1
|
Kaczmarek A, Boguś MI. The activation of caspases in immunocompetent cells is an important infection factor of the pathogenic fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae). J Invertebr Pathol 2025; 211:108328. [PMID: 40188939 DOI: 10.1016/j.jip.2025.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/30/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Apoptosis is a mechanism commonly used by pathogenic fungi to inhibit the host's immune response. One opportunistic pathogen is Conidiobolus coronatus, which causes fungal infection in mammals and insects. In a study, larvae of Galleria mellonella were exposed to the pathogen for 24 h. After this exposure, some larvae were used for hemolymph collection (F24), while others were incubated for an additional 24 h (F48). The activity of caspase-9 and caspase-3-like proteins in hemocytes was measured using a colorimetric method. The changes in caspase concentration were calculated using ELISA tests. Immunocytochemical analyses were employed to show changes in the levels of the examined proteins in both their pro- and active forms. Fluorescence microscopy was used to detect changes in cultured hemocytes and flow cytometry analysis was conducted to detect both forms of caspases in freshly collected hemocytes. To evaluate the effect of fungal infection, caspase inhibitors (Z-DEVD-FMK and Z-LEHD-FMK) were injected into the larvae, and their impact on insect development and resistance to fungal infection was determined. The exposure of larvae to the entomopathogen increased the detection levels, concentrations, and activity of both caspase-like proteins in hemocytes during fungal infection. The research has indicated that inhibition of these proteins disrupts larval development and increases resistance to infection. These results suggest that apoptosis might be an important mechanism for a pathogen to inhibit the insect immune response. Given the similarities between insects' and mammals' innate immune responses, the presented results may indicate a potential mechanism of fungal pathogenicity in both groups.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55 00-818 Warsaw, Poland.
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55 00-818 Warsaw, Poland
| |
Collapse
|
2
|
Wei K, Arlotto M, Overhulse JM, Dinh TA, Zhou Y, Dupper NJ, Yang J, Kashemirov BA, Dawi H, Garnaud C, Bourgine G, Mietton F, Champleboux M, Larabi A, Hayat Y, Indorato RL, Noirclerc-Savoye M, Skoufias D, Cornet M, Rabut G, McKenna CE, Petosa C, Govin J. Humanized Candida and NanoBiT Assays Expedite Discovery of Bdf1 Bromodomain Inhibitors With Antifungal Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404260. [PMID: 39821709 PMCID: PMC11904993 DOI: 10.1002/advs.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Indexed: 01/19/2025]
Abstract
The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4. On-target antifungal activity is established by devising two yeast-based inhibition assays: a growth assay using humanized Candida strains in which the Bdf1 BDs are replaced by their Brd4 counterparts, and a NanoBiT assay that evaluates the BD-mediated association of Bdf1 with chromatin. These assays additionally enable the discovery that BET inhibitor I-BET726 targets both Bdf1 BDs, inhibits the growth of a broad spectrum of Candida species, including antifungal-resistant clinical isolates, and displays efficacy in an invertebrate animal model of infection. These collective findings highlight the promising potential of Bdf1 BD inhibitors as an innovative class of antifungal therapeutics and the pivotal role of yeast-based assay development toward achieving this end.
Collapse
Affiliation(s)
- Kaiyao Wei
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Marie Arlotto
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Justin M Overhulse
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, CA, 90089, USA
| | - Tuan-Anh Dinh
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, Laboratoire TIMC, Grenoble, 38000, France
| | - Yingsheng Zhou
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, CA, 90089, USA
| | - Nathan J Dupper
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, CA, 90089, USA
| | - Jiayi Yang
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, CA, 90089, USA
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, CA, 90089, USA
| | - Hasan Dawi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | - Cécile Garnaud
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, Laboratoire TIMC, Grenoble, 38000, France
| | - Gaëlle Bourgine
- Univ. Rennes, CNRS, INSERM, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, U1305, Rennes, 35000, France
| | - Flore Mietton
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | - Morgane Champleboux
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Amédé Larabi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | - Yordan Hayat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | - Rose-Laure Indorato
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | | | - Dimitrios Skoufias
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | - Muriel Cornet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, Laboratoire TIMC, Grenoble, 38000, France
| | - Gwenaël Rabut
- Univ. Rennes, CNRS, INSERM, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, U1305, Rennes, 35000, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, CA, 90089, USA
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, 38000, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| |
Collapse
|
3
|
Aroonvuthiphong V, Bangphoomi N. Therapeutic alternatives for sporotrichosis induced by wild-type and non-wild-type Sporothrix schenckii through in vitro and in vivo assessment of enilconazole, isavuconazole, posaconazole, and terbinafine. Sci Rep 2025; 15:3230. [PMID: 39863777 PMCID: PMC11762301 DOI: 10.1038/s41598-025-87711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates. Two isolates were assessed using time-kill assays, checkerboard assays, and Galleria mellonella infection models. In vitro studies have shown that all of these drugs were more effective than or equal to ITC against WT and non-WT isolates. No ITC resistance was observed with other azoles. All drugs inhibited fungal growth of WT and non-WT strains within 24 h at all incubations. ENIL and TER showed fungicidal effect against types at over 2x minimum inhibitory concentrations with no regrowth. POS was fungicidal against WT at high concentrations but not against non-WT. ISA was only fungicidal for non-WT. ITC did not exhibit any fungicidal activity. In checkerboard experiments, the combination of POS or ISA with TER showed enhanced activity against WT and non-WT strains, surpassing the combination of ITC with TER. In vivo model experiments demonstrated significantly reduced mortality rates with ENIL, POS, and TER against WT and with ENIL, ISA, POS, and TER against non-WT. The study concludes that monotherapy with ENIL, ISA, POS, and TER, and combinations of POS/TER or ISA/TER, show promise as effective antifungal treatments against S. schenckii, including ITC-non-WT isolates.
Collapse
Affiliation(s)
- Vasurom Aroonvuthiphong
- Veterinary Biomedical Science Program, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand
| | - Norasuthi Bangphoomi
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand.
| |
Collapse
|
4
|
Kaczmarek A, Wrońska AK, Sobich J, Boguś MI. The multifunctional role of IFN-γ in Galleria mellonella (Lepidoptera) immunocompetent cells. Cytokine 2025; 185:156804. [PMID: 39546818 DOI: 10.1016/j.cyto.2024.156804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Cytokines are highly conserved between mammals and insects. The present study examines the multiple effects of interferon-gamma (IFN-γ) application on the immunological defence mechanisms of Galleria mellonella larvae, invertebrates which are gaining popularity as a replacement for mammalian research models in immunological studies. G. mellonella hemolymph is known to contain an IFN-γ homolog that shares 33 % similarity with its mammalian analogue, and its level in insect hemocytes increases during exposition to entomopathogenic fungus Conidiobolus coronatus. The present research examines the impact of IFN-γ on larval development, the effectiveness of fungal infection, and the morphology and physiology of wax moth immunocompetent cells. Treatment with IFN-γ enhanced wound healing, chemotaxis activity and hemocyte impedance, while reducing hemocyte phagocytosis and oxidative stress in cultured immunocompetent cells; it also appears to increase the levels of Jak-2- and NF-κB-like molecules in hemocytes. Our findings suggest that IFN-γ demonstrated considerable similarity between mammals and humans, thus further demonstrating the evolutionary conservatism of cytokines.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland.
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | - Justyna Sobich
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| |
Collapse
|
5
|
Vanhoffelen E, Vermoesen L, Michiels L, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Sensitive bioluminescence imaging of cryptococcosis in Galleria mellonella improves antifungal screening under in vivo conditions. Virulence 2024; 15:2327883. [PMID: 38465639 PMCID: PMC10939141 DOI: 10.1080/21505594.2024.2327883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Cryptococcus neoformans is an environmental yeast that primarily affects immunocompromised individuals, causing respiratory infections and life-threatening meningoencephalitis. Treatment is complicated by limited antifungal options, with concerns such as adverse effects, dose-limiting toxicity, blood-brain barrier permeability, and resistance development, emphasizing the critical need to optimize and expand current treatment options against invasive cryptococcosis. Galleria mellonella larvae have been introduced as an ethical intermediate for in vivo testing, bridging the gap between in vitro antifungal screening and mouse studies. However, current infection readouts in G. mellonella are indirect, insensitive, or invasive, which hampers the full potential of the model. To address the absence of a reliable non-invasive method for tracking infection, we longitudinally quantified the cryptococcal burden in G. mellonella using bioluminescence imaging (BLI). After infection with firefly luciferase-expressing C. neoformans, the resulting bioluminescence signal was quantitatively validated using colony-forming unit analysis. Longitudinal comparison of BLI to health and survival analysis revealed increased sensitivity of BLI in discriminating cryptococcal burden during early infection. Furthermore, BLI improved the detection of treatment efficacy using first-line antifungals, thereby benchmarking this model for antifungal testing. In conclusion, we introduced BLI as a real-time, quantitative readout of cryptococcal burden in G. mellonella over time, enabling more sensitive and reliable antifungal screening.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Lori Vermoesen
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KULeuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| |
Collapse
|
6
|
Bila NM, Vaso CO, Belizário JA, Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Costa-Orlandi CB, Mendes-Giannini MJS. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics 2024; 16:1523. [PMID: 39771502 PMCID: PMC11728496 DOI: 10.3390/pharmaceutics16121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations. OBJECTIVE The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone. METHODS Cytotoxicity was assessed in two cellular models: monolayer (2D) and 3D. For this purpose, spheroids of two cell lines, primary dermal fibroblasts (HDFa) and adult human epidermal cell keratinocytes (HaCat), were developed and characterized following criteria on cell viability, shape, diameter, and number of cells. The survival percentages of Caenorhabditis elegans and Galleria mellonella were evaluated at 1 and 7 days, respectively. RESULTS The findings indicated that all the assessed platforms are appropriate for investigating PDT toxicity. Furthermore, 2-hydroxychalcone demonstrated low toxicity in the absence of light and when mediated by PDT across a range of in vitro (2D and 3D cultures) and in vivo (invertebrate animal models, including G. mellonella and C. elegans) models. CONCLUSION There was a strong correlation between the in vitro and in vivo tests, with similar toxicity results, particularly in the 3D models and C. elegans, where the concentration for 50% viability was approximately 100 µg/mL.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
- Department of Public Health, School of Veterinary, Universidade Eduardo Modlane (UEM), Maputo 257, Mozambique
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Jenyffie Araújo Belizário
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Letícia Ribeiro Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| |
Collapse
|
7
|
Berryhill BA, Gil-Gil T, Witzany C, Goldberg DA, Vega NM, Regoes RR, Levin BR. The dynamics of Staphylococcal infection and their treatment with antibiotics and bacteriophage in the Galleria mellonella model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609294. [PMID: 39229007 PMCID: PMC11370618 DOI: 10.1101/2024.08.23.609294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Critical to our understanding of infections and their treatment is the role the innate immune system plays in controlling bacterial pathogens. Nevertheless, many in vivo systems are made or modified such that they do not have an innate immune response. Use of these systems denies the opportunity to examine the synergy between the immune system and antimicrobial agents. In this study we demonstrate that the larva of Galleria mellonella is an effective in vivo model for the study of the population and evolutionary biology of bacterial infections and their treatment. To do this we test three hypotheses concerning the role of the innate immune system during infection. We show: i) sufficiently high densities of bacteria are capable of saturating the innate immune system, ii) bacteriostatic drugs and bacteriophages are as effective as bactericidal antibiotics in preventing mortality and controlling bacterial densities, and iii) minority populations of bacteria resistant to a treating antibiotic will not ascend. Using a highly virulent strain of Staphylococcus aureus and a mathematical computer-simulation model, we further explore how the dynamics of the infection within the short term determine the ultimate infection outcome. We find that excess immune activation in response to high densities of bacteria leads to a strong but short-lived immune response which ultimately results in a high degree of mortality. Overall, our findings illustrate the utility of the G. mellonella model system in conjunction with established in vivo models in studying infectious disease progression and treatment.
