1
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Mochizuki S, Miura J, Ucida K, Kubota R, Fujikawa H, Takagi S, Yoshida N, Ootake S, Fujimori C, Shinohara A, Tanaka J, Babazono T. Type 1 diabetes mellitus following COVID-19 vaccination: a report of two cases and review of literature. Diabetol Int 2024; 15:577-582. [PMID: 39101197 PMCID: PMC11291814 DOI: 10.1007/s13340-024-00695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/17/2024] [Indexed: 08/06/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection, which led to the coronavirus 2019 (COVID-19) pandemic, has promoted the development of novel therapeutic agents and vaccines to combat the global spread of the virus. While the COVID-19 vaccines approved thus far have proven to be effective in clinical settings, there have been reports of autoimmune diseases occurring following vaccination, including autoimmune/inflammatory syndrome induced by adjuvant syndrome. We herein report two cases of type 1 diabetes mellitus that occurred following COVID-19 vaccination and provide a literature review. Both cases received multiple vaccinations as recommended to ensure optimal antibody titers. Moreover, the HLA associated with susceptibility to type 1 diabetes was prototypic in both cases. This indirect evidence suggests that the COVID-19 vaccines may be implicated in the pathogenesis of type 1 diabetes. Further case reports to establish a clearer understanding of a potential association are warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00695-9.
Collapse
Affiliation(s)
- Shota Mochizuki
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Junnosuke Miura
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Kiwako Ucida
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Ryo Kubota
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Hirona Fujikawa
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Satoshi Takagi
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Naoshi Yoshida
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Sachiko Ootake
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
- Medical Corporation Sakakibara Koseikai Sakakibara Sapia Tower Clinic, 1-7-12, Marunouchi, Chiyoda-ku, Tokyo, Japan
| | - Chika Fujimori
- Division of Hematology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Akihito Shinohara
- Division of Hematology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Junji Tanaka
- Division of Hematology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Tetsuya Babazono
- Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
3
|
Ali HS, Al-Amodi HS, Hamady S, Roushdy MMS, Helmy Hasanin A, Ellithy G, Elmansy RA, Ahmed HHT, Ahmed EME, Elzoghby DMA, Kamel HFM, Hassan G, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Elesawi M, Fikry H, Saleh LA, Matboli M. Rosavin improves insulin resistance and alleviates hepatic and kidney damage via modulating the cGAS-STING pathway and autophagy signaling in HFD/STZ-induced T2DM animals. RSC Med Chem 2024; 15:2098-2113. [PMID: 38911169 PMCID: PMC11187545 DOI: 10.1039/d4md00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from in silico analysis in T2DM animals. Methods: A T2DM rat model was established by combining a high-fat diet (HFD) and streptozotocin (STZ). After four weeks from T2DM induction, HFD/STZ-induced T2DM rats were subdivided into an untreated group (T2DM group) and three treated groups which received 10, 20, or 30 mg per kg of R. rosea daily for 4 weeks. Results: The study found that rosavin can affect the cGAS-STING pathway-related RNA signatures by decreasing the expressions of ZBP1, STING1, DDX58, and miR-1976 while increasing the lncRNA AC074117.2 level in the liver, kidney, and adipose tissues. Rosavin prevented further weight loss, reduced serum insulin and glucose, improved insulin resistance and the lipid panel, and mitigated liver and kidney damage compared to the untreated T2DM group. The treatment also resulted in reduced inflammation levels and improved autophagy manifested by decreased immunostaining of TNF-α and increased immunostaining of LC3B in the liver and kidneys of the treated T2DM rats. Conclusion: Rosavin has shown potential in attenuating T2DM, inhibiting inflammation in the liver and kidneys, and improving metabolic disturbances in a T2DM animal model. The observed effect was linked to the activation of autophagy and suppression of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Hebatallah S Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Shaimaa Hamady
- Biochemistry Department, Faculty of Science, Ain Shams University Cairo Egypt
| | - Marian M S Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Ghada Ellithy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Rasha A Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University Buraydah Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
| | - Hagir H T Ahmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University Sudan
| | - Enshrah M E Ahmed
- Pathology unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University Saudi Arabia
| | | | - Hala F M Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ghida Hassan
- Physiology Department, Faculty of Medicine, Ain Shams University Egypt
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo Badr City Egypt
| | - Laila M Farid
- Pathology Department Faculty of Medicine, Ain Shams University Egypt
| | | | - Eman K Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University Egypt
| | - Mohamed Elesawi
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
4
|
Stock AJ, Gonzalez Paredes P, de Almeida LP, Kosanke SD, Chetlur S, Budde H, Wakenight P, Zwingman TA, Rosen AB, Allenspach EJ, Millen KJ, Buckner JH, Rawlings DJ, Gorman JA. The IFIH1-A946T risk variant promotes diabetes in a sex-dependent manner. Front Immunol 2024; 15:1349601. [PMID: 38487540 PMCID: PMC10937421 DOI: 10.3389/fimmu.2024.1349601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet β-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 (IFIH1), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1A946T) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1A946T risk variant, (IFIH1R) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1R compared to non-risk Ifih1 (Ifih1NR) mice and a significant acceleration of diabetes onset in Ifih1R females. Ifih1R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1NR, indicative of increased IFN I signaling. Ifih1R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8+ T cells. Our results indicate that IFIH1R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1R in NOD mice, which will be important to consider for the development of therapeutics for T1D.
