1
|
Prado-Rangel T, Moreira-Souza ACA, da Silva SRB, Barboza-Araujo T, Castro-Junior AB, Ramos IPR, Takiya CM, Vommaro RC, Coutinho-Silva R. Inflammatory response and parasite regulation in acute toxoplasmosis: the role of P2X7 receptor in controlling virulent atypical genotype strain of Toxoplasma gondii. Front Immunol 2024; 15:1452828. [PMID: 39267751 PMCID: PMC11390460 DOI: 10.3389/fimmu.2024.1452828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Toxoplasmosis is a globally significant disease that poses a severe threat to immunocompromised individuals, especially in Brazil, where a high prevalence of virulent and atypical strains of Toxoplasma gondii is observed. In 1998, the EGS strain, exhibiting a unique infection phenotype, was isolated in Brazil, adding to the complexity of strain diversity. The P2X7 receptor is critical in inflammation and controlling intracellular microorganisms such as T. gondii. However, its genetic variability can result in receptor dysfunction, potentially worsening susceptibility. This study investigates the role of the P2X7 receptor during acute infection induced by the EGS atypical strain, offering insight into the mechanisms of T. gondii infection in this context. We infected the female C57BL/6 (WT) or P2X7 knockout (P2X7-/-) by gavage. The EGS infection causes intestinal inflammation. The P2X7-/- mice presented higher parasite load in the intestine, spleen, and liver. The absence of the P2X7 receptor disrupts inflammatory cell balance by reducing NLRP3, IL-1β, and Foxp3 expression while increasing IFN-γ expression and production in the intestine. In the liver, P2X7-/- animals demonstrate diminished inflammatory infiltrate within the portal and lobular regions concurrent with an enlargement of the spleen. In conclusion, the infection of mice with the EGS strain elicited immune alterations, leading to acute inflammation and cytokine dysregulation, while the P2X7 receptor conferred protection against parasitic proliferation across multiple organs.
Collapse
MESH Headings
- Animals
- Toxoplasma/immunology
- Toxoplasma/genetics
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- Receptors, Purinergic P2X7/immunology
- Mice, Knockout
- Mice
- Female
- Mice, Inbred C57BL
- Genotype
- Toxoplasmosis/immunology
- Toxoplasmosis/parasitology
- Inflammation/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/parasitology
- Parasite Load
- Virulence
- Acute Disease
- Cytokines/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Liver/parasitology
- Liver/immunology
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- Thuany Prado-Rangel
- Laboratório de Imunofisiolofia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Cristina Abreu Moreira-Souza
- Laboratório de Imunofisiolofia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
| | | | - Thais Barboza-Araujo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Archimedes Barbosa Castro-Junior
- Laboratório de Imunofisiolofia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Rezende Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossiane Claudia Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiolofia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Guggemos J, Fuller SJ, Skarratt KK, Mayer B, Schneider EM. Loss-of-function/gain-of-function polymorphisms of the ATP sensitive P2X7R influence sepsis, septic shock, pneumonia, and survival outcomes. Front Immunol 2024; 15:1352789. [PMID: 38966639 PMCID: PMC11222724 DOI: 10.3389/fimmu.2024.1352789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.
