1
|
Sun DS, Lien TS, Chang HH. Virus-Induced Pathogenic Antibodies: Lessons from Long COVID and Dengue Hemorrhage Fever. Int J Mol Sci 2025; 26:1898. [PMID: 40076527 PMCID: PMC11899886 DOI: 10.3390/ijms26051898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Virus-induced antibodies represent a dual-edged sword in the immune response to viral infections. While antibodies are critical for neutralizing pathogens, some can paradoxically exacerbate disease severity through mechanisms such as antibody-dependent enhancement (ADE), autoantibody, and prolonged inflammation. Long coronavirus disease (COVID) and dengue hemorrhagic fever (DHF) exemplify conditions where pathogenic antibodies play a pivotal role in disease progression. Long COVID is associated with persistent immune dysregulation and autoantibody production, leading to chronic symptoms and tissue damage. In DHF, pre-existing antibodies against dengue virus contribute to ADE, amplifying viral replication, immune activation, and vascular permeability. This review explores the mechanisms underlying these pathogenic antibody responses, highlighting the shared pathways of immune dysregulation and comparing the distinct features of both conditions. By examining these studies, we identify key lessons for therapeutic strategies, vaccine design, and future research aimed at mitigating the severe outcomes of viral infections.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
| | | | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-S.S.); (T.-S.L.)
| |
Collapse
|
2
|
Tao T, Tian L, Ke J, Zhang C, Li M, Xu X, Fan J, Tong Y, Fan H. Antibody-dependent enhancement of coronaviruses. Int J Biol Sci 2025; 21:1686-1704. [PMID: 39990674 PMCID: PMC11844293 DOI: 10.7150/ijbs.96112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
The COVID-19 pandemic presents a significant challenge to the global health and the world economy, with humanity engaged in an extended struggle against the virus. Notable advancements have been achieved in the development of vaccines and therapeutic interventions, including the application of neutralizing antibodies (NAbs) and convalescent plasma (CP). While antibody-dependent enhancement (ADE) has not been observed in human clinical studies related to SARS-CoV-2, the potential for ADE remains a critical concern and challenge in addressing SARS-CoV-2 infections. Moreover, the causal relationship between ADE and viral characteristics remains to be clearly elucidated. Viruses that present with severe clinical manifestations of ADE have demonstrated the capacity to replicate in macrophages or other immune cells, or to alter the immunological status of these cells, which induces abortive infections characterized by systemic inflammation. In this review, we summarize experimental observations and clinical evidence concerning the ADE effect associated with coronaviruses. We critically examine the potential mechanisms through which coronaviruses mediate ADE, and propose strategies to mitigate this phenomenon in the context of viral infection treatment. Our aim is to offer informed recommendations for the containment of the COVID-19 pandemic and to strengthen the response to SARS-CoV-2, as well as to prepare for potential future coronavirus threats.
Collapse
Affiliation(s)
- Tao Tao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Ke
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuxie Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
da Silva Lima LC, Woiski TD, de Moura JF, Rosati R, Minozzo JC, da Silva EH, Lucena ACR, Antunes BC, Caldas S, Duarte MM, Santos MA, Gusso RLF, de Moura EL, Silva APS, Potzecki L, Maria Ferreira D, Fernandes ES, de Figueiredo BC, de Souza LM. Immunogenic Potential of Selected Peptides from SARS-CoV-2 Proteins and Their Ability to Block S1/ACE-2 Binding. Viruses 2025; 17:165. [PMID: 40006920 PMCID: PMC11860825 DOI: 10.3390/v17020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The first infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the coronavirus disease 2019 (COVID-19), occurred in December 2019. Within a single month, the disease reached other countries, spreading in a rapid and generalized manner worldwide to cause the COVID-19 pandemic. In Brazil, the number of COVID-19 cases surpassed 38 million. This study was conducted to produce antibodies against SARS-CoV-2 and investigate the immunogenic potential of synthetic peptides containing partial sequences of the main proteins (spike, membrane, and nucleocapsid proteins). In addition, we evaluated the ability of the antibodies to impair the interaction between the spike S1 protein and human ACE-2 protein, which is the main route of entry of the virus into host cells. By immunizing horses with synthetic peptides, we obtained hyperimmune sera with specific anti-SARS-CoV-2 antibodies, which were fragmented to release the F(ab')2 portion that binds to the different SARS-CoV-2 proteins as a recombinant S1-protein and proteins from a viral lysate. The other F(ab')2 samples also impaired the interaction between S1 protein and ACE-2 proteins, showing high potential to prevent viral spreading.
