1
|
Shebeko SK, Drobot HY, Koshchaev AG, Todorov SD, Ermakov AM. Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine. Animals (Basel) 2025; 15:1222. [PMID: 40362037 PMCID: PMC12070868 DOI: 10.3390/ani15091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Artificial gastrointestinal tract models have become essential tools in veterinary medicine, providing alternatives to in vivo studies, which are labor-intensive, costly, and under certain circumstances even ethically challenging. These in vitro models facilitate the study of digestion, enable disease and host-pathogen interaction modeling, and allow for the investigation of nutrient absorption, microbiota, and pharmacokinetics. Considering the One Health concept, the application of gastrointestinal tract systems in investigations for animals can clearly reflect human health, and thus, it is pointing to the relevance of the adaptation of already existing models and the development of new models to meet the needs of veterinary and animal farming practices. This review explores and compares the various types of gastrointestinal tract models, including static and dynamic systems, and their applications across different animal species. Specific technical and methodological considerations are discussed for core animal-developed and -tested artificial systems and their integration with common 'omics' techniques. Dynamic models, such as RUSITEC and PolyFermS, more accurately simulate in vivo processes, including peristalsis, enzymatic activity, and microbial fermentation. The studies employing tools for 'omics' approaches have been conducted with more understanding analysis and comprehensive discussion and results.
Collapse
Affiliation(s)
- Sergei Konstantinovich Shebeko
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 1, Gagarina sq., Rostov-on-Don 344000, Russia; (S.K.S.); (A.M.E.)
| | - Heorhii Yurievich Drobot
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 1, Gagarina sq., Rostov-on-Don 344000, Russia; (S.K.S.); (A.M.E.)
| | - Andrey Georgievich Koshchaev
- Department of Biotechnology, Biochemistry and Biophysics, Kuban State Agrarian University, 13, Kalinina Street, Krasnodar 350044, Russia;
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Alexey Mikhailovich Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 1, Gagarina sq., Rostov-on-Don 344000, Russia; (S.K.S.); (A.M.E.)
| |
Collapse
|
2
|
Huang C, Ma Q, Zeng X, He J, You F, Fu X, Ren Y. Exploring non-invasive biomarkers for pulmonary nodule detection based on salivary microbiomics and machine learning algorithms. Sci Rep 2025; 15:10848. [PMID: 40155734 PMCID: PMC11953406 DOI: 10.1038/s41598-025-95692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Microorganisms are one of the most promising biomarkers for cancer, and the relationship between microorganisms and lung cancer occurrence and development provides significant potential for pulmonary nodule (PN) diagnosis from a microbiological perspective. This study aimed to analyze the salivary microbiota features of patients with PN and assess the potential of the salivary microbiota as a non-invasive PN biomarker. We collected saliva smples from 153 patients with PN and 40 controls. Using 16 S rRNA gene sequencing, differences in α- and β-diversity and community composition between the group with PN and controls were analyzed. Subsequently, specific microbial variables were selected using six models were trained on the selected salivary microbial features. The models were evaluated using metrics, such as the area under the receiver operating characteristic curve (AUC), to identify the best-performing model. Furthermore, the Bayesian optimization algorithm was used to optimize this best-performing model. Finally, the SHapley Additive exPlanations (SHAP) interpretability framework was used to interpret the output of the optimal model and identify potential PN biomarkers. Significant differences in α- and β-diversity were observed between the group with PN and controls. Although the predominant genera were consistent between the groups, significant disparities were observed in their relative abundances. By leveraging the random forest algorithm, ten characteristic microbial variables were identified and incorporated into six models, which effectively facilitated PN diagnosis. The XGBoost model demonstrated the best performance. Further optimization of the XGBoost model resulted in a Bayesian Optimization-based XGBoost (BOXGB) model. Based on the BOXGB model, an online saliva microbiota-based PN prediction platform was developed. Lastly, SHAP analysis suggested Defluviitaleaceae_UCG-011, Aggregatibacter, Oribacterium, Bacillus, and Prevotalla are promising non-invasive PN biomarkers. This study proved salivary microbiota as a non-invasive PN biomarker, expanding the clinical diagnostic approaches for PN.
Collapse
Affiliation(s)
- Chunxia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Jiawei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
3
|
Zhang S, Niu H, Zhu J. Personalized nutrition studies of human gut microbiome-polyphenol interactions utilizing continuous multistaged in vitro fermentation models-a narrative review. Nutr Res 2025; 135:101-127. [PMID: 39999639 DOI: 10.1016/j.nutres.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The gut microbiota, a complex community of microorganisms primarily inhabiting the human large intestine, plays a crucial role in human health. Gut dysbiosis, characterized by an imbalance in gut bacterial populations, has been increasingly recognized as a significant factor in the pathogenesis of metabolic diseases such as type 2 diabetes, inflammatory bowel disease, and colorectal cancer. Polyphenols are critical modulators of gut microbial composition and metabolism. However, the extent of polyphenol-induced modulation of the gut microbiome remains largely unexplored. In vitro models offer a convenient and ethical alternative to in vivo studies for investigating nutrient-gut microbiome interactions, facilitating easy sampling and controlled experimental conditions. Among these, continuous multistaged in vitro fermentation models, which simulate different sections of the human gastrointestinal tract (e.g., proximal colon, transverse colon, and distal colon), provide a more accurate representation of the human gut environment compared to single-batch fermentation. Various configurations of these multistaged models have been developed and widely employed in studies examining the effects of polyphenols on the gut microbiome. This review aims to summarize the different configurations of multistaged in vitro fermentation models and recent advancements in their development, highlight key aspects of experimental design, outline commonly used analytical workflows with complementary analyses, and review the restorative effects of polyphenol interventions on dysregulated gut microbiota.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Hanmeng Niu
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Yang M, Hutchinson N, Ye N, Timek H, Jennings M, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as Oral Probiotics To Enhance Clearance of Blood Lactate. ACS Synth Biol 2025; 14:101-112. [PMID: 39739838 DOI: 10.1021/acssynbio.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases, such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between the systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic Bacillus subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced the level of blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to "knocking down" circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hania Timek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Maria Jennings
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Justin D Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, Massachusetts 02142, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Uriot O, Defois-Fraysse C, Couturier I, Deschamps C, Durif C, Chaudemanche C, Dreux-Zigha A, Blanquet-Diot S. Effects of prebiotics from diverse sources on dysbiotic gut microbiota associated to western diet: Insights from the human Mucosal ARtificial COLon (M-ARCOL). Curr Res Food Sci 2024; 10:100968. [PMID: 39834797 PMCID: PMC11743849 DOI: 10.1016/j.crfs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as Akkermansia muciniphila), while increasing those linked to diseases (e.g., Proteobacteria). In this study, we evaluated the potential of two new prebiotics to counteract the negative effect of WD on gut microbiota, namely raffinose family oligosaccharides (RFO) from chickpeas and laminarin (LAM) from algae, when compared to the well-known inulin (INU). The effects of prebiotics on gut microbiota composition and metabolic activities were investigated in the Mucosal-Artificial Colon, set-up to reproduce WD condition, as compared to healthy control (n = 3). None of the prebiotics was able to efficiently offset the shift in microbiota induced by WD. Nevertheless, when compared to non-supplemented WD, all prebiotics showed significant impacts on microbiota composition, that were both prebiotic and donor-dependant. RFO was the only prebiotic to enhance α-diversity, while it led to an increase in Blautia and Butyricicoccaceae, associated with higher amounts of gas and butyrate. LAM and INU did not strongly impact microbial metabolic activities but were associated with a rise in Prevotella_9/Agathobacter and Faecalibacterium, respectively. To conclude, this study showed that all tested prebiotics had different impacts on human gut microbiota structure and activities, which was further donor-dependent. M-ARCOL appears as a suitable in vitro tool to better understand the mechanisms of action of prebiotic compounds in relation to gut microbes and define responders and non-responders to prebiotic supplementation, opening the possibility of customized nutritional strategies.