Collapse
Affiliation(s)
- Brandon A. Berryhill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University; Atlanta, GA, 30322, USA
| | - Teresa Gil-Gil
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | | | - David A. Goldberg
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Nic M. Vega
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce R. Levin
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| |
Collapse
|
8
|
Chao W, Qiu L, Gao L, Feng J, Liu Y, Yan L, Jiang Y, Lv Q. Antifungal Tetrahydrocarbazole Compound CAR-8 Induces Endoplasmic Reticulum Stress in Candida albicans. ACS Infect Dis 2024; 10:2705-2716. [PMID: 38989983 DOI: 10.1021/acsinfecdis.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The development of new effective antifungal agents is essential to combat fungal infections. Tetrahydrocarbazole has been exploited as a promising skeleton against various pathogenic microorganisms and is used to search for novel active antifungal compounds. In this study, a library composed of small tetrahydrocarbazole compounds was screened, and a potent antifungal agent, CAR-8, was identified with a minimum inhibitory concentration of 2-4 μg/mL against Candida albicans. CAR-8 showed strong fungicidal activities and killed almost all C. albicans within 3 h at a concentration of 16 μg/mL. At concentrations of 2 and 8 μg/mL, CAR-8 significantly inhibited the formation of hyphae and biofilms. Moreover, CAR-8 at 10 and 20 mg/kg reduced the fungal load and improved the survival in the C. albicans infection model in the invertebrate Galleria mellonella. Transcriptome analysis revealed significant changes in the expression of genes associated with protein processing in the endoplasmic reticulum (ER), ER-associated degradation, and unfolded protein response (UPR), which suggested that CAR-8 treatment induced ER stress. Moreover, CAR-8 treatment resulted in various phenotypes similar to tunicamycin, a classical ER stress inducer. These included nonconventional splicing of HAC1 mRNA, the fragmented morphology of ER, the distribution changes of GFP-Snc1 in Saccharomyces cerevisiae, and cell apoptosis probably caused by ER stress. More importantly, the disruption of IRE1 or HAC1 increased the sensitivity of C. albicans to CAR-8, confirming that the UPR signaling pathway was critical for CAR-8 resistance. Overall, our study identifies a potent ER stress-induced antifungal compound that will help the discovery of new antifungal drugs.
Collapse
Affiliation(s)
- Wen Chao
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lijuan Qiu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lu Gao
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia Feng
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Gonçalves G, da Silva MS, dos Santos LA, Guimarães TZ, Taveira GB, Almeida FA, Ferreira SR, Amancio Oliveira AE, Nagano CS, Chaves RP, Silveira V, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Structural and Functional Characterization of New Lipid Transfer Proteins with Chitin-Binding Properties: Insights from Protein Structure Prediction, Molecular Docking, and Antifungal Activity. Biochemistry 2024; 63:1824-1836. [PMID: 38968244 PMCID: PMC11256766 DOI: 10.1021/acs.biochem.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.
Collapse
Affiliation(s)
- Gabriella
Rodrigues Gonçalves
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Layrana Azevedo dos Santos
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Thomas Zacarone
Afonso Guimarães
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Felipe Astolpho Almeida
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Sarah Rodrigues Ferreira
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Antonia Elenir Amancio Oliveira
- Laboratório
de Química e Função de Proteínas e Peptídeos,
Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos
dos Goytacazes, RJ, Brazil
| | - Celso Shiniti Nagano
- Laboratório
de Bioquímica Marinha (BioMar-Lab), Departamento de Engenharia
de Pesca, Universidade Federal do Ceará
(UFC), 60455-900 Fortaleza, Ceará, Brazil
| | - Renata Pinheiro Chaves
- Laboratório
de Bioquímica Marinha (BioMar-Lab), Departamento de Engenharia
de Pesca, Universidade Federal do Ceará
(UFC), 60455-900 Fortaleza, Ceará, Brazil
| | - Vanildo Silveira
- Laboratório
de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602 RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório
de Melhoramento e Genética Vegetal, Centro de Ciências
e Tecnologias Agropecuárias, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório
de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências
e Biotecnologia, Universidade Estadual do
Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
10
|
Djenontin E, Debourgogne A, Mousavi B, Delhaes L, Cornet M, Valsecchi I, Adebo M, Guillot J, Botterel F, Dannaoui E. Azole resistance in Aspergillus flavus and associated fitness cost. Mycoses 2024; 67:e13766. [PMID: 39007526 DOI: 10.1111/myc.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The resistance of Aspergillus flavus to the azole antifungal drugs is an emerging problem. Mutations in the molecular targets of the azole antifungals - CYP 51 A, B and C - are possible mechanisms of resistance, but data to confirm this hypothesis are scarce. In addition, the behaviour of resistant strains in vitro and in vivo is not yet understood. OBJECTIVES This study had 3 objectives. The first was to compare the sequences of CYP51 A, B and C in resistant and susceptible strains of A. flavus. The second was to look for the existence of a fitness cost associated with resistance. The third was to evaluate the activity of voriconazole and posaconazole on resistant strains in the Galleria mellonella model. METHODS The CYP51 A, B and C sequences of seven resistant strains with those of four susceptible strains are compared. Fitness costs were assessed by growing the strains in RPMI medium and testing their virulence in G. mellonella larvae. In addition, G. mellonella larvae infected with strains of A. flavus were treated with voriconazole and posaconazole. RESULTS In the CYP51A sequences, we found the A91T, C708T and A1296T nucleotide substitutions only in the resistant strains. The resistant strains showed a fitness cost with reduced in vitro growth and reduced virulence in G. mellonella. In vivo resistance to posaconazole is confirmed in a strain with the highest MIC for this antifungal agent. CONCLUSIONS These results allow to conclude that some substitutions in CYP51 genes, in particular CYP51A, contribute to resistance to azole drugs in A. flavus. The study of the relationship between drug dosage and treatment duration with resistance and the reduction of fitness costs in resistant strains is a major perspective of this study. This work could help to establish recommendations for the treatment of infections with resistant strains of A. flavus.