Collapse
Affiliation(s)
- Johanna Guggemos
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| | - Stephen J. Fuller
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Kristen K. Skarratt
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
- Department of Haematology, Nepean Hospital, Penrith, NSW, Australia
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic for Anesthesiology and Intensive Care Medicine, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
3
|
Kouhpayeh H, Naderi M, Mohammadghasemipour Z, Bahari G, Elahian N, Taheri M, Hashemi M. Genetic Variations of Angiotensinogen, Angiotensin Converting Enzyme, and Angiotensin Type 1 Receptor with the Risk of Pulmonary Tuberculosis. Prague Med Rep 2024; 125:5-14. [PMID: 38380450 DOI: 10.14712/23362936.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
There is little data regarding the impact of renin-angiotensin system (RAS) gene polymorphisms on tuberculosis. The current study designed to survey the possible association between RAS polymorphisms and the risk of pulmonary tuberculosis (PTB) in a sample of the southeast Iranian population. This case-control study was done on 170 PTB patients and 170 healthy subjects. The AGT rs699 C>T, ACE rs4341 C>G and AT1R rs5186 C>A variants were genotyped using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and ACE rs4646994 (287bp I/D) variant by PCR method. Regarding AT1R rs5186 A>C polymorphism, the findings revealed that AC genotype and C allele significantly decreased the risk of PTB (OR=0.39, 95% CI=0.22-0.67, p=0.001, and OR=0.53, 95% CI=0.25-0.72, p=0.002, C vs. A, respectively). The TC genotype and C allele of AGT rs699 T>C significantly associated with decreased the risk of PTB (OR=0.45, 95% CI=0.28-0.74, p=0.002, TC vs. TT and OR=0.51, 95% CI=0.32-0.80, p=0.005, C vs. T, respectively). The ID genotype of ACE 287bp I/D significantly increased the risk of PTB (OR=1.88, 95% CI=1.12-3.17, p=0.017). Our finding did not support an association between ACE rs4341 C>G variant and the risk of PTB. In summary, the findings revealed an association between AT1R rs5186 A>C, AGT rs699 T>C and ACE 287bp I/D polymorphisms and the risk of PTB in a sample of the southeast Iranian population. Further investigation with higher sample sizes and diverse ethnicities are required to confirm our findings.
Collapse
Affiliation(s)
- Hamidreza Kouhpayeh
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Naderi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Mohammadghasemipour
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nastaran Elahian
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Department of Genetic, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mohammad Hashemi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Hu X, Lu X. Association between interferon-gamma ( IFN-γ) gene polymorphisms and tuberculosis susceptibility: a systematic review and meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:472-491. [PMID: 37874649 DOI: 10.1080/15257770.2023.2272641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Interferon-gamma (IFN-γ) has been established to play a pivotal role in the pathogenesis of tuberculosis (TB). Existing evidence suggests a potential association between the genetic poly-morphisms of IFN-γ and the susceptibility to TB. However, this association remains a topic of controversy. To address this knowledge gap, a meta-analysis was conducted to provide more accurate results regarding their relationship. The pooled odds ratio along with its corresponding 95% confidence interval was calculated using four different gene models. This analytical approach served to evaluate the strength of the association between single nucleotide polymorphisms (SNPs) and TB susceptibility. Additionally, we determined whether a fixed effect model or a random effect model should be applied based on the extent of heterogeneity. Egger's test was used to evaluate publication bias. This study included a total of nine studies, involving 4509 patients with TB and 4378 healthy controls. In non-Asian populations, a C > T mutation at polymorphic variant rs2069705 and a T > C mutation at rs2069718 was associated with an increased risk of TB. Conversely, among Asians, the variants rs2069705, rs2069718, and rs1861494 were not significantly associated with the risk of TB. Importantly, our investigation did not reveal any significant publication bias in the pooled results of the four gene models. In conclusion, this meta-analysis suggests that two SNPs in IFN-γ may be associated with TB susceptibility in non-Asian populations. However, for Asians, there is no evidence to support a conclusive relationship between these SNPs and the risk of TB.