Collapse
Affiliation(s)
- Amanda J. Stock
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | - Pierina Gonzalez Paredes
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | | | - Stanley D. Kosanke
- Heartland Veterinary Pathology Services, PLLC, Edmond, OK, United States
| | - Srinivaas Chetlur
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | - Hannah Budde
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | - Paul Wakenight
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Theresa A. Zwingman
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Aaron B.I. Rosen
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, United States
| | - Eric J. Allenspach
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Kathleen J. Millen
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jane H. Buckner
- Benaroya Research Institute at Virginia Mason, Center for Translational Immunology, Seattle, WA, United States
| | - David J. Rawlings
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jacquelyn A. Gorman
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Stock AJ, Gonzalez-Paredes P, Previato de Almeida L, Kosanke SD, Chetlur S, Budde H, Wakenight P, Zwingman TA, Rosen AB, Allenspach E, Millen KJ, Buckner JH, Rawlings DJ, Gorman JA. The IFIH1-A946T risk variant promotes diabetes in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576482. [PMID: 38328221 PMCID: PMC10849491 DOI: 10.1101/2024.01.20.576482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet β-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 ( IFIH1 ), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1 A946T ) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1 A946T risk variant, ( IFIH1 R ) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1 R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1 R compared to non-risk Ifih1 ( Ifih1 NR ) mice and a significant acceleration of diabetes onset in Ifih1 R females. Ifih1 R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1 NR , indicative of increased IFN I signaling. Ifih1 R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8 + T cells. Our results indicate that IFIH1 R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1 R in NOD mice, which will be important to consider for the development of therapeutics for T1D.
Collapse
|
6
|
Fang C, Fu W, Liu N, Zhao H, Zhao C, Yu K, Liu C, Yin Z, Xu L, Xia N, Wang W, Cheng T. Investigating the virulence of coxsackievirus B6 strains and antiviral treatments in a neonatal murine model. Antiviral Res 2024; 221:105781. [PMID: 38097049 DOI: 10.1016/j.antiviral.2023.105781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Coxsackievirus B6 (CVB6), a member of the human enterovirus family, is associated with severe diseases such as myocarditis in children. However, to date, only a limited number of CVB6 strains have been identified, and their characterization in animal models has been lacking. To address this gap, in this study, a neonatal murine model of CVB6 infection was established to compare the replication and virulence of three infectious-clone-derived CVB6 strains in vivo. The results showed that following challenge with a lethal dose of CVB6 strains, the neonatal mice rapidly exhibited a series of clinical signs, such as weight loss, limb paralysis, and death. For the two high-virulence CVB6 strains, histological examination revealed myocyte necrosis in skeletal and cardiac muscle, and immunohistochemistry confirmed the expression of CVB6 viral protein in these tissues. Real-time PCR assay also revealed higher viral loads in the skeletal and cardiac muscle than in other tissues at different time points post infection. Furthermore, the protective effect of passive immunization with antisera and a neutralizing monoclonal antibody against CVB6 infection was evaluated in the neonatal mouse model. This study should provide insights into the pathogenesis of CVB6 and facilitate further research in the development of vaccines and antivirals against CVBs.