Collapse
Affiliation(s)
- Ophélie Uriot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | - Ingrid Couturier
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Charlotte Deschamps
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Claude Durif
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | | | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| |
Collapse
|
6
|
Calvigioni M, Mazzantini D, Celandroni F, Vozzi G, Ghelardi E. Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota. Microb Biotechnol 2024; 17:e70036. [PMID: 39435730 PMCID: PMC11494453 DOI: 10.1111/1751-7915.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Vozzi
- Department of Information BioengineeringUniversity of PisaPisaItaly
- Research Center Enrico PiaggioUniversity of PisaPisaItaly
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- Research Center Nutraceuticals and Food for Health – NutrafoodUniversity of PisaPisaItaly
| |
Collapse
|
7
|
Dalle Vedove E, Benvenga A, Nicolai G, Massimini M, Giordano MV, Di Pierro F, Bachetti B. Antibiotic-induced dysbiosis in the SCIME™ recapitulates microbial community diversity and metabolites modulation of in vivo disease. Front Microbiol 2024; 15:1455839. [PMID: 39328913 PMCID: PMC11424444 DOI: 10.3389/fmicb.2024.1455839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
Establishing the context Intestinal dysbiosis is a significant concern among dog owners, and the gut health of pets is an emerging research field. In this context, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data. Stating the purpose/introducing the study The current study presents a further application of this model by using amoxicillin and clavulanic acid to induce dysbiosis, aiming to provoke changes in microbial community and metabolite production, which are well-known markers of the disease in vivo. Describing methodology Following the induction of dysbiosis, prebiotic supplementation was tested to investigate the potential for microbiota recovery under different dietary conditions. Presenting the results The results showed that antibiotic stimulation in the SCIME™ model can produce significant changes in microbial communities and metabolic activity, including a decrease in microbial richness, a reduction in propionic acid production, and alterations in microbial composition. Additionally, changes in ammonium and butyric acid levels induced by the tested diets were observed. Discussing the findings This alteration in microbial community and metabolites production mimicks in vivo canine dysbiosis patterns. A novel dynamic in vitro model simulating canine antibiotic-induced dysbiosis, capable of reproducing microbial and metabolic changes observed in vivo, has been developed and is suitable for testing the effects of nutritional changes.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Di Pierro
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Scientific and Research Department, Velleja Research, Milan, Italy
| | | |
Collapse
|
8
|
Qi X, Luo F, Zhang Y, Wang G, Ling F. Exploring the protective role of Bacillus velezensis BV1704-Y in zebrafish health and disease resistance against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109789. [PMID: 39053585 DOI: 10.1016/j.fsi.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Bacillus genus, particularly Bacillus velezensis, is increasingly considered as viable alternatives to antibiotics in aquaculture due to their safety and probiotic potential. However, the specific mechanisms through which probiotic B. velezensis confers protection against Aeromonas hydrophila infection in fish remain poorly understood. This study delved into the multifaceted impacts of B. velezensis BV1704-Y on diverse facets of zebrafish health, including gut barrier function, immune response, oxidative stress, gut environment, microbiome composition, and disease resistance. Our findings demonstrate that supplementation with B. velezensis BV1704-Y significantly alleviated symptoms and reduced mortality in zebrafish infected with A. hydrophila. Furthermore, a notable reduction in the expression of pivotal immune-related genes, such as IL-1β, IL6, and TNF-α, was evident in the gut and head kidney of zebrafish upon infection. Moreover, B. velezensis BV1704-Y supplementation resulted in elevated activity levels of essential antioxidant enzymes, including SOD, CAT, and GSH, in gut tissue. Notably, B. velezensis BV1704-Y positively modulated the structure and function of the intestinal microbiome, potentially enhancing immune response and resilience in zebrafish. Specifically, supplementation with B. velezensis BV1704-Y promoted the relative abundance of beneficial bacteria, such as Cetobacterium, which showed a noteworthy negative correlation with the expression of pro-inflammatory genes and a positive correlation with gut barrier-related genes. Altogether, our study suggests that B. velezensis BV1704-Y holds promise as an effective probiotic for protecting zebrafish against A. hydrophila infection, offering potential benefits for the aquaculture industry.
Collapse
Affiliation(s)
- Xiaozhou Qi
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Duysburgh C, Velumani D, Garg V, Cheong JWY, Marzorati M. Combined Supplementation of Inulin and Bacillus coagulans Lactospore Demonstrates Synbiotic Potential in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME ®) Model. J Diet Suppl 2024; 21:737-755. [PMID: 39087597 DOI: 10.1080/19390211.2024.2380262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Prebiotic and probiotic combinations may lead to a synbiotic effect, demonstrating superior health benefits over either component alone. Using the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®) model, the effects of repeated supplementation with inulin (prebiotic, which is expected to provide a source of nutrition for the live microorganisms in the gut to potentially support optimal digestive health), Bacillus coagulans lactospore (probiotic), and a low and high dose of a synbiotic combination of the two on the gut microbial community activity and composition were evaluated. Test product supplementation increased the health-promoting short-chain fatty acids acetate and butyrate compared with levels recorded during the control period, demonstrating a stimulation of saccharolytic fermentation. This was likely the result of the increased abundance of several saccharolytic bacterial groups, including Megamonas, Bifidobacterium, and Faecalibacterium, following test product supplementation. The stimulation of acetate and butyrate production, as well as the increased abundance of saccharolytic bacterial groups were more evident in treatment week 3 compared with treatment week 1, demonstrating the value of repeated product administration. Further, the synbiotic formulations tended to result in greater changes compared with prebiotic or probiotic alone. Overall, the findings demonstrate a synbiotic potential for inulin and B. coagulans lactospore and support repeated administration of these products, indicating a potential for promoting gut health.
Collapse
Affiliation(s)
| | - Deepapriya Velumani
- Haleon (GlaxoSmithKline Consumer Healthcare Pte Ltd), Rochester Park, Singapore
| | - Vandana Garg
- Haleon (GlaxoSmithKline Consumer Healthcare Pte Ltd), Rochester Park, Singapore
| | | | | |
Collapse
|
10
|
Zhang C, Wang C, Dai J, Xiu Z. The inhibition mechanism of co-cultured probiotics on biofilm formation of Klebsiella pneumoniae. J Appl Microbiol 2024; 135:lxae138. [PMID: 38857885 DOI: 10.1093/jambio/lxae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 06/09/2024] [Indexed: 06/12/2024]
Abstract
AIMS Klebsiella pneumoniae, an important opportunistic pathogen of nosocomial inflection, is known for its ability to form biofilm. The purpose of the current study is to assess how co- or mono-cultured probiotics affect K. pneumoniae's ability to produce biofilms and investigate the potential mechanisms by using a polyester nonwoven chemostat and a Caco-2 cell line. METHODS AND RESULTS Compared with pure cultures of Lactobacillus rhamnosus and Lactobacillus sake, the formation of K. pneumoniae biofilm was remarkably inhibited by the mixture of L. rhamnosus, L. sake, and Bacillus subtilis at a ratio of 5:5:1 by means of qPCR and FISH assays. In addition, Lactobacillus in combination with B. subtilis could considerably reduce the adherence of K. pneumoniae to Caco-2 cells by using inhibition, competition, and displacement assays. According to the RT-PCR assay, the adsorption of K. pneumoniae to Caco-2 cells was effectively inhibited by the co-cultured probiotics, leading to significant reduction in the expression of proinflammatory cytokines induced by K. pneumoniae. Furthermore, the HPLC and RT-PCR analyses showed that the co-cultured probiotics were able to successfully prevent the expression of the biofilm-related genes of K. pneumoniae by secreting plenty of organic acids as well as the second signal molecule (c-di-GMP), resulting in inhibition on biofilm formation. CONCLUSION Co-culture of L. sake, L. rhamnosus, and B. subtilis at a ratio of 5:5:1 could exert an antagonistic effect on the colonization of pathogenic K. pneumoniae by down-regulating the expression of biofilm-related genes. At the same time, the co-cultured probiotics could effectively inhibit the adhesion of K. pneumoniae to Caco-2 cells and block the expression of proinflammatory cytokines induced by K. pneumoniae.
