1
|
Chan V, Camardi C, Zhang K, Orofiamma LA, Anderson KE, Hoque J, Bone LN, Awadeh Y, Lee DKC, Fu NJ, Chow JTS, Salmena L, Stephens LR, Hawkins PT, Antonescu CN, Botelho RJ. The LCLAT1/LYCAT acyltransferase is required for EGF-mediated phosphatidylinositol-3,4,5-trisphosphate generation and Akt signaling. Mol Biol Cell 2024; 35:ar118. [PMID: 39024272 PMCID: PMC11449395 DOI: 10.1091/mbc.e23-09-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Victoria Chan
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Cristina Camardi
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Laura A. Orofiamma
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Karen E. Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Jafarul Hoque
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Leslie N. Bone
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Yasmin Awadeh
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Daniel K. C. Lee
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Norman J. Fu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jonathan T. S. Chow
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Phillip T. Hawkins
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| |
Collapse
|
2
|
Griffiths G, Brügger B, Freund C. Lipid switches in the immunological synapse. J Biol Chem 2024; 300:107428. [PMID: 38823638 PMCID: PMC11259711 DOI: 10.1016/j.jbc.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
Collapse
Affiliation(s)
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Vaithianathan T, Schneider EH, Bukiya AN, Dopico AM. Cholesterol and PIP 2 Modulation of BK Ca Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:217-243. [PMID: 36988883 PMCID: PMC10683925 DOI: 10.1007/978-3-031-21547-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+/voltage-gated, large conductance K+ channels (BKCa) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (β and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP2 and cholesterol can modulate BKCa activity independently of downstream signaling, yet activating Ca2+i levels and regulatory subunits control ligand action. At physiological Ca2+i and voltages, cholesterol and PIP2 reduce and increase slo1 channel activity, respectively. Moreover, slo1 proteins provide sites that seem to recognize cholesterol and PIP2: seven CRAC motifs in the slo1 cytosolic tail and a string of positively charged residues (Arg329, Lys330, Lys331) immediately after S6, respectively. A model that could explain the modulation of BKCa activity by cholesterol and/or PIP2 is hypothesized. The roles of additional sites, whether in slo1 or BKCa regulatory subunits, for PIP2 and/or cholesterol to modulate BKCa function are also discussed.
Collapse
Affiliation(s)
- Thirumalini Vaithianathan
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth H Schneider
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Cheung HF, Coman C, Westhoff P, Manke M, Sickmann A, Borst O, Gawaz M, Watson SP, Heemskerk JWM, Ahrends R. Targeted Phosphoinositides Analysis Using High-Performance Ion Chromatography-Coupled Selected Reaction Monitoring Mass Spectrometry. J Proteome Res 2021; 20:3114-3123. [PMID: 33938762 PMCID: PMC8280744 DOI: 10.1021/acs.jproteome.1c00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Phosphoinositides are minor components of cell membranes, but play crucial roles in numerous signal transduction pathways. To obtain quantitative measures of phosphoinositides, sensitive, accurate, and comprehensive methods are needed. Here, we present a quantitative targeted ion chromatography-mass spectrometry-based workflow that separates phosphoinositide isomers and increases the quantitative accuracy of measured phosphoinositides. Besides testing different analytical characteristics such as extraction and separation efficiency, the reproducibility of the developed workflow was also investigated. The workflow was verified in resting and stimulated human platelets, fat cells, and rat hippocampal brain tissue, where the LOD and LOQ for phosphoinositides were at 312.5 and 625 fmol, respectively. The robustness of the workflow is shown with different applications that confirms its suitability to analyze multiple less-abundant phosphoinositides.
Collapse
Affiliation(s)
- Hilaire
Yam Fung Cheung
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Institute
of Cardiovascular Sciences, Institute of Biomedical Research, College
of Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Cristina Coman
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| | - Philipp Westhoff
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Mailin Manke
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Albert Sickmann
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Oliver Borst
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Steve P. Watson
- Institute
of Cardiovascular Sciences, Institute of Biomedical Research, College
of Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Johan W. M. Heemskerk
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Robert Ahrends
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| |
Collapse
|
5
|
Pan M, Qin C, Han X. Quantitative Analysis of Polyphosphoinositide, Bis(monoacylglycero)phosphate, and Phosphatidylglycerol Species by Shotgun Lipidomics After Methylation. Methods Mol Biol 2021; 2306:77-91. [PMID: 33954941 PMCID: PMC8287892 DOI: 10.1007/978-1-0716-1410-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phospholipids play important roles in biological process even at a very low level. For example, bis(monoacylglycerol)phosphate (BMP) is involved in the pathogenesis of lysosomal storage diseases, and polyphosphoinositides (PPI) play critical roles in cellular signaling and functions. Phosphatidylglycerol (PG), a structural isomer of BMP, mediates lipid-protein and lipid-lipid interactions, and inhibits platelet activating factor and phosphatidylcholine transferring. However, due to their low abundance, the analysis of these phospholipids from biological samples is technically challenging. Therefore, the cellular function and metabolism of these phospholipids are still elusive. This chapter overviews a novel method of shotgun lipidomics after methylation with trimethylsilyl-diazomethane (TMS-D) for accurate and comprehensive analysis of these phospholipid species in biological samples. Firstly, a modified Bligh and Dyer procedure is performed to extract tissue lipids for PPI analysis, whereas modified methyl-tert-butylether (MTBE) extraction and modified Folch extraction methods are described to extract tissue lipids for PPI analysis. Secondly, TMS-D methylation is performed to derivatize PG/BMP and PPI, respectively. Then, we described the shotgun lipidomics strategies that can be used as cost-effective and relatively high-throughput methods to determine BMP, PG, and PPI species and isomers with different phosphate position(s) and fatty acyl chains. The described method of shotgun lipidomics after methylation achieves feasible and reliable quantitative analysis of low-abundance lipid classes. The application of this novel method should enable us to reveal the metabolism and functions of these phospholipids in healthy and disease states.
