1
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
2
|
Ha SK, Lee JA, Kim D, Yoo G, Choi I. A herb mixture to ameliorate non-alcoholic fatty liver in rats fed a high-fat diet. Heliyon 2023; 9:e18889. [PMID: 37576314 PMCID: PMC10415919 DOI: 10.1016/j.heliyon.2023.e18889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
This study was performed to investigate the effects of an herb extract mixture (HM) in ameliorating non-alcoholic fatty liver disease (NAFLD). The HM contained equal amounts of 70% ethanol extracts from Zingiber officinale, Centella asiatica, and Boehmeria nivea. In vitro, the HM significantly inhibited lipid accumulation in oleic acid-stimulated HepG2 cells. We further evaluated the anti-NAFLD activities of the HM in vivo in an animal model. Rats were fed two different amounts of the HM (50 and 200 mg/kg body weight) along with a high-fat diet for 6 weeks. HM supplementation reduced liver weight; epididymal, peri-renal, and intra-abdominal fat content; and serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels as well as increased high-density lipoprotein cholesterol levels in a dose-dependent manner. Histological evaluation of liver specimens further demonstrated that administration of HM significantly prevented hepatic lipid accumulation and subsequent development of hepatic steatosis. These findings suggest that HM can be used as an alternative nutraceutical for ameliorating NAFLD.
Collapse
Affiliation(s)
- Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jin-Ah Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Guijae Yoo
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Inwook Choi
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
3
|
Albrahim T. Lycopene Modulates Oxidative Stress and Inflammation in Hypercholesterolemic Rats. Pharmaceuticals (Basel) 2022; 15:1420. [PMID: 36422550 PMCID: PMC9693203 DOI: 10.3390/ph15111420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
The complicated disorder of hypercholesterolemia has several underlying factors, including genetic and lifestyle factors. Low LDL cholesterol and elevated serum total cholesterol are its defining features. A carotenoid with antioxidant quality is lycopene. Examining lycopene activity in an animal model of hypercholesterolemia induced using food was the aim of this investigation. Triglycerides, LDL cholesterol, HDL cholesterol, and plasma total cholesterol were all measured. Biomarkers of renal and cardiac function were also examined. Apoptotic indicators, pro-inflammatory markers, and oxidative stress were also assessed. Additionally, the mRNA expression of paraoxonase 1 (PON-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), and PPAR-γ coactivator 1 alpha (PGC-1α) in cardiac and renal tissues was examined. Rats showed elevated serum lipid levels, renal and cardiac dysfunction, significant oxidative stress, and pro-inflammatory and apoptotic markers at the end of the study. Treatment with lycopene significantly corrected and restored these changes. Additionally, lycopene markedly increased the mRNA expression of PGC-1α and PON-1, and decreased PPAR-γ expression. It was determined that lycopene has the capacity to modulate the PPAR-γ and PON-1 signaling pathway in order to preserve the cellular energy metabolism of the heart and kidney, which in turn reduces tissue inflammatory response and apoptosis. According to these findings, lycopene may be utilized as a medication to treat hypercholesterolemia. However, further studies should be conducted first to determine the appropriate dose and any adverse effects that may appear after lycopene usage in humans.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Singh S, Zahoor I, Sharma N, Behl T, Kanojia N, Sehgal A, Mohan S, Almoshari Y, Salawi A, Aleya L, Bungau S. Insights into the pivotal role of statins and its nanoformulations in hyperlipidemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76514-76531. [PMID: 36161571 DOI: 10.1007/s11356-022-23043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Hyperlipidemia is the primary cause of heart disorders and has been manifested as the condition with remarkable higher levels of very-low-density lipoproteins, low-density lipoproteins, intermediate-density lipoprotein, triglycerides, and cholesterol in blood circulation. Genetic causes or systemic metabolic illnesses like diabetes mellitus, increased alcohol consumption, hypothyroidism, and primary biliary cirrhosis are several reasons behind development of hyperlipidemia. Higher levels of lipids and lipoproteins in plasma are responsible for various health disorders in human body like occlusion of blood vessels, acute pancreatitis, and reduced artery lumen elasticity. Both primary and secondary prophylaxis of heart disease can be achieved through combination of pharmacologic therapy with therapeutic lifestyle adjustments. Statins which belongs to HMG-CoA reductase inhibitors are preferred for primary prevention of hyperlipidemia particularly for individuals at higher risk of development of heart disease. This review discusses the recent advancements and outcomes of nanoparticle drug carriers for statins in the therapy of hyperlipidemia.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi-248007, Dehradun, Uttarakhand, India
| | - Neha Kanojia
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
5
|
Ramadan OI, Nasr M, El-Hay OMA, Hasan A, Abd-Allah EEE, Mahmoud ME, Abd-Allah FM, Abuamara TMM, Hablas MGA, Awad MMY, Diab M, Taha AM, Radwan MK, Abulkhair NH, Abdel-Hady AA. Potential Protective Effect of Zingiber officinale in Comparison to Rosuvastatin on High-fat diet-induced Non-alcoholic Fatty Liver Disease in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting nearly 25% of adults worldwide with related risk factors including obesity, metabolic, and inflammatory diseases. Many therapeutic remedies of natural or synthetic properties were used.