Collapse
Affiliation(s)
- Chaolei Zhang
- Public Security Management Department, Liaoning Police College, Yingping Road 260, Dalian 116036, China
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
11
|
Yang M, Hutchinson N, Ye N, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as oral probiotics to enhance clearance of blood lactate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569300. [PMID: 38076834 PMCID: PMC10705430 DOI: 10.1101/2023.11.30.569300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic B. subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced elevations in blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to 'knocking down' circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Justin D. Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
12
|
Ngom SI, Maski S, Rached B, Chouati T, Oliveira Correia L, Juste C, Meylheuc T, Henrissat B, El Fahime E, Amar M, Béra-Maillet C. Exploring the hemicellulolytic properties and safety of Bacillus paralicheniformis as stepping stone in the use of new fibrolytic beneficial microbes. Sci Rep 2023; 13:22785. [PMID: 38129471 PMCID: PMC10740013 DOI: 10.1038/s41598-023-49724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bacillus strains from the Moroccan Coordinated Collections of Microorganisms (CCMM) were characterised and tested for fibrolytic function and safety properties that would be beneficial for maintaining intestinal homeostasis, and recommend beneficial microbes in the field of health promotion research. Forty strains were investigated for their fibrolytic activities towards complex purified polysaccharides and natural fibres representative of dietary fibres (DFs) entering the colon for digestion. We demonstrated hemicellulolytic activities for nine strains of Bacillus aerius, re-identified as Bacillus paralicheniformis and Bacillus licheniformis, using xylan, xyloglucan or lichenan as purified polysaccharides, and orange, apple and carrot natural fibres, with strain- and substrate-dependent production of glycoside hydrolases (GHs). Our combined methods, based on enzymatic assays, secretome, and genome analyses, highlighted the hemicellulolytic activities of B. paralicheniformis and the secretion of specific glycoside hydrolases, in particular xylanases, compared to B. licheniformis. Genomic features of these strains revealed a complete set of GH genes dedicated to the degradation of various polysaccharides from DFs, including cellulose, hemicellulose and pectin, which may confer on the strains the ability to digest a variety of DFs. Preliminary experiments on the safety and immunomodulatory properties of B. paralicheniformis fibrolytic strains were evaluated in light of applications as beneficial microbes' candidates for health improvement. B. paralicheniformis CCMM B969 was therefore proposed as a new fibrolytic beneficial microbe candidate.
Collapse
Affiliation(s)
- Serigne Inssa Ngom
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Soufiane Maski
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Département de Biologie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Bahia Rached
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Laboratoire de Chimie-Physique et Biotechnologies des Biomolécules et Matériaux/Equipe Microbiologie Biomolécules et Biotechnologies, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Taha Chouati
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Biologie médicale, Pathologie humaine et Expérimentale et Environnement, Faculté de Médecine et de pharmacie de Rabat, Rabat, Morocco
| | - Lydie Oliveira Correia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, PAPPSO, 78350, Jouy-en-Josas, France
| | - Catherine Juste
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Thierry Meylheuc
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIMA2, 78350, Jouy en Josas, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Elmostafa El Fahime
- Plateforme Génomique Fonctionnelle, Unité d'Appui Technique à la Recherche Scientifique, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Biologie médicale, Pathologie humaine et Expérimentale et Environnement, Faculté de Médecine et de pharmacie de Rabat, Rabat, Morocco
| | - Mohamed Amar
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
- Collections Coordonnées Marocaines de Microorganismes, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
| | - Christel Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
- Laboratoire de Microbiologie et Biologie Moléculaire, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco.
| |
Collapse
|
13
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
14
|
Dergham Y, Le Coq D, Nicolas P, Bidnenko E, Dérozier S, Deforet M, Huillet E, Sanchez-Vizuete P, Deschamps J, Hamze K, Briandet R. Direct comparison of spatial transcriptional heterogeneity across diverse Bacillus subtilis biofilm communities. Nat Commun 2023; 14:7546. [PMID: 37985771 PMCID: PMC10661151 DOI: 10.1038/s41467-023-43386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Bacillus subtilis can form various types of spatially organised communities on surfaces, such as colonies, pellicles and submerged biofilms. These communities share similarities and differences, and phenotypic heterogeneity has been reported for each type of community. Here, we studied spatial transcriptional heterogeneity across the three types of surface-associated communities. Using RNA-seq analysis of different regions or populations for each community type, we identified genes that are specifically expressed within each selected population. We constructed fluorescent transcriptional fusions for 17 of these genes, and observed their expression in submerged biofilms using time-lapse confocal laser scanning microscopy (CLSM). We found mosaic expression patterns for some genes; in particular, we observed spatially segregated cells displaying opposite regulation of carbon metabolism genes (gapA and gapB), indicative of distinct glycolytic or gluconeogenic regimes coexisting in the same biofilm region. Overall, our study provides a direct comparison of spatial transcriptional heterogeneity, at different scales, for the three main models of B. subtilis surface-associated communities.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sandra Dérozier
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Maxime Deforet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Eugénie Huillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, Beirut, Lebanon.
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
15
|
Buhaș MC, Candrea R, Gavrilaș LI, Miere D, Tătaru A, Boca A, Cătinean A. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int J Mol Sci 2023; 24:11225. [PMID: 37446403 DOI: 10.3390/ijms241311225] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathological characteristics. Recent research has found a link between psoriasis, inflammation, and gut microbiota dysbiosis, and that probiotics and prebiotics provide benefits to patients. This 12-week open-label, single-center clinical trial evaluated the efficacy of probiotics (Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans (SC208), Bacillus licheniformis (SL307), and Bacillus clausii (SC109)) and precision prebiotics (fructooligosaccharides, xylooligosaccharides, and galactooligosaccharides) in patients with psoriasis receiving topical therapy, with an emphasis on potential metabolic, immunological, and gut microbiota changes. In total, 63 patients were evaluated, with the first 42 enrolled patients assigned to the intervention group and the next 21 assigned to the control group (2:1 ratio; non-randomized). There were between-group differences in several patient characteristics at baseline, including age, psoriasis severity (the incidence of severe psoriasis was greater in the intervention group than in the control group), the presence of nail psoriasis, and psoriatic arthritis, though it is not clear whether or how these differences may have affected the study findings. Patients with psoriasis receiving anti-psoriatic local therapy and probiotic and prebiotic supplementation performed better in measures of disease activity, including Psoriasis Area and Severity Index, Dermatology Life Quality Index, inflammatory markers, and skin thickness compared with those not receiving supplementation. Furthermore, in the 15/42 patients in the intervention group who received gut microbiota analysis, the gut microbiota changed favorably following 12 weeks of probiotic and prebiotic supplementation, with a shift towards an anti-inflammatory profile.