Collapse
Affiliation(s)
- Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Neef SK, Janssen N, Winter S, Wallisch SK, Hofmann U, Dahlke MH, Schwab M, Mürdter TE, Haag M. Metabolic Drug Response Phenotyping in Colorectal Cancer Organoids by LC-QTOF-MS. Metabolites 2020; 10:metabo10120494. [PMID: 33271860 PMCID: PMC7760698 DOI: 10.3390/metabo10120494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
As metabolic rewiring is crucial for cancer cell proliferation, metabolic phenotyping of patient-derived organoids is desirable to identify drug-induced changes and trace metabolic vulnerabilities of tumor subtypes. We established a novel protocol for metabolomic and lipidomic profiling of colorectal cancer organoids by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) facing the challenge of capturing metabolic information from a minimal sample amount (<500 cells/injection) in the presence of an extracellular matrix (ECM). The best procedure of the tested protocols included ultrasonic metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v/v) without ECM removal. To eliminate ECM-derived background signals, we implemented a data filtering procedure based on the p-value and fold change cut-offs, which retained features with signal intensities >120% compared to matrix-derived signals present in blank samples. As a proof-of-concept, the method was applied to examine the early metabolic response of colorectal cancer organoids to 5-fluorouracil treatment. Statistical analysis revealed dose-dependent changes in the metabolic profiles of treated organoids including elevated levels of 2′-deoxyuridine, 2′-O-methylcytidine, inosine and 1-methyladenosine and depletion of 2′-deoxyadenosine and specific phospholipids. In accordance with the mechanism of action of 5-fluorouracil, changed metabolites are mainly involved in purine and pyrimidine metabolism. The novel protocol provides a first basis for the assessment of metabolic drug response phenotypes in 3D organoid models.
Collapse
Affiliation(s)
- Sylvia K. Neef
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
| | - Svenja K. Wallisch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
| | - Marc H. Dahlke
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
- Department of Surgery, Robert-Bosch Hospital, 70376 Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
- Departments of Clinical Pharmacology, and of Pharmacy and Biochemistry, University of Tuebingen, 72074 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, 72074 Tuebingen, Germany
| | - Thomas E. Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, 70376 Tuebingen, Germany; (S.K.N.); (N.J.); (S.W.); (S.K.W.); (U.H.); (M.H.D.); (M.S.); (T.E.M.)
- Correspondence: ; Tel.: +49-711-8101-5429
| |
Collapse
|
7
|
Lipidomic changes in mouse oocytes vitrified in PEG 8000-supplemented vitrification solutions. Cryobiology 2020; 99:140-148. [PMID: 33242477 DOI: 10.1016/j.cryobiol.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023]
Abstract
Cryopreserved oocytes are inevitably exposed to cold stress, which negatively affects the cellular aspects of the oocytes. Lipidomic analysis of the oocytes reveals quantitative changes in lipid classes under conditions of cold stress, leading to potential freezing-vulnerability. We had previously shown that specific phospholipids are significantly downregulated in vitrified-warmed mouse oocytes compared to those in fresh oocytes. In this study, we examined whether supplementation of polyethylene glycol 8000 (PEG 8000) during vitrification influences the lipidome of the oocytes. We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to study the alteration in the lipidome in three groups of mouse oocytes: fresh, vitrified-warmed, and vitrified with PEG 8000-warmed during vitrification. In these groups, we targeted to analyze 21 lipid classes. We profiled 132 lipid species in the oocytes and statistical analyses revealed lipid classes that were up- or downregulated in these groups. Overall, our data revealed that several classes of lipids were affected during vitrification, and that oocytes vitrified with PEG 8000 to some extent alleviated the levels of changes in phospholipid and sphingolipid contents during vitrification. These results suggest that phospholipids and sphingolipids are influenced by PEG 8000 during vitrification and that PEG 8000 can be considered as a potential candidate for preserving membrane integrity during oocyte cryopreservation.