AIM: This study aimed to investigate and compare the effects of ginger/rosuvastatin (ROSU) on the liver of rats with induced NAFLD.
MATERIALS AND METHODS: Forty adult male albino rats were used in this study and divided into four equal subgroups, Group I, control received the standard rat chow diet and given normal saline (1 ml/kg/day), Group II, high-fat diet (HFD) group, Group III, received HFD+ ROSU (15 mg/kg/day), and Group IV, HFD+ Zingiber officinale (10% W/V) for 6 weeks. At the end of our experiment, the rats were sacrificed then blood samples were collected for biochemical analysis of lipid profiles and liver enzymes, liver specimen was prepared for light and electron microscopic examination, and measurement of tissue level of malondialdehyde.
RESULTS: NAFLD caused degenerative changes and lipid deposition in liver cells as evidenced by microscopic results and laboratory tests. Treatment with ginger/ROSU alleviated those changes.
CONCLUSION: Ginger and ROSU could ameliorate liver functions in NAFLD and ginger effect is superior to ROSU.
Collapse
|
6
|
Development and Characterization of Eudragit ® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals (Basel) 2022; 15:ph15040492. [PMID: 35455489 PMCID: PMC9025505 DOI: 10.3390/ph15040492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.
Collapse
|
7
|
Samadi M, Moradinazar M, Khosravy T, Soleimani D, Jahangiri P, Kamari N. A systematic review and meta-analysis of preclinical and clinical studies on the efficacy of ginger for the treatment of fatty liver disease. Phytother Res 2022; 36:1182-1193. [PMID: 35106852 DOI: 10.1002/ptr.7390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Fatty liver disease (FLD) is the most common chronic liver disease worldwide. The pathogenesis of this disease is closely related to obesity and insulin resistance. Ginger has hypolipidemic and antioxidant effects and acts as an insulin sensitizer. This study aims to evaluate the effect of ginger supplementation on the fatty liver. A comprehensive search of Medline/PubMed, Embase, Scopus, Web of Science/ISI, and Cochrane databases was conducted without time or language restrictions. Eighteen eligible studies were identified, including 17 in-vivo experiments in quantitative analysis and 3 clinical trials in qualitative analysis. The present study provides comprehensive evidence of the efficacy of ginger to improve the liver levels of cholesterol (-5.60 mg/g), triglycerides (TG, -4.28 mg/g), malondialdehyde (-3.16 nmol/mg), catalase (CAT) (3.35 nmol/mg), superoxide dismutase (SOD, 3.01 U/mg), serum levels of alanine aminotransferase (ALT, -2.85 U/L), aspartate aminotransferase (AST, -0.98 U/L), TG (-4.98 mg/dL), low-density lipoprotein (LDL, -3.94 mg/dL), total cholesterol (TC, -3.45 mg/dL), high-density lipoprotein (HDL, 1.27 mg/dL), and fasting blood sugar (FBS, -2.54 mg/dL). Ginger administration may reduce many clinical aspects of FLD by several mechanisms, including insulin-sensitive effects, stimulating the expression of antioxidant enzymes, reducing the generation of reactive oxygen species (ROS), having antidyslipidemic activities, and reducing hepatic fat content. However, future clinical trials are essential to investigate the clinical application of ginger in this area.
