1
|
Bhatia B, Sonar S, Khan S, Bhattacharya J. Pandemic-Proofing: Intercepting Zoonotic Spillover Events. Pathogens 2024; 13:1067. [PMID: 39770327 PMCID: PMC11728701 DOI: 10.3390/pathogens13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Zoonotic spillover events pose a significant and growing threat to global health. By focusing on preventing these cross-species transmissions, we can significantly mitigate pandemic risks. This review aims to analyze the mechanisms of zoonotic spillover events, identify key risk factors, and propose evidence-based prevention strategies to reduce future pandemic threats. Through a comprehensive literature review and analysis of major databases including PubMed, Web of Science, and Scopus from 1960-2024, we examined documented spillover events, their outcomes, and intervention strategies. This article emphasizes that targeting the root cause-the spillover event itself-is key to averting future pandemics. By analyzing historical and contemporary outbreaks, we extract crucial insights into the dynamics of zoonotic transmission. Factors underlying these events include increased human-animal contact due to habitat encroachment, agricultural intensification, and wildlife trade. Climate change, global travel, and inadequate healthcare infrastructure exacerbate risks. The diversity of potential viral reservoirs and rapid viral evolution present major challenges for prediction and prevention. Solutions include enhancing surveillance of wildlife populations, improving biosecurity measures, investing in diagnostic capabilities, and promoting sustainable wildlife management. A "One Health" approach integrating human, animal, and environmental health is crucial. Predictive modelling, international cooperation, and public education are key strategies. Developing pre-exposure prophylactics and post-exposure treatments is essential for mitigating outbreaks. While obstacles remain, advances in genomics and ecological modelling offer hope. A proactive, comprehensive approach addressing the root causes of spillover events is vital for safeguarding global health against future pandemics.
Collapse
Affiliation(s)
- Bharti Bhatia
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sudipta Sonar
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Seema Khan
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Jayanta Bhattacharya
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
- Antibody Translational Research Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
2
|
Srivastava A, Mahilkar S, Upadhyaya CP, Mishra PK, Malinda RR, Sonkar SC, Koner BC. Alkhumra Hemorrhagic Fever Virus (AHFV): A Concise Overview. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:505-514. [PMID: 39703604 PMCID: PMC11650908 DOI: 10.59249/qspc8835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Alkhumra fever is a viral disease caused by the Alkhumra hemorrhagic fever virus (AHFV). It belongs to family Flaviviridae, genus Flavivirus. AHFV is primarily transmitted to humans through the bite of infected ticks, for example, Hyalomma. This disease was first identified in the Kingdom of Saudi Arabia (KSA) in 1995 and then reported in other countries of the Arabian Peninsula and the Middle East. The AHFV genome consists of a positive-sense, single-stranded RNA molecule of approximately 10.2 kilobases (kb) in length. The Open Reading Frame (ORF) encodes a polyprotein precursor that is processed by viral and host proteases to yield individual viral proteins. The polyprotein precursor is cleaved by viral proteases and host signal peptidases into three structural and seven non-structural proteins. AHFV can cause a range of clinical manifestations, from mild flu-like symptoms to severe hemorrhagic fever. In this review, we focus on insightful understanding of molecular biology, pathogenesis, and their potential therapeutic targets for AHFV.
Collapse
Affiliation(s)
- Amrita Srivastava
- Department of Biotechnology, Dr. Harisingh Gour
Vishwavidyalaya (A Central University), Madhya Pradesh, India
| | - Shakuntala Mahilkar
- Vector-Borne Diseases Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chandrama Prakash Upadhyaya
- Department of Biotechnology, Dr. Harisingh Gour
Vishwavidyalaya (A Central University), Madhya Pradesh, India
| | | | | | - Subash Chandra Sonkar
- Multidisciplinary Research Unit (MRU), Maulana Azad
Medical College and Associated Hospitals, New Delhi, India
- Delhi School of Public Health, Institute of Eminence,
University of Delhi, India
| | - Bidhan Chandra Koner
- Multidisciplinary Research Unit (MRU), Maulana Azad
Medical College and Associated Hospitals, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical
College and Associated Hospital, New Delhi, India
| |
Collapse
|
3
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
4
|
N S, Kandi V, G SR, Ca J, A H, As A, Kapil C, Palacholla PS. Kyasanur Forest Disease: A Comprehensive Review. Cureus 2024; 16:e65228. [PMID: 39184677 PMCID: PMC11343324 DOI: 10.7759/cureus.65228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Vector-borne microbial diseases are ubiquitous, and their management remains elusive. Such diseases with zoonotic potential result in public health challenges requiring additional control and preventive measures. Despite their cosmopolitan presence, vector-borne infections are neglected due to their endemicity in specified geographical regions. The Kyasanur forest disease (KFD) caused by the Kyasanur forest disease virus (KFDV) is among such diseases transmitted through ticks and localized to India. Despite its prevalence, high transmissibility, and potential to cause fatalities, KFDV has not been given the deserved attention by the governments. Further, KFDV circulates in the rural and wild geographical areas threatening infections to people living in these areas with limited access to medical and healthcare. Therefore, physicians, healthcare workers, and the general population need to understand the KFDV and its ecology, epidemiology, transmission, pathogenesis, laboratory diagnosis, and control and prevention as described comprehensively in this review.