Collapse
Affiliation(s)
- Elie Djenontin
- Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Parasitologie-Mycologie, CHU Henri Mondor, AP-HP, Créteil, France
- UR Dynamyc UPEC, EnvA, ANSES. Faculté de Santé de Créteil, Créteil, France
| | - Anne Debourgogne
- UR7300 Stress Immunité Pathogène, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Bita Mousavi
- UR Dynamyc UPEC, EnvA, ANSES. Faculté de Santé de Créteil, Créteil, France
| | - Laurence Delhaes
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques, INSERM U1045: Univ. Bordeaux, Bordeaux, France
| | - Muriel Cornet
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, Grenoble, France
| | - Isabel Valsecchi
- Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Parasitologie-Mycologie, CHU Henri Mondor, AP-HP, Créteil, France
| | - Makiath Adebo
- UR Dynamyc UPEC, EnvA, ANSES. Faculté de Santé de Créteil, Créteil, France
| | | | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Parasitologie-Mycologie, CHU Henri Mondor, AP-HP, Créteil, France
- UR Dynamyc UPEC, EnvA, ANSES. Faculté de Santé de Créteil, Créteil, France
| | - Eric Dannaoui
- Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Parasitologie-Mycologie, CHU Henri Mondor, AP-HP, Créteil, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Necker, AP-HP, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
11
|
Marena GD, López A, Carvalho GC, Marín MDP, Pérez Ruiz MD, Pérez-Royo JM, Tormo-Mas MÁ, Bernabé P, Valentín E, Bauab TM, Chorilli M, Pemán J, Ruiz-Gaitán A. Sunflower Oil and Cholesterol Nanoemulsion: A Novel Carrier for Micafungin to Combat Multi-Resistant Candida auris. Pathogens 2024; 13:549. [PMID: 39057777 PMCID: PMC11279427 DOI: 10.3390/pathogens13070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Candida auris is an emerging, multidrug-resistant yeast that causes systemic infections, mainly in hospitalized or immunosuppressed patients. This pathogen has a high mortality and morbidity rate. This study aims to evaluate the antifungal potential of micafungin (MICA) encapsulated in a nanoemulsion (NEM) against four clades of C. auris and other non-C. auris species. The antifungal potential of MICA and NEM was evaluated by determining mature biofilm inhibition (0.78-50 µg/mL). The antifungal activities of MICA and NEM (5.92 mg/Kg) were evaluated using an in vivo model of Galleria mellonella. The results showed that NEM intensified the antibiofilm action of MICA, especially in 48 h mature biofilms. In vivo results displayed a higher effectiveness of NEM against all clades of C. auris tested, inhibiting the fungal load in the hemolymph and tissues of G. mellonella with a difference of 3 log10. In addition, C. auris infection caused granulomas surrounded by hemocytes, mainly at the lower and upper ends. Conversely, C. albicans developed pseudohyphae, biofilms, filaments, and chlamydospores. In conclusion, encapsulation of MICA in a nanoemulsion enhances its antifungal activity against mature biofilms of C. auris. This strategy may be considered a therapeutic approach for the control of infections and the dissemination of this new global health threat.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.C.C.); (M.C.)
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | - Alejandro López
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.C.C.); (M.C.)
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | | | | | - Jose Manuel Pérez-Royo
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - María Ángeles Tormo-Mas
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - Patricia Bernabé
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
| | - Eulogio Valentín
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Microbiology and Ecology, University of Valencia, 46010 Valencia, Spain
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (G.C.C.); (M.C.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.D.M.); (A.L.); (J.M.P.-R.); (E.V.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
12
|
Torres M, Diaz-Ortiz J, Davis MG, Schwartz JR, Celis Ramírez AM. Galleria mellonella as a superficial model for Malassezia globosa and its treatment. Access Microbiol 2024; 6:000745.v3. [PMID: 39045242 PMCID: PMC11261708 DOI: 10.1099/acmi.0.000745.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/17/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction. Malassezia globosa is a yeast species that belongs to the mycobiota of humans and animals, associated with dermatological disorders, such as dandruff. This is a chronic scalp skin disorder characterized by flaking and itching. Treatments include commercial shampoo with different formulations that contain antifungal activities like zinc pyrithione (ZPT) or piroctone olamine (PO). The effectiveness of these formulations has been evaluated for decades for dandruff symptom relief of volunteers. To date, non-mammalian, in vivo methods exist to test formulations of these actives. Aim. To evaluate in vivo in Galleria mellonella larva, two commercial antifungal shampoos (shampoo with 1 % ZPT and 1.6 % zinc Carbonate and shampoo with 0.5 % PO) against this species. Methodology. G. mellonella larvae were inoculated with M. globosa on abraded cuticular surface. Then, integument cell viability, histological changes, and fungal burden were evaluated. Results. Larvae inoculated with M. globosa showed higher lesion melanization and tissue damage. In addition, M. globosa population showed to increase over time. Concerning the shampoo's effectiveness, both formulations significantly reduced M. globosa burden and tissue damage. Conclusion. G. mellonella larvae were allowed to evaluate M. globosa superficial infection and antifungal effectiveness. Shampoos with ZPT and PO showed a positive effect on inoculated larvae.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| | - Juliana Diaz-Ortiz
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
13
|
Ramírez-Sotelo U, García-Carnero LC, Martínez-Álvarez JA, Gómez-Gaviria M, Mora-Montes HM. An ELISA-based method for Galleria mellonella apolipophorin-III quantification. PeerJ 2024; 12:e17117. [PMID: 38500532 PMCID: PMC10946395 DOI: 10.7717/peerj.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.
Collapse
|
14
|
Giammarino A, Bellucci N, Angiolella L. Galleria mellonella as a Model for the Study of Fungal Pathogens: Advantages and Disadvantages. Pathogens 2024; 13:233. [PMID: 38535576 PMCID: PMC10976154 DOI: 10.3390/pathogens13030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
The study of pathogenicity and virulence of fungal strains, in vivo in the preclinical phase, is carried out through the use of animal models belonging to various classes of mammals (rodents, leproids, etc.). Although animals are functionally more similar to humans, these studies have some limitations in terms of ethics (animal suffering), user-friendliness, cost-effectiveness, timing (physiological response time) and logistics (need for adequately equipped laboratories). A good in vivo model must possess some optimal characteristics to be used, such as rapid growth, small size and short life cycle. For this reason, insects, such as Galleria mellonella (Lepidoptera), Drosophila melanogaster (Diptera) and Bombyx mori (Lepidoptera), have been widely used as alternative non-mammalian models. Due to their simplicity of use and low cost, the larvae of G. mellonella represent an optimal model above all to evaluate the virulence of fungal pathogens and the use of antifungal treatments (either single or in combination with biologically active compounds). A further advantage is also represented by their simple neuronal system limiting the suffering of the animal itself, their ability to survive at near-body ambient temperatures as well as the expression of proteins able to recognise combined pathogens following the three R principles (replacement, refinement and reduction). This review aims to assess the validity as well as the advantages and disadvantages of replacing mammalian classes with G. mellonella as an in vivo study model for preclinical experimentation.
Collapse
Affiliation(s)
| | | | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy; (A.G.); (N.B.)
| |
Collapse
|
15
|
Pattini VC, Polaquini CR, Lemes TH, Brizzotti-Mazuchi NS, Sardi JDCO, Paziani MH, Kress MRVZ, de Almeida MTG, Regasini LO. Antifungal activity of 3,3'-dimethoxycurcumin (DMC) against dermatophytes and Candida species. Lett Appl Microbiol 2024; 77:ovae019. [PMID: 38499446 DOI: 10.1093/lambio/ovae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.
Collapse
Affiliation(s)
- Veridianna Camilo Pattini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Carlos Roberto Polaquini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | | | | | - Mário Henrique Paziani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | - Marcia Regina von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | | | - Luis Octávio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
16
|
Souza BMN, Miñán AG, Brambilla IR, Pinto JG, Garcia MT, Junqueira JC, Ferreira-Strixino J. Effects of antimicrobial photodynamic therapy with photodithazine® on methicillin-resistant Staphylococcus aureus (MRSA): Studies in biofilms and experimental model with Galleria mellonella. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112860. [PMID: 38330692 DOI: 10.1016/j.jphotobiol.2024.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Staphylococcus aureus infections are a severe health problem due to the high mortality rate. Conventional treatment of these infections is via the administration of antibiotics. However, its indiscriminate use can select resistant microorganisms. Thus, it is necessary to develop alternatives for antibiotic therapy. Antimicrobial Photodynamic Therapy (aPDT), a therapeutic method that associates a photosensitizer (PS), a light source with adequate wavelength to the PS, interacts with molecular oxygen generating reactive oxygen species responsible for cell inactivation, is a viable alternative. This work aimed to analyze, in vitro and in vivo, the action of aPDT with PS Photodithazine® (PDZ) on the methicillin-resistant S. aureus (MRSA) strain. In the in vitro method, the S. aureus biofilm was incubated with PDZ at 50 and 75 μg.mL-1 for 15 min, adopting the light dose of 25, 50, and 100 J/cm2. In addition, PS interaction, formation of reactive oxygen species (ROS), bacterial metabolism, adhesion, bacterial viability, and biofilm structure were evaluated by scanning electron microscopy. Subsequently, the strain was inoculated into models of Galleria mellonella, and the survival curve, health scale, blood cell analysis, and CFU/mL of S. aureus in the hemolymph were analyzed after aPDT. In the in vitro results, bacterial reduction was observed in the different PDZ concentrations, highlighting the parameters of 75 μg.mL-1 of PDZ and 100 J/cm2. As for in vivo results, aPDT increased survival and stimulated the immune system of G. mellonella infected by S. aureus. aPDT proved effective in both models, demonstrating its potential as an alternative therapy in treating MRSA bacterial infections.
Collapse
Affiliation(s)
- Beatriz Müller N Souza
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Alejandro Guillermo Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Isabelle Ribeiro Brambilla
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil.
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Universidade Estadual Paulista (Unesp), Institute of Science and Technology (ICT), São José dos Campos, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Universidade Estadual Paulista (Unesp), Institute of Science and Technology (ICT), São José dos Campos, São Paulo, Brazil.
