1
|
Simon AY, Badmalia MD, Paquette SJ, Manalaysay J, Czekay D, Kandel BS, Sultana A, Lung O, Babuadze GG, Shahhosseini N. Evolutionary Relationships of Unclassified Coronaviruses in Canadian Bat Species. Viruses 2024; 16:1878. [PMID: 39772188 PMCID: PMC11680298 DOI: 10.3390/v16121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada. Tissue samples from 500 bat specimens collected in Canada were analyzed using pan-coronavirus RT-PCR assays to detect the presence of CoVs from four genera: Alpha-CoVs, Beta-CoV, Gamma-CoV, and Delta-CoV. Phylogenetic analysis was performed targeting the RNA-dependent RNA polymerase (RdRP) gene. Our results showed an overall 1.4% CoV positivity rate in our bat sample size. Phylogenetic analysis based on the ~600 bp sequences led to the identification of an unclassified subgenus of Alpha-CoV, provisionally named Eptacovirus. The findings contribute to a better understanding of the diversity and evolution of CoVs found in the bat species of Canada. The current study underscores the significance of bats in the epidemiology of CoVs and enhances the knowledge of their genetic diversity and potential impact on global public health.
Collapse
Affiliation(s)
- Ayo Yila Simon
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Maulik D. Badmalia
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Sarah-Jo Paquette
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Jessica Manalaysay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
- Departments of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dominic Czekay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Bishnu Sharma Kandel
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
| | - Asma Sultana
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (A.S.); (O.L.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (A.S.); (O.L.)
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George Giorgi Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nariman Shahhosseini
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada; (A.Y.S.); (M.D.B.); (S.-J.P.); (J.M.); (D.C.); (B.S.K.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
2
|
da Cruz TCD, Pavon JAR, de Azevedo FSK, de Souza EC, Ribeiro BM, Slhessarenko RD. Associations between epidemiological and laboratory parameters and disease severity in hospitalized patients with COVID-19 during first and second epidemic waves in middle south Mato Grosso. Braz J Microbiol 2024; 55:2613-2629. [PMID: 38834861 PMCID: PMC11405551 DOI: 10.1007/s42770-024-01379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND COVID-19 is a multisystemic disease characterized by respiratory distress. Disease severity is associated with several factors. Here we characterize virological findings and evaluate the association of laboratorial, epidemiological, virological findings and clinical outcomes of 251 patients during the first and second epidemic waves of COVID-19. METHODS This transversal study used biological samples and data from patients hospitalized with COVID-19 between May 2020 and August 2021 in the metropolitan region of Cuiabá, Mato Grosso Brazil. Biological samples were subjected to RT-qPCR and MinION sequencing. Univariate and multivariate logistic regression and Odds ratio were used to correlate clinical, laboratorial, epidemiological data. FINDINGS Patients were represented by males (61.7%) with mean age of 52.4 years, mild to moderate disease (49,0%), overweight/obese (69.3%), with comorbidities (66.1%) and evolving to death (55.38%). Severe cases showing symptoms for prolonged time, ≥ 25% of ground-glass opacities in the lungs and fatality rate increased significantly in second wave. Fatality was statistically associated to > 61 years of age,>25% ground-glass opacities in the lungs, immune, cardiac, or metabolic comorbidities. Higher viral load (p < 0.01/p = 0.02 in each wave), decreased erythrocyte (p < 0.01), hemoglobin (p < 0.05/p < 0.01), hematocrit (p < 0.01), RDW (p < 0.01), lymphocyte (p < 0.01), increased leucocyte (p < 0.01), neutrophil (p < 0.01) and CRP levels (p < 0.01) showed significant association with fatality in both waves, as did Neutrophil/Platelet (NPR; p < 0.01), Neutrophil/Lymphocyte (NLR; p < 0.01) and Monocyte/Lymphocyte ratio (MLR; p < 0.01). SARS-CoV-2 genomes from lineage B.1.1.33(n = 8) and Gamma/P.1(n = 15) shared 6/7 and 20/23 lineage-defining mutations, respectively. MAIN CONCLUSIONS Severity and mortality of COVID-19 associated with a panel of epidemiological and laboratorial findings, being second wave, caused by Gamma variant, more severe in this in-hospital population.