Collapse
|
8
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Quantification of phosphoinositides reveals strong enrichment of PIP 2 in HIV-1 compared to producer cell membranes. Sci Rep 2019; 9:17661. [PMID: 31776383 PMCID: PMC6881329 DOI: 10.1038/s41598-019-53939-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) acquires its lipid envelope during budding from the plasma membrane of the host cell. Various studies indicated that HIV-1 membranes differ from producer cell plasma membranes, suggesting budding from specialized membrane microdomains. The phosphoinositide PI(4,5)P2 has been of particular interest since PI(4,5)P2 is needed to recruit the viral structural polyprotein Gag to the plasma membrane and thus facilitates viral morphogenesis. While there is evidence for an enrichment of PIP2 in HIV-1, fully quantitative analysis of all phosphoinositides remains technically challenging and therefore has not been reported, yet. Here, we present a comprehensive analysis of the lipid content of HIV-1 and of plasma membranes from infected and non-infected producer cells, resulting in a total of 478 quantified lipid compounds, including molecular species distribution of 25 different lipid classes. Quantitative analyses of phosphoinositides revealed strong enrichment of PIP2, but also of PIP3, in the viral compared to the producer cell plasma membrane. We calculated an average of ca. 8,000 PIP2 molecules per HIV-1 particle, three times more than Gag. We speculate that the high density of PIP2 at the HIV-1 assembly site is mediated by transient interactions with viral Gag polyproteins, facilitating PIP2 concentration in this microdomain. These results are consistent with our previous observation that PIP2 is not only required for recruiting, but also for stably maintaining Gag at the plasma membrane. We believe that this quantitative analysis of the molecular anatomy of the HIV-1 lipid envelope may serve as standard reference for future investigations.
Collapse
|
10
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
11
|
Röhrig W, Achenbach S, Deutsch B, Pischetsrieder M. Quantification of 24 circulating endocannabinoids, endocannabinoid-related compounds, and their phospholipid precursors in human plasma by UHPLC-MS/MS. J Lipid Res 2019; 60:1475-1488. [PMID: 31235475 PMCID: PMC6672038 DOI: 10.1194/jlr.d094680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Endocannabinoids and endocannabinoid-related compounds (ERCs) are involved in many physiological processes. They are released on demand from phosphoinositide and N-acylphosphatidyl ethanolamine (NAPE) precursors and comprise 2-monoacylglycerols (2-MGs) and FA ethanolamides (FEAs). Despite the abundance of advanced quantitative methods, however, their determined concentrations in blood plasma are inconsistent because 2-MGs and FEAs undergo artifactual de novo formation, chemical isomerization, and degradation during sample collection and storage. For a comprehensive survey of these compounds in blood and plasma, we have developed and validated an ultra-HPLC-MS/MS method to quantify 24 endocannabinoids, ERCs, and their phospholipid precursors. Immediate acidification of EDTA-blood to pH 5.8 blocked artifactual FEA formation for at least 4 h on ice. The 2-MGs were stabilized after plasma harvest with 0.5 M potassium thiocyanate at pH 4.7. FEA and MG plasma concentrations in six healthy volunteers ranged between 0.04-3.48 and 0.63-6.18 ng/ml, respectively. Interestingly, only 1-5% of circulating FEAs were present in their free form, while the majority was bound to NAPEs. Similarly, 97% of 2-arachidonoylglycerol (2-AG) was bound to a potential phosphoinositide pool. The herein-described stabilization and extraction methods may now be used to reliably and comprehensively quantify endocannabinoids, ERCs, and their phospholipid precursors in clinical studies.
Collapse
Affiliation(s)
- Waldemar Röhrig
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Birgit Deutsch
- Institute of Experimental and Clinical Pharmacology and Toxicology Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T, Brügger B, Akgül B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget 2018; 9:34142-34158. [PMID: 30344928 PMCID: PMC6183346 DOI: 10.18632/oncotarget.26140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022] Open
Abstract
Phospholipids regulate numerous cellular functions and their deregulation is known to be associated with cancer development. Here, we show for the first time that expression of the E6 oncoprotein of human papillomavirus type 8 (HPV8) leads to a profound increase in nuclear phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) lipid levels in monolayer cultures, that led to an aberrant phospholipidation of cellular proteins. Elevated PI(4,5)P2 levels in organotypic skin cultures, skin tumors of K14-HPV8-E6 transgenic mice as well as HPV8 positive skin carcinomas highly suggest a decisive role of PI(4,5)P2 in HPV associated squamous-cell-carcinoma development. Furthermore, mass-spectrometric analysis confirmed an increase of PI(4,5)P2, which was characterized by a shift in the distribution of lipid species. PI(4,5)P2 upregulation was independent of E6 interference with MAML1. However, E6 does interfere with the PI(4,5)P2 metabolic pathway by upregulation of phosphatidylinositol-4-phosphate-5-kinase type I and phosphatidylinositol-5-phosphate 4-kinase type II as well as the binding to 5'-phosphatase OCRL and phosphatidylinositol. All of these mechanisms combined may contribute to PI(4,5)P2 elevation in E6 positive cells. The identification of CAND1 and SND1 - two proteins known to be involved in carcinogenic processes - were significantly stronger phospholipidized in the presence of E6. In conclusion we provide evidence that the modulation of the PI(4,5)P2 metabolism is a novel oncogenic mechanism relevant for HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Birgid Markiefka
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Serum lipidomic analysis for the discovery of biomarkers for major depressive disorder in drug-free patients. Psychiatry Res 2018; 265:174-182. [PMID: 29719272 DOI: 10.1016/j.psychres.2018.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Lipidomic analysis can be used to efficiently identify hundreds of lipid molecular species in biological materials and has been recently established as an important tool for biomarker discovery in various neuropsychiatric disorders including major depressive disorder (MDD). In this study, quantitative targeted serum lipidomic profiling was performed on female subjects using liquid chromatography-mass spectrometry. Global lipid profiling of pooled serum samples from 10 patients currently with MDD (cMDD), 10 patients with remitted MDD (rMDD), and 10 healthy controls revealed 37 differentially regulated lipids (DRLs). DRLs were further verified using multiple-reaction monitoring (MRM) in each of the 25 samples from the three groups of independent cohorts. Using multivariate analysis and MRM data we identified serum biomarker panels of discriminatory lipids that differentiated between pairs of groups: lysophosphatidic acid (LPA)(16:1), triglycerides (TG)(44:0), and TG(54:8) distinguished cMDD from controls with 76% accuracy; lysophosphatidylcholines(16:1), TG(44:0), TG(46:0), and TG(50:1) distinguished between cMDD and rMDD at 65% accuracy; and LPA(16:1), TG(52:6), TG(54:8), and TG(58:10) distinguished between rMDD and controls with 60% accuracy. Our lipidomic analysis identified peripheral lipid signatures of MDD, which thereby provides providing important biomarker candidates for MDD.