Collapse
Affiliation(s)
- Changjian Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Wenkun Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Nanyi Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Canyang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Kang Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Che Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Zhichao Yin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China
| | - Wei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
7
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Goksen D, Evin F, Isik E, Ozen S, Atik T, Ozkinay F, Akcan N, Ozkan B, Buyukinan M, Nuri Ozbek M, Darcan S, Onay H. Molecular diagnosis in patients with monogenic diabetes mellitus, and detection of a novel candidate gene. Diabetes Res Clin Pract 2023; 205:110953. [PMID: 37838154 DOI: 10.1016/j.diabres.2023.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
AIM We aimed to investigate molecular genetic basis of monogenic diabetes (DM) and novel responsible candidate genes with targeted Next Generation Sequencing (NGS) and Whole Exome Sequencing (WES). METHODS A hundred cases presenting with clinical findings and a family history of monogenic DM were included in the study. Molecular analysis was performed using an NGS panel including 14 genes. Following targeted NGS, WES was planned in cases in whom no variant was detected. RESULTS Thirty different disease-causing variants in seven different genes were detected in thirty-five (35 %) cases with targeted NGS approach. Most common pathogenic variant was found in GCK gene in 25 (25 %) cases. Four different variants were detected in 4 (4 %) patients in ABCC8 gene. In 45 of 65 cases; WES analyses were done. A heterozygous c.2635C > T(p.Gln879Ter) variant was detected in IFIH1 gene in a patient with incidental hyperglycemia. In the segregation analysis affected mother was shown to be heterozygous for the same variant. CONCLUSION Molecular etiology was determined in 35 % cases with the NGS targeted panel. Seventeen novel variants in monogenic DM genes have been identified. A candidate gene determined by WES analysis in a case that could not be diagnosed with NGS panel in this study.
Collapse
Affiliation(s)
- Damla Goksen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Evin
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Isik
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey.
| | - Samim Ozen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tahir Atik
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Nese Akcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Behzat Ozkan
- Department of Pediatric Endocrinology, Dr Behçet Uz Çocuk Training and Research Hospital, Izmir, Turkey
| | - Muammer Buyukinan
- Department of Pediatric Endocrinology, Konya Training and Research Hospital, Konya, Turkey
| | - Mehmet Nuri Ozbek
- Department of Pediatric Endocrinology, Mardin Artuklu University, Mardin, Turkey
| | - Sukran Darcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Onay
- Multigen Genetic Diseases Diagnosis Center, Izmir, Turkey
| |
Collapse
|
9
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Contribution of Retrotransposons to the Pathogenesis of Type 1 Diabetes and Challenges in Analysis Methods. Int J Mol Sci 2023; 24:ijms24043104. [PMID: 36834511 PMCID: PMC9966460 DOI: 10.3390/ijms24043104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases of the endocrine system, associated with several life-threatening comorbidities. While the etiopathogenesis of T1D remains elusive, a combination of genetic susceptibility and environmental factors, such as microbial infections, are thought to be involved in the development of the disease. The prime model for studying the genetic component of T1D predisposition encompasses polymorphisms within the HLA (human leukocyte antigen) region responsible for the specificity of antigen presentation to lymphocytes. Apart from polymorphisms, genomic reorganization caused by repeat elements and endogenous viral elements (EVEs) might be involved in T1D predisposition. Such elements are human endogenous retroviruses (HERVs) and non-long terminal repeat (non-LTR) retrotransposons, including long and short interspersed nuclear elements (LINEs and SINEs). In line with their parasitic origin and selfish behaviour, retrotransposon-imposed gene regulation is a major source of genetic variation and instability in the human genome, and may represent the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. Autoreactive immune cell subtypes with differentially expressed retrotransposons can be identified with single-cell transcriptomics, and personalized assembled genomes can be constructed, which can then serve as a reference for predicting retrotransposon integration/restriction sites. Here we review what is known to date about retrotransposons, we discuss the involvement of viruses and retrotransposons in T1D predisposition, and finally we consider challenges in retrotransposons analysis methods.