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
17
|
Costa AF, da Silva JT, Martins JA, Rocha VL, de Menezes LB, Amaral AC. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans. Braz J Microbiol 2024; 55:143-154. [PMID: 37964169 PMCID: PMC10920512 DOI: 10.1007/s42770-023-01168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Farnesol is a natural essential oil with antimicrobial properties. Complexation of farnesol in chitosan nanoparticles can be useful to improve its bioavailability and potentiate its antifungal capabilities such as inhibition of hyphal and biofilm formation. The aim of this study was to develop and characterize chitosan nanoparticles with farnesol (NF) and evaluate their toxicity and antifungal action on C. albicans in vivo. The NF were prepared by the ionic gelation method and showed physicochemical characteristics such as diameter less than 200 nm, monodisperse distribution, positive zeta potential, spherical morphology, and stability after 120 days of storage. In the evaluation of toxicity in Galleria mellonella, NF did not reduce the survival rate, indicating that there was no toxicity in vivo at the doses tested. In the assays with G. mellonella infected by C. albicans, the larvae treated with NF had a high survival rate after 48 h, with a significant reduction of the fungal load and inhibition of the formation of biofilms and hyphae. In the murine model of vulvovaginal candidiasis (VVC), histopathological analysis showed a reduction in inflammatory parameters, fungal burden, and hyphal inhibition in mice treated with NF. The produced nanoparticles can be a promising alternative to inhibit C. albicans infection.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Jacqueline Teixeira da Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Juliana Assis Martins
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Viviane Lopes Rocha
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
18
|
Chen Y, Gao F, Chen X, Tao S, Chen P, Lin W. The basic leucine zipper transcription factor MeaB is critical for biofilm formation, cell wall integrity, and virulence in Aspergillus fumigatus. mSphere 2024; 9:e0061923. [PMID: 38284755 PMCID: PMC10900910 DOI: 10.1128/msphere.00619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
The regulation of fungal cell wall biosynthesis is crucial for cell wall integrity maintenance and directly impacts fungal pathogen virulence. Although numerous genes are involved in fungal cell wall polysaccharide biosynthesis through multiple pathways, the underlying regulatory mechanism is still not fully understood. In this study, we identified and functionally characterized a direct downstream target of SomA, the basic-region leucine zipper transcription factor MeaB, playing a certain role in Aspergillus fumigatus cell wall integrity. Loss of meaB reduces hyphal growth, causes severe defects in galactosaminogalactan-mediated biofilm formation, and attenuates virulence in a Galleria mellonella infection model. Furthermore, the meaB null mutant strain exhibited hypersensitivity to cell wall-perturbing agents and significantly alters the cell wall structure. Transcriptional profile analysis revealed that MeaB positively regulates the expression of the galactosaminogalactan biosynthesis and β-1,3-glucanosyltransferase genes uge3, agd3, and sph3 and gel1, gel5, and gel7, respectively, as well as genes involved in amino sugar and nucleotide sugar metabolism. Further study demonstrated that MeaB could respond to cell wall stress and contribute to the proper expression of mitogen-activated protein kinase genes mpkA and mpkC in the presence of different concentrations of congo red. In conclusion, A. fumigatus MeaB plays a critical role in cell wall integrity by governing the expression of genes encoding cell wall-related proteins, thus impacting the virulence of this fungus.IMPORTANCEAspergillus fumigatus is a common opportunistic mold that causes life-threatening infections in immunosuppressed patients. The fungal cell wall is a complex and dynamic organelle essential for the development of pathogenic fungi. Genes involved in cell wall polysaccharide biosynthesis and remodeling are crucial for fungal pathogen virulence. However, the potential regulatory mechanism for cell wall integrity remains to be fully defined in A. fumigatus. In the present study, we identify basic-region leucine zipper transcription factor MeaB as an important regulator of cell wall galactosaminogalactan biosynthesis and β-1,3-glucan remodeling that consequently impacts stress response and virulence of fungal pathogens. Thus, we illuminate a mechanism of transcriptional control fungal cell wall polysaccharide biosynthesis and stress response. As these cell wall components are promising therapeutic targets for fungal infections, understanding the regulatory mechanism of such polysaccharides will provide new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuan Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Fei Gao
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiaojin Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Siyuan Tao
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Peiying Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Wei Lin
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Xiong J, Wang L, Feng Z, Hang S, Yu J, Feng Y, Lu H, Jiang Y. Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans. Antioxidants (Basel) 2024; 13:223. [PMID: 38397821 PMCID: PMC10886025 DOI: 10.3390/antiox13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
20
|
Mendoza Barker M, Saeger S, Campuzano A, Yu JJ, Hung CY. Galleria mellonella Model of Coccidioidomycosis for Drug Susceptibility Tests and Virulence Factor Identification. J Fungi (Basel) 2024; 10:131. [PMID: 38392803 PMCID: PMC10890491 DOI: 10.3390/jof10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Coccidioidomycosis (CM) can manifest as respiratory and disseminated diseases that are caused by dimorphic fungal pathogens, such as Coccidioides species. The inhaled arthroconidia generated during the saprobic growth phase convert into multinucleated spherules in the lungs to complete the parasitic lifecycle. Research on coccidioidal virulence and pathogenesis primarily employs murine models typically associated with low lethal doses (LD100 < 100 spores). However, the Galleria model has recently garnered attention due to its immune system bearing both structural and functional similarities to the innate system of mammals. Our findings indicate that Coccidioides posadasii can convert and complete the parasitic cycle within the hemocoel of the Galleria larva. In Galleria, the LD100 is between 0.5 and 1.0 × 106 viable spores for the clinical isolate Coccidioides posadasii C735. Furthermore, we demonstrated the suitability of this model for in vivo antifungal susceptibility tests to validate the bioreactivity of newly discovered antifungals against Coccidioides. Additionally, we utilized this larva model to screen a Coccidioides posadasii mutant library showing attenuated virulence. Similarly, the identified attenuated coccidioidal mutants displayed a loss of virulence in a commonly used murine model of coccidioidomycosis. In this study, we demonstrated that Galleria larvae can be applied as a model for studying Coccidioides infection.
Collapse
Affiliation(s)
| | | | | | | | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.M.B.); (S.S.); (A.C.); (J.-J.Y.)
| |
Collapse
|
21
|
Shinohara T, Wada A, Abe M, Nakayama N, Nagi M, Miyazaki Y. A novel zinc-chelating compound has antifungal activity against a wide range of Candida species, including multidrug-resistant Candida auris. JAC Antimicrob Resist 2024; 6:dlad155. [PMID: 38384742 PMCID: PMC10880073 DOI: 10.1093/jacamr/dlad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024] Open
Abstract
Objectives In recent years, the incidence of invasive fungal infections has increased, resulting in considerable morbidity and mortality, particularly among immunocompromised individuals. Potential challenges in treating these infections with the few existing antifungal agents highlight the urgency of developing new ones. Here, we evaluated six alkyl polyamine compounds (APCs), not previously reported as antifungal drugs to our knowledge, that could deprive fungi of essential transition metals. Methods The APC with confirmed antifungal activity against Candida spp. was analysed by using transcriptomics, followed by metal-addition experiments, mass spectrometric analyses and intracellular zinc quantification with a fluorescent probe. Results A cyclic APC with three pyridylmethyl groups, APC6, had high antifungal activity against a wide range of Candida species, including MDR Candida auris. We conclusively demonstrated that APC6 was able to capture zinc within fungal cells. APC6 not only exhibited activity against C. auris as a single agent but also enhanced the efficacy of an azole antifungal agent, voriconazole, in vitro and in vivo. APC6 disrupted the biofilms formed by Candida species. Conclusions This zinc-chelating compound has potential as an antifungal agent, and the control of zinc levels in Candida species could be a powerful approach to treating drug-resistant candidiasis.
Collapse
Affiliation(s)
- Takayuki Shinohara
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Akira Wada
- Center for Biosystems Dynamics Research, RIKEN, Kanagawa, Japan
| | - Masahiro Abe
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nobuko Nakayama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Minoru Nagi
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Herculano RD, Dos Reis CE, de Souza SMB, Pegorin Brasil GS, Scontri M, Kawakita S, Carvalho BG, Bebber CC, Su Y, de Sousa Abreu AP, Mecwan MM, Mandal K, Fusco Almeida AM, Mendes Giannini MJS, Guerra NB, Mussagy CU, Bosculo MRM, Gemeinder JLP, de Almeida BFM, Floriano JF, Farhadi N, Monirizad M, Khorsandi D, Nguyen HT, Gomez A, Tirpáková Z, Peirsman A, da Silva Sasaki JC, He S, Forster S, Burd BS, Dokmeci MR, Terra-Garcia M, Junqueira JC, de Mendonça RJ, Cardoso MR, Dos Santos LS, Silva GR, Barros NR, Jucaud V, Li B. Amphotericin B-loaded natural latex dressing for treating Candida albicans wound infections using Galleria mellonella model. J Control Release 2024; 365:744-758. [PMID: 38072085 DOI: 10.1016/j.jconrel.2023.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Camila Eugênia Dos Reis
- Fundação Educacional do Município de Assis (FEMA), 1200 Getulio Vargas Avenue, 19807-130 Assis, SP, Brazil
| | | | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Campinas (UNICAMP), Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, 13083-852 Campinas, SP, Brazil
| | - Camila Calderan Bebber
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Ana Paula de Sousa Abreu
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Marvin M Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Ana Marisa Fusco Almeida
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Maria José Soares Mendes Giannini
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | | | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Maria Rachel Melo Bosculo
- University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | - José Lúcio Pádua Gemeinder
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | | | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Sciences, 17033-360 Bauru, SP, Brazil
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Plastic, Reconstructive and Aesthetic Surgery, University Hospital Ghent, Ghent, Belgium
| | - Josana Carla da Silva Sasaki
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Betina Sayeg Burd
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Roberto Cardoso
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970 São Carlos, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14, 040-901 Ribeirão Preto, SP, Brazil
| | - Gláucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010, Formiga, MG, Brazil
| | - Natan Roberto Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
23
|