Collapse
|
14
|
Jeon J, Park SC, Her J, Lee JW, Han JK, Kim YK, Kim KP, Ban C. Comparative lipidomic profiling of the human commensal bacterium Propionibacterium acnes and its extracellular vesicles. RSC Adv 2018; 8:15241-15247. [PMID: 35541326 PMCID: PMC9080044 DOI: 10.1039/c7ra13769a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Propionibacterium acnes is a lipophilic commensal bacterium mainly found on the skin and in the gastrointestinal tract. Pathophysiological effects of P. acnes have recently been reported not only in acne progression but in various diseases. As an emerging mode of bacterial communication, extracellular vesicles (EVs) have been demonstrated to conduct critical pathophysiological functions. To provide information on P. acnes lipid composition for the first time, we conducted a comparative lipidomic analysis of P. acnes and P. acnes EVs and identified 214 lipids with high confidence using triplicated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses. P. acnes EVs contained substantially more PCs, DGs, PAs, PEs, LPAs, LPCs, and MGs than P. acnes, and contained fewer PSs, SO1Ps, SA1Ps, LPGs, LPIs, and LPSs. Distinctively, P. acnes EVs possessed a markedly reduced amount of TG. These findings will provide useful clues for understanding the biological and pathophysiological mechanisms of P. acnes and for clinical applications such as vaccine development, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jinseong Jeon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Seung Cheol Park
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University Yongin 17104 Republic of Korea
| | - Jin Her
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University Yongin 17104 Republic of Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Yoon-Keun Kim
- Myeongdong Medical Woori Technology Building, World Cup buk-ro 56-gil 9, Mapo-gu Seoul 03923 Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University Yongin 17104 Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
15
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
16
|
Lee AY, Lee JW, Kim JE, Mock HJ, Park S, Kim S, Hong SH, Kim JY, Park EJ, Kang KS, Kim KP, Cho MH. Dihydroceramide is a key metabolite that regulates autophagy and promotes fibrosis in hepatic steatosis model. Biochem Biophys Res Commun 2017; 494:460-469. [PMID: 29066349 DOI: 10.1016/j.bbrc.2017.10.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common chronic liver disease worldwide. Sphingolipids are a family of lipids that play essential roles as critical regulators in metabolic disorders. Some sphingolipids are known key factors in metabolic dysfunction. However, the precise effect of dihydroceramide on NAFLD remains unknown. Here, we report how dihydroceramide in autophagosome accumulation activates fibrogenesis in human liver Chang cells treated with free fatty acids (FFA). According to LC/MS lipid profiling, FFA increased the levels of sphingolipids and triacylglycerol (TG). To demonstrate the potential role of dihydroceramide metabolism in autophagy, several sphingolipid synthesis inhibitors were used. Increased dihydroceramide led to impairment of autophagic flux, resulting in increased TG storage in lipid droplets (LD) and upregulated expression of fibrosis markers. Hepatic stellate cells (HSCs, LX-2 cells) were co-cultured with Chang cells to assess the potential fibrogenic response to dihydroceramide, Treatment with rapamycin recovered autophagic flux in Chang cells and fibrogenesis in the co-culture system. Our results identified a critical function of dihydroceramide metabolism in autophagy. It could play an important role in the progression of NAFLD associated with lipid over-accumulation. Therefore, preventing autophagic flux by regulating dihydroceramide could be a potential strategic approach for providing therapy for NAFLD.
Collapse
Affiliation(s)
- Ah Young Lee
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hyuck Jun Mock
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sungjin Park
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Departmentof Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Science, Seoul 01812, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Bio medicine Lab., CKD Research Institute, Yongin 16995, Republic of Korea
| | - Ji-Young Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Park
- Department of Brain Science, Ajou University School of Medicine, 164, World Cup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Myung-Haing Cho
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
17
|
Traynor-Kaplan A, Kruse M, Dickson EJ, Dai G, Vivas O, Yu H, Whittington D, Hille B. Fatty-acyl chain profiles of cellular phosphoinositides. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:513-522. [PMID: 28189644 PMCID: PMC5392126 DOI: 10.1016/j.bbalip.2017.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022]
Abstract
Phosphoinositides are rapidly turning-over phospholipids that play key roles in intracellular signaling and modulation of membrane effectors. Through technical refinements we have improved sensitivity in the analysis of the phosphoinositide PI, PIP, and PIP2 pools from living cells using mass spectrometry. This has permitted further resolution in phosphoinositide lipidomics from cell cultures and small samples of tissue. The technique includes butanol extraction, derivatization of the lipids, post-column infusion of sodium to stabilize formation of sodiated adducts, and electrospray ionization mass spectrometry in multiple reaction monitoring mode, achieving a detection limit of 20pg. We describe the spectrum of fatty-acyl chains in the cellular phosphoinositides. Consistent with previous work in other mammalian primary cells, the 38:4 fatty-acyl chains dominate in the phosphoinositides of the pineal gland and of superior cervical ganglia, and many additional fatty acid combinations are found at low abundance. However, Chinese hamster ovary cells and human embryonic kidney cells (tsA201) in culture have different fatty-acyl chain profiles that change with growth state. Their 38:4 lipids lose their dominance as cultures approach confluence. The method has good time resolution and follows well the depletion in <20s of both PIP2 and PIP that results from strong activation of Gq-coupled receptors. The receptor-activated phospholipase C exhibits no substrate selectivity among the various fatty-acyl chain combinations.