Collapse
|
11
|
Blum SI, Taylor JP, Barra JM, Burg AR, Shang Q, Qiu S, Shechter O, Hayes AR, Green TJ, Geurts AM, Chen YG, Tse HM. MDA5-dependent responses contribute to autoimmune diabetes progression and hindrance. JCI Insight 2023; 8:e157929. [PMID: 36512407 PMCID: PMC9977297 DOI: 10.1172/jci.insight.157929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in pancreatic β cell destruction. Coxsackievirus B3 (CVB3) infection and melanoma differentiation-associated protein 5-dependent (MDA5-dependent) antiviral responses are linked with T1D development. Mutations within IFIH1, coding for MDA5, are correlated with T1D susceptibility, but how these mutations contribute to T1D remains unclear. Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression (KO) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (ΔHel1), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses. Spontaneous T1D developed in female NOD and KO mice similarly, but was significantly delayed in ΔHel1 mice, which may be partly due to a concomitant increase in myeloid-derived suppressor cells. Interestingly, KO male mice had increased spontaneous T1D compared with NOD mice. Whereas NOD and KO mice developed CVB3-accelerated T1D, ΔHel1 mice were protected partly due to decreased type I IFNs, pancreatic infiltrating TNF+ macrophages, IFN-γ+CD4+ T cells, and perforin+CD8+ T cells. Furthermore, ΔHel1 MDA5 protein had reduced ATP hydrolysis compared with wild-type MDA5. Our results suggest that dampened MDA5 function delays T1D, yet loss of MDA5 promotes T1D.
Collapse
Affiliation(s)
- Samuel I. Blum
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jared P. Taylor
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessie M. Barra
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashley R. Burg
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiao Shang
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shihong Qiu
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oren Shechter
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aleah R. Hayes
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Moon H, Suh S, Park MK. Adult-Onset Type 1 Diabetes Development Following COVID-19 mRNA Vaccination. J Korean Med Sci 2023; 38:e12. [PMID: 36625174 PMCID: PMC9829515 DOI: 10.3346/jkms.2023.38.e12] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 vaccination-induced hyperglycemia and related complications have been reported. However, there have been few reports of type 1 diabetes triggered by COVID-19 vaccines in subjects without diabetes. Here, we report the case of a 56-year-old female patient who developed hyperglycemia after the second dose of COVID-19 mRNA-based vaccination without a prior history of diabetes. She visited our hospital with uncontrolled hyperglycemia despite administration of oral hyperglycemic agents. Her initial glycated hemoglobin level was high (11.0%), and fasting serum C-peptide level was normal. The fasting serum C-peptide level decreased to 0.269 ng/mL 5 days after admission, and the anti-glutamic acid decarboxylase antibody was positive. The patient was discharged in stable condition with insulin treatment. To our knowledge, this is the first case of the development of type 1 diabetes without diabetic ketoacidosis after mRNA-based COVID-19 vaccination, and is the oldest case of type 1 diabetes development under such circumstances.
Collapse
Affiliation(s)
- Hyeyeon Moon
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sunghwan Suh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Mi Kyoung Park
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea.
| |
Collapse
|
13
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
14
|
Yang Y, Zou S, Xu G. An update on the interaction between COVID-19, vaccines, and diabetic kidney disease. Front Immunol 2022; 13:999534. [DOI: 10.3389/fimmu.2022.999534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 01/08/2023] Open
Abstract
Up to now, coronavirus disease 2019 (COVID-19) is still affecting worldwide due to its highly infectious nature anrapid spread. Diabetic kidney disease (DKD) is an independent risk factor for severe COVID-19 outcomes, and they have a certain correlation in some aspects. Particularly, the activated renin–angiotensin–aldosterone system, chronic inflammation, endothelial dysfunction, and hypercoagulation state play an important role in the underlying mechanism linking COVID-19 to DKD. The dipeptidyl peptidase-4 inhibitor is considered a potential therapy for COVID-19 and has similarly shown organ protection in DKD. In addition, neuropilin-1 as an alternative pathway for angiotensin-converting enzyme 2 also contributes to severe acute respiratory syndrome coronavirus 2 entering the host cells, and its decreased expression can affect podocyte migration and adhesion. Here, we review the pathogenesis and current evidence of the interaction of DKD and COVID-19, as well as focus on elevated blood glucose following vaccination and its possible mechanism. Grasping the pathophysiology of DKD patients with COVID-19 is of great clinical significance for the formulation of therapeutic strategies.