Collapse
Affiliation(s)
- Lara Cristina da Silva Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Thiago Demetrius Woiski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
| | | | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - João Carlos Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Emeline Huk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
| | - Aline Castro Rodrigues Lucena
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Bruno Cezar Antunes
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Sérgio Caldas
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil; (S.C.); (M.M.D.)
| | - Myrian Morato Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil; (S.C.); (M.M.D.)
| | - Maurício Abreu Santos
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil; (S.C.); (M.M.D.)
| | - Rubens Luiz Ferreira Gusso
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Erickson Luiz de Moura
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Ana Paula Santos Silva
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Luciana Potzecki
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Bonald Cavalcante de Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Lauro Mera de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
4
|
Sergeeva MV, Vasilev K, Romanovskaya-Romanko E, Yolshin N, Pulkina A, Shamakova D, Shurygina AP, Muzhikyan A, Lioznov D, Stukova M. Mucosal Immunization with an Influenza Vector Carrying SARS-CoV-2 N Protein Protects Naïve Mice and Prevents Disease Enhancement in Seropositive Th2-Prone Mice. Vaccines (Basel) 2024; 13:15. [PMID: 39852794 PMCID: PMC11769390 DOI: 10.3390/vaccines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame. Methods: We generated several FluVec-N recombinant vectors by reverse genetics and confirmed the vector's genetic stability, antigen expression in vitro, attenuation, and immunogenicity in a mouse model. We tested the protective potential of FluVec-N intranasal immunization in naïve mice and seropositive Th2-prone mice, primed with aluminium-adjuvanted inactivated SARS-CoV-2. Immune response in immunized and challenged mice was analyzed through serological methods and flow cytometry. Results: Double intranasal immunization of naïve mice with FluVec-N reduced weight loss and viral load in the lungs following infection with the SARS-CoV-2 beta variant. Mice primed with alum-adjuvanted inactivated coronavirus experienced substantial early weight loss and eosinophilia in the lungs during infection, demonstrating signs of enhanced disease. A single intranasal boost immunization with FluVec-N prevented the disease enhancement in primed mice by modulating the local immune response. Protection was associated with the formation of specific IgA and the early activation of virus-specific effector and resident CD8+ lymphocytes in mouse lungs. Conclusions: Our study supports the potential of immunization with influenza vector vaccines to prevent respiratory diseases and associated immunopathology.
Collapse
Affiliation(s)
- Mariia V. Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| | | | | | | | | | | | | | | | | | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| |
Collapse
|
5
|
Nakayama EE, Shioda T. Detrimental Effects of Anti-Nucleocapsid Antibodies in SARS-CoV-2 Infection, Reinfection, and the Post-Acute Sequelae of COVID-19. Pathogens 2024; 13:1109. [PMID: 39770368 PMCID: PMC11728538 DOI: 10.3390/pathogens13121109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies enhance subsequent viral infections rather than preventing them. Sub-optimal levels of neutralizing antibodies in individuals infected with dengue virus are known to be associated with severe disease upon reinfection with a different dengue virus serotype. For Severe Acute Respiratory Syndrome Coronavirus type-2 infection, three types of ADE have been proposed: (1) Fc receptor-dependent ADE of infection in cells expressing Fc receptors, such as macrophages by anti-spike antibodies, (2) Fc receptor-independent ADE of infection in epithelial cells by anti-spike antibodies, and (3) Fc receptor-dependent ADE of cytokine production in cells expressing Fc receptors, such as macrophages by anti-nucleocapsid antibodies. This review focuses on the Fc receptor-dependent ADE of cytokine production induced by anti-nucleocapsid antibodies, examining its potential role in severe COVID-19 during reinfection and its contribution to the post-acute sequelae of COVID-19, i.e., prolonged symptoms lasting at least three months after the acute phase of the disease. We also discuss the protective effects of recently identified anti-spike antibodies that neutralize Omicron variants.