Collapse
Affiliation(s)
- Thais Campos Dias da Cruz
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil
| | - Janeth Aracely Ramirez Pavon
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil
| | - Francisco Scoffoni Kennedy de Azevedo
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil
- Hospital e Pronto Socorro de Várzea Grande, Secretaria Municipal de Saúde, UFMT, Várzea Grande, Mato Grosso, Brasil
| | - Edila Cristina de Souza
- Curso de Graduação em Estatística, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brasil
| | - Bergman Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brasil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil.
| |
Collapse
|
3
|
Rebellón-Sánchez DE, Guzmán TM, Rodriguez S, Llanos-Torres J, Vinueza D, Tafurt E, Beltrán E, Martínez Á, Rosso F. Navigating the waves in Colombia: a cohort study of inpatient care during four COVID-19 waves. Braz J Infect Dis 2024; 28:103737. [PMID: 38484781 PMCID: PMC10955096 DOI: 10.1016/j.bjid.2024.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Understanding the intricate dynamics between different waves of the COVID-19 pandemic and the corresponding variations in clinical outcomes is essential for informed public health decision-making. Comprehensive insights into these fluctuations can guide resource allocation, healthcare policies, and the development of effective interventions. This study aimed to compare the characteristics and clinical outcomes of COVID-19 at peak transmission points by including all patients attended during the first four pandemic waves in a referral center in Colombia. MATERIAL AND METHODS In a prospective observational study of 2733 patients, clinical and demographic data were extracted from the Fundacion Valle de Lili's COVID-19 Registry, focusing on ICU admission, Invasive Mechanical Ventilation (IMV), length of hospital stay, and mortality. RESULTS Our analysis unveiled substantial shifts in patient care patterns. Notably, the proportion of patients receiving glucocorticoid therapy and experiencing secondary infections exhibited a pronounced decrease across waves (p < 0.001). Remarkably, there was a significant reduction in ICU admissions (62.83% vs. 51.23% vs. 58.23% vs. 46.70 %, p < 0.001), Invasive Mechanical Ventilation (IMV) usage (39.25% vs. 32.22% vs. 31.22% vs. 21.55 %, p < 0.001), and Length of Hospital Stay (LOS) (9 vs. 8 vs. 8 vs. 8 days, p < 0.001) over the successive waves. Surprisingly, hospital mortality remained stable at approximately 18‒20 % (p > 0.05). Notably, vaccination coverage with one or more doses surged from 0 % during the initial waves to 66.71 % in the fourth wave. CONCLUSIONS Our findings emphasize the critical importance of adapting healthcare strategies to the evolving dynamics of the pandemic. The reduction in ICU admissions, IMV utilization, and LOS, coupled with the rise in vaccination rates, underscores the adaptability of healthcare systems. Hospital mortality's persistence may warrant further exploration of treatment strategies. These insights can inform public health responses, helping policymakers allocate resources effectively and tailor interventions to specific phases of the pandemic.