Li X, Kong B, Sun Y, Sun F, Yang H, Zheng S. Synergistic potential of teriflunomide with fluconazole against resistant Candida albicans in vitro and in vivo. Front Cell Infect Microbiol 2023; 13:1282320. [PMID: 38169891 PMCID: PMC10758495 DOI: 10.3389/fcimb.2023.1282320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Candida albicans is the primary cause of systemic candidiasis, which is involved in high morbidity and mortality. Drug resistance exacerbates these problems. In addition, there are limited antifungal drugs available. In order to solve these problems, combination therapy has aroused great interest. Teriflunomide is an immunosuppressant. In the present work, we aimed to identify whether teriflunomide can reverse the resistance of Candida albicans in the presence of sub-inhibitory concentrations of fluconazole in vitro and in vivo. Methods Seven Candida albicans isolates were used in this study. Susceptibility of Candida albicans in vitro to the drugs was determined using a checkerboard microdilution assay in accordance with the recommendations of the Clinical and Laboratory Standards Institute. The effects of drugs on biofilm biomass of Candida albicans were determined by crystal violet staining. The development ability of Candida albicans hyphae was performed using a modified broth microdilution method. Galleria mellonella was used for testing the in vivo efficacy of the combination therapies. Results We found that the combination of teriflunomide (64 µg/mL) and fluconazole (0.5-1 µg/mL) has a significant synergistic effect in all resistant Candida albicans isolates (n=4). Also, this drug combination could inhibit the immature biofilm biomass and hyphae formation of resistant Candida albicans. Galleria mellonella was used for testing the in vivo efficacy of this combination therapies. As for the Galleria mellonella larvae infected by resistant Candida albicans, teriflunomide (1.6 µg/larvae) combined with fluconazole (1.6 µg/larvae) significantly increased their survival rates, and reduced the fungal burden, as well as damage of tissue in comparison to that in the control group or drug monotherapy group. Conclusion These results expand our knowledge about the antifungal potential of teriflunomide as an adjuvant of existing antifungal drugs, and also open new perspectives in the treatment of resistant Candida albicans based on repurposing clinically available nonantifungal drugs.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bing Kong
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Yaqiong Sun
- Obstetrics Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Fenghua Sun
- Radiology Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
24
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
25
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
26
|
Samdavid Thanapaul RJR, Roberds A, Rios KE, Walsh TJ, Bobrov AG. Hyphae of Rhizopus arrhizus and Lichtheimia corymbifera Are More Virulent and Resistant to Antifungal Agents Than Sporangiospores In Vitro and in Galleria mellonella. J Fungi (Basel) 2023; 9:958. [PMID: 37888214 PMCID: PMC10607466 DOI: 10.3390/jof9100958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023] Open
Abstract
Mucorales species cause debilitating, life-threatening sinopulmonary diseases in immunocompromised patients and penetrating wounds in trauma victims. Common antifungal agents against mucormycosis have significant toxicity and are often ineffective. To evaluate treatments against mucormycosis, sporangiospores are typically used for in vitro assays and in pre-clinical animal models of pulmonary infections. However, in clinical cases of wound mucormycosis caused by traumatic inoculation, hyphal elements found in soil are likely the form of the inoculated organism. In this study, Galleria mellonella larvae were infected with either sporangiospores or hyphae of Rhizopus arrhizus and Lichtheimia corymbifera. Hyphal infections resulted in greater and more rapid larval lethality than sporangiospores, with an approximate 10-16-fold decrease in LD50 of hyphae for R. arrhizus (p = 0.03) and L. corymbifera (p = 0.001). Liposomal amphotericin B, 10 mg/kg, was ineffective against hyphal infection, while the same dosage was effective against infections produced by sporangiospores. Furthermore, in vitro, antifungal susceptibility studies show that minimum inhibitory concentrations of several antifungal agents against hyphae were higher when compared to those of sporangiospores. These findings support using hyphal elements of Mucorales species for virulence testing and antifungal drug screening in vitro and in G. mellonella for studies of wound mucormycosis.
Collapse
Affiliation(s)
- Rex Jeya Rajkumar Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Ashleigh Roberds
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
| | - Kariana E. Rios
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23220, USA;
- Department of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander G. Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (R.J.R.S.T.); (K.E.R.)
| |
Collapse
|
27
|
Yang L, Tian Z, Zhao W, Zhang J, Tian C, Zhou L, Jiao Z, Peng J, Guo G. Novel antimicrobial peptide DvAMP serves as a promising antifungal agent against Cryptococcus neoformans. Bioorg Chem 2023; 138:106679. [PMID: 37329812 DOI: 10.1016/j.bioorg.2023.106679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Cryptococcus neoformans is an important opportunistic human fungal pathogen that causes cryptococcosis in immunocompromised patients. However, the number of drugs for the treatment of cryptococcosis is restricted, and the development of novel antifungal drugs and innovative strategies for the treatment of cryptococcosis is urgently needed. In this study, we validated that DvAMP is a novel antimicrobial peptide with antimicrobial activity and that it was obtained by pre-screening from the UniProt database of more than three million unknown functional sequences based on the quantitative structure-activity relationships (QSARs) protocol (http://www.chemoinfolab.com/antifungal). The peptide exhibited satisfactory biosafety and physicochemical properties, and relatively rapid fungicidal activity against C. neoformans. Meanwhile, DvAMP was able to inhibit the static biofilm of C. neoformans and cause a reduction in the thickness of the capsule. In addition, DvAMP exerts antifungal effects through membrane-mediated mechanisms (membrane permeability and depolarization) and mitochondrial dysfunction, involving a hybrid multi-hit mechanism. Furthermore, by using the C. neoformans-Galleria mellonella infection model, we demonstrated that DvAMP has significant therapeutic effects in vivo and that it significantly reduces the mortality and fungal burden of infected larvae. These results suggest that DvAMP may be a potential antifungal drug candidate for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Zhuqing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jin Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
28
|
Alabi PE, Gautier C, Murphy TP, Gu X, Lepas M, Aimanianda V, Sello JK, Ene IV. Small molecules restore azole activity against drug-tolerant and drug-resistant Candida isolates. mBio 2023; 14:e0047923. [PMID: 37326546 PMCID: PMC10470600 DOI: 10.1128/mbio.00479-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
Each year, fungi cause more than 1.5 billion infections worldwide and have a devastating impact on human health, particularly in immunocompromised individuals or patients in intensive care units. The limited antifungal arsenal and emerging multidrug-resistant species necessitate the development of new therapies. One strategy for combating drug-resistant pathogens is the administration of molecules that restore fungal susceptibility to approved drugs. Accordingly, we carried out a screen to identify small molecules that could restore the susceptibility of pathogenic Candida species to azole antifungals. This screening effort led to the discovery of novel 1,4-benzodiazepines that restore fluconazole susceptibility in resistant isolates of Candida albicans, as evidenced by 100-1,000-fold potentiation of fluconazole activity. This potentiation effect was also observed in azole-tolerant strains of C. albicans and in other pathogenic Candida species. The 1,4-benzodiazepines selectively potentiated different azoles, but not other approved antifungals. A remarkable feature of the potentiation was that the combination of the compounds with fluconazole was fungicidal, whereas fluconazole alone is fungistatic. Interestingly, the potentiators were not toxic to C. albicans in the absence of fluconazole, but inhibited virulence-associated filamentation of the fungus. We found that the combination of the potentiators and fluconazole significantly enhanced host survival in a Galleria mellonella model of systemic fungal infection. Taken together, these observations validate a strategy wherein small molecules can restore the activity of highly used anti-infectives that have lost potency. IMPORTANCE In the last decade, we have been witnessing a higher incidence of fungal infections, due to an expansion of the fungal species capable of causing disease (e.g., Candida auris), as well as increased antifungal drug resistance. Among human fungal pathogens, Candida species are a leading cause of invasive infections and are associated with high mortality rates. Infections by these pathogens are commonly treated with azole antifungals, yet the expansion of drug-resistant isolates has reduced their clinical utility. In this work, we describe the discovery and characterization of small molecules that potentiate fluconazole and restore the susceptibility of azole-resistant and azole-tolerant Candida isolates. Interestingly, the potentiating 1,4-benzodiazepines were not toxic to fungal cells but inhibited their virulence-associated filamentous growth. Furthermore, combinations of the potentiators and fluconazole decreased fungal burdens and enhanced host survival in a Galleria mellonella model of systemic fungal infections. Accordingly, we propose the use of novel antifungal potentiators as a powerful strategy for addressing the growing resistance of fungi to clinically approved drugs.
Collapse
Affiliation(s)
- Philip E. Alabi
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Thomas P. Murphy
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Xilin Gu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathieu Lepas
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Jason K. Sello
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
29
|
Vanhoffelen E, Michiels L, Brock M, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Powerful and Real-Time Quantification of Antifungal Efficacy against Triazole-Resistant and -Susceptible Aspergillus fumigatus Infections in Galleria mellonella by Longitudinal Bioluminescence Imaging. Microbiol Spectr 2023; 11:e0082523. [PMID: 37466453 PMCID: PMC10433797 DOI: 10.1128/spectrum.00825-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Matthias Brock
- School of Life Sciences, Fungal Biology Group, University of Nottingham, Nottingham, United Kingdom
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Li Y, Chen C, Cong L, Mao S, Shan M, Han Z, Mao J, Xie Z, Zhu Z. Inhibitory Effects of a Maleimide Compound on the Virulence Factors of Candida albicans. Virulence 2023:2230009. [PMID: 37367101 DOI: 10.1080/21505594.2023.2230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis caused by Candida albicans infection has long been a serious human health problem. The pathogenicity of C. albicans is mainly due to its virulence factors, which are the novel targets of antifungal drugs for low risk of resistance development. In this study, we identified a maleimide compound [1-(4-methoxyphenyl)-1hydro-pyrrole-2,5-dione, MPD] that exerts effective anti-virulence activity. It could inhibit the process of adhesion, filamentation, and biofilm formation in C. albicans. In addition, it exhibited low cytotoxicity, hemolytic activity and drug resistance development. Moreover, in Galleria mellonella-C. albicans (in vivo) infection model, the survival time of infected larvae was significantly prolonged under the treatment of MPD. Further, mechanism research revealed that MPD increased farnesol secretion by upregulating the expression of Dpp3. The increased farnesol inhibited the activity of Cdc35, which then decreased the intracellular cAMP content resulting in the inhibition of virulence factors via the Ras1-cAMP-Efg1 pathway. In all, this study evaluated the inhibitory effect of MPD on various virulence factors of C. albicans and identified the underlying mechanisms. This suggests a potential application of MPD to overcome fungal infections in clinic.