Collapse
Affiliation(s)
- Mihaela Cristina Buhaș
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Rareș Candrea
- Master Program in Nutrition and Quality of Life, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alexandru Tătaru
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Andreea Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Cătinean
- Department of Internal Medicine, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Phamacy, 400423 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Ait Chait Y, Mottawea W, Tompkins TA, Hammami R. Evidence of the Dysbiotic Effect of Psychotropics on Gut Microbiota and Capacity of Probiotics to Alleviate Related Dysbiosis in a Model of the Human Colon. Int J Mol Sci 2023; 24:ijms24087326. [PMID: 37108487 PMCID: PMC10138884 DOI: 10.3390/ijms24087326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Growing evidence indicates that non-antibiotic therapeutics significantly impact human health by modulating gut microbiome composition and metabolism. In this study, we investigated the impact of two psychotropic drugs, aripiprazole and (S)-citalopram, on gut microbiome composition and its metabolic activity, as well as the potential of probiotics to attenuate related dysbiosis using an ex vivo model of the human colon. After 48 h of fermentation, the two psychotropics demonstrated distinct modulatory effects on the gut microbiome. Aripiprazole, at the phylum level, significantly decreased the relative abundances of Firmicutes and Actinobacteria, while increasing the proportion of Proteobacteria. Moreover, the families Lachnospiraceae, Lactobacillaceae, and Erysipelotrichaceae were also reduced by aripiprazole treatment compared to the control group. In addition, aripiprazole lowered the levels of butyrate, propionate, and acetate, as measured by gas chromatography (GC). On the other hand, (S)-citalopram increased the alpha diversity of microbial taxa, with no differences observed between groups at the family and genus level. Furthermore, a probiotic combination of Lacticaseibacillus rhamnosus HA-114 and Bifidobacterium longum R0175 alleviated gut microbiome alterations and increased the production of short-chain fatty acids to a similar level as the control. These findings provide compelling evidence that psychotropics modulate the composition and function of the gut microbiome, while the probiotic can mitigate related dysbiosis.
Collapse
Affiliation(s)
- Yasmina Ait Chait
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | | | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
17
|
Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses 2023; 15:v15030719. [PMID: 36992428 PMCID: PMC10057081 DOI: 10.3390/v15030719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and β), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.
Collapse
|
18
|
Radovanovic M, Kekic D, Gajic I, Kabic J, Jovicevic M, Kekic N, Opavski N, Ranin L. Potential influence of antimicrobial resistance gene content in probiotic bacteria on the gut resistome ecosystems. Front Nutr 2023; 10:1054555. [PMID: 36819705 PMCID: PMC9928729 DOI: 10.3389/fnut.2023.1054555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a substantial threat to human health. The commensal bacteria of the gut microbiome were shown to serve as a reservoir of antibiotic resistance genes (ARGs), termed the gut resistome, which has the potential to transfer horizontally to pathogens and contribute to the emergence of drug-resistant bacteria. Namely, AMR traits are generally linked with mobile genetic elements (MGEs), which apart from disseminating vertically to the progeny, may cross horizontally to the distantly related microbial species. On the other hand, while probiotics are generally considered beneficiary to human health, and are therefore widely consumed in recent years most commonly in conjunction with antibiotics, the complexities and extent of their impact on the gut microbiome and resistome have not been elucidated. By reviewing the latest studies on ARG containing commercial probiotic products and common probiotic supplement species with their actual effects on the human gut resistome, this study aims to demonstrate that their contribution to the spread of ARGs along the GI tract merits additional attention, but also indicates the changes in sampling and profiling of the gut microbiome which may allow for the more comprehensive studying of the effects of probiotics in this part of the resistome.
Collapse
Affiliation(s)
- Marina Radovanovic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia,*Correspondence: Dusan Kekic,
| | - Ina Gajic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Natalija Kekic
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Hashemnia SMR, Meshkani R, Zamani-Garmsiri F, Shabani M, Tajabadi-Ebrahimi M, Ragerdi Kashani I, Siadat SD, Mohassel Azadi S, Emamgholipour S. Amelioration of obesity-induced white adipose tissue inflammation by Bacillus coagulans T4 in a high-fat diet-induced obese murine model. Life Sci 2023; 314:121286. [PMID: 36526049 DOI: 10.1016/j.lfs.2022.121286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
AIM Fresh evidence suggests that B. coagulans can be regarded as a promising therapeutic alternative for metabolic disorders. However, the possible effects of this probiotic on obesity-induced adipose tissue inflammation are unknown. METHODS C57BL/6j male mice were assigned to a normal-chow diet (NCD) or a high-fat diet (HFD) for 10 weeks. After this period, HFD-fed mice were randomly divided into two groups; HFD control group and HFD plus B. coagulans T4 (IBRC-N10791) for another 8 weeks. B. coagulans T4 was administrated daily by oral intragastric gavage (1 × 109 colony-forming units). KEY FINDINGS Here, we found that B. coagulans successfully mitigated obesity and related metabolic disorder, as indicated by reduced body weight gain, decreased adiposity, and improved glucose tolerance. B. coagulans T4 administration also inhibited HFD-induced macrophage accumulation in white adipose tissue and switched M1 to M2 macrophages. In parallel, B. coagulans T4 treatment attenuated HFD-induced alteration in mRNA expression of pro/anti-inflammatory cytokines and Tlr4 in white adipose tissue. Moreover, B. coagulans T4 supplementation reduced the Firmicutes/Bacteriodetes ratio and increased the number of Lactobacillus and Faecalibacterium compared to the HFD group. Additionally, a significant increase in propionate and acetate levels in the HFD group was seen following B. coagulans T4 administration. SIGNIFICANCE Taken together, the present study provides evidence that B. coagulans T4 supplementation exerts anti-obesity effects in part through attenuating inflammation in adipose tissue. The present study will have significant implications for obesity management.
Collapse
Affiliation(s)
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Tehran, Iran
| | | | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Ongoing Treatment with a Spore-Based Probiotic Containing Five Strains of Bacillus Improves Outcomes of Mild COVID-19. Nutrients 2023; 15:nu15030488. [PMID: 36771194 PMCID: PMC9920365 DOI: 10.3390/nu15030488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Spore-based Bacillus probiotic treatment improves intestinal health. The intestinal microbiota influences both the innate and adaptive immune responses. As such, the influence of ongoing spore-based probiotic treatment (five probiotic strains of Bacillus) on the clinical outcomes of mild COVID-19 was evaluated in this retrospective, observational study. Demographics, medical history, probiotic use, and COVID-19 symptom information were collected. The study included 120 patients with a PCR-confirmed SARS-CoV-2 infection and mild COVID-19 symptoms. The probiotic group (n = 60) comprised patients with ongoing probiotic treatment (≥1 month); the control group comprised patients not taking probiotics (n = 60). The primary outcome was time to symptom resolution; secondary outcomes included time to fever resolution and presence of digestive symptoms. The probiotic group had a significantly shorter time to symptom resolution (mean (95% confidence interval) days: control group, 8.48 (6.56, 10.05); probiotic group, 6.63 (5.56; 6.63); p = 0.003) and resolution of fever (control group, 2.67 (1.58, 3.61); probiotic group, 1.48 (1.21, 2.03); p < 0.001). More patients in the probiotic group (n = 53) than in the control group (n = 34) did not have digestive symptoms (p < 0.001). Among adults with mild COVID-19, participants receiving ongoing probiotic treatment had a shorter clinical course, and fewer had digestive symptoms compared with those not taking probiotics.