Collapse
Affiliation(s)
| | - Tania M Guzmán
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | - Sarita Rodriguez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | - Julio Llanos-Torres
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | - Daniela Vinueza
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | - Eric Tafurt
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia; Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia
| | - Estefanía Beltrán
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia
| | - Álvaro Martínez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia; Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia; Fundación Valle del Lili, Servicio de Enfermedades Infecciosas, Cali, Colombia
| | - Fernando Rosso
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cali, Colombia; Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia; Fundación Valle del Lili, Servicio de Enfermedades Infecciosas, Cali, Colombia
| |
Collapse
|
4
|
Seo SE, Kim KH, Ha S, Oh H, Kim J, Kim S, Kim L, Seo M, An JE, Park YM, Lee KG, Kim YK, Kim WK, Hong JJ, Song HS, Kwon OS. Synchronous Diagnosis of Respiratory Viruses Variants via Receptonics Based on Modeling Receptor-Ligand Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303079. [PMID: 37487578 DOI: 10.1002/adma.202303079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The transmission and pathogenesis of highly contagious fatal respiratory viruses are increasing, and the need for an on-site diagnostic platform has arisen as an issue worldwide. Furthermore, as the spread of respiratory viruses continues, different variants have become the dominant circulating strains. To prevent virus transmission, the development of highly sensitive and accurate on-site diagnostic assays is urgently needed. Herein, a facile diagnostic device is presented for multi-detection based on the results of detailed receptor-ligand dynamics simulations for the screening of various viral strains. The novel bioreceptor-treated electronics (receptonics) device consists of a multichannel graphene transistor and cell-entry receptors conjugated to N-heterocyclic carbene (NHC). An ultrasensitive multi-detection performance is achieved without the need for sample pretreatment, which will enable rapid diagnosis and prevent the spread of pathogens. This platform can be applied for the diagnosis of variants of concern in clinical respiratory virus samples and primate models. This multi-screening platform can be used to enhance surveillance and discriminate emerging virus variants before they become a severe threat to public health.
Collapse
Affiliation(s)
- Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Hanseul Oh
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soomin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for NanoBio Development, National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Ghildiyal T, Rai N, Mishra Rawat J, Singh M, Anand J, Pant G, Kumar G, Shidiki A. Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. J Immunol Res 2024; 2024:9125398. [PMID: 38304142 PMCID: PMC10834093 DOI: 10.1155/2024/9125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Since the COVID-19 outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus has evolved into variants with varied infectivity. Vaccines developed against COVID-19 infection have boosted immunity, but there is still uncertainty on how long the immunity from natural infection or vaccination will last. The present study attempts to outline the present level of information about the contagiousness and spread of SARS-CoV-2 variants of interest and variants of concern (VOCs). The keywords like COVID-19 vaccine types, VOCs, universal vaccines, bivalent, and other relevant terms were searched in NCBI, Science Direct, and WHO databases to review the published literature. The review provides an integrative discussion on the current state of knowledge on the type of vaccines developed against SARS-CoV-2, the safety and efficacy of COVID-19 vaccines concerning the VOCs, and prospects of novel universal, chimeric, and bivalent mRNA vaccines efficacy to fend off existing variants and other emerging coronaviruses. Genomic variation can be quite significant, as seen by the notable differences in impact, transmission rate, morbidity, and death during several human coronavirus outbreaks. Therefore, understanding the amount and characteristics of coronavirus genetic diversity in historical and contemporary strains can help researchers get an edge over upcoming variants.