Collapse
Affiliation(s)
- Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA; Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Haijie Yu
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
18
|
Lee JW, Mok HJ, Lee DY, Park SC, Kim GS, Lee SE, Lee YS, Kim KP, Kim HD. UPLC-QqQ/MS-Based Lipidomics Approach To Characterize Lipid Alterations in Inflammatory Macrophages. J Proteome Res 2017; 16:1460-1469. [DOI: 10.1021/acs.jproteome.6b00848] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jae Won Lee
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Hyuck Jun Mok
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dae Young Lee
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Seung Cheol Park
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Geum-Soog Kim
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Seung-Eun Lee
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Young-Seob Lee
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Kwang Pyo Kim
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyung Don Kim
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
- Department
of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
19
|
Kopczynski D, Coman C, Zahedi RP, Lorenz K, Sickmann A, Ahrends R. Multi-OMICS: a critical technical perspective on integrative lipidomics approaches. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:808-811. [PMID: 28193460 DOI: 10.1016/j.bbalip.2017.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023]
Abstract
During the past decades, high-throughput approaches for analyzing different molecular classes such as nucleic acids, proteins, metabolites, and lipids have grown rapidly. These approaches became powerful tools for getting a fundamental understanding of biological systems. Considering each approach and its results separately, relations and causal connections between these classes have no chance to be revealed, since only separate molecular snapshots are provided. Only a combined approach, not fully established yet, with the integration of the corresponding data, might yield a comprehensive and complete understanding of biological processes, such as crosstalk and interactions in signaling pathways. Taking two or more omics-methods into consideration for analysis is referred to as a multi-omics approach, which is gradually evolving. In this critical note, we briefly discuss the relevance, challenges, current state, and potential of data integration from multi-omics approaches, with a special focus on lipidomics analysis, listing the advantages and gaps in this field. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund, Germany
| | - Rene P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund, Germany.
| |
Collapse
|
20
|
Tumanov S, Kamphorst JJ. Recent advances in expanding the coverage of the lipidome. Curr Opin Biotechnol 2017; 43:127-133. [PMID: 27915214 PMCID: PMC5312421 DOI: 10.1016/j.copbio.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
Abstract
The lipidome comprises a large array of molecules with diverse physicochemical properties. Lipids are structural components of cells, act as a source of energy, and function as signaling mediators. Alterations in lipid metabolism are involved in the onset and progression of a variety of diseases, including metabolic syndrome and cancer. Because of this, interest in lipidomics, the comprehensive characterization of the lipidome by mass spectrometry, has intensified in recent years. However, obtaining a truly complete overview of all lipids in a sample has remained very challenging due to their enormous structural diversity. Here, we provide an overview of the collection of analytical approaches used to study various lipid classes, emphasizing innovations in sample preparation and liquid chromatography-mass spectrometry (LC-MS). Additionally, we provide practical suggestions for increasing the coverage of the lipidome.
Collapse
Affiliation(s)
- Sergey Tumanov
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Jurre J Kamphorst
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
21
|
Leuthold P, Schaeffeler E, Winter S, Büttner F, Hofmann U, Mürdter TE, Rausch S, Sonntag D, Wahrheit J, Fend F, Hennenlotter J, Bedke J, Schwab M, Haag M. Comprehensive Metabolomic and Lipidomic Profiling of Human Kidney Tissue: A Platform Comparison. J Proteome Res 2017; 16:933-944. [DOI: 10.1021/acs.jproteome.6b00875] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patrick Leuthold
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Florian Büttner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Thomas E. Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Steffen Rausch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
- Department
of Urology, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | - Falko Fend
- Institute
of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jörg Hennenlotter
- Department
of Urology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jens Bedke
- Department
of Urology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
- Department
of Clinical Pharmacology, University Hospital Tübingen, 72076 Tübingen, Germany
- Department
of Pharmacy and Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
22
|
Kim SH, Song HE, Kim SJ, Woo DC, Chang S, Choi WG, Kim MJ, Back SH, Yoo HJ. Quantitative structural characterization of phosphatidylinositol phosphates from biological samples. J Lipid Res 2016; 58:469-478. [PMID: 27940482 DOI: 10.1194/jlr.d069989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
The aspects of cellular metabolism controlled by phosphatidylinositol phosphates (PtdInsPs) have been broadly expanded, and these phospholipids have drawn tremendous attention as pleiotropic signaling molecules. PtdInsPs analysis using LC/MS/MS has remained challenging due to the strong hydrophilicity of these lipids. Multiple reaction monitoring (MRM) or a neutral loss scan has been performed to quantitatively measure PtdInsPs after chemical derivatization on the phosphate groups of inositol moieties. Only predefined PtdInsPs can be measured in MRM mode, and fatty acyl compositions of sn-1 and sn-2 positions of PtdInsPs cannot be obtained from a neutral loss scan. In our present study, we developed a simple LC/MS/MS method for structural identification of sn-1 and sn-2 fatty acids of PtdInsPs and their relative quantitation. Precursor ion scans of sn-1 monoacylglycerols (MAGs) of PtdInsPs provided structural information about the lipids, and ammonium adduction enhanced signal intensities of PtdInsPs. The relative amount of observed PtdInsPs in biological samples could be compared using chromatographic peak areas from the neutral loss scans. Using precursor ion scans of sn-1 MAG and neutral loss scans of headgroups, major PtdInsPs in cells and tissues were successfully identified with structural information of sn-1 and sn-2 fatty acids, and their relative amounts in different samples were compared.
