classified into 4 groups: resting, mid-pregnancy, lactating, and involution groups. Inguinal mammary glands were processed for immunohistochemical and transmission electron microscopic (TEM) examination. RESULTS TCs were immune-positive for c-kit and CD34 and showed significant differences in the different studied groups indicating variable roles at the different stages. TEM results characterized TCs by its shape and the long slender and moniliform telopodes linking the cells into stromal networks. The extracellular exosomes, homo-cellular synapsis and hetero-cellular synapsis were observed. CONCLUSION Our study provides evidence for the presence of TCs in all stages of the gland; not only in the resting stage as proved by other studies, but with immune-labeling differences suggesting different structural and physiological roles of TCs according to the stage requirements. These functions might via controlling the proliferation during pregnancy and lactation and the involution of the gland after weaning. Thus, more future functional studies of TCs will be important to help understanding the mechanism by which TCs contribute to tissue homeostasis concerning the role of the stromal/epithelial interactions in mammary gland biology and pathology including breast cancer which would be revolutionary for future therapeutic applications.
Collapse
Affiliation(s)
| | - Rehab Ahmed Rifaai
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
41
|
Abstract
A great interest has developed over the last several years in research on interstitial Cajal-like cells (ICLCs), later renamed to telocytes (TCs). Such studies are restricted by diverse limitations. We aimed to critically review (sub)epicardial ICLCs/TCs and to bring forward supplemental immunohistochemical evidence on (sub)epicardial stromal niche inhabitants. We tested the epicardial expressions of CD117/c-kit, CD34, Cytokeratin 7 (CK7), Ki67, Platelet-Derived Growth Factor Receptor (PDGFR)-α and D2-40 in adult human cardiac samples. The mesothelial epicardial cells expressed D2-40, CK7, CD117/c-kit and PDGFR-α. Subepicardial D2-40-positive lymphatic vessels and isolated D2-40-positive and CK7-positive subepicardial cells were also found. Immediate submesothelial spindle-shaped cells expressed Ki-67. Submesothelial stromal cells and endothelial tubes were PDGFR-α-positive and CD34-positive. The expression of CD34 was pan-stromal, so a particular stromal cell type could not be distinguished. The stromal expression of CD117/c-kit was also noted. It seems that epicardial TCs could not be regarded as belonging to a unique cell type until (pre)lymphatic endothelial cells are inadequately excluded. Markers such as CD117/c-kit or CD34 seem to be improper for identifying TCs as a distinctive cell type. Care should be taken when using the immunohistochemical method and histological interpretations, as they may not produce accurate results.
Collapse
|