Collapse
|
15
|
Ali HS, Boshra MS, Agwa SHA, Hakeem MSA, Meteini MSE, Matboli M. Identification of a Multi-Messenger RNA Signature as Type 2 Diabetes Mellitus Candidate Genes Involved in Crosstalk between Inflammation and Insulin Resistance. Biomolecules 2022; 12:1230. [PMID: 36139069 PMCID: PMC9496026 DOI: 10.3390/biom12091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disease associated with inflammation widening the scope of immune-metabolism, linking the inflammation to insulin resistance and beta cell dysfunction. New potential and prognostic biomarkers are urgently required to identify individuals at high risk of β-cell dysfunction and pre-DM. The DNA-sensing stimulator of interferon genes (STING) is an important component of innate immune signaling that governs inflammation-mediated T2DM. NOD-like receptor (NLR) reduces STING-dependent innate immune activation in response to cyclic di-GMP and DNA viruses by impeding STING-TBK1 interaction. We proposed exploring novel blood-based mRNA signatures that are selective for components related to inflammatory, immune, and metabolic stress which may reveal the landscape of T2DM progression for diagnosing or treating patients in the pre-DM state. In this study, we used microarray data set to identify a group of differentially expressed mRNAs related to the cGAS/STING, NODlike receptor pathways (NLR) and T2DM. Then, we comparatively analyzed six mRNAs expression levels in healthy individuals, prediabetes (pre-DM) and T2DM patients by real-time PCR. The expressions of ZBP1, DDX58, NFKB1 and CHUK were significantly higher in the pre-DM group compared to either healthy control or T2DM patients. The expression of ZBP1 and NFKB1 mRNA could discriminate between good versus poor glycemic control groups. HSPA1B mRNA showed a significant difference in its expression regarding the insulin resistance. Linear regression analysis revealed that LDLc, HSPA1B and NFKB1 were significant variables for the prediction of pre-DM from the healthy control. Our study shed light on a new finding that addresses the role of ZBP1 and HSPA1B in the early prediction and progression of T2DM.
Collapse
Affiliation(s)
- Hebatalla Said Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| | - Mariam Sameh Boshra
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology, Medical Ain Shams Research Institute, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| | | | | | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo P.O. Box 11381, Egypt
| |
Collapse
|
16
|
Yang CL, Sun F, Wang FX, Rong SJ, Yue TT, Luo JH, Zhou Q, Wang CY, Liu SW. The interferon regulatory factors, a double-edged sword, in the pathogenesis of type 1 diabetes. Cell Immunol 2022; 379:104590. [PMID: 36030565 DOI: 10.1016/j.cellimm.2022.104590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulted from the unrestrained inflammatory attack towards the insulin-producing islet β cells. Although the exact etiology underlying T1D remains elusive, viral infections, especially those specific strains of enterovirus, are acknowledged as a critical environmental cue involved in the early phase of disease initiation. Viral infections could either directly impede β cell function, or elicit pathological autoinflammatory reactions for β cell killing. Autoimmune responses are bolstered by a massive body of virus-derived exogenous pathogen-associated molecular patterns (PAMPs) and the presence of β cell-derived damage-associated molecular patterns (DAMPs). In particular, the nucleic acid components and the downstream nucleic acid sensing pathways serve as the major effector mechanism. The endogenous retroviral RNA, mitochondrial DNA (mtDNA) and genomic fragments generated by stressed or dying β cells induce host responses reminiscent of viral infection, a phenomenon termed as viral mimicry during the early stage of T1D development. Given that the interferon regulatory factors (IRFs) are considered as hub transcription factors to modulate immune responses relevant to viral infection, we thus sought to summarize the critical role of IRFs in T1D pathogenesis. We discuss with focus for the impact of IRFs on the sensitivity of β cells to cytokine stimulation, the vulnerability of β cells to viral infection/mimicry, and the intensity of immune response. Together, targeting certain IRF members, alone or together with other therapeutics, could be a promising strategy against T1D.