Collapse
Affiliation(s)
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
6
|
García AH, De Sanctis JB. Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era. Int J Mol Sci 2024; 25:11624. [PMID: 39519178 PMCID: PMC11546508 DOI: 10.3390/ijms252111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Extensive research has been conducted on the SARS-CoV-2 virus in association with various infectious diseases to understand the pathophysiology of the infection and potential co-infections. In tropical countries, exposure to local viruses may alter the course of SARS-CoV-2 infection and coinfection. Notably, only a portion of the antibodies produced against SARS-CoV-2 proteins demonstrate neutralizing properties, and the immune response following natural infection tends to be temporary. In contrast, long-lasting IgG antibodies are common after dengue virus infections. In cases where preexisting antibodies from an initial dengue virus infection bind to a different dengue serotype during a subsequent infection, there is a potential for antibody-dependent enhancement (ADE) and the formation of immune complexes associated with disease severity. Both SARS-CoV-2 and dengue infections can result in immunodeficiency. Viral proteins of both viruses interfere with the host's IFN-I signaling. Additionally, a cytokine storm can occur after viral infection, impairing a proper response, and autoantibodies against a wide array of proteins can appear during convalescence. Most of the reported autoantibodies are typically short-lived. Vaccines against both viruses alter the immune response, affecting the course of viral infection and enhancing clearance. A comprehensive analysis of both viral infections and pathogenicity is revisited to prevent infection, severity, and mortality.
Collapse
Affiliation(s)
- Alexis Hipólito García
- Institute of Immunology Nicolás Enrique Bianco, Faculty of Medicine, Universidad Central de Venezuela, Caracas 1050, Venezuela
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| |
Collapse
|
7
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Lechuga GC, Temerozo JR, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Bou-Habib DC, Morel CM, Provance DW, Souza TML, De-Simone SG. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int J Mol Sci 2024; 25:8180. [PMID: 39125749 PMCID: PMC11311977 DOI: 10.3390/ijms25158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (J.R.T.); (D.C.B.-H.)
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
| | - Thiago M. L. Souza
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswald Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (C.M.M.); (T.M.L.S.)
- Graduate Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24220-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
9
|
Antonyan T, Chilingaryan G, Zagorski K, Ghazaryan M, Hovakimyan A, Davtyan H, Petrushina I, King O, Kniazev R, Petrovsky N, Ghochikyan A. MultiTEP-Based Vaccines Targeting SARS-CoV-2 Spike Protein IgG Epitopes Elicit Robust Binding Antibody Titers with Limited Virus-Neutralizing Activity. Pathogens 2024; 13:520. [PMID: 38921817 PMCID: PMC11206316 DOI: 10.3390/pathogens13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the universal platform for vaccine development, MultiTEP, which has been utilized in this study to generate a range of SARS-CoV-2 epitope vaccine candidates. We prepared and characterized 18 vaccines incorporating small peptide fragments from SARS-CoV-2 Spike protein fused with the MultiTEP sequence using overlapping PCR. Wild-type mice were immunized intramuscularly with the immunogen formulated in AdvaxCpG adjuvant. Serum antibodies were detected by ELISA, surrogate neutralization, and pseudovirus neutralization assays. Finally, the most promising vaccine candidate was administered to three non-human primates. All vaccines generated high titers of spike-binding IgG antibodies. However, only three vaccines generated antibodies that blocked RBD binding to the ACE2 receptor in a surrogate virus neutralization assay. However, none of the vaccines induced antibodies able to neutralize pseudotype viruses, including after the administration of the lead vaccine to NHPs. MultiTEP-based COVID-19 vaccines elicited robust, IgG-binding responses against the Spike protein in mice and non-human primates, but these antibodies were not neutralizing, underscoring the need to refine this approach further.