Collapse
Affiliation(s)
- Tanmay Ghildiyal
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Janhvi Mishra Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Maargavi Singh
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | |
Collapse
|
6
|
Mead MN, Seneff S, Wolfinger R, Rose J, Denhaerynck K, Kirsch S, McCullough PA. COVID-19 mRNA Vaccines: Lessons Learned from the Registrational Trials and Global Vaccination Campaign. Cureus 2024; 16:e52876. [PMID: 38274635 PMCID: PMC10810638 DOI: 10.7759/cureus.52876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Our understanding of COVID-19 vaccinations and their impact on health and mortality has evolved substantially since the first vaccine rollouts. Published reports from the original randomized phase 3 trials concluded that the COVID-19 mRNA vaccines could greatly reduce COVID-19 symptoms. In the interim, problems with the methods, execution, and reporting of these pivotal trials have emerged. Re-analysis of the Pfizer trial data identified statistically significant increases in serious adverse events (SAEs) in the vaccine group. Numerous SAEs were identified following the Emergency Use Authorization (EUA), including death, cancer, cardiac events, and various autoimmune, hematological, reproductive, and neurological disorders. Furthermore, these products never underwent adequate safety and toxicological testing in accordance with previously established scientific standards. Among the other major topics addressed in this narrative review are the published analyses of serious harms to humans, quality control issues and process-related impurities, mechanisms underlying adverse events (AEs), the immunologic basis for vaccine inefficacy, and concerning mortality trends based on the registrational trial data. The risk-benefit imbalance substantiated by the evidence to date contraindicates further booster injections and suggests that, at a minimum, the mRNA injections should be removed from the childhood immunization program until proper safety and toxicological studies are conducted. Federal agency approval of the COVID-19 mRNA vaccines on a blanket-coverage population-wide basis had no support from an honest assessment of all relevant registrational data and commensurate consideration of risks versus benefits. Given the extensive, well-documented SAEs and unacceptably high harm-to-reward ratio, we urge governments to endorse a global moratorium on the modified mRNA products until all relevant questions pertaining to causality, residual DNA, and aberrant protein production are answered.
Collapse
Affiliation(s)
- M Nathaniel Mead
- Biology and Nutritional Epidemiology, Independent Research, Copper Hill, USA
| | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
| | - Russ Wolfinger
- Biostatistics and Epidemiology, Independent Research, Research Triangle Park, USA
| | - Jessica Rose
- Immunology and Public Health Research, Independent Research, Ottawa, CAN
| | - Kris Denhaerynck
- Epidemiology and Biostatistics, Independent Research, Basel, CHE
| | - Steve Kirsch
- Data Science, Independent Research, Los Angeles, USA
| | - Peter A McCullough
- Cardiology, Epidemiology, and Public Health, McCullough Foundation, Dallas, USA
- Cardiology, Epidemiology, and Public Health, Truth for Health Foundation, Tucson, USA
| |
Collapse
|
7
|
Yin ZJ, Xiao H, McDonald S, Brusic V, Qiu TY. Dynamically adjustable SVEIR(MH) model of multiwave epidemics: Estimating the effects of public health measures against COVID-19. J Med Virol 2023; 95:e29301. [PMID: 38087460 DOI: 10.1002/jmv.29301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
The COVID-19 pandemic was characterized by multiple subsequent, overlapping outbreaks, as well as extremely rapid changes in viral genomes. The information about local epidemics spread and the epidemic control measures was shared on a daily basis (number of cases and deaths) via centralized repositories. The vaccines were developed within the first year of the pandemic. New modes of monitoring and sharing of epidemic data were implemented using Internet resources. We modified the basic SEIR compartmental model to include public health measures, multiwave scenarios, and the variation of viral infectivity and transmissibility reflected by the basic reproduction number R0 of emerging viral variants. SVEIR(MH) model considers the capacity of the medical system, lockdowns, vaccination, and changes in viral reproduction rate on the epidemic spread. The developed model uses daily infection reports for assessing the epidemic dynamics, and daily changes of mobility data from mobile phone networks to assess the lockdown effectiveness. This model was deployed to six European regions Baden-Württemberg (Germany), Belgium, Czechia, Lombardy (Italy), Sweden, and Switzerland for the first 2 years of the pandemic. The correlation coefficients between observed and reported infection data showed good concordance for both years of the pandemic (ρ = 0.84-0.94 for the raw data and ρ = 0.91-0.98 for smoothed 7-day averages). The results show stability across the regions and the different epidemic waves. Optimal control of epidemic waves can be achieved by dynamically adjusting epidemic control measures in real-time. SVEIR(MH) model can simulate different scenarios and inform adjustments to the public health policies to achieve the target outcomes. Because this model is highly representative of actual epidemic situations, it can be used to assess both the public health and socioeconomic effects of the public health measures within the first 7 days of the outbreak.