Collapse
Affiliation(s)
- Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Mingzhu Shan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Clinical laboratory, The Central Hospital of Xuzhou City, Xuzhou, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Jiayi Mao
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Kaczmarek A, Wrońska AK, Boguś MI. The Changes in Mitochondrial Morphology and Physiology Accompanying Apoptosis in Galleria mellonella (Lepidoptera) Immunocompetent Cells during Conidiobolus coronatus (Entomophthorales) Infection. Int J Mol Sci 2023; 24:10169. [PMID: 37373316 PMCID: PMC10299656 DOI: 10.3390/ijms241210169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, their role in insects is not fully understood; thus, more indepth studies of insect cell apoptosis are necessary. The present study investigates mitochondrial involvement during Conidiobolus coronatus-induced apoptosis in Galleria mellonella hemocytes. Previous research has shown that fungal infection could induce apoptosis in insect hemocytes. Our findings indicate that mitochondria undergo several morphological and physiological changes during fungal infection, e.g., loss of mitochondrial membrane potential, megachannel formation, disturbances in intracellular respiration, increased nonrespiratory oxygen consumption in mitochondria, decreased ATP-coupled oxygen consumption and increased non-ATP-coupled oxygen consumption, decreased extracellular and intracellular oxygen consumption, and increased extracellular pH. Our findings confirm that G. mellonella immunocompetent cells demonstrate Ca2+ overload in mitochondria, translocation of cytochrome c-like protein from mitochondrial to cytosol fraction, and higher activation of caspase-9-like protein after C. coronatus infection. Most importantly, several of the changes observed in insect mitochondria are similar to those accompanying apoptosis in mammalian cells, suggesting that the process is evolutionarily conserved.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-875 Warsaw, Poland
- Biomibo, 04-872 Warsaw, Poland
| |
Collapse
|
32
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
33
|
Zhu P, Li Y, Guo T, Liu S, Tancer RJ, Hu C, Zhao C, Xue C, Liao G. New antifungal strategies: drug combination and co-delivery. Adv Drug Deliv Rev 2023; 198:114874. [PMID: 37211279 DOI: 10.1016/j.addr.2023.114874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ting Guo
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Simei Liu
- Department of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China; Institute of Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Robert J Tancer
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Changhua Hu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Chengzhi Zhao
- Chongqing Health Center for Women and Children, Chongqing, 400700, PR China.
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Guojian Liao
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
34
|
McKenna JA, Garcia‐Ceron D, Bleackley MR, Yu L, Bulone V, Anderson MA. SUR7 deletion in Candida albicans impacts extracellular vesicle features and delivery of virulence factors. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e82. [PMID: 38938278 PMCID: PMC11080841 DOI: 10.1002/jex2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) from human fungal pathogens have been implicated in fungal virulence, yet little is known about their role in the host-pathogen interaction. Progress has been hampered by the lack of a specific marker for fungal EVs that can be used to monitor EV isolation and tracking in biological systems. Here we report the effect of a SUR7 gene knockout on the production, properties, and role of EVs in the virulence of Candida albicans. Sur7 is a component of the membrane compartment of Can1 (MCC) complex and is enriched in the EVs from C. albicans and other fungal species. MCC is a plasma membrane complex which together with the eisosome, a cytoplasmic protein complex, is a key regulator in plasma membrane organisation and plasma membrane associated processes. The SUR7 knockout strain produces smaller EVs than the wild-type (WT) with different protein and carbohydrate cargos. Furthermore, proteins with known roles in Candida pathogenesis were present in WT EVs and absent or diminished in the sur7Δ EVs. We demonstrate that the reduced virulence of the sur7Δ cells can be partially restored with EVs from a WT strain. These findings demonstrate the importance of Sur7-like proteins in the biogenesis of EVs in fungi and enhance our understanding of the role of fungal EVs in human pathogenesis.
Collapse
Affiliation(s)
- James A. McKenna
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Donovan Garcia‐Ceron
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Mark R. Bleackley
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Long Yu
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
| | - Vincent Bulone
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
- Division of GlycoscienceDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH)AlbaNova University CentreStockholmSweden
| | - Marilyn A. Anderson
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| |
Collapse
|
35
|
Tenebrio molitor as a Simple and Cheap Preclinical Pharmacokinetic and Toxicity Model. Int J Mol Sci 2023; 24:ijms24032296. [PMID: 36768618 PMCID: PMC9917132 DOI: 10.3390/ijms24032296] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
The progression of drugs into clinical phases requires proper toxicity assessment in animals and the correct identification of possible metabolites. Accordingly, different animal models are used to preliminarily evaluate toxicity and biotransformations. Rodents are the most common models used to preliminarily evaluate the safety of drugs; however, their use is subject to ethical consideration and elevated costs, and strictly regulated by national legislations. Herein, we developed a novel, cheap and convenient toxicity model using Tenebrio molitor coleoptera (TMC). A panel of 15 drugs-including antivirals and antibacterials-with different therapeutic applications was administered to TMC and the LD50 was determined. The values are comparable with those already determined in mice and rats. In addition, a TMC model was used to determine the presence of the main metabolites and in vivo pharmacokinetics (PK), and results were compared with those available from in vitro assays and the literature. Taken together, our results demonstrate that TMC can be used as a novel and convenient preliminary toxicity model to preliminarily evaluate the safety of experimental compounds and the formation of main metabolites, and to reduce the costs and number of rodents, according to 3R principles.
Collapse
|
36
|
Jemel S, Raveloarisaona Y, Bidaud AL, Djenontin E, Kallel A, Guillot J, Kallel K, Botterel F, Dannaoui E. In vitro and in vivo evaluation of antifungal combinations against azole-resistant Aspergillus fumigatus isolates. Front Cell Infect Microbiol 2023; 12:1038342. [PMID: 36733850 PMCID: PMC9887171 DOI: 10.3389/fcimb.2022.1038342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/25/2022] [Indexed: 01/19/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus (Af) has become a widespread threat and a major concern for optimal management of patients with invasive aspergillosis (IA). Combination of echinocandins with azoles is an attractive alternative option for the treatment of IA due to azole-resistant Af strains. The aim of this study was to evaluate the in vitro and in vivo combination of caspofungin (CAS) with either voriconazole (VRZ) or posaconazole (PSZ). In vitro interactions were assessed by two methods, and an animal model of IA in Galleria mellonella was used for in vivo evaluation. Assessment of efficacy was based on larvae mortality. Groups of 10 larvae were infected by 3 clinical strains of Af (azole susceptible, AfS; PSZ resistant, AfR1; VRZ and PSZ resistant strain, AfR2). In vitro, combination of CAS and azoles was indifferent against AfS, and AfR2, and a synergy was found for AfR1. When compared to VRZ monotherapy, the combination of VRZ at 4 µg/larva with CAS at 4 µg/larva improved survival of AfR2-infected larvae (p=0.0066). Combination of PSZ at 4µg/larva with CAS at 4 µg/larva improved survival of AfR1-infected larvae compared to CAS (p=0.0002) and PSZ (0.0024) monotherapy. Antagonism was never observed. In conclusion, the combination of caspofungin with azoles is a promising alternative for the treatment of azole resistant strains of Af.
Collapse
Affiliation(s)
- Sana Jemel
- Université Paris Est Créteil, Dynamyc, Créteil, France
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis, Tunisie
- UR17SP03, Centre Hospitalo-Universitaire La Rabta, Jabbari, Tunis, Tunisie
| | - Yannick Raveloarisaona
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris-Cité, Faculté Médecine, Paris, France
| | - Anne-Laure Bidaud
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris-Cité, Faculté Médecine, Paris, France
| | - Elie Djenontin
- Université Paris Est Créteil, Dynamyc, Créteil, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Européen Georges Pompidou, Paris, France
| | - Aicha Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis, Tunisie
- UR17SP03, Centre Hospitalo-Universitaire La Rabta, Jabbari, Tunis, Tunisie
| | - Jacques Guillot
- Dermatology-Parasitology-Mycology, Oniris, Nantes, France
- Univ. Angers, Univ. Brest, IRF, SFR ICAT, Angers, France
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis, Tunisie
- UR17SP03, Centre Hospitalo-Universitaire La Rabta, Jabbari, Tunis, Tunisie
| | | | - Eric Dannaoui
- Université Paris Est Créteil, Dynamyc, Créteil, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris-Cité, Faculté Médecine, Paris, France
| |
Collapse
|
37
|
Seegers CII, Lee DJ, Zarnovican P, Kirsch SH, Müller R, Haselhorst T, Routier FH. Identification of Compounds Preventing A. fumigatus Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3. Int J Mol Sci 2023; 24:ijms24031851. [PMID: 36768176 PMCID: PMC9915216 DOI: 10.3390/ijms24031851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner.
Collapse
Affiliation(s)
- Carla I. I. Seegers
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Danielle J. Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patricia Zarnovican
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Françoise H. Routier
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
38
|
Ehemann K, Mantilla MJ, Mora-Restrepo F, Rios-Navarro A, Torres M, Celis Ramírez AM. Many ways, one microorganism: Several approaches to study Malassezia in interactions with model hosts. PLoS Pathog 2022; 18:e1010784. [PMID: 36074792 PMCID: PMC9455852 DOI: 10.1371/journal.ppat.1010784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malassezia, a lipophilic and lipid-dependent yeast, is a microorganism of current interest to mycobiologists because of its role as a commensal or pathogen in health conditions such as dermatological diseases, fungemia, and, as discovered recently, cancer and certain neurological disorders. Various novel approaches in the study of Malassezia have led to increased knowledge of the cellular and molecular mechanisms of this yeast. However, additional efforts are needed for more comprehensive understanding of the behavior of Malassezia in interactions with the host. This article reviews advances useful in the experimental field for Malassezia.