Collapse
Affiliation(s)
- Srilekha N
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Sri Ram G
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Harshitha A
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Akshay As
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Challa Kapil
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
5
|
Alshehri AA, Irekeola AA. Global prevalence of alkhumra hemorrhagic fever virus infection: The first meta-analysis and systematic review. J Infect Public Health 2024; 17:986-993. [PMID: 38631068 DOI: 10.1016/j.jiph.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Alkhumra hemorrhagic fever virus (AHFV) has spread beyond the Middle East. However, the actual global prevalence of the virus is yet unknown. This systematic review and meta-analysis, thus, followed the standard reporting guidelines to provide comprehensive details on the prevalence of Alkhumra virus infection globally. The pooled prevalence of AHFV globally was estimated at 1.3% (95% CI: 0.3-6.3), with higher prevalence in humans (3.4%, 95% CI: 0.4-25.0) compared to animals (0.7%, 95% CI: 0.3-1.8). The prevalence in ticks and camels were 0.7% and 0.2%, respectively. Overall, there was a high prevalence rate in Asia (2.6%) compared to Africa (0.5%), and a distinctly higher prevalence in Saudi Arabia (4.6%) compared to other parts of the world (<1%). Lower surveillance rate in humans was observed in recent years. These findings will aid public health preparedness, surveillance, and development of preventive measures due to AHFV's potential for outbreaks and severe health consequences.
Collapse
Affiliation(s)
- Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia.
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara, Nigeria.
| |
Collapse
|
6
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
7
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
8
|
Yadav P, Dhankher S, Sharma S. Simplified visual detection of Kyasanur Forest Disease virus employing Reverse Transcriptase-Polymerase Spiral Reaction (RT-PSR). Virus Res 2023; 335:199180. [PMID: 37482135 PMCID: PMC10412856 DOI: 10.1016/j.virusres.2023.199180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Among recently prevalent tick-borne infections in India, Kyasanur Forest Virus Disease (KFD) is an important public health concern. During last decade the emergence of cases apart from endemic zone raised concern about case positivity. Early diagnosis is therefore very important in disease management and primary containment. This study, aimed to develop a simplified viral RNA extraction in combination to dry down format of novel isothermal assay for (Reverse Transcription- Polymerase Spiral reaction) specific and rapid identification of Kyasanur Forest Disease Virus targeting viral envelope gene. The one step method was optimized by magnetic bead based viral RNA extraction followed by isothermal RT-PSR assay in heat bath at 63⁰C for 60 minutes. Further, visual results interpretation was done by color change of Hydroxy Naphthol Blue dye. The detection limit of the assay was found 10 RNA copies/rxn with comparable to silica column based viral RNA combined real time qPCR. No cross reactivity was observed with other closely related flaviviruses. The assay was evaluated with clinical samples has shown >99% concordance between two methods. This is the first report of sample extraction coupled isothermal detection of KFD in a simplified manner without a need of any hi-end equipment. The assay developed here has potential to use as an alternate for field-based detection in resource limited settings for KFD.
Collapse
Affiliation(s)
- Pooja Yadav
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Suman Dhankher
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Shashi Sharma
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India.