Collapse
Affiliation(s)
- Su Hee Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ha Eun Song
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong Cheol Woo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suhwan Chang
- Division of Biomedical Sciences, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Woo Gyun Choi
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mi Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea .,Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
23
|
Wang C, Palavicini JP, Wang M, Chen L, Yang K, Crawford PA, Han X. Comprehensive and Quantitative Analysis of Polyphosphoinositide Species by Shotgun Lipidomics Revealed Their Alterations in db/db Mouse Brain. Anal Chem 2016; 88:12137-12144. [DOI: 10.1021/acs.analchem.6b02947] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chunyan Wang
- Center
for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Juan Pablo Palavicini
- Center
for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Miao Wang
- Center
for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Linyuan Chen
- Center
for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Kui Yang
- Division
of Bioorganic Chemistry and Molecular Pharmacology, Department of
Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter A. Crawford
- Center
for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Xianlin Han
- Center
for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| |
Collapse
|
24
|
Luján P, Varsano G, Rubio T, Hennrich ML, Sachsenheimer T, Gálvez-Santisteban M, Martín-Belmonte F, Gavin AC, Brügger B, Köhn M. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position. J Cell Sci 2016; 129:4130-4142. [PMID: 27656108 PMCID: PMC5117205 DOI: 10.1242/jcs.190215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.
Collapse
Affiliation(s)
- Pablo Luján
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Giulia Varsano
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Teresa Rubio
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Marco L Hennrich
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany
| | - Timo Sachsenheimer
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg 69120, Germany
| | - Manuel Gálvez-Santisteban
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Fernando Martín-Belmonte
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg 69120, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
25
|
Kamiya Y, Mizuno S, Komenoi S, Sakai H, Sakane F. Activation of conventional and novel protein kinase C isozymes by different diacylglycerol molecular species. Biochem Biophys Rep 2016; 7:361-366. [PMID: 28955926 PMCID: PMC5613651 DOI: 10.1016/j.bbrep.2016.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
A variety of diacylglycerol (DG) molecular species are produced in stimulated cells. Conventional (α, βII and γ) and novel (δ, ε, η and θ) protein kinase C (PKC) isoforms are known to be activated by DG. However, a comprehensive analysis has not been performed. In this study, we analyzed activation of the PKC isozymes in the presence of 2–2000 mmol% 16:0/16:0-, 16:0/18:1-, 18:1/18:1-, 18:0/20:4- or 18:0/22:6-DG species. PKCα activity was strongly increased by DG and exhibited less of a preference for 18:0/22:6-DG at 2 mmol%. PKCβII activity was moderately increased by DG and did not have significant preference for DG species. PKCγ activity was moderately increased by DG and exhibited a moderate preference for 18:0/22:6-DG at 2 mmol%. PKCδ activity was moderately increased by DG and exhibited a preference for 18:0/22:6-DG at 20 and 200 mmol%. PKCε activity moderately increased by DG and showed a moderate preference for 18:0/22:6-DG at 2000 mmol%. PKCη was not markedly activated by DG. PKCθ activity was the most strongly increased by DG and exhibited a preference for 18:0/22:6-DG at 2 and 20 mmol% DG. These results indicate that conventional and novel PKCs have different sensitivities and dependences on DG and a distinct preference for shorter and saturated fatty acid-containing and longer and polyunsaturated fatty acid-containing DG species, respectively. This differential regulation would be important for their physiological functions. We comprehensively analyzed activation of c/nPKC isozymes by different DG species. c/nPKCs have different sensitivities and dependences on DG. c/nPKCs have a distinct preference for different fatty acid-containing DG species. This differential regulation would be important for PKCs' physiological functions.
Collapse
Affiliation(s)
- Yuuna Kamiya
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Suguru Komenoi
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiromichi Sakai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
26
|
Mok HJ, Shin H, Lee JW, Lee GK, Suh CS, Kim KP, Lim HJ. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes. PLoS One 2016; 11:e0148577. [PMID: 26881843 PMCID: PMC4755615 DOI: 10.1371/journal.pone.0148577] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2), a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylserine (PS), and lysophosphatidylserine (LPS) significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG) was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes.