Collapse
Affiliation(s)
- Tatevik Antonyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Garri Chilingaryan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Karen Zagorski
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Manush Ghazaryan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Armine Hovakimyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Hayk Davtyan
- Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Olga King
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | - Roman Kniazev
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| | | | - Anahit Ghochikyan
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; (T.A.)
| |
Collapse
|
10
|
Thomas S, Smatti MK, Alsulaiti H, Zedan HT, Eid AH, Hssain AA, Abu Raddad LJ, Gentilcore G, Ouhtit A, Althani AA, Nasrallah GK, Grivel JC, Yassine HM. Antibody-dependent enhancement (ADE) of SARS-CoV-2 in patients exposed to MERS-CoV and SARS-CoV-2 antigens. J Med Virol 2024; 96:e29628. [PMID: 38682568 DOI: 10.1002/jmv.29628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/15/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Haya Alsulaiti
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Hadeel T Zedan
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- College of Medicine-QU Health, Qatar University, Doha, Qatar
| | - Ali A Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Department of Population Health Sciences, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Asmaa A Althani
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Sasi A, Dandotiya J, Kaushal J, Ganguly S, Binayke A, Ambika KM, Shree A, Jahan F, Sharma P, Suri TM, Awasthi A, Bakhshi S. Humoral and cellular immunity to SARS-CoV-2 following vaccination with non-mRNA vaccines in adolescent/young adults with cancer: A prospective cohort study. Vaccine 2024; 42:2722-2728. [PMID: 38514355 DOI: 10.1016/j.vaccine.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Data on SARS-CoV-2 vaccine responsiveness in adolescent/young adult (AYA) cancer patients are sparse. The present study assessed humoral and cellular immune responses post-vaccination in this population. METHODS In this prospective study, patients aged 12-30 years undergoing cancer therapy ("on therapy") and survivors ("off therapy") were recruited. Anti-receptor binding domain (RBD) protein IgG levels were measured at baseline, four weeks post-first vaccine dose (T1), and six weeks post-second dose (T2). Cellular immunity was assessed using activation-induced markers and intracellular cytokine staining in a patient subset. The primary outcome was to quantify humoral responses in both cohorts at T2 compared to baseline. Clinical predictors of log antibody titres at T2 were identified. RESULTS Between April-December 2022, 118 patients were recruited of median age 15.4 years. Among them, 77 (65.2 %) were in the "on therapy" group, and 77 (65.2 %) had received the BBV152 vaccine. At baseline, 108 (91.5 %) patients were seropositive for anti-RBD antibody. The log anti-RBD titre rose from baseline to T2 (p-value = 0.001) in the whole cohort; this rise was significant from baseline-T1 (p-value < 0.001), but not from T1 to T2 (p-value = 0.842). A similar pattern was seen in the "on therapy" cohort. BECOV-2 vaccine was independently associated with higher log anti-RBD titres than BBV152 (regression coefficient: 0.41; 95 % CI: 0.10-0.73; p = 0.011). Cellular immune responses were similar in the "on-" and "off therapy" groups at the three time points. CONCLUSION Among AYA cancer patients, a single non-mRNA vaccine dose confers robust hybrid humoral immunity with limited benefit from a second dose.
Collapse
Affiliation(s)
- Archana Sasi
- Department of Medical Oncology, Dr. BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India; Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyotsana Kaushal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India; Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Dr. BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Akshay Binayke
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India; Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - K M Ambika
- Department of Medical Oncology, Dr. BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Akshi Shree
- Department of Medical Oncology, Dr. BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Farhana Jahan
- Department of Medical Oncology, Dr. BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Sharma
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India; Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Tejas Menon Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Sitaram Bhartia Institute of Science & Research, New Delhi, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India; Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India.