Collapse
Affiliation(s)
- Zuo-Jing Yin
- Institute of Clinical Science, Zhongshan Hospital; Shanghai Institute of Infectious Disease and Biosecurity; Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Han Xiao
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Stuart McDonald
- Smart Medicine Laboratory, School of Economics, University of Nottingham Ningbo China, Ningbo, China
| | - Vladimir Brusic
- Smart Medicine Laboratory, School of Economics, University of Nottingham Ningbo China, Ningbo, China
| | - Tian-Yi Qiu
- Institute of Clinical Science, Zhongshan Hospital; Shanghai Institute of Infectious Disease and Biosecurity; Intelligent Medicine Institute, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Singh M, Lo SH, Dubey R, Kumar S, Chaubey KK, Kumar S. Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19. Indian J Microbiol 2023; 63:429-446. [PMID: 38031604 PMCID: PMC10682353 DOI: 10.1007/s12088-023-01121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human virus that burst at Wuhan in China and spread quickly over the world, leading to millions of deaths globally. The journey of this deadly virus to different mutant strains is still ongoing. The plethora of drugs and vaccines have been tested to cope up this pandemic. The herbal plants and different spices have received great attention during pandemic, because of their anti-inflammatory, and immunomodulatory properties in treating viruses and their symptoms. Also, it has been shown that nano-formulation of phytochemicals has potential therapeutic effect against COVID-19. Furthermore, the plant derived compound nano-formulation specifically increases its antiviral property by enhancing its bioavailability, solubility, and target-specific delivery system. This review highlights the potentiality of herbal plants and their phytochemical against SARS-CoV-2 utilizing different mechanisms such as blocking the ACE-2 receptors, inhibiting the main proteases, binding spike proteins and reducing the cytokine storms.
Collapse
Affiliation(s)
- Mansi Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406 India
| | - Shih-Hsiu Lo
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing Street, Taipei, 11031 Taiwan
| | - Sudhashekhar Kumar
- Department of Physiology, School of Medical Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand 248007 India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, UP 281401 India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
9
|
Roncati L, Bartolacelli G, Galeazzi C, Caramaschi S. Trends in the COVID-19 Pandemic in Italy during the Summers of 2020 (before Mass Vaccination), 2021 (after Primary Mass Vaccination) and 2022 (after Booster Mass Vaccination): A Real-World Nationwide Study Based on a Population of 58.85 Million People. Pathogens 2023; 12:1376. [PMID: 38133261 PMCID: PMC10747560 DOI: 10.3390/pathogens12121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Like all RNA viruses, SARS-CoV-2 shows a high mutation rate, which has led to the emergence of new variants. Among them, Gamma and Delta developed at the turn of 2020-2021 in Amazonas and India, two ecoregions characterized by hot-humid weather, very similar to that of the summer season in Italy due to climate change, the first Western country to be hit hard by COVID-19 and to experience lockdown restrictions in a democratic framework of 58.85 million people. The aim of our research has been to evaluate the impact of climate on the COVID-19 pandemic in Italy during the summers of 2020 (before mass vaccination), 2021 (after primary mass vaccination) and 2022 (after booster mass vaccination), also taking into account the emergence of these two variants. METHODS During the state of national health emergency and the Draghi government, the Civil Defense Department released the aggregate data coming from the Ministry of Health, the Higher Institute of Health, the Independent Provinces and the Italian Regions daily, in order to inform about the pandemic situation in Italy. Among these data there were the number of deaths, hospitalizations in intensive care units (ICU), non-ICU patients, contagions and performed swabs. By means of a team effort, we have collected and elaborated all these data, comparing the COVID-19 pandemic in Italy during the summers of 2020 (following the nationwide lockdown), 2021 and 2022. RESULTS from the summer of 2020 to the summers of 2021 and 2022 all pandemic trend indicators have shown a sharp worsening in Italy. COVID-19 deaths increased by ≈298% and ≈834%, ICU hospitalizations by ≈386% and ≈310%, non-ICU hospitalizations by ≈224% and ≈600%, contagions by ≈627% and ≈6850% (i.e., ≈68.50 times), swabs by ≈354% and ≈370%, and the mean positivity rate passed from ≈1% to ≈2% and ≈20%, respectively. CONCLUSIONS SARS-CoV-2 can be transmitted in any climate, including areas with hot and humid weather, and the emergence of variants adapted to hot-humid climates may result in summer COVID-19 outbreaks, even in neither tropical nor subtropical countries. Although COVID-19 vaccines can confer cross-protection against newly emerging variants, this cross-immunity is naturally not absolute but limited, considering that vaccine protection wanes significantly after 6 months. It follows that a subject vaccinated at the beginning of the winter will not be completely covered in the height of the summer, and we should not forget the unvaccinated. As a final remark, the long and strict nationwide lockdown made it possible to flatten SARS-CoV-2 circulation and, therefore, its negative impact on Italy during the summer of 2020.