Collapse
Affiliation(s)
- Xu Hu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Ziyang, Ziyang, Sichuan, China
| | - Xiaoying Lu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Ziyang, Ziyang, Sichuan, China
| |
Collapse
|
5
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
6
|
Keikha M, Karbalaei M. P2X7 polymorphism (rs3751143) and its reliability as a diagnostic biomarker for tuberculosis: A systematic review and meta-analysis. Indian J Tuberc 2022; 69:85-89. [PMID: 35074157 DOI: 10.1016/j.ijtb.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023]
Abstract
Tuberculosis (TB) is one of the most important infectious diseases and is accounted for as the second most common cause of death due to infectious agents after HIV. It is estimated that a quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb), and 5-10% of whom will be infected with active TB. Introducing a biomarker to predict TB can help control the disease and reduces the burden of mortality from this infectious disease. P2X7/P2X7R is one of the most important axes of the innate immune system, which its activity increases the clearance of the residual bacteria in macrophages. Numerous studies have shown the association between rs3751143 polymorphism and susceptibility to TB. The present study aimed to evaluate the diagnostic value of this polymorphism in predicting TB. In the current quantitative analysis, we studied the data from twenty relevant case-control studies, consisting of 10,544 volunteers. We found that, although rs3751143 polymorphism causes susceptibility to TB, but based on statistical analysis, it cannot be considered as a reliable biomarker for the diagnosis of TB.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
7
|
Alves FS, Xabregas LA, Kerr MWA, Souza GL, Pereira DS, Magalhães-Gama F, Santiago MRR, Garcia NP, Tarragô AM, Ogusku MM, Sadahiro A, Malheiro A, Costa AG. Genetic polymorphisms of inflammasome genes associated with pediatric acute lymphoblastic leukemia and clinical prognosis in the Brazilian Amazon. Sci Rep 2021; 11:9869. [PMID: 33972620 PMCID: PMC8110953 DOI: 10.1038/s41598-021-89310-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
The immune system plays an important role in the control of cancer development. To investigate the possible association of inflammasome genes to childhood leukemia we performed a case-control study with 158 patients with acute lymphoblastic leukemia and 192 healthy individuals. The IL1B and IL18 genetic polymorphisms were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and NLRP1, NLRP3 and P2RX7 were genotyped using Real Time quantitative PCR (qPCR). The IL1B C/T rs19644 genotype was associated with the risk of developing ALL (C/C vs. C/T + T/T OR: 2.48 [95% CI: 1.26-4.88, p = 0.006]; C/C vs C/T OR: 2.74 [95% CI: 1.37-5.51, p = 0.003]) and the NLRP1 A/T rs12150220 (OR: 0.37 [95% CI: 0.16-0.87, p = 0.023]) was associated with protection against infectious comorbidities. It was not found association between NLRP3 and P2RX7 polymorphisms and acute lymphoblastic leukemia in our study. Our results suggest that the inflammasome single-variant polymorphisms (SNVs) may play a role in the development and prognostic of childhood leukemia. However, this finds requires further study within a larger population in order to prove it.
Collapse
Affiliation(s)
- Fabíola Silva Alves
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Lilyane Amorim Xabregas
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Marlon Wendell Athaydes Kerr
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Gláucia Lima Souza
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Fábio Magalhães-Gama
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Mirian Rodrigues Ribeiro Santiago
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Nadja Pinto Garcia
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
| | - Maurício Morishi Ogusku
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil.
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
8
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Identification of rs11615992 as a novel regulatory SNP for human P2RX7 by allele-specific expression. Mol Genet Genomics 2019; 295:23-30. [PMID: 31410611 DOI: 10.1007/s00438-019-01598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
P2RX7 (purinergic receptor P2X 7) is an important membrane ion channel and involved in multiple physiological processes. One non-synonymous SNP on P2RX7, rs3751143, had been proven to reduce ion channel function and further associated with multiple diseases. However, it was still unclear whether there were other cis-regulatory elements for P2RX7, which might further contribute to related diseases. Allele-specific expression (ASE) is a robust and sensitive approach to identify the potential functional region in human genome. In the current study, we measured ASE on rs3751143 in lung tissues and observed a consistent excess of A allele over C (P = 0.001), which indicated that SNP(s) in linkage disequilibrium (LD) could regulate P2RX7 expression. By analyzing the 1000 genomes project data for Chinese, one SNP locating ~ 5 kb away and downstream of P2RX7, rs11615992, was disclosed to be in strong LD with rs3751143. The dual-luciferase assay confirmed that rs11615992 could alter target gene expression in lung cell line. Through chromosome conformation capture, it was verified that the region surrounding rs11615992 could interact with P2RX7 promoter and effect as an enhancer. By chromatin immunoprecipitation, the related transcription factor POU2F1 (POU class 2 homeobox 1) was recognized to bind the region spanning rs11615992. Our work identified a novel long-distance cis-regulatory SNP for P2RX7, which might contribute to multiple diseases.
Collapse
|