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Bartels M, Sala Solé E, Sauerschnig LM, Rijkers GT. Back to the Future: Immune Protection or Enhancement of Future Coronaviruses. Microorganisms 2024; 12:617. [PMID: 38543668 PMCID: PMC10975256 DOI: 10.3390/microorganisms12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 11/12/2024] Open
Abstract
Before the emergence of SARS-CoV-1, MERS-CoV, and most recently, SARS-CoV-2, four other coronaviruses (the alpha coronaviruses NL63 and 229E and the beta coronaviruses OC43 and HKU1) had already been circulating in the human population. These circulating coronaviruses all cause mild respiratory illness during the winter seasons, and most people are already infected in early life. Could antibodies and/or T cells, especially against the beta coronaviruses, have offered some form of protection against (severe) COVID-19 caused by infection with SARS-CoV-2? Related is the question of whether survivors of SARS-CoV-1 or MERS-CoV would be relatively protected against SARS-CoV-2. More importantly, would humoral and cellular immunological memory generated during the SARS-CoV-2 pandemic, either by infection or vaccination, offer protection against future coronaviruses? Or rather than protection, could antibody-dependent enhancement have taken place, a mechanism by which circulating corona antibodies enhance the severity of COVID-19? Another related phenomenon, the original antigenic sin, would also predict that the effectiveness of the immune response to future coronaviruses would be impaired because of the reactivation of memory against irrelevant epitopes. The currently available evidence indicates that latter scenarios are highly unlikely and that especially cytotoxic memory T cells directed against conserved epitopes of human coronaviruses could at least offer partial protection against future coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Ger T. Rijkers
- Science and Engineering Department, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.B.); (E.S.S.); (L.M.S.)
| |
Collapse
|
13
|
Pal R, Ferrari MG, Honda-Okubo Y, Wattay L, Caple J, Navarrete J, Andersen H, Petrovsky N. Study of immunogenicity and efficacy against Omicron BA.5 of recombinant protein-based COVID-19 vaccine delivered by intramuscular and mucosal routes in nonhuman primates. Vaccine 2024; 42:1122-1135. [PMID: 38262808 DOI: 10.1016/j.vaccine.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND With SARS-CoV-2 continuing to evolve, there is a need to adapt COVID-19 vaccines to enhance mucosal immunity and better address immune-evasive variants. This pilot study was performed in mice and rhesus macaques to compare Advax-adjuvanted monovalent and bivalent recombinant spike protein vaccines, including when delivered via a combination of intramuscular (IM) and intrapulmonary (IPM) or oral routes. METHODS Mice were first used to compare the immunogenicity of monovalent and bivalent vaccines containing a variety of spike protein variants. Then, rhesus macaques (n = 23) were divided into 5 groups to receive COVID-19 vaccines via different routes. Clinical signs, local vaccination site reactions, body weight, food consumption, serum, alveolar lavage, nasal and oral antibody levels, and nasal and alveolar lavage virus loads were assessed in response to a heterologous Omicron BA.5 virus challenge. RESULTS The Wuhan + Mu bivalent vaccine gave the most broadly cross-neutralizing antibody responses. Robust serum neutralizing antibodies against Wuhan, Delta and Lambda variants were obtained, but BA.5 neutralizing antibodies were not detectable pre-challenge. Overall, the IM x3 and the IM x2 plus oral x2 vaccines delivered the best protection, with reduced lung virus load versus unimmunized controls across Days 2, 4 and 7. CONCLUSIONS Advax-adjuvanted monovalent or bivalent recombinant spike protein vaccines given via parenteral and/or mucosal routes protected against a heterologous BA.5 challenge, despite absent serum BA.5 neutralizing antibody, pre-challenge. The possibility of using an oral Advax-adjuvanted protein booster to provide broad protection against newer SARS-CoV-2 variants warrants further investigation.
Collapse
Affiliation(s)
- Ranajit Pal
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | | | | | - Lauren Wattay
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Jesica Caple
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Jennifer Navarrete
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Hanne Andersen
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11-13 Walkley Avenue, Warradale, SA 5046, Australia.
| |
Collapse
|
14
|
Govednik T, Lainšček D, Kuhar U, Lachish M, Janežič S, Štrbenc M, Krapež U, Jerala R, Atlas D, Manček-Keber M. TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences. Antiviral Res 2024; 222:105806. [PMID: 38211737 DOI: 10.1016/j.antiviral.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.