Collapse
Affiliation(s)
- Luca Roncati
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Giulia Bartolacelli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Carlo Galeazzi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Stefania Caramaschi
- Department of Maternal, Infant and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
10
|
Hao Q, Bai Y, Zhou H, Bao X, Wang H, Zhang L, Lyu M, Wang S. Isolation and Characterization of Bacteriophage VA5 against Vibrio alginolyticus. Microorganisms 2023; 11:2822. [PMID: 38137966 PMCID: PMC10746027 DOI: 10.3390/microorganisms11122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteriophages, or phages, can be used as natural biological control agents to eliminate pathogenic bacteria during aquatic product cultivation. Samples were collected from seafood aquaculture water and aquaculture environmental sewage, and phage VA5 was isolated using the double-layer agar plate method, with Vibrio alginolyticus as the host bacteria. The purified phage strain was subjected to genome sequencing analysis and morphological observation. The optimal multiplicity of infection (MOI), the one-step growth curve, temperature stability, and pH stability were analyzed. Phage VA5 was observed to have a long tail. Whole-genome sequencing revealed that the genome was circular dsDNA, with 35,866 bp length and 46% G+C content. The optimal MOI was 1, the incubation period was 20 min, the outbreak period was 30 min, and the cleavage amount was 92.26 PFU/cell. The phage showed good activity at -20 °C, 70 °C, and pH 2-10. Moreover, the phage VA5 exhibited significant inhibitory effects on V. alginolyticus-infected shrimp culture. The isolated phage VA5 has a wide range of host bacteria and is a good candidate for biological control of pathogenic bacteria.
Collapse
Affiliation(s)
- Qingfang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Bai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haolong Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China;
| | - Xiuli Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
11
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
12
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Chen YT, Su ECY, Hung FM, Hiramatsu T, Hung TJ, Kuo CY. Constructing a Learning Curve to Discuss the Medical Treatments and the Effect of Vaccination of COVID-19. Healthcare (Basel) 2023; 11:1591. [PMID: 37297731 PMCID: PMC10252948 DOI: 10.3390/healthcare11111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acknowledging the extreme risk COVID-19 poses to humans, this paper attempted to analyze and compare case fatality rates, identify the existence of learning curves for COVID-19 medical treatments, and examine the impact of vaccination on fatality rate reduction. Confirmed cases and deaths were extracted from the "Daily Situation Report" provided by the World Health Organization. The results showed that low registration and low viral test rates resulted in low fatality rates, and the learning curve was significant for all countries except China. Treatment for COVID-19 can be improved through repeated experience. Vaccinations in the U.K. and U.S.A. are highly effective in reducing fatality rates, but not in other countries. The positive impact of vaccines may be attributed to higher vaccination rates. In addition to China, this study identified the existence of learning curves for the medical treatment of COVID-19 that can explain the effect of vaccination rates on fatalities.