| |
Collapse
|
9
|
Bhatia B, Tang-Huau TL, Feldmann F, Hanley PW, Rosenke R, Shaia C, Marzi A, Feldmann H. Single-dose VSV-based vaccine protects against Kyasanur Forest disease in nonhuman primates. SCIENCE ADVANCES 2023; 9:eadj1428. [PMID: 37672587 PMCID: PMC10482351 DOI: 10.1126/sciadv.adj1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
10
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
11
|
Pattnaik S, Agrawal R, Murmu J, Kanungo S, Pati S. Does the rise in cases of Kyasanur forest disease call for the implementation of One Health in India? IJID REGIONS 2023; 7:18-21. [PMID: 36941826 PMCID: PMC10024134 DOI: 10.1016/j.ijregi.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
The viral hemorrhagic illness known as Kyasanur forest disease (KFD), also referred to as monkey fever, is transmitted by ticks. The etiological agent, which was formerly isolated from monkeys, is Kyasanur forest disease virus (KFDV), an RNA virus belonging to the family Flaviviridae. Since 1957, India has reported 400-500 cases annually, with a case fatality rate of 1-3%. Shiroma, Chikkamagalore, Uttara Kannada, Dakshina Kannada, and Udupi are the five regions in Karnataka, India where KFD is highly prevalent, with around 3263 notified cases reported between 2003 and 2012, of which 823 cases were laboratory confirmed. The symptoms of monkey fever can range from mild sickness to severe neurological sequelae. Currently, prophylaxis involves administration of formalin-inactivated tissue culture vaccine. Despite the continuing vaccination programs in endemic areas for KFD, new cases are being reported. The current availability and effectiveness of the vaccine are not enough to provide protective immunity and thus prevent new outbreaks. Our study examined the known literature, knowledge gaps, and host responses associated with KFD. There is a need for robust vector control, public awareness campaigns, mass vaccination programmes, a full understanding of the eco-epidemiological elements of the disease, and implementation of a One Health program. These could all support prevention and management protocols, and thus help to address the issue.
Collapse
|
12
|
Shah T, Li Q, Wang B, Baloch Z, Xia X. Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Front Microbiol 2023; 14:1185829. [PMID: 37293222 PMCID: PMC10244671 DOI: 10.3389/fmicb.2023.1185829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Ticks are obligatory hematophagous arthropods that harbor and transmit infectious pathogens to humans and animals. Tick species belonging to Amblyomma, Ixodes, Dermacentor, and Hyalomma genera may transmit certain viruses such as Bourbon virus (BRBV), Dhori virus (DHOV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), Colorado tick fever virus (CTFV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), Kyasanur forest disease virus (KFDV), etc. that affect humans and certain wildlife. The tick vectors may become infected through feeding on viraemic hosts before transmitting the pathogen to humans and animals. Therefore, it is vital to understand the eco-epidemiology of tick-borne viruses and their pathogenesis to optimize preventive measures. Thus this review summarizes knowledge on some medically important ticks and tick-borne viruses, including BRBV, POWV, OHFV, CTFV, CCHFV, HRTV, and KFDV. Further, we discuss these viruses' epidemiology, pathogenesis, and disease manifestations during infection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| |
Collapse
|
13
|
Malik M, Vijayan P, Jagannath DK, Mishra RK, Lakshminarasimhan A. Sofosbuvir and its tri-phosphate metabolite inhibit the RNA-dependent RNA polymerase activity of non-structural protein 5 from the Kyasanur forest disease virus. Biochem Biophys Res Commun 2023; 641:50-56. [PMID: 36521285 DOI: 10.1016/j.bbrc.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Kyasanur forest disease is a neglected zoonotic disease caused by a single-stranded RNA-based flavivirus, the incidence of which was first recorded in 1957 in the Southern part of India. Kyasanur forest disease virus is transmitted to monkeys and humans through the infected tick bite of Haemophysalis spinigera. Kyasanur forest disease is a febrile illness, which in severe cases, results in neurological complications leading to mortality. The current treatment regimens are symptomatic and supportive, and no targeted therapies are available for this disease. In this study, we evaluated the ability of FDA-approved drugs sofosbuvir (and its active metabolite) and Dasabuvir to inhibit the RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus. NS5 protein containing the N-terminal methyl transferase domain and C-terminal RNA-dependent RNA polymerase domain was expressed in Escherichia coli, and RNA-dependent RNA polymerase activity was demonstrated with the purified protein. The RNA-dependent RNA polymerase assay conditions were optimized, followed by the determination of apparent Km,ATP to validate the enzyme preparation. Half maximal-inhibitory concentrations against RNA-dependent RNA polymerase activity were determined for Sofosbuvir and its active metabolite. Dasabuvir did not show detectable inhibition with the tested conditions. This is the first demonstration of the inhibition of RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus with small molecule inhibitors. These initial findings can potentially facilitate the discovery and development of targeted therapies for treating Kyasanur forest disease.