Collapse
Affiliation(s)
- Tea Govednik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Marva Lachish
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, 2000, Maribor, Slovenia
| | - Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Daphne Atlas
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Hulst M, Kant A, Harders-Westerveen J, Hoffmann M, Xie Y, Laheij C, Murk JL, Van der Poel WHM. Cross-Reactivity of Human, Wild Boar, and Farm Animal Sera from Pre- and Post-Pandemic Periods with Alpha- and Βeta-Coronaviruses (CoV), including SARS-CoV-2. Viruses 2023; 16:34. [PMID: 38257734 PMCID: PMC10821012 DOI: 10.3390/v16010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Panels of pre- and post-pandemic farm animals, wild boar and human sera, including human sera able to neutralize SARS-CoV-2 in vitro, were tested in serological tests to determine their cross-reactivity with β- and α-CoV originating from farm animals. Sera were tested in neutralization assays with high ascending concentrations (up to 1 × 104 TCID50 units/well) of β-CoV Bovine coronavirus (BCV), SARS-CoV-2, and porcine α-CoV-transmissible gastroenteritis virus (TGEV). In addition, sera were tested for immunostaining of cells infected with β-CoV porcine hemagglutinating encephalomyelitis (PHEV). Testing revealed a significantly higher percentage of BCV neutralization (78%) for sera of humans that had experienced a SARS-CoV-2 infection (SARS-CoV-2 convalescent sera) than was observed for human pre-pandemic sera (37%). Also, 46% of these human SARS-CoV-2 convalescent sera neutralized the highest concentration of BCV (5 × 103 TCID50/well) tested, whereas only 9.6% of the pre-pandemic sera did. Largely similar percentages were observed for staining of PHEV-infected cells by these panels of human sera. Furthermore, post-pandemic sera collected from wild boars living near a densely populated area in The Netherlands also showed a higher percentage (43%) and stronger BCV neutralization than was observed for pre-pandemic sera from this area (21%) and for pre- (28%) and post-pandemic (20%) sera collected from wild boars living in a nature reserve park with limited access for the public. High percentages of BCV neutralization were observed for pre- and post-pandemic sera of cows (100%), pigs (up to 45%), sheep (36%) and rabbits (60%). However, this cross-neutralization was restricted to sera collected from specific herds or farms. TGEV was neutralized only by sera of pigs (68%) and a few wild boar sera (4.6%). None of the BCV and PHEV cross-reacting human pre-pandemic, wild boar and farm animal sera effectively neutralized SARS-CoV-2 in vitro. Preexisting antibodies in human sera effectively neutralized the animal β-CoV BCV in vitro. This cross-neutralization was boosted after humans had experienced a SARS-CoV-2 infection, indicating that SARS-CoV-2 activated a "memory" antibody response against structurally related epitopes expressed on the surface of a broad range of heterologous CoV, including β-CoV isolated from farm animals. Further research is needed to elucidate if a symptomless infection or environmental exposure to SARS-CoV-2 or another β-CoV also triggers such a "memory" antibody response in wild boars and other free-living animals.
Collapse
Affiliation(s)
- Marcel Hulst
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| | - Arie Kant
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| | - José Harders-Westerveen
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Yajing Xie
- Institute of Food Safety and Nutrition Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | | | - Jean-Luc Murk
- Microvida, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands;
| | - Wim H. M. Van der Poel
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| |
Collapse
|
16
|
Lusiany T, Terada T, Kishikawa JI, Hirose M, Chen DV, Sugihara F, Ismanto HS, van Eerden FJ, Li S, Kato T, Arase H, Yoshiharu M, Okada M, Standley DM. Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies. Viruses 2023; 15:2421. [PMID: 38140662 PMCID: PMC10747171 DOI: 10.3390/v15122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)-NTD complexes, supported by molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tina Lusiany
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan;
| | - Jun-ichi Kishikawa
- Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (J.-i.K.); (M.H.); (T.K.)
| | - Mika Hirose
- Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (J.-i.K.); (M.H.); (T.K.)
| | - David Virya Chen
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan;
| | - Fuminori Sugihara
- Core Facility, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Osaka 565-0871, Japan;
| | - Hendra Saputra Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
| | - Floris J. van Eerden
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
| | - Songling Li
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
| | - Takayuki Kato
- Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (J.-i.K.); (M.H.); (T.K.)