Collapse
Affiliation(s)
- Mehnoosh Samadi
- Student Research Committee, Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradinazar
- Behavioral Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tina Khosravy
- Health Nutrition, Lorestan University of medical science, Lorestan, Iran
| | - Davood Soleimani
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parvin Jahangiri
- Behavioral Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Kamari
- Student Research Committee, Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
9
|
Yang H, Pan R, Wang J, Zheng L, Li Z, Guo Q, Wang C. Modulation of the Gut Microbiota and Liver Transcriptome by Red Yeast Rice and Monascus Pigment Fermented by Purple Monascus SHM1105 in Rats Fed with a High-Fat Diet. Front Pharmacol 2021; 11:599760. [PMID: 33551805 PMCID: PMC7859525 DOI: 10.3389/fphar.2020.599760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperlipidemia can easily cause atherosclerosis and induce cardiovascular and cerebrovascular diseases. Red yeast rice (RYR) contains a variety of active ingredients and is commonly used as medicine and food, and has pharmacological effects such as lowering blood lipids. In this study, we select Monascus strain SHM1105 with a high yield of Monacolin K and monascus pigment (PIG), and studied the effects of the RYR and PIG fermented by this strain on blood lipids, intestinal flora, and liver transcriptome in hyperlipidemia model rats. The experimental results show that, compared with the high-fat model group, the weight growth rate, liver weight ratio, kidney weight ratio, spleen weight ratio, and fat weight ratio of rats in the gavage lovastatin (LOV), RYR, and PIG group were all significantly decreased (p < 0.05). Intervention with RYR and PIG can significantly reduce the serum TC, TG, and LDL-C levels, which has the effect of lowering blood lipids. The 16SrDNA sequencing results showed that the ratio of Firmicutes/Bacteroidetes decreased significantly (p ≤ 0.01) after the intervention of LOV, RYR, and PIG; the abundance of the ratio of Lachnospiraceae, Ruminococcaceae, Prevotellaceae, and Bacteroidales-S24-7-group also changed. The combined analysis of transcriptome and metabolome showed that lovastatin, RYR, and PIG can all improve lipid metabolism in rats by regulating Steroid hormone biosynthesis, Glycerolipid metabolism, and the Arachidonic acid metabolism pathway. In addition, RYR and PIG also have a unique way of regulating blood lipids. Although a lot of research on the lipid-lowering components of Monascus rice and the single pigment component of Monascus has been carried out, the actual application is RYR and pigments as mixtures, as a mixture of RYR and PIG contains a variety of biologically active ingredients, and each component may have a synergistic effect. Hence it has a lipid-lowering mechanism that lovastatin does not have. Therefore, RYR and PIG are effective in reducing lipid potential development and can be utilized in functional foods.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ronghua Pan
- Zhejiang Sanhe Bio-Tech Co., Ltd., Zhejiang, China
| | - Jing Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | | | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
10
|
Qian C, Yang Q, Guo L, Zhu H, You X, Liu H, Sun Y. Exercise reduces hyperlipidemia-induced kidney damage in apolipoprotein E-deficient mice. Exp Ther Med 2020; 21:153. [PMID: 33456520 PMCID: PMC7792504 DOI: 10.3892/etm.2020.9585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Hyperlipidemia is a risk factor of kidney damage that can lead to chronic kidney disease. Studies have shown that exercise reduces kidney damage; however, the specific mechanisms underlying the protective effects of exercise remain unclear. For 12 weeks, 8-week-old male apolipoprotein E-deficient (ApoE-/-) mice were randomly divided into four treatment groups (n=7/group) as follows: Mice fed a normal diet (ND group); mice fed a ND and exercised (ND + E group); mice fed a high-fat diet (HD group); and mice fed a HD and exercised (HD + E group). Exercise training consisted of swimming for 40 min, 5 days/week. Metabolic parameters, such as low-density lipoprotein-cholesterol, total cholesterol and creatinine levels were higher in the ApoE-/- HD mice compared with those in the ApoE-/- HD + E mice. Serum levels of glutathione peroxidase and superoxide dismutase were significantly decreased in the HD group compared with those in the HD + E group. Significant pathological changes were observed in the HD + E group compared with in the HD group. Immunohistochemistry and immunoblotting revealed increased levels of oxidative stress (nuclear factor erythroid-2-related factor 2) and fibrosis (Smad3 and TGF-β) markers in the ApoE-/- HD group; however, the expression levels of these markers were significantly decreased in the ApoE-/- HD + E group. Furthermore, NF-κB expression in the HD + E group was significantly lower compared with that in the HD group. These results suggested that exercise may exert protective effects against kidney damage caused by hyperlipidemia.