Collapse
Affiliation(s)
- Mansi Malik
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Parvathy Vijayan
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Deepak K Jagannath
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Rakesh K Mishra
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | | |
Collapse
|
14
|
Rajak A, Kumar JS, Dhankher S, Sandhya V, Kiran S, Golime R, Dash PK. Development and application of a recombinant Envelope Domain III protein based indirect human IgM ELISA for Kyasanur forest disease virus. Acta Trop 2022; 235:106623. [DOI: 10.1016/j.actatropica.2022.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022]
|
15
|
Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures. Microorganisms 2022; 10:microorganisms10030591. [PMID: 35336165 PMCID: PMC8951599 DOI: 10.3390/microorganisms10030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Before December 2019 and the COVID-19 pandemic, the general public was to some extent aware that zoonotic viruses can spill over into the human population and cause a disease outbreak [...]
Collapse
|
16
|
Abdulhaq AA, Hershan AA, Karunamoorthi K, Al-Mekhlafi HM. Human Alkhumra hemorrhagic Fever: Emergence, history and epidemiological and clinical profiles. Saudi J Biol Sci 2022; 29:1900-1910. [PMID: 35280532 PMCID: PMC8913346 DOI: 10.1016/j.sjbs.2021.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Alkhumra hemorrhagic fever (AHF) is a severe, often fatal hemorrhagic disease in humans. It is caused by Alkhumra hemorrhagic fever virus (AHFV), a newly described flavivirus first isolated in 1995 in Alkhumra district, south of Jeddah City, Saudi Arabia. It is transmitted from infected livestock animals to humans by direct contact with infected animals or by tick bites. In the recent past, the incidence of AHF has increased, with a total of 604 confirmed cases have been reported in Saudi Arabia between 1995 and 2020. Yet, no specific treatment or control strategies have been developed and implemented against this infection. Hence, the likelihood of increased prevalence or the occurrence of outbreaks is high, particularly in the absence of appropriate prevention and control strategies. This narrative review presents an overview of the current knowledge and future concerns about AHF globally.
Collapse
Key Words
- AHF, Alkhumra hemorrhagic fever
- AHFV, Alkhumra hemorrhagic fever virus
- Alkhumra hemorrhagic fever virus
- CCHFV, Crimean-Congo Hemorrhagic fever virus
- CFV, chikungunya fever virus
- DENV, dengue fever virus
- Flaviviruses
- ICTV, International Committee on Taxonomy of Viruses
- Infectious diseases
- KFDV, Kyasanur Forest disease virus
- OHFV, Omsk hemorrhagic fever virus
- RVFV, Rift Valley fever virus
- Saudi Arabia
- YFV, yellow fever virus
Collapse
Affiliation(s)
- Ahmed A Abdulhaq
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.,Deanship of Scientific Research, Jazan University, Jazan, Kingdom of Saudi Arabia.,Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Almonther A Hershan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Kingdom of Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Kaliyaperumal Karunamoorthi
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.,Department of Epidemiology, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Hesham M Al-Mekhlafi
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.,Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia.,Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
17
|
Insights from experience in the treatment of tick-borne bacterial coinfections with tick-borne encephalitis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Dhodapkar R, Shanmugam L, Kumaresan M, Kundu R, Gunalan A. Arboviruses in human disease: An Indian perspective. INTERNATIONAL JOURNAL OF ADVANCED MEDICAL AND HEALTH RESEARCH 2022. [DOI: 10.4103/ijamr.ijamr_237_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
19
|
Bhatia B, Meade-White K, Haddock E, Feldmann F, Marzi A, Feldmann H. A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus. NPJ Vaccines 2021; 6:152. [PMID: 34907224 PMCID: PMC8671490 DOI: 10.1038/s41541-021-00416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) is a tick-borne flavivirus endemic in India known to cause severe hemorrhagic and encephalitic disease in humans. In recent years, KFDV has spread beyond its original endemic zone raising public health concerns. Currently, there is no treatment available for KFDV but a vaccine with limited efficacy is used in India. Here, we generated two new KFDV vaccine candidates based on the vesicular stomatitis virus (VSV) platform. We chose the VSV-Ebola virus (VSV-EBOV) vector either with the full-length or a truncated EBOV glycoprotein as the vehicle to express the precursor membrane (prM) and envelope (E) proteins of KFDV (VSV-KFDV). For efficacy testing, we established a mouse disease model by comparing KFDV infections in three immunocompetent mouse strains (BALB/c, C57Bl/6, and CD1). Both vaccine vectors provided promising protection against lethal KFDV challenge in the BALB/c model following prime-only prime-boost and immunizations. Only prime-boost immunization with VSV-KFDV expressing full-length EBOV GP resulted in uniform protection. Hyperimmune serum derived from prime-boost immunized mice protected naïve BALB/c mice from lethal KFDV challenge indicating the importance of antibodies for protection. The new VSV-KFDV vectors are promising vaccine candidates to combat an emerging, neglected public health problem in a densely populated part of the world.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