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan;
- Department of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Matsuura Yoshiharu
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan;
| | - Masato Okada
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita 565-0871, Japan;
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
| |
Collapse
|
17
|
Honda-Okubo Y, Bowen R, Barker M, Bielefeldt-Ohmann H, Petrovsky N. Advax-CpG55.2-adjuvanted monovalent or trivalent SARS-CoV-2 recombinant spike protein vaccine protects hamsters against heterologous infection with Beta or Delta variants. Vaccine 2023; 41:7116-7128. [PMID: 37863669 PMCID: PMC10873063 DOI: 10.1016/j.vaccine.2023.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The ongoing evolution of SARS-CoV-2 variants emphasizes the need for vaccines providing broad cross-protective immunity. This study was undertaken to assess the ability of Advax-CpG55.2 adjuvanted monovalent recombinant spike protein (Wuhan, Beta, Gamma) vaccines or a trivalent formulation to protect hamsters againstBeta or Delta virus infection. The ability of vaccines to block virus transmission to naïve co-housed animals was also assessed. In naïve hosts, the Beta variant induced higher virus loads than the Delta variant, and conversely the Delta variant caused more severe disease and was more likely to be associated with virus transmission. The trivalent vaccine formulation provided the best protection against both Beta and Delta infection and also completely prevented virus transmission. The next best performing vaccine was the original monovalent Wuhan-based vaccine. Notably, hamsters that received the monovalent Gamma spike vaccine had the highest viral loads and clinical disease of all the vaccine groups, a potential signal of antibody dependent-enhancement (ADE). These hamsters were also the most likely to transmit Delta virus to naïve recipients. In murine studies, the Gamma spike vaccine induced the highest total spike protein to RBD IgG ratio and the lowest levels of neutralizing antibody, a context that could predispose to ADE. Overall, the study results confirmed that the current SpikoGen® vaccine based on Wuhan spike protein was still able to protect against clinical disease caused by either the Beta or Delta virus variants but suggested additional protection may be obtained by combining it with extra variant spike proteins to make a multivalent formulation. This study highlights the complexity of optimizing vaccine protection against multiple SARS-CoV-2 variants and stresses the need to continue to pursue new and improved COVID-19 vaccines able to provide robust, long-lasting, and broadly cross-protective immunity against constantly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mckinzee Barker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | | |
Collapse
|
18
|
Hasan A, Rahim R, Nakayama EE, Uno K, Hasan N, Rahman M, Shioda T. Enhancement of IL-6 Production Induced by SARS-CoV-2 Nucleocapsid Protein and Bangladeshi COVID-19 Patients' Sera. Viruses 2023; 15:2018. [PMID: 37896795 PMCID: PMC10611338 DOI: 10.3390/v15102018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by severe acute respiratory syndrome coronavirus 2 that can have detrimental effects on multiple organs and accelerate patient mortality. This study, which encompassed 130 confirmed COVID-19 patients who were assessed at three different time points (i.e., 3, 7, and 12 days) after the onset of symptoms, investigated interleukin-6 (IL-6) enhancement induced by a viral nucleocapsid (N) protein from a myeloid cell line. Disease severity was categorized as mild, moderate, or severe. The severe cases were characterized as having significant elevations in serum IL-6, C-reactive protein, D-dimer, ferritin, creatinine, leukocytes, and neutrophil-to-lymphocyte ratio and decreased hemoglobin, hematocrit, and albumin levels compared with mild and moderate cases. To evaluate IL-6-inducing activity, heat-inactivated sera from these patients were incubated with and without the N protein. The findings showed a progressive increase in IL-6 production in severe cases upon N protein stimulation. There was a strong correlation between anti-N antibodies and levels of IL-6 secreted by myeloid cells in the presence of N protein and sera, indicating the crucial role that the anti-N antibody plays in inducing IL-6 production. Uncontrolled IL-6 production played a pivotal role in disease pathogenesis, exacerbating both disease severity and mortality. Efficiently targeting the N protein could potentially be employed as a therapeutic strategy for regulating the immune response and alleviating inflammation in severe cases.
Collapse
Affiliation(s)
- Abu Hasan
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Rummana Rahim
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Emi E. Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan;
| | - Kazuko Uno
- IFN & Host-Defense Research Laboratory, Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan;
| | - Nazmul Hasan
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Mizanur Rahman
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan;
| |
Collapse
|