Collapse
Affiliation(s)
- Chengsi Qian
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Qin Yang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116200, P.R. China
| | - Hupei Zhu
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Xi You
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Hongyang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yan Sun
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
11
|
Ilić I, Oršolić N, Rođak E, Odeh D, Lovrić M, Mujkić R, Delaš Aždajić M, Grgić A, Tolušić Levak M, Vargek M, Dmitrović B, Belovari T. The effect of high-fat diet and 13-cis retinoic acid application on lipid profile, glycemic response and oxidative stress in female Lewis rats. PLoS One 2020; 15:e0238600. [PMID: 32947606 PMCID: PMC7500970 DOI: 10.1371/journal.pone.0238600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023] Open
Abstract
Vitamin A and its metabolites are key regulators of the development of adipose tissue and associated metabolic complications. The aim of this study was to determine the effect of high fat diet and 13-cis retinoic acid (13 cRA) application on metabolic parameters, adipogenic and inflammatory indicators in female Lewis rats. Female rats of Lewis strain were fed standard laboratory diet (STD) and high fat diet (HFD, 45% of saturated fatty acids) during 30 days. The groups were divided into additional 3 groups (6 rats each): two experimental groups that received 13 cRA orally on a daily basis during 30 days (7.5 mg/kg and 15 mg/kg, respectively) and the control group that was given sunflower oil. Animals were sacrificed after 60 days. Feeding of Lewis rats with chronic HFD diet with 13 cRA supplementation increased weight gain, adiposity index, dyslipidaemia, hyperleptinaemia, insulin resistance, VLDL concentrations, oxidative stress and atherogenic indices. Administration of 13 cRA in Lewis rats fed STD did not change the weight of the animals, but it slightly increased the atherogenic parameters. 13 cRA and HFD affect metabolic parameters, glucose and lipid metabolism in Lewis rats and its administration has a completely different effect on metabolism in rats fed STD, highlighting the complex role of vitamin A supplementation in obesity. Other factors, such as genetics, age, sex, adipose tissue distribution, also must be taken into consideration.