20
|
Bhatia B, Haddock E, Shaia C, Rosenke R, Meade-White K, Griffin AJ, Marzi A, Feldmann H. Alkhurma haemorrhagic fever virus causes lethal disease in IFNAR -/- mice. Emerg Microbes Infect 2021; 10:1077-1087. [PMID: 34013842 PMCID: PMC8183530 DOI: 10.1080/22221751.2021.1932609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alkhurma haemorrhagic fever virus (AHFV), a tick-borne flavivirus closely related to Kyasanur Forest disease virus, is the causative agent of a severe, sometimes fatal haemorrhagic/encephalitic disease in humans. To date, there are no specific treatments or vaccines available to combat AHFV infections. A challenge for the development of countermeasures is the absence of a reliable AHFV animal disease model for efficacy testing. Here, we used mice lacking the type I interferon (IFN) receptor (IFNAR-/-). AHFV strains Zaki-2 and 2003 both caused uniform lethality in these mice after intraperitoneal injection, but strain 2003 seemed more virulent with a median lethal dose of 0.4 median tissue culture infectious doses (TCID50). Disease manifestation in this animal model was similar to case reports of severe human AHFV infections with early generalized signs leading to haemorrhagic and neurologic complications. AHFV infection resulted in early high viremia followed by high viral loads (<108 TCID50/g tissue) in all analyzed organs. Despite systemic viral replication, virus-induced pathology was mainly found in the spleen, lymph nodes, liver and heart. This uniformly lethal AHFV disease model will be instrumental for pathogenesis studies and countermeasure development against this neglected zoonotic pathogen.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Amanda J Griffin
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
21
|
Anoopkumar AN, Aneesh EM. Assessing the importance of Molecular and Genetic perspectives in Prophesying the KFD transmission risk provinces in the Western Ghats, Kerala, INDIA in context with spatial distribution, Extensive genetic Diversity, and phylogeography. Comp Immunol Microbiol Infect Dis 2021; 76:101652. [PMID: 33910066 DOI: 10.1016/j.cimid.2021.101652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The deadly effects of KFD have been pointed in southern India; however, the infecting regions have been getting larger in recent epochs. People who live or work in regions where KFDV infected tick vectors are present are severely prone to procuring the infection. Being aware of tick vectors and infectious agents' geospatial location is vital to direct sustenance approaches to prevent and manage such infectious diseases as KFD. The present investigation has focussed on the spatial distribution, Extensive genetic Diversity, and phylogeography to forecast the probable KFD disease risk provinces in the Western Ghats. The statistical analysis for diversity indices and community comparison has been performed by using SPSS version 24.0.0 and R software version 3.4.2. The nucleotide sequences of the respective ticks and KFDV were retrieved from NCBI. The first strand of this investigation revealed that, around the world, the Indian province was found to exhibit a maximum range of diversity for tick vectors. The next strands prophesied the KFD transmission risk areas in the Western Ghats region, India, with computational spatial analysis and phylogeography. The final strand exposed the genetic diversity of the KFD virus and the tick vectors in terms of their spatial distribution worldwide.
Collapse
Affiliation(s)
- A N Anoopkumar
- Communicable Disease Research Laboratory (CDRL), Department of Zoology, St. Joseph's College, Irinjalakuda, University of Calicut, Kerala, India.
| | - Embalil Mathachan Aneesh
- Communicable Disease Research Laboratory (CDRL), Department of Zoology, St. Joseph's College, Irinjalakuda, University of Calicut, Kerala, India.
| |
Collapse
|
22
|
Farooq I, Moriarty TJ. The Impact of Tick-Borne Diseases on the Bone. Microorganisms 2021; 9:663. [PMID: 33806785 PMCID: PMC8005031 DOI: 10.3390/microorganisms9030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Tick-borne infectious diseases can affect many tissues and organs including bone, one of the most multifunctional structures in the human body. There is a scarcity of data regarding the impact of tick-borne pathogens on bone. The aim of this review was to survey existing research literature on this topic. The search was performed using PubMed and Google Scholar search engines. From our search, we were able to find evidence of eight tick-borne diseases (Anaplasmosis, Ehrlichiosis, Babesiosis, Lyme disease, Bourbon virus disease, Colorado tick fever disease, Tick-borne encephalitis, and Crimean-Congo hemorrhagic fever) affecting the bone. Pathological bone effects most commonly associated with tick-borne infections were disruption of bone marrow function and bone loss. Most research to date on the effects of tick-borne pathogen infections on bone has been quite preliminary. Further investigation of this topic is warranted.
Collapse
Affiliation(s)
- Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Tara J. Moriarty
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|