Collapse
Affiliation(s)
- Hyuck Jun Mok
- Department of Applied Chemistry, The Institute of Natural Science, Kyung Hee University, Yongin, Gyeonggi-do, Korea
| | - Hyejin Shin
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Jae Won Lee
- Department of Applied Chemistry, The Institute of Natural Science, Kyung Hee University, Yongin, Gyeonggi-do, Korea
| | - Geun-Kyung Lee
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, The Institute of Natural Science, Kyung Hee University, Yongin, Gyeonggi-do, Korea
- * E-mail: (PKP); (HJL)
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
- * E-mail: (PKP); (HJL)
| |
Collapse
|
27
|
Ho CY, Choy CH, Botelho RJ. Radiolabeling and Quantification of Cellular Levels of Phosphoinositides by High Performance Liquid Chromatography-coupled Flow Scintillation. J Vis Exp 2016. [PMID: 26780479 DOI: 10.3791/53529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phosphoinositides (PtdInsPs) are essential signaling lipids responsible for recruiting specific effectors and conferring organelles with molecular identity and function. Each of the seven PtdInsPs varies in their distribution and abundance, which are tightly regulated by specific kinases and phosphatases. The abundance of PtdInsPs can change abruptly in response to various signaling events or disturbance of the regulatory machinery. To understand how these events lead to changes in the amount of PtdInsPs and their resulting impact, it is important to quantify PtdInsP levels before and after a signaling event or between control and abnormal conditions. However, due to their low abundance and similarity, quantifying the relative amounts of each PtdInsP can be challenging. This article describes a method for quantifying PtdInsP levels by metabolically labeling cells with (3)H-myo-inositol, which is incorporated into PtdInsPs. Phospholipids are then precipitated and deacylated. The resulting soluble (3)H-glycero-inositides are further extracted, separated by high-performance liquid chromatography (HPLC), and detected by flow scintillation. The labeling and processing of yeast samples is described in detail, as well as the instrumental setup for the HPLC and flow scintillator. Despite losing structural information regarding acyl chain content, this method is sensitive and can be optimized to concurrently quantify all seven PtdInsPs in cells.
Collapse
Affiliation(s)
- Cheuk Y Ho
- Department of Chemistry and Biology, Program in Molecular Science, Ryerson University
| | - Christopher H Choy
- Department of Chemistry and Biology, Program in Molecular Science, Ryerson University
| | - Roberto J Botelho
- Department of Chemistry and Biology, Program in Molecular Science, Ryerson University;
| |
Collapse
|
28
|
Lee JW, Shinohara H, Jung JH, Mok HJ, Akao Y, Kim KP. Detailed characterization of alterations in the lipid profiles during autophagic cell death of leukemia cells. RSC Adv 2016. [DOI: 10.1039/c6ra01965j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a lipidomics approach based on UPLC-QqQ/MS was applied to profile various lipids in human leukemia cells undergoing autophagic cell death (ACD).
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences
- Gifu University
- Gifu 501-1193
- Japan
| | - Jae Hun Jung
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences
- Gifu University
- Gifu 501-1193
- Japan
| | - Kwang Pyo Kim
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| |
Collapse
|
29
|
Svane S, Gorshkov V, Kjeldsen F. Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis. Anal Chem 2015; 87:8732-9. [PMID: 26189465 DOI: 10.1021/acs.analchem.5b01536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID spectra of {LGa2}(5+)-bound phosphoinositides generally resulted in fragment ions corresponding to loss of the full diglyceride chain as well as the remaining headgroup bound to {LGa2}(5+) as the most abundant peaks. A number of signature fragment ions of moderate abundance were observed that allowed for distinction between the three regioisomers of 1,2-di(9Z-octadecenoyl)-sn-glycero-3-[phosphoinositol-x,y-bisphosphate] (PI(3,4)P2, PI(3,5)P2, PI(4,5)P2).
Collapse
Affiliation(s)
- Simon Svane
- Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, ‡Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| |
Collapse
|
30
|
Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:620-8. [PMID: 25633344 PMCID: PMC4540326 DOI: 10.1016/j.bbalip.2015.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 01/08/2023]
Abstract
The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458, USA.
| |
Collapse
|
31
|
Multidimensional mass spectrometry-based shotgun lipidomics analysis of vinyl ether diglycerides. Anal Bioanal Chem 2015; 407:5199-210. [PMID: 25822162 DOI: 10.1007/s00216-015-8640-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
Diglycerides play a central role in lipid metabolism and signaling in mammalian cells. Although diacylglycerol molecular species comprise the majority of cellular diglycerides that are commonly measured using a variety of approaches, identification of extremely low abundance vinyl ether diglycerides has remained challenging. In this work, representative molecular species from the three diglyceride subclasses (diacyl, vinyl ether, and alkyl ether diglycerides; hereafter referred to as diradylglycerols) were interrogated by mass spectrometric analysis. Product ion mass spectra of the synthesized diradylglycerols with varied chain lengths and degrees of unsaturation demonstrated diagnostic fragmentation patterns indicative of each subclass. Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis of mouse brain and heart lipid extracts were performed using the identified informative signature product ions. Through an array of tandem mass spectrometric analyses utilizing the orthogonal characteristics of neutral loss scanning and precursor ion scanning, the differential fragmentation of each subclass was exploited for high-yield structural analyses. Although molecular ion mass spectra readily identified diacylglycerol molecular species directly from the hexane fractions of tissue extracts enriched in nonpolar lipids, molecular ion peaks corresponding to ether-linked diglycerides were not observable. The power of MDMS-SL utilizing the tandem mass spectrometric array analysis was demonstrated by identification and profiling of individual molecular species of vinyl ether diglycerides in mouse brain and heart from their undetectable molecular ion peaks during MS(1) analysis. Collectively, this technology enabled the identification and profiling of previously inaccessible vinyl ether diglyceride molecular species in mammalian tissues directly from extracts of biologic tissues.