Collapse
|
21
|
Mazhar S, Khokhlova E, Colom J, Simon A, Deaton J, Rea K. In vitro and in silico assessment of probiotic and functional properties of Bacillus subtilis DE111 ®. Front Microbiol 2023; 13:1101144. [PMID: 36713219 PMCID: PMC9880548 DOI: 10.3389/fmicb.2022.1101144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Bacillus subtilis DE111® is a safe, well-tolerated commercially available spore-forming probiotic that has been clinically shown to support a healthy gut microbiome, and to promote digestive and immune health in both adults and children. Recently it was shown that this spore-forming probiotic was capable of germinating in the gastrointestinal tract as early as 3 h after ingestion. However, a better understanding of the mechanisms involved in the efficacy of DE111® is required. Therefore, the present investigation was undertaken to elucidate the functional properties of DE111® through employing a combination of in vitro functional assays and genome analysis. DE111® genome mining revealed the presence of several genes encoding acid and stress tolerance mechanisms in addition to adhesion proteins required to survive and colonize harsh gastrointestinal environment including multi subunit ATPases, arginine deiminase (ADI) pathway genes (argBDR), stress (GroES/GroEL and DnaK/DnaJ) and extracellular polymeric substances (EPS) biosynthesis genes (pgsBCA). DE111® harbors several genes encoding enzymes involved in the metabolism of dietary molecules (protease, lipases, and carbohyrolases), antioxidant activity and genes associated with the synthesis of several B-vitamins (thiamine, riboflavin, pyridoxin, biotin, and folate), vitamin K2 (menaquinone) and seven amino acids including five essential amino acids (threonine, tryptophan, methionine, leucine, and lysine). Furthermore, a combined in silico analysis of bacteriocin producing genes with in vitro analysis highlighted a broad antagonistic activity of DE111® toward numerous urinary tract, intestinal, and skin pathogens. Enzymatic activities included proteases, peptidases, esterase's, and carbohydrate metabolism coupled with metabolomic analysis of DE111® fermented ultra-high temperature milk, revealed a high release of amino acids and beneficial short chain fatty acids (SCFAs). Together, this study demonstrates the genetic and phenotypic ability of DE111® for surviving harsh gastric transit and conferring health benefits to the host, in particular its efficacy in the metabolism of dietary molecules, and its potential to generate beneficial SCFAs, casein-derived bioactive peptides, as well as its high antioxidant and antimicrobial potential. Thus, supporting the use of DE111® as a nutrient supplement and its pottential use in the preparation of functional foods.
Collapse
Affiliation(s)
- Shahneela Mazhar
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Joan Colom
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Annie Simon
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - John Deaton
- Deerland Probiotics and Enzymes, ADM, Kennesaw, GA, United States
| | - Kieran Rea
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Saggese A, Giglio R, D’Anzi N, Baccigalupi L, Ricca E. Comparative Genomics and Physiological Characterization of Two Aerobic Spore Formers Isolated from Human Ileal Samples. Int J Mol Sci 2022; 23:14946. [PMID: 36499272 PMCID: PMC9739757 DOI: 10.3390/ijms232314946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| |
Collapse
|
23
|
Marzorati M, Bubeck S, Bayne T, Krishnan K, Giusto M. Effects of combined prebiotic, probiotic, IgG and amino acid supplementation on the gut microbiome of patients with inflammatory bowel disease. Future Microbiol 2022; 17:1307-1324. [DOI: 10.2217/fmb-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The effects of the Total Gut Restoration (TGR) system supplementation on the gut microbiome were evaluated. Materials & methods: A mucosal in vitro simulation of the human gastrointestinal tract (M-SHIME®) system was inoculated with fecal samples from patients with inflammatory bowel disease. Chambers were supplemented for 5 days with the TGR system (five probiotic Bacillus strains, prebiotic mixture, immunoglobulin concentrate, amino acids and prebiotic flavonoids). Results: Compared with unsupplemented controls, supplementation was associated with a significant increase in short-chain fatty acid production, and changes to the microbiome were observed. Supernatants from supplemented chambers improved intestinal barrier function, increased IL-6 and IL-10 production and decreased MCP1 production versus control in Caco-2/THP1 coculture. Conclusion: Daily TGR supplementation facilitated changes to the gut microbiome of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Massimo Marzorati
- Center for Microbial Ecology & Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
- ProDigest, Technologiepark 82, Zwijnaarde, 9052, Belgium
| | - Sarah Bubeck
- Bubeck Scientific Communications, 194 Rainbow Drive #9418, Livingston, TX 77399, USA
| | - Thomas Bayne
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Kiran Krishnan
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Morgan Giusto
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| |
Collapse
|
24
|
Singh V, Son H, Lee G, Lee S, Unno T, Shin JH. Role, Relevance, and Possibilities of In vitro fermentation models in human dietary, and gut-microbial studies. Biotechnol Bioeng 2022; 119:3044-3061. [PMID: 35941765 DOI: 10.1002/bit.28206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Dietary studies play a crucial role in determining the health-benefiting effects of most food substances, including prebiotics, probiotics, functional foods, and bioactive compounds. Such studies involve gastrointestinal digestion and colonic fermentation of dietary substances. In colonic fermentation, any digested food is further metabolized in the gut by the residing colonic microbiota, causing a shift in the gut microenvironment and production of various metabolites, such as short-chain fatty acids (SCFA). These diet-induced shifts in the microbial community and metabolite production, which can be assessed through in vitro fermentation models using a donor's fecal microbiota, are well known to impact the health of the host. Although in vivo or animal experiments are the gold standard in dietary studies, recent advancements using different in vitro systems, like artificial colon (ARCOL), mini bioreactor array (MBRA), TNO in vitro model of the colon (TIM), Simulator of the Human Intestinal Microbial Ecosystem (SHIME), M-SHIME, CoMiniGut, and Dynamic Gastrointestinal Simulator (SIMGI) make it easy to study the dietary impact in terms of the gut microbiota and metabolites. Such a continuous in vitro system can have multiple compartments corresponding to different parts of the colon, i.e., proximal, transverse, and distal colon, making the findings physiologically more significant. Further, post-fermentation samples can be analyzed using metagenomic, metabolomic, qPCR and flow cytometry approaches. Moreover, studies have shown that in vitro results are in accordance with the in vivo findings, supporting their relevance in dietary studies and giving confidence that shifts in metabolites are only due to microbes. This review meticulously describes the recent advancements in various fermentation models and their relevance in dietary studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sunwoo Lee
- Department of Biotechnology,, School of Life Sciences, SARI, Jeju National University, Jeju, South Korea
| | - Tatsuya Unno
- Department of Biotechnology,, School of Life Sciences, SARI, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
25
|
Prebiotic Isomaltooligosaccharide Provides an Advantageous Fitness to the Probiotic Bacillus subtilis CU1. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacillus subtilis CU1 is a probiotic strain with beneficial effects on immune health in elderly subjects and diarrhea. Commercialized under spore form, new strategies to improve the germination, fitness and beneficial effects of the probiotic once in the gut have to be explored. For this purpose, functional food ingredients, such as isomaltooligosaccharides (IMOSs), could improve the fitness of Bacillus probiotics. IMOSs are composed of α(1 → 6)- and α(1 → 4)-linked oligosaccharides and are partially indigestible. Dietary IMOSs stimulate beneficial members of intestinal microbiota, but the effect of a combination of IMOSs with probiotics, such as B. subtilis CU1, is unknown. In this study, we evaluate the potential effect of IMOSs in B. subtilis CU1 and identify the metabolic pathways involved. The biochemical analysis of the commercial IMOSs highlights a degree of polymerization (DP) comprised between 1 and 29. The metabolism of IMOSs in CU1 was attributed to an α-glucosidase, secreted in the extracellular compartment one hundred times more than with glucose, and which seems to hydrolyze high DP IMOSs into shorter oligosaccharides (DP1, DP2 and DP3) in the culture medium. Proteomic analysis of CU1 after growth on IMOSs showed a reshaping of B. subtilis CU1 metabolism and functions, associated with a decreased production of lactic acid and acetic acid by two times. Moreover, we show for the first time that IMOSs could improve the germination of a Bacillus probiotic in the presence of bile salts in vitro, with an 8 h reduced lag-time when compared to a glucose substrate. Moreover, bacterial concentration (CFU/mL) was increased by about 1 log in IMOS liquid cultures after 48 h when compared to glucose. In conclusion, the use of IMOSs in association with probiotic B. subtilis CU1 in a synbiotic product could improve the fitness and benefits of the probiotic.