Collapse
Affiliation(s)
- Chun-Liang Yang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fa-Xi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tian-Tian Yue
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China; Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, the Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
17
|
Song J, Li M, Li C, Liu K, Zhu Y, Zhang H. Friend or foe: RIG- I like receptors and diseases. Autoimmun Rev 2022; 21:103161. [PMID: 35926770 PMCID: PMC9343065 DOI: 10.1016/j.autrev.2022.103161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), which are pivotal sensors of RNA virus invasions, mediate the transcriptional induction of genes encoding type I interferons (IFNs) and proinflammatory cytokines, successfully establishing host antiviral immune response. A few excellent reviews have elaborated on the structural biology of RLRs and the antiviral mechanisms of RLR activation. In this review, we give a basic understanding of RLR biology and summarize recent findings of how RLR signaling cascade is strictly controlled by host regulatory mechanisms, which include RLR-interacting proteins, post-translational modifications and microRNAs (miRNAs). Furthermore, we pay particular attention to the relationship between RLRs and diseases, especially how RLRs participate in SARS-CoV-2, malaria or bacterial infections, how single-nucleotide polymorphisms (SNPs) or mutations in RLRs and antibodies against RLRs lead to autoinflammatory diseases and autoimmune diseases, and how RLRs are involved in anti-tumor immunity. These findings will provide insights and guidance for antiviral and immunomodulatory therapies targeting RLRs.
Collapse
Affiliation(s)
- Jie Song
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Caiyan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Yaxi Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
18
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
19
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Jimbo E, Kobayashi T, Takeshita A, Mine K, Nagafuchi S, Fukui T, Yagihashi S. Immunohistochemical detection of enteroviruses in pancreatic tissues of patients with type 1 diabetes using a polyclonal antibody against 2A protease of Coxsackievirus. J Diabetes Investig 2022; 13:435-442. [PMID: 34669264 PMCID: PMC8902398 DOI: 10.1111/jdi.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION The need for antiserum for immunohistochemical (IHC) detection of enterovirus (EV) in formaldehyde-fixed and paraffin-embedded samples is increasing. The gold standard monoclonal antibody (clone 5D8/1) against EV-envelope protein (VP1) was proven to cross-react with other proteins. Another candidate marker of EV proteins is 2A protease (2Apro ), which is encoded by the EV gene and translated by the host cells during EV replication, and participates processing proproteins to viral capsid proteins. MATERIALS AND METHODS We raised polyclonal antiserum by immunizing a rabbit with an 18-mer peptide of Coxsackievirus B1 (CVB1)-2Apro , and examined the specificity and sensitivity for EV on formaldehyde-fixed and paraffin-embedded tissue samples. RESULTS Enzyme-linked immunosorbent assay study showed a high titer of antibody for 18-mer peptide of CVB1-2Apro , cross-reacting with CVB3-2Apro peptide. IHC showed that antiserum against 2Apro reacted with CVB1-infected and VP1-positive Vero cells. Confocal laser scanning microscopy showed that antigen stained by the 2Apro antibody located in the same cell with VP1 stained by 5D8/1. IHC using 2Apro antiserum showed dense staining in the islets of EV-associated fulminant type 1 diabetes pancreas and that located in the same cell stained positive for VP1 (5D8/1). Specificity of 2Apro antiserum by IHC staining was confirmed by negative 2Apro in 14 VP1-negative non-diabetes control pancreases. CONCLUSIONS Our study provides a new polyclonal antiserum against CVB1-2Apro , which might be useful for IHC of EV-infected human tissues stored as archive of formaldehyde-fixed and paraffin-embedded tissue samples.