Collapse
|
32
|
Ma Y, Kind T, Yang D, Leon C, Fiehn O. MS2Analyzer: A software for small molecule substructure annotations from accurate tandem mass spectra. Anal Chem 2014; 86:10724-31. [PMID: 25263576 PMCID: PMC4222628 DOI: 10.1021/ac502818e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/27/2014] [Indexed: 01/08/2023]
Abstract
Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/ . As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae.
Collapse
Affiliation(s)
- Yan Ma
- UC
Davis Genome Center−Metabolomics, University of California, Davis, California 95616, United States
| | - Tobias Kind
- UC
Davis Genome Center−Metabolomics, University of California, Davis, California 95616, United States
| | - Dawei Yang
- UC
Davis Genome Center−Metabolomics, University of California, Davis, California 95616, United States
- SPKLOMHNM
and Central Laboratory, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, P. R. China
| | - Carlos Leon
- UC
Davis Genome Center−Metabolomics, University of California, Davis, California 95616, United States
- Biomedical
Engineering School, Carlos III University, Avda Universidad 30, 28911, Leganes, Madrid, Spain
| | - Oliver Fiehn
- UC
Davis Genome Center−Metabolomics, University of California, Davis, California 95616, United States
| |
Collapse
|
33
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
34
|
Özbalci C, Sachsenheimer T, Brügger B. Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol 2013; 1033:3-20. [PMID: 23996167 DOI: 10.1007/978-1-62703-487-6_1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lipid analysis performed by nano-electrospray ionization mass spectrometry is a highly sensitive method for quantification of lipids including all lipid species of a given lipid class. Various instrumental setups are used for quantitative lipid analysis, including different modes of ionization, separation, and detection. Here we describe a work-flow for the rapid and quantitative analysis of lipid species from cellular membranes by direct infusion of lipid extracts to a nano-electrospray ionization triple quadrupole/linear ion trap mass spectrometer.
Collapse
Affiliation(s)
- Cagakan Özbalci
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Krijnse Locker J, Chlanda P, Sachsenheimer T, Brügger B. Poxvirus membrane biogenesis: rupture not disruption. Cell Microbiol 2012; 15:190-9. [PMID: 23168015 DOI: 10.1111/cmi.12072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/02/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Abstract
Enveloped viruses acquire their membrane from the host by budding at, or wrapping by, cellular membranes. Transmission electron microscopy (TEM) images, however, suggested that the prototype member of the poxviridae, vaccinia virus (VACV), may create its membrane 'de novo' with free open ends exposed in the cytosol. Within the frame of the German-wide priority programme we re-addressed the biogenesis and origin of the VACV membrane using electron tomography (ET), cryo-EM and lipid analysis of purified VACV using mass spectrometry (MS). This review discussed how our data led to a model of unconventional membrane biogenesis involving membrane rupture and the generation of a single open membrane from open membrane intermediates. Lipid analyses of purified virus by MS suggest an ER origin with a relatively low cholesterol content compared with whole cells, confirming published data. Unlike previous reports using thin-layer chromatography, no depletion of phosphatidylethanolamine was detected. We did detect, however, an enrichment for phosphatidic acid, diacylglycerol and phosphatidylinositol in the virion. Our data are discussed in the light of other pathogens that may requirecellular membrane rupture during their intracellular life cycle.
Collapse
Affiliation(s)
- Jacomine Krijnse Locker
- Electron Microscopy Core Facility & Department of Infectious Diseases, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
36
|
Duran JM, Campelo F, van Galen J, Sachsenheimer T, Sot J, Egorov MV, Rentero C, Enrich C, Polishchuk RS, Goñi FM, Brügger B, Wieland F, Malhotra V. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO J 2012. [PMID: 23178595 DOI: 10.1038/emboj.2012.317] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D-ceramide-C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D-ceramide-C6-treated HeLa cells revealed an increase in the levels of C6-sphingomyelin, C6-glucosylceramide, and diacylglycerol. D-ceramide-C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D-ceramide-C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6-sphingomyelin prevented liquid-ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes.
Collapse
Affiliation(s)
- Juan M Duran
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Separation technique for the determination of highly polar metabolites in biological samples. Metabolites 2012; 2:496-515. [PMID: 24957644 PMCID: PMC3901216 DOI: 10.3390/metabo2030496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 11/23/2022] Open
Abstract
Metabolomics is a new approach that is based on the systematic study of the full complement of metabolites in a biological sample. Metabolomics has the potential to fundamentally change clinical chemistry and, by extension, the fields of nutrition, toxicology, and medicine. However, it can be difficult to separate highly polar compounds. Mass spectrometry (MS), in combination with capillary electrophoresis (CE), gas chromatography (GC), or high performance liquid chromatography (HPLC) is the key analytical technique on which emerging "omics" technologies, namely, proteomics, metabolomics, and lipidomics, are based. In this review, we introduce various methods for the separation of highly polar metabolites.
Collapse
|