Collapse
Affiliation(s)
- Ivana Ilić
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science Zagreb, University of Zagreb, Zagreb, Croatia
| | - Edi Rođak
- Department of Histology and Embryology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dyana Odeh
- Department of Animal Physiology, Faculty of Science Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Lovrić
- Department of Histology and Embryology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Mujkić
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marija Delaš Aždajić
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Anđela Grgić
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Histology and Embryology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Dermatology and Venereology, University Hospital Osijek, Osijek, Croatia
| | - Martin Vargek
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Branko Dmitrović
- Department of Anatomy, Histology, Embryology, Pathological Anatomy and Pathological Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Clinical Institute of Pathology and Forensic Medicine, University Hospital Osijek, Osijek, Croatia
| | - Tatjana Belovari
- Department of Histology and Embryology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
12
|
Kilany OE, Abdelrazek HMA, Aldayel TS, Abdo S, Mahmoud MMA. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J Biol Sci 2020; 27:2733-2746. [PMID: 32994733 PMCID: PMC7499387 DOI: 10.1016/j.sjbs.2020.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/17/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Present research explored the anti-obesity effect of Moringa olifera seed oil extract and lycopene (LYC). Forty eight male Sprauge Dawely rats were divided equally into 6 groups. Group Ι (C) served as control, group ΙΙ (MC) was given Moringa olifera seed oil extract (800 mg/kg b.wt) for 8 weeks, group ΙΙΙ (LC) was given (20 mg/kg b.wt) LYC for 8 weeks, group ΙV (O) received high fat diet (HFD) for 20 weeks, group Ѵ (MO), was given HFD for 20 weeks and received (800 mg/kg b.wt) Moringa olifera seed oil extract for last 8 weeks and group ѴΙ (LO), received HFD for 20 weeks and was given (20 mg/kg b.wt) LYC for last 8 weeks. Hematology, lipid peroxidation and antioxidants, non-esterified fatty acids (NEFA), glucose, lipid profile, serum liver and kidney biomarkers, inflammatory markers, leptin, resistin and heart fatty acid binding protein (HFABP) were determined. Also histopathology for liver, kidney and aorta were performed besides immunohistochemistry (IHC) for aortic inducible nitric oxide synthase (iNOS). Administration of Moringa olifera seed oil extract and LYC significantly ameliorated the HFD induced hematological and metabolic perturbations as well as reduced leptin and resistin. Both treatments exerted these effects through promotion of antioxidant enzymes and reducing lipid peroxidation as well as inflammatory cytokines along with reduced iNOS protein expression. Administration of Moringa olifera seed oil extract and LYC have anti-obesity potential in HFD induced obesity in male Sprauge Dawely rats.
Collapse
Affiliation(s)
- Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shimaa Abdo
- Suez Canal Authority Hospital, Ismailia, Egypt
| | - Manal M A Mahmoud
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Yuvashree M, Ganesh RN, Viswanathan P. Potential application of nanoemulsified garlic oil blend in mitigating the progression of type 2 diabetes-mediated nephropathy in Wistar rats. 3 Biotech 2020; 10:272. [PMID: 32523866 PMCID: PMC7260324 DOI: 10.1007/s13205-020-02262-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
Abstract
The renoprotective potential of nanoemulsified garlic oil blend (GNE) in alleviating the progressive stages of hyperlipidemia-mediated diabetic nephropathy was examined. The study was carried out in high fat-fed, streptozotocin-induced type 2 diabetic Wistar rats for five months. The diabetic rats showed a significant increase of area under the curve in OGTT (p < 0.01) and IPITT (p < 0.01), increased urinary albumin (p < 0.01), urinary microprotein (p < 0.001), total cholesterol (p < 0.01), triglycerides (p < 0.001) and LDL cholesterol (p < 0.001), with decreased serum albumin (p < 0.01), serum protein (p < 0.001) and HDL-cholesterol levels (p < 0.05) than the control rats. The histopathological analysis evidenced mesangial expansion and hypercellularity at the end of the first and third month, and glomerulosclerosis and tubular atrophy at the end of the fifth month in diabetic rats. Moreover, on disease progression, increase in urinary podocalyxin, NGAL and CD36 was observed, and the renal mRNA and protein expression of podocalyxin decreased significantly with a concomitant increase in NGAL and CD36 expression from first till fifth month end. The treatment with GNE (20 mg/kg) significantly ameliorated the serum albumin (p < 0.001) and urine albumin (p < 0.01) from the end of the third month with significant attenuation in the lipid profile than GO (20 mg/kg) or Ator (8 mg/kg). Moreover, GNE reverted the histopathological alterations and attenuated the aberrant mRNA, protein expression and urinary excretion level of renal CD36, podocalyxin and NGAL in diabetic rats from an early stage of disease till the end of the study period. This study demonstrated the enhanced efficacy of GO in nanoemulsified form in mitigating the progression of nephropathy in type 2 diabetic rats.
Collapse
Affiliation(s)
- Muralidaran Yuvashree
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantrinagar, Puducherry India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| |
Collapse
|