Collapse
Affiliation(s)
- Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - María Juliana Mantilla
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Mora-Restrepo
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Andrea Rios-Navarro
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
39
|
Sasidharan S, Nishanth KS, Nair HJ. Ethanolic extract of Caesalpinia bonduc seeds triggers yeast metacaspase-dependent apoptotic pathway mediated by mitochondrial dysfunction through enhanced production of calcium and reactive oxygen species (ROS) in Candida albicans. Front Cell Infect Microbiol 2022; 12:970688. [PMID: 36093184 PMCID: PMC9449877 DOI: 10.3389/fcimb.2022.970688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a widespread disease-causing yeast affecting humankind, which leads to urinary tract, cutaneous and various lethal systemic infections. As this infection rate steadily increases, it is becoming a significant public health problem. Recently, Caesalpinia bonduc has received much attention from researchers due to its diverse pharmacological properties, including antimicrobial effects. Accordingly, we first planned to explore the in-vitro anticandidal potential of three extracts obtained from C. bonduc seeds against four Candida species. Initially, the anticandidal activity of the seed extracts was checked by the microdilution technique. Out of three seed extracts tested, ethanolic extract of C. bonduc seed (EECS) recorded the best activity against C. albicans. Hence, we next aimed to find out the anticandidal mechanism of EECS in C. albicans. The liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis showed that the major compounds present in the EECS were tocopherols, fucosterol, linoleic acid, β-amyrin, β-sitosterol, campesterol, cassane furanoditerpene, Norcassane furanoditerpene and other diterpenes. To evaluate the cell death mechanism in C. albicans, a series of parameters related to apoptosis, viz., reactive oxygen species (ROS) production, membrane permeability, mitochondrial membrane potential, release of cytochrome c, DNA fragmentation, nuclear condensation, increased Ca2+ level in cytosolic and mitochondrial and activation of metacaspase, were analyzed. The results showed that EECS treatment resulted in the elevation of ROS, which leads to plasma membrane permeability in C. albicans. Annexin V staining further confirms the early stage of apoptosis through phosphatidylserine (PS) externalization. We further inspected the late apoptotic stage using DAPI and TUNEL staining assays. From the results, it can be concluded that EECS triggered mitochondrial dysfunction by releasing high levels of ROS, cytochrome c and Ca2+resulting in the activation of metacaspase mediated apoptosis, which is the central mechanism behind the cell death of C. albicans. Finally, a Galleria mellonella-C. albicans infection system was employed to assess the in-vivo potential of EECS. The outcomes displayed that the EECS considerably enhanced the recovery rate of G. mellonella larvae from infection after the treatment. Additionally, EECS also recorded low hemolytic activity. This study thus spotlights the anticandidal potential and mechanism of action of EECS against C. albicans and thus delivers a promising treatment approach to manage C. albicans infection in the future.
Collapse
|
40
|
Galleria mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunomodulators are drugs that either stimulate or suppress the immune system in response to an immunopathological disease or cancer. The majority of clinically approved immunomodulators are either chemically synthesised (e.g., dexamethasone) or protein-based (e.g., monoclonal antibodies), whose uses are limited due to toxicity issues, poor bioavailability, or prohibitive cost. Nature is an excellent source of novel compounds, as it is estimated that almost half of all licenced medicines are derived from nature or inspired by natural product (NP) structures. The clinical success of the fungal-derived immunosuppressant cyclosporin A demonstrates the potential of natural products as immunomodulators. Conventionally, the screening of NP molecules for immunomodulation is performed in small animal models; however, there is a growing impetus to replace animal models with more ethical alternatives. One novel approach is the use of Galleria melonella larvae as an in vivo model of immunity. Despite lacking adaptive antigen-specific immunity, this insect possesses an innate immune system comparable to mammals. In this review, we will describe studies that have used this alternative in vivo model to assess the immunomodulating activity of synthetic and NP-derived compounds, outline the array of bioassays employed, and suggest strategies to enhance the use of this model in future research.
Collapse
|
41
|
Duan X, Xie Z, Ma L, Jin X, Zhang M, Xu Y, Liu Y, Lou H, Chang W. Selective Metal Chelation by a Thiosemicarbazone Derivative Interferes with Mitochondrial Respiration and Ribosome Biogenesis in Candida albicans. Microbiol Spectr 2022; 10:e0195121. [PMID: 35412374 PMCID: PMC9241695 DOI: 10.1128/spectrum.01951-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Metal chelation is generally considered as a promising antifungal approach but its specific mechanisms are unclear. Here, we identify 13 thiosemicarbazone derivatives that exert broad-spectrum antifungal activity with potency comparable or superior to that of fluconazole in vitro by screening a small compound library comprising 89 thiosemicarbazone derivatives as iron chelators. Among the hits, 19ak exhibits minimal cytotoxicity and potent activity against either azole-sensitive or azole-resistant fungal pathogens. Mechanism investigations reveal that 19ak inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation, and further reduces mitochondrial membrane potential and ATP synthesis in Candida albicans. In addition, 19ak inhibits fungal ribosome biogenesis mainly by disrupting intracellular zinc homeostasis. 19ak also stimulates the activities of antioxidant enzymes and decreases reactive oxygen species formation in C. albicans, resulting in an increase in detrimental intracellular reductive stress. However, 19ak has minor effects on mammalian cells in depleting intracellular iron and zinc. Moreover, 19ak exhibits low capacity to induce drug resistance and in vivo efficacy in a Galleria mellonella infection model. These findings uncover retarded fungal mitochondrial respiration and ribosome biogenesis as downstream effects of disruption of iron and zinc homeostasis in C. albicans and provide a basis for the thiosemicarbazone 19ak in antifungal application. IMPORTANCE The increasing incidence of fungal infections and resistance to existing antifungals call for the development of broad-spectrum antifungals with novel mechanisms of action. In this study, we demonstrate that a thiosemicarbazone derivative 19ak selectively inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation and inhibits ribosome biogenesis mainly by disrupting intracellular zinc homeostasis in C. albicans. In addition, 19ak exhibits low capacity to induce fungal resistance, minimal cytotoxicity, and in vivo antifungal efficacy. This study provides the basis of thiosemicarbazone derivative 19ak as a metal chelator for the treatment of fungal infections.
Collapse
Affiliation(s)
- Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, People’s Republic of China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuliang Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yue Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
42
|
Zuzarte M, Salgueiro L. Essential Oils in Respiratory Mycosis: A Review. Molecules 2022; 27:molecules27134140. [PMID: 35807386 PMCID: PMC9268412 DOI: 10.3390/molecules27134140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory mycosis is a major health concern, due to the expanding population of immunosuppressed and immunocompromised patients and the increasing resistance to conventional antifungals and their undesired side-effects, thus justifying the development of new therapeutic strategies. Plant metabolites, namely essential oils, represent promising preventive/therapeutic strategies due to their widely reported antifungal potential. However, regarding fungal infections of the respiratory tract, information is disperse and no updated compilation on current knowledge is available. Therefore, the present review aims to gather and systematize relevant information on the antifungal effects of several essential oils and volatile compounds against the main type of respiratory mycosis that impact health care systems. Particular attention is paid to Aspergillus fumigatus, the main pathogen involved in aspergillosis, Candida auris, currently emerging as a major pathogen in certain parts of the world, and Cryptococcus neoformans, one of the main pathogens involved in pulmonary cryptococcosis. Furthermore, the main mechanisms of action underlying essential oils’ antifungal effects and current limitations in clinical translation are presented. Overall, essential oils rich in phenolic compounds seem to be very effective but clinical translation requires more comprehensive in vivo studies and human trials to assess the efficacy and tolerability of these compounds in respiratory mycosis.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Correspondence:
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Sciences and Technology, Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
43
|
Wirth F, Staudt KJ, Araújo BV, Ishida K. Experimental models for pharmacokinetic and pharmacodynamic studies of antifungals used in cryptococcosis treatment. Future Microbiol 2022; 17:969-982. [PMID: 35694892 DOI: 10.2217/fmb-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on cryptococcosis in the mammal animal model have demonstrated the occurrence of central nervous system infection and similarities in fungal pathogenicity with clinical and immunological features of the human infection. Although there is still a lack of studies involving pharmacokinetics (PK) and pharmacodynamics (PD) in animal models of cryptococcosis in the literature, these experimental models are useful for understanding this mycosis and antifungal effectiveness in improving the therapeutic schemes. The scope of this review is to describe and discuss the main mammal animal models for PK and PD studies of antifungals used in cryptococcosis treatment. Alternative models and computational methods are also addressed. All approaches for PK/PD studies are relevant to investigating drug-infection interaction and improving cryptococcosis therapy.