Collapse
|
26
|
Gościniak A, Eder P, Walkowiak J, Cielecka-Piontek J. Artificial Gastrointestinal Models for Nutraceuticals Research—Achievements and Challenges: A Practical Review. Nutrients 2022; 14:nu14132560. [PMID: 35807741 PMCID: PMC9268564 DOI: 10.3390/nu14132560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Imitating the human digestive system as closely as possible is the goal of modern science. The main reason is to find an alternative to expensive, risky and time-consuming clinical trials. Of particular interest are models that simulate the gut microbiome. This paper aims to characterize the human gut microbiome, highlight the importance of its contribution to disease, and present in vitro models that allow studying the microbiome outside the human body but under near-natural conditions. A review of studies using models SHIME, SIMGI, TIM-2, ECSIM, EnteroMix, and PolyfermS will provide an overview of the options available and the choice of a model that suits the researcher’s expectations with advantages and disadvantages.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
27
|
Liu L, Lu Y, Xu C, Chen H, Wang X, Wang Y, Cai B, Li B, Verstrepen L, Ghyselinck J, Marzorati M, Yao Q. The Modulation of Chaihu Shugan Formula on Microbiota Composition in the Simulator of the Human Intestinal Microbial Ecosystem Technology Platform and its Influence on Gut Barrier and Intestinal Immunity in Caco-2/THP1-Blue™ Cell Co-Culture Model. Front Pharmacol 2022; 13:820543. [PMID: 35370677 PMCID: PMC8964513 DOI: 10.3389/fphar.2022.820543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The traditional Chinese medicine (TCM)–Chaihu Shugan Formula (CSF), consisting of several Chinese botanical drugs like Bupleurum, is derived from the ancient Chinese pharmacopeia. It has been used for more than thousands of years in various suboptimal health statuses and diseases induced by chronic stress based on empirical therapy. Recent studies confirm the role of CSF in the development of many diseases, including depression, stress-induced hepatic injury and tumors. However, little has been known about the mechanisms behind the health effects of CSF. Here, we investigate the influence of CSF on the modulation of the simulated colonic microbiota of five healthy donors, gut barrier integrity, and intestinal immunity by combining the simulator of the human intestinal microbial ecosystem (SHIME®) technology platform with co-culture of intestinal and immune cells. This approach revealed that CSF stimulated the production of SCFA (acetate, propionate and butyrate) across donors while significantly lowering the production of branched SCFA (bSCFA). In terms of community composition, CSF stimulated a broad spectrum of health-related Bifidobacterium species, which are potent acetate and lactate producers. At the same time, it lowered the abundance of opportunistic pathogenic Escherichia coli. Later, we explore the effect of colonic fermentation of CSF on the gut barrier and intestinal immunity in the Caco-2/THP1-blue™ cell co-culture model. Based on the study using SHIME technology platform, CSF showed protective effects on inflammation-induced intestinal epithelial barrier disruption in all donors. Also, the treatment of CSF showed pronounced anti-inflammatory properties by strongly inducing anti-inflammatory cytokines IL-6 and IL-10 and reducing pro-inflammatory cytokine TNF-α. These findings demonstrate a significant modulatory effect of CSF on intestinal gut microbiota. CSF-microbial fermentation products improved the gut barrier and controlled intestinal inflammation.
Collapse
Affiliation(s)
- Ling Liu
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chao Xu
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Haitao Chen
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xuanying Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Biyu Cai
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Li
- Leuven Health Technology Centre China Centre, Hangzhou, China
| | | | | | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,ProDigest BV, Technologiepark, Zwijnaarde, Belgium
| | - Qinghua Yao
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wauters L, Ceulemans M, Schol J, Farré R, Tack J, Vanuytsel T. The Role of Leaky Gut in Functional Dyspepsia. Front Neurosci 2022; 16:851012. [PMID: 35422683 PMCID: PMC9002356 DOI: 10.3389/fnins.2022.851012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with functional dyspepsia (FD) complain of epigastric symptoms with no identifiable cause. Increased intestinal permeability has been described in these patients, especially in the proximal small bowel or duodenum, and was associated with mucosal immune activation and symptoms. In this review, we discuss duodenal barrier function, including techniques currently applied in FD research. We summarize the available data on duodenal permeability in FD and factors associated to increased permeability, including mucosal eosinophils, mast cells, luminal and systemic factors. While the increased influx of antigens into the duodenal mucosa could result in local immune activation, clinical evidence for a causal role of permeability is lacking in the absence of specific barrier-protective treatments. As both existing and novel treatments, including proton pump inhibitors (PPI) and pre- or probiotics may impact duodenal barrier function, it is important to recognize and study these alterations to improve the knowledge and management of FD.
Collapse
Affiliation(s)
- Lucas Wauters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- *Correspondence: Lucas Wauters,
| | - Matthias Ceulemans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jolien Schol
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Marzorati M, Van den Abbeele P, Bubeck S, Bayne T, Krishnan K, Young A. Treatment with a spore-based probiotic containing five strains of Bacillus induced changes in the metabolic activity and community composition of the gut microbiota in a SHIME® model of the human gastrointestinal system. Food Res Int 2021; 149:110676. [PMID: 34600678 DOI: 10.1016/j.foodres.2021.110676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
MegaSporeBiotic™ is an oral, spore-based probiotic comprised of five Bacillus spp. (Bacillus indicus HU36, Bacillus subtilis HU58, Bacillus coagulans SC208, Bacillus licheniformis SL307, and Bacillus clausii SC109). The effects of MegaSporeBiotic™ on gut microbiota activity and community composition were evaluated for the first time using an in vitro model of the human gastrointestinal tract, the simulator of the human intestinal microbial ecosystem (SHIME®), under healthy conditions. Following a stabilization period and a control period (2 weeks each), the reactor feed was supplemented with daily MegaSporeBiotic™ for 3 weeks (treatment period). Changes in microbial community activity and composition between the control and treatment periods were evaluated for each colon compartment (ascending [AC], transverse [TC], and descending colon [DC]). Propionate levels increased significantly in the TC (week 2, P = 0.02; week 3, P = 0.0019) and DC (week 2, P = 0.03) with treatment while lactate levels significantly decreased in the TC (week 3, P = 0.03). Ammonium levels were significantly decreased during the final week of treatment (TC, P = 0.02; DC, P = 0.03). Overall, Akkermansia muciniphila, Bifidobacteria spp., and Firmicutes increased with treatment while Lactobacillus spp. and Bacteroidetes decreased. The Firmicutes:Bacteroidetes ratio increased with treatment in the AC compartment. MegaSporeProbiotic™ treatment resulted in changes in metabolism and increased bacterial diversity.
Collapse
Affiliation(s)
- Massimo Marzorati
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium
| | | | - Sarah Bubeck
- Bubeck Scientific Communications, 194 Rainbow Drive #9418, Livingston, TX 77399, USA.
| | - Thomas Bayne
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Kiran Krishnan
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Aicacia Young
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| |
Collapse
|
31
|
Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 2021; 19:600-614. [PMID: 33824496 DOI: 10.1038/s41579-021-00540-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 02/03/2023]
Abstract
Biofilm formation is a process in which microbial cells aggregate to form collectives that are embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive bacterium that is used to dissect the mechanisms controlling matrix production and the subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, we outline the molecular details of the biofilm matrix and the regulatory pathways and external factors that control its production. We explore the beneficial outcomes associated with biofilms. Finally, we highlight major advances in our understanding of concepts of microbial evolution and community behaviour that have resulted from studies of the innate heterogeneity of biofilms.