Collapse
Affiliation(s)
- Erika Jimbo
- Division of Immunology and Molecular MedicineOkinaka Memorial Institute for Medical ResearchTokyoJapan
| | - Tetsuro Kobayashi
- Division of Immunology and Molecular MedicineOkinaka Memorial Institute for Medical ResearchTokyoJapan
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Akira Takeshita
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Keiichiro Mine
- Division of Metabolism and EndocrinologyDepartment of Internal MedicineFaculty of MedicineSaga UniversitySagaJapan
| | - Seiho Nagafuchi
- Division of Metabolism and EndocrinologyDepartment of Internal MedicineFaculty of MedicineSaga UniversitySagaJapan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism and EndocrinologyDepartment of MedicineShowa University School of MedicineTokyoJapan
| | - Soroku Yagihashi
- Department of Exploratory Medicine on Nature, Life, and ManToho University School of MedicineChibaJapan
| |
Collapse
|
21
|
Sakurai K, Narita D, Saito N, Ueno T, Sato R, Niitsuma S, Takahashi K, Arihara Z. Type 1 diabetes mellitus following COVID‐19 RNA‐based vaccine. J Diabetes Investig 2022; 13:1290-1292. [PMID: 35220662 PMCID: PMC9114989 DOI: 10.1111/jdi.13781] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
The epidemic of coronavirus disease‐2019 (COVID‐19) is the major public health issue in the world. COVID‐19 vaccines are one of the most effective strategies against COVID‐19. Here we report a 36‐year‐old female patient who had thirst, polydipsia, polyuria, palpitations, loss of appetite, and fatigue 3 days after the first dose of COVID‐19 RNA‐based vaccines without a prior history of diabetes. Ten days after vaccination, she visited our hospital with diabetic ketoacidosis and was diagnosed with type 1 diabetes. Hyperglycemia (501 mg/dL), anion gap metabolic acidosis and ketonuria were observed. The glycated hemoglobin level was 7.0%. Islet‐related autoantibodies were all negative. The glucagon tolerance test revealed attenuated secretion of insulin. Human leukocyte antigen was haplotype DRB1*0405‐DQB1*0401, which was associated with type 1 diabetes in Japan. The present case suggests that COVID‐19 RNA‐based vaccines might trigger the onset of type 1 diabetes, even in subjects without prior histories of diabetes.
Collapse
Affiliation(s)
- Kanako Sakurai
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| | - Daiki Narita
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| | - Naomi Saito
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| | - Takayuki Ueno
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| | - Ryota Sato
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| | - Satsuki Niitsuma
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science Tohoku University Graduate School of Medicine 2‐1 Seiryo‐machi, Aoba‐ku Sendai Miyagi 980‐8575 Japan
| | - Zenei Arihara
- Department of Endocrinology and Metabolism National Hospital Organization Sendai Medical Center 2‐11‐12 Miyagino, Miyagino‐ku Sendai Miyagi 983‐8520 Japan
| |
Collapse
|
22
|
Lloyd RE, Tamhankar M, Lernmark Å. Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? Annu Rev Med 2022; 73:483-499. [PMID: 34794324 DOI: 10.1146/annurev-med-042320015952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden;
| |
Collapse
|
23
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden
| |
Collapse
|
24
|
Lincez PJ, Shanina I, Horwitz MS. Changes in MDA5 and TLR3 Sensing of the Same Diabetogenic Virus Result in Different Autoimmune Disease Outcomes. Front Immunol 2021; 12:751341. [PMID: 34804036 PMCID: PMC8602094 DOI: 10.3389/fimmu.2021.751341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Seemingly redundant in function, melanoma differentiation-associated protein 5 (MDA5) and toll-like receptor- 3 (TLR3) both sense RNA viruses and induce type I interferon (IFN-I). Herein, we demonstrate that changes in sensing of the same virus by MDA5 and TLR3 can lead to distinct signatures of IFN-α and IFN-ß resulting in different disease outcomes. Specifically, infection with a diabetogenic islet β cell-tropic strain of coxsackievirus (CB4) results in diabetes protection under reduced MDA5 signaling conditions while reduced TLR3 function retains diabetes susceptibility. Regulating the induction of IFN-I at the site of virus infection creates a local site of interferonopathy leading to loss of T cell regulation and induction of autoimmune diabetes. We have not demonstrated another way to prevent T1D in the NOD mouse, rather we believe this work has provided compounding evidence for a specific control of IFN-I to drive a myriad of responses ranging from virus clearance to onset of autoimmune diabetes.
Collapse
Affiliation(s)
- Pamela J. Lincez
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
26
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|