Collapse
Affiliation(s)
- Fernanda Wirth
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Keli J Staudt
- Faculty of Pharmacy, Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Bibiana V Araújo
- Faculty of Pharmacy, Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
44
|
Competitiveness during Dual-Species Biofilm Formation of Fusarium oxysporum and Candida albicans and a Novel Treatment Strategy. Pharmaceutics 2022; 14:pharmaceutics14061167. [PMID: 35745740 PMCID: PMC9227787 DOI: 10.3390/pharmaceutics14061167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
During an infection, a single or multispecies biofilm can develop. Infections caused by non-dermatophyte molds, such as Fusarium spp. and yeasts, such as Candida spp., are particularly difficult to treat due to the formation of a mixed biofilm of the two species. Fusarium oxysporum is responsible for approximately 20% of human fusariosis, while Candida albicans is responsible for superficial mucosal and dermal infections and for disseminated bloodstream infections with a mortality rate above 40%. This study aims to investigate the interactions between C. albicans and F. oxysporum dual-species biofilm, considering variable formation conditions. Further, the ability of the WMR peptide, a modified version of myxinidin, to eradicate the mixed biofilm when used alone or in combination with fluconazole (FLC) was tested, and the efficacy of the combination of WMR and FLC at low doses was assessed, as well as its effect on the expression of some biofilm-related adhesin and hyphal regulatory genes. Finally, in order to confirm our findings in vivo and explore the synergistic effect of the two drugs, we utilized the Galleria mellonella infection model. We concluded that C. albicans negatively affects F. oxysporum growth in mixed biofilms. Combinatorial treatment by WMR and FLC significantly reduced the biomass and viability of both species in mature mixed biofilms, and these effects coincided with the reduced expression of biofilm-related genes in both fungi. Our results were confirmed in vivo since the synergistic antifungal activity of WMR and FLC increased the survival of infected larvae and reduced tissue invasion. These findings highlight the importance of drug combinations as an alternative treatment for C. albicans and F. oxysporum mixed biofilms.
Collapse
|
45
|
Curtis A, Binder U, Kavanagh K. Galleria mellonella Larvae as a Model for Investigating Fungal-Host Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893494. [PMID: 37746216 PMCID: PMC10512315 DOI: 10.3389/ffunb.2022.893494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 09/26/2023]
Abstract
Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
46
|
Sayed R, Safwat NA, Amin BH, Yosri M. Study of the dual biological impacts of aqueous extracts of normal and gamma-irradiated Galleria mellonella larvae. J Taibah Univ Med Sci 2022; 17:765-773. [PMID: 36050949 PMCID: PMC9396055 DOI: 10.1016/j.jtumed.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Galleria mellonella assimilates beeswax using many gut enzymes; however, high doses of gamma radiation have been used to eradicate such pests, affecting its life cycle. In vitro studies of irradiated extracts of G. mellonella against bacterial species as well as three tumour cell lines are demonstrated in the present study. The antibacterial and antitumour effects are compared with those of the non-irradiated Galleria mellonella larval extract. Methods The effect of different dose levels of gamma irradiation, ranging from 2 to 8 Gy, was tested on G. mellonella lipase, protease, and acid phosphate activities. The antimicrobial activity of un-irradiated and irradiated G. mellonella larval extracts was tested against different gram-positive and gram-negative bacteria and some fungi. The antitumour action was tested against different tumour cell lines. A cytotoxicity assay was performed on normal and irradiated larval extracts against normal human lung fibroblast cells. A microscopic examination of Streptococcus mutants and HepG-2 was performed using transmission and scanning electron microscopy. Results Optimum results were obtained at 6 Gy, which enhanced maximum enzymatic activity. Maximum antimicrobial activity was obtained against Streptococcus mutants with MIC 31.25 μg/ml at a dose of 6 Gy. A microscopic examination depicted an apoptotic process for irradiated G. mellonella larvae with either Streptococcus mutants or HepG-2. Conclusion The present study shows a synergistic relationship between the G. mellonella larval extract and a 6 Gy radiation dose for further biomedical applications.
Collapse
|
47
|
Araújo D, Mil-Homens D, Henriques M, Silva S. Anti-EFG1 2′-OMethylRNA oligomer inhibits Candida albicans filamentation and attenuates the candidiasis in Galleria mellonella. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:517-523. [PMID: 35036062 PMCID: PMC8728520 DOI: 10.1016/j.omtn.2021.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
EFG1 is a central transcriptional regulator of filamentation that is an important virulence factor of Candida albicans. This study serves to assess in vivo the applicability of the anti-EFG1 2′-OMethylRNA oligomer for inhibiting C.albicans filamentation and to attenuate candidiasis, using the Galleria mellonella model. For that, larvae infected with a lethal concentration of C. albicans cells were treated with a single dose and with a double dose of the anti-EFG1 2′OMe oligomer (at 40 and 100 nM). The anti-EFG1 2′OMe oligomer toxicity and effect on larvae survival was evaluated. No evidence of anti-EFG1 2′OMe oligomer toxicity was observed and the treatment with double dose of 2′OMe oligomer empowered larvae survival over 24 h (by 90%–100%) and prolonged its efficacy until 72 h of infection (by 30%). Undoubtedly, this work validates the in vivo therapeutic potential of anti-EFG1 2′OMe oligomer for controlling C. albicans infections.
Collapse
|
48
|
Marena GD, Ramos MADS, Lima LC, Chorilli M, Bauab TM. Galleria mellonella for systemic assessment of anti-Candida auris using amphotericin B loaded in nanoemulsion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151023. [PMID: 34662607 DOI: 10.1016/j.scitotenv.2021.151023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Galleria mellonella is a model that uses adult larvae to assess the prophylactic, therapeutic, and acute toxic potential of substances. Given their benefits, G. mellonella models are being employed in investigations of systemic infections caused by highly resistant microorganisms. Among the multiresistant microorganisms, we highlight Candida auris, a yeast with high mortality potential and resistance. Among the potential drugs, amphotericin B (AmB) stands out; however, microbial resistance episodes and side effects caused by low selectivity have been observed. The incorporation of AmB into a nanoemulsion (NE) can contribute to the control of C. auris infections and resistance as well as decrease the side effects of this drug. This study aimed to develop AmB-loaded NE (NEA) and evaluate its antifungal action against C. auris in G. mellonella. NEs were obtained by using sunflower oil and cholesterol as the oily phase, polyoxyethylene 20 cetyl ether (Brij® 58) and soy phosphatidylcholine as the surfactant system, and PBS buffer as the aqueous phase. An alternative in vivo assay with G. mellonella for acute toxicity and infection was performed using adult stage larvae (200 mg to 400 mg). According to the obtained results, NE and NEA exhibited sizes of 43 and 48 nm, respectively. The PDI was 0.285 and 0.389 for NE and NEA, respectively. The ZP showed electronegativity for both systems, with -3.77 mV and -3.80 mV for NE and NEA, respectively. Acute toxicity showed that free AmB had greater acute toxicity potential than NEA. The survival assay showed high larval viability. NEA had a better antifungal profile against systemic infection in G. mellonella. It is concluded that the alternative model proved to be an efficient in vivo assay to determine the toxicity and evaluate the therapeutic property of free AmB and NEA in systemic infections caused by C. auris.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Laura Caminitti Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State 14.800-903, Brazil.
| |
Collapse
|
49
|
Borman AM. The Use of Galleria mellonella Larvae to Study the Pathogenicity and Clonal Lineage-Specific Behaviors of the Emerging Fungal Pathogen Candida auris. Methods Mol Biol 2022; 2517:287-298. [PMID: 35674963 DOI: 10.1007/978-1-0716-2417-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Candida species are the most common fungal causes of disseminated infections in humans. Although such infections are associated with high morbidity and mortality, it is widely accepted that virulence, antifungal susceptibility, and disease outcome vary according to individual Candida species. In this respect, the emerging pathogen Candida auris has received much attention due to its propensity to cause widespread nosocomial outbreaks, to exhibit high virulence in several infection models, and to develop resistance to multiple classes of antifungal drugs. Although mammalian models of infection have long been viewed as the gold standard for studies on fungal virulence, comparative pathogenicity, and evaluation of antifungal drug efficacy, the larvae of the greater wax moth Galleria mellonella have shown considerable promise as an alternative invertebrate model of infection. Galleria larvae are inexpensive, are easily maintained in the laboratory, tolerate incubation at human physiological temperatures, possess cellular and humoral immune systems that share many features with mammals, and allow investigation of pathogenicity/virulence using multiple different reading endpoints. Here, I describe in detail the methods that can be used to study the virulence/pathogenicity of Candida auris in G. mellonella.
Collapse
Affiliation(s)
- Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England South-West Regional Laboratory, Southmead Hospital, Bristol, UK. .,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK.
| |
Collapse
|
50
|
In Vivo Efficacy of Voriconazole in a Galleria mellonella Model of Invasive Infection Due to Azole-Susceptible or Resistant Aspergillus fumigatus Isolates. J Fungi (Basel) 2021; 7:jof7121012. [PMID: 34946994 PMCID: PMC8708373 DOI: 10.3390/jof7121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 02/05/2023] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus responsible for life-threatening infections in humans and animals. Azoles are the first-line treatment for aspergillosis, but in recent years, the emergence of azole resistance in A. fumigatus has changed treatment recommendations. The objective of this study was to evaluate the efficacy of voriconazole (VRZ) in a Galleria mellonella model of invasive infection due to azole-susceptible or azole-resistant A. fumigatus isolates. We also sought to describe the pharmacokinetics of VRZ in the G. mellonella model. G. mellonella larvae were infected with conidial suspensions of azole-susceptible and azole-resistant isolates of A. fumigatus. Mortality curves were used to calculate the lethal dose. Assessment of the efficacy of VRZ or amphotericin B (AMB) treatment was based on mortality in the lethal model and histopathologic lesions. The pharmacokinetics of VRZ were determined in larval hemolymph. Invasive fungal infection was obtained after conidial inoculation. A dose-dependent reduction in mortality was observed after antifungal treatment with AMB and VRZ. VRZ was more effective at treating larvae inoculated with azole-susceptible A. fumigatus isolates than larvae inoculated with azole-resistant isolates. The concentration of VRZ was maximal at the beginning of treatment and gradually decreased in the hemolymph to reach a Cmin (24 h) between 0.11 and 11.30 mg/L, depending on the dose. In conclusion, G. mellonella is a suitable model for testing the efficacy of antifungal agents against A. fumigatus.
Collapse
|