Collapse
Affiliation(s)
- Sofia Arnaouteli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Natalie C Bamford
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
32
|
Fournier E, Etienne-Mesmin L, Grootaert C, Jelsbak L, Syberg K, Blanquet-Diot S, Mercier-Bonin M. Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125632. [PMID: 33770682 DOI: 10.1016/j.jhazmat.2021.125632] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/02/2023]
Abstract
Plastic pollution is a major issue worldwide, generating massive amounts of smaller plastic particles, including microplastics (MPs). Their ubiquitous nature in the environment but also in foodstuff and consumer packaged goods has revealed potential threats to humans who can be contaminated mainly through air, food and water consumption. In this review, the current literature on human exposure to MPs is summarized with a focus on the gastrointestinal tract as portal of entry. Then, we discuss the vector effect of MPs, in their pristine versus weathered forms, with well-known contaminants as heavy metals and chemicals, or more emerging ones as antibiotics or microbial pathogens, like Pseudomonas spp., Vibrio spp., Campylobacter spp. and Escherichia coli. Comprehensive knowledge on MP fate in the gastrointestinal tract and their potential impact on gut homeostasis disruption, including gut microbiota, mucus and epithelial barrier, is reported in vitro and in vivo in mammals. Special emphasis is given on the crucial need of developing robust in vitro gut models to adequately simulate human digestive physiology and absorption processes. Finally, this review points out future research directions on MPs in human intestinal health.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, MEDIS (Microbiology, Digestive Environment and Health), 28 Place Henri Dunant, 63000 Clermont-Ferrand, France; Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, MEDIS (Microbiology, Digestive Environment and Health), 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Charlotte Grootaert
- Department of Food technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, MEDIS (Microbiology, Digestive Environment and Health), 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
33
|
Wauters L, Slaets H, De Paepe K, Ceulemans M, Wetzels S, Geboers K, Toth J, Thys W, Dybajlo R, Walgraeve D, Biessen E, Verbeke K, Tack J, Van de Wiele T, Hellings N, Vanuytsel T. Efficacy and safety of spore-forming probiotics in the treatment of functional dyspepsia: a pilot randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol 2021; 6:784-792. [PMID: 34358486 DOI: 10.1016/s2468-1253(21)00226-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Current treatments for functional dyspepsia have limited efficacy or present safety issues. We aimed to assess spore-forming probiotics in functional dyspepsia as monotherapy or add-on therapy to long-term treatment with proton-pump inhibitors. METHODS In this single-centre, randomised, double-blind, placebo-controlled pilot trial that took place at University Hospitals Leuven (Leuven, Belgium), adult patients (≥18 years) with functional dyspepsia (as defined by Rome IV criteria, on proton-pump inhibitors or off proton-pump inhibitors) were randomly assigned (1:1) via computer-generated blocked lists, stratified by proton-pump inhibitor status, to receive 8 weeks of treatment with probiotics (Bacillus coagulans MY01 and Bacillus subtilis MY02, 2·5 × 109 colony-forming units per capsule) or placebo consumed twice per day, followed by an open-label extension phase of 8 weeks. Individuals with a history of abdominal surgery, diabetes, coeliac or inflammatory bowel disease, active psychiatric conditions, and use of immunosuppressant drugs, antibiotics, or probiotics in the past 3 months were excluded. All patients and on-site study personnel were masked to treatment allocation in the first 8 weeks. Symptoms, immune activation, and faecal microbiota were assessed and recorded. The primary endpoint was a decrease of at least 0·7 in the postprandial distress syndrome (PDS) score of the Leuven Postprandial Distress Scale in patients with a baseline PDS score of 1 or greater (at least mild symptoms), assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04030780. FINDINGS Between June 3, 2019, and March 11, 2020, of 93 individuals assessed for eligibility, we included 68 patients with functional dyspepsia (51 [75%] women, mean age 40·1 years [SD 14·4], 34 [50%] on proton-pump inhibitors). We randomly assigned 32 participants to probiotics and 36 to placebo. The proportion of clinical responders was higher with probiotics (12 [48%] of 25) than placebo (six [20%] of 30; relative risk 1·95 [95% CI 1·07-4·11]; p=0·028). The number of patients with adverse events was similar with probiotics (five [16%] of 32) and placebo (12 [33%] of 36). Two serious adverse events occurring during the open-label phase (appendicitis and syncope in two separate patients) were assessed as unlikely to be related to the study product. INTERPRETATION In this exploratory study, B coagulans MY01 and B subtilis MY02 were efficacious and safe in the treatment of functional dyspepsia. Participants had potentially beneficial immune and microbial changes, which could provide insights into possible underlying mechanisms as future predictors or treatment targets. FUNDING MY HEALTH.
Collapse
Affiliation(s)
- Lucas Wauters
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Helena Slaets
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kim De Paepe
- Centre for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Matthias Ceulemans
- Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Suzan Wetzels
- Experimental Vascular Pathology Group, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Karlien Geboers
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Joran Toth
- Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | | | - Daan Walgraeve
- Department of Gastroenterology, Jessa Ziekenhuis, Hasselt, Belgium
| | - Erik Biessen
- Experimental Vascular Pathology Group, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Kristin Verbeke
- Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Tom Van de Wiele
- Centre for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Suganuma K, Hamasaki T, Hamaoka T. Effect of dietary direct-fed microbial and yeast cell walls on cecal digesta microbiota of layer chicks inoculated with nalidixic acid resistant Salmonella Enteritidis. Poult Sci 2021; 100:101385. [PMID: 34388441 PMCID: PMC8363884 DOI: 10.1016/j.psj.2021.101385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) has consistently been the most common serotype associated with the foodborne Salmonellosis worldwide. In this study, the effect of a dietary direct-fed microbial (DFM) and yeast cell walls (YCW) under a challenge of nalidixic acid resistant SE strain using layer chicks has been investigated. A total of 160 newly hatched Dekalb White female chicks were randomly assigned into 2 experimental groups (80 birds/treatment), control group (CON) and treatment group (DY). Chicks were fed ad libitum a non–medicated-corn-soy based diet and DY was supplemented with the combination of DFM and YCW. At 8 days of age, 2.1 × 109 CFU/bird of the SE was given to all chicks by oral administration. On 3 days postinoculation (dpi), 20 chicks/group were euthanized and all cecal contents were collected for analysis. On 6, 10, and 14 dpi, the cecal contents were sampled from 16 chicks per group. The number of SE in the cecal contents was counted using culture-based methods. A 16S rRNA-based microbiota analysis was performed for additional microbial profiling. The CON and DY showed difference (P ≤ 0.05) in β diversity throughout the trial. Prevalence of SE in cecal contents was lower (P ≤ 0.05) in DY across all time-points. Lower abundance of Salmonella spp. was also shown in DY by liner discriminant analysis effect size (LEfSe). DY increased (P ≤ 0.05) diversity of bacterial species in the cecal contents in DY at 10 and 14 dpi. For the SE challenged birds, SE reduction in DY was observed at 3 dpi and until the end of the trial at 14 dpi confirming a numerically larger difference between groups as well as an increase in bacterial species diversity in DY. It could be hypothesized that the SE reduction shown immediately after the challenge and the greater SE reduction shown after 10 dpi may be the synergistic effect of the combined feed additives.
Collapse
|
35
|
Liu Y, Yin F, Huang L, Teng H, Shen T, Qin H. Long-term and continuous administration of Bacillus subtilis during remission effectively maintains the remission of inflammatory bowel disease by protecting intestinal integrity, regulating epithelial proliferation, and reshaping microbial structure and function. Food Funct 2021; 12:2201-2210. [PMID: 33595001 DOI: 10.1039/d0fo02786c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut microbiota takes part in the pathogenesis of inflammatory bowel disease (IBD). Clinical research has found that probiotics have a beneficial effect on active ulcerative colitis, but to date, significant efficacy has rarely been found in the use of probiotics in the remission phase of ulcerative colitis and Crohn's disease. More studies are needed to assess the utilization of probiotics in IBD remission. In this study, we assessed the administration of Bacillus subtilis in remission and its possible mechanism in mice with IBD. Oral administration of B. subtilis was implemented for 6 weeks (dextran sulfate sodium (DSS)-P6w group), 2 weeks (DSS-P2w group) or 0 weeks (DSS-control(CT) group) in the remission phase in rodents with (DSS)-induced IBD. The body weight, colon length and disease activity index (DAI) were recorded, and colon H&E staining was performed. The expression of tight junction proteins (ZO-1 and occludin) mRNA and epithelium proliferation-related Ki67 was detected. Gut microbiota were tested by 16S rRNA sequencing. Administration of B. subtilis in remission effectively increased the body weight and colon length and decreased DAI in the DSS-P6w group compared with the DSS-CT group, but there is no significant difference between the DSS-P2w and DSS-CT groups. The epithelial integrity was improved, and the expression of ZO-1 and occludin increased due to administration of B. subtilis in remission, which was more evident in the DSS-P6w group. The expression of Ki67 increased in the DSS-CT group compared with that in the CT group. The administration of B. subtilis effectively down-regulated the expression of Ki67 in the DSS-P6w and DSS-P2w groups compared with the DSS-CT group. Furthermore, gut microbial structure was improved, with significantly decreased Escherichia/Shigella and Enterococcus, and increased Akkermansia and corresponding microbial function in the DSS-P6w group. Short-term administration of B. subtilis in the remission phase showed no significant improvement in mice with IBD. Long-term and continuous supplementation of B. subtilis in remission could effectively maintain the remission by protecting epithelial integrity, regulating proliferation of intestinal epithelial cells, and improving gut microbiota and the corresponding microbial function.
Collapse
Affiliation(s)
- Yongqiang Liu
- Department of Surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Fang Yin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Linsheng Huang
- Department of Pediatrics, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - Hongfei Teng
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Tongyi Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| |
Collapse
|
36
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Reyes-Cortes JL, Azaola-Espinosa A, Lozano-Aguirre L, Ponce-Alquicira E. Physiological and Genomic Analysis of Bacillus pumilus UAMX Isolated from the Gastrointestinal Tract of Overweight Individuals. Microorganisms 2021; 9:microorganisms9051076. [PMID: 34067853 PMCID: PMC8156450 DOI: 10.3390/microorganisms9051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.
Collapse
Affiliation(s)
- José Luis Reyes-Cortes
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
| | - Alejandro Azaola-Espinosa
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México 04960, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos del Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico;
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
38
|
Liu X, Zhang Y, Chu J, Zheng J, Cheng X, Li X, Long J. Effect of probiotics on the nutritional status of severe stroke patients with nasal feeding that receive enteral nutrition: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e25657. [PMID: 33907128 PMCID: PMC8084017 DOI: 10.1097/md.0000000000025657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Malnutrition is commonly observed after stroke and is closely associated with poor clinical outcomes. So, early nutrition support is particularly crucial for severe stroke patients. However, a significant number of critically ill patients are intolerant to enteral nutrition (EN). Probiotics have been widely used in malnutrition by various diseases and have a low incidence of enteral intolerance. So, we aim to elucidate the efficacy of probiotics in EN in improving the nutritional status and clinical prognosis of severe stroke patients with nasal feeding. METHOD Embase, PubMed, Sinomed, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang database, and Vip Journal Integration Platform were searched from inception to March 31, 2021. Randomized controlled trials that applied probiotics in patients with severe stroke were included. The data were extracted and the risk of bias was assessed independently by 2 evaluators. RESULTS Twenty-four studies comprising 2003 participants of randomized controlled trials were included. The result of pooled analyses showed that probiotics in EN were associated with better outcomes than EN alone on Glasgow Coma Scale score (mean difference [MD] = 1.03, 95% confidence intervals [CI]: 0.78-1.27; P < .00001), infection events (odds ratio [OR] = 0.25, 95% CI: 0.15-0.43; P < .00001), rate of intestinal flora dysbiosis (OR = 0.24, 95% CI: 0.12-0.48; P < .0001), gastrointestinal complications (OR = 0.25, 95% CI: 0.16-0.37, P < .00001), time to reach target nutrition (MD = -1.80, 95% CI: -2.42 to 1.18, P < .00001), prealbumin content (MD = 25.83, 95% CI: 13.68-37.99, P < .0001). CONCLUSION Our results demonstrated that probiotics supplementation might be an effective intervention for improving the clinical prognosis in severe stroke patients with nasal feeding, but no significant effect on increasing muscle circumference.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinmin Li
- School of Basic Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | | |
Collapse
|
39
|
Li Y, Liu M, Liu H, Sui X, Liu Y, Wei X, Liu C, Cheng Y, Ye W, Gao B, Wang X, Lu Q, Cheng H, Zhang L, Yuan J, Li M. The Anti-Inflammatory Effect and Mucosal Barrier Protection of Clostridium butyricum RH2 in Ceftriaxone-Induced Intestinal Dysbacteriosis. Front Cell Infect Microbiol 2021; 11:647048. [PMID: 33842393 PMCID: PMC8027357 DOI: 10.3389/fcimb.2021.647048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed at determining the beneficial effect of Clostridium butyricum (CB) RH2 on ceftriaxone-induced dysbacteriosis. To this purpose, BALB/c mice were exposed to ceftriaxone (400 mg/ml) or not (control) for 7 days, and administered a daily oral gavage of low-, and high-dose CB RH2 (108 and 1010 CFU/ml, respectively) for 2 weeks. CB RH2 altered the diversity of gut microbiota, changed the composition of gut microbiota in phylum and genus level, decreased the F/B ratio, and decreased the pro-inflammatory bacteria (Deferribacteres, Oscillibacter, Desulfovibrio, Mucispirillum and Parabacteroides) in ceftriaxone-treated mice. Additionally, CB RH2 improved colonic architecture and intestinal integrity by improving the mucous layer and the tight junction barrier. Furthermore, CB RH2 also mitigated intestinal inflammation through decreasing proinflammatory factors (TNF-α and COX-2) and increasing anti-inflammatory factors (IL-10). CB RH2 had direct effects on the expansion of CD4+ T cells in Peyer’s patches (PPs) in vitro, which in turn affected their immune response upon challenge with ceftriaxone. All these data suggested that CB RH2 possessed the ability to modulate the intestinal mucosal and systemic immune system in limiting intestinal alterations to relieve ceftriaxone-induced dysbacteriosis.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Man Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xue Sui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chunzheng Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yiqin Cheng
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weikang Ye
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Binbin Gao
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xin Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qiao Lu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hao Cheng
- Marketing Department, Hangzhou Grand Biologic Pharmaceutical Inc., Hangzhou, China
| | - Lu Zhang
- Marketing Department, Hangzhou Grand Biologic Pharmaceutical Inc., Hangzhou, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Plasma Amino Acid Response to Whey Protein Ingestion Following 28 Days of Probiotic ( Bacillus subtilis DE111) Supplementation in Active Men and Women. J Funct Morphol Kinesiol 2020; 6:jfmk6010001. [PMID: 33462163 PMCID: PMC7838959 DOI: 10.3390/jfmk6010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED We sought to determine if 28 days of probiotic supplementation influenced the plasma amino acid (AA) response to acute whey protein feeding. METHODS Twenty-two recreationally active men (n = 11; 24.3 ± 3.2 yrs; 89.3 ± 7.2 kg) and women (n = 11; 23.0 ± 2.8 yrs; 70.2 ± 15.2 kg) participated in this double-blind, placebo-controlled, randomized study. Before (PRE) and after 28 days of supplementation (POST), participants reported to the lab following a 10-hr fast and provided a resting blood draw (0 min), then subsequently consumed 25 g of whey protein. Blood samples were collected at 15-min intervals for 2 h post-consumption (15-120 min) and later analyzed for plasma leucine, branched-chain AA (BCAA), essential AA (EAA), and total AA (TAA). Participants received a probiotic (PROB) consisting of 1 x10-9 colony forming units (CFU) Bacillus subtilis DE111 (n = 11) or a maltodextrin placebo (PL) (n = 11) for 28 days. Plasma AA response and area under the curve (AUC) values were analyzed via repeated measures analysis of variance. RESULTS Our analysis indicated no significant (p < 0.05) differential responses for plasma leucine, BCAA, EAA, or TAA between PROB and PL from PRE to POST. AUC analysis revealed no group × time interaction for plasma leucine (p = 0.524), BCAA (p = 0.345), EAA (p = 0.512), and TAA (p = 0.712). CONCLUSION These data indicate that 28 days of Bacillus subtilis DE111 does not affect plasma AA appearance following acute whey protein ingestion.
Collapse
|
41
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|