Collapse
Affiliation(s)
- Yi-Tui Chen
- Smart Healthcare Interdisciplinary College, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Fang Ming Hung
- Department of Surgical Intensive Care Unit, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Tomoru Hiramatsu
- School of Policy Studies, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda 669-1330, Japan
| | - Tzu-Jen Hung
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Chao-Yang Kuo
- Smart Healthcare Interdisciplinary College, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| |
Collapse
|
14
|
Kumar R, Srivastava Y, Muthuramalingam P, Singh SK, Verma G, Tiwari S, Tandel N, Beura SK, Panigrahi AR, Maji S, Sharma P, Rai PK, Prajapati DK, Shin H, Tyagi RK. Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses 2023; 15:856. [PMID: 37112836 PMCID: PMC10142771 DOI: 10.3390/v15040856] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic variant(s) of concern (VoC) of SARS-CoV-2 have been emerging worldwide due to mutations in the gene encoding spike glycoprotein. We performed comprehensive analyses of spike protein mutations in the significant variant clade of SARS-CoV-2, using the data available on the Nextstrain server. We selected various mutations, namely, A222V, N439K, N501Y, L452R, Y453F, E484K, K417N, T478K, L981F, L212I, N856K, T547K, G496S, and Y369C for this study. These mutations were chosen based on their global entropic score, emergence, spread, transmission, and their location in the spike receptor binding domain (RBD). The relative abundance of these mutations was mapped with global mutation D614G as a reference. Our analyses suggest the rapid emergence of newer global mutations alongside D614G, as reported during the recent waves of COVID-19 in various parts of the world. These mutations could be instrumentally imperative for the transmission, infectivity, virulence, and host immune system's evasion of SARS-CoV-2. The probable impact of these mutations on vaccine effectiveness, antigenic diversity, antibody interactions, protein stability, RBD flexibility, and accessibility to human cell receptor ACE2 was studied in silico. Overall, the present study can help researchers to design the next generation of vaccines and biotherapeutics to combat COVID-19 infection.
Collapse
Affiliation(s)
- Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
- Department of Biotherapeutics, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sunil Kumar Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Geetika Verma
- Department of Biotherapeutics, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Savitri Tiwari
- Division of Life Sciences, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Gautam Buddha Nagar, Greater Noida 201310, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG Highway, Gujarat 382481, India
| | - Samir Kumar Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | | | - Somnath Maji
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prakriti Sharma
- Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, IIET, Invertis University, Bareilly 243001, India
| | | | - Hyunsuk Shin
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| |
Collapse
|
15
|
Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Int J Mol Sci 2023; 24:ijms24054401. [PMID: 36901832 PMCID: PMC10003049 DOI: 10.3390/ijms24054401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of more than 6.5 million people around the world. The high transmissibility of its causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed light on the ever-increasing importance of computer simulations in rationalizing and speeding up the design of new drugs, further stressing the need for developing quick and reliable methods to identify novel active molecules and characterize their mechanism of action. In the present work, we aim at providing the reader with a general overview of the COVID-19 pandemic, discussing the hallmarks in its management, from the initial attempts at drug repurposing to the commercialization of Paxlovid, the first orally available COVID-19 drug. Furthermore, we analyze and discuss the role of computer-aided drug discovery (CADD) techniques, especially those that fall in the structure-based drug design (SBDD) category, in facing present and future pandemics, by showcasing several successful examples of drug discovery campaigns where commonly used methods such as docking and molecular dynamics have been employed in the rational design of effective therapeutic entities against COVID-19.
Collapse
|
16
|
Mamurova B, Akan G, Mogol E, Turgay A, Tuncel G, Evren EU, Evren H, Suer K, Sanlidag T, Ergoren MC. Strong Association between Vitamin D Receptor Gene and Severe Acute Respiratory Syndrome coronavirus 2 Infectious Variants. Glob Med Genet 2023; 10:27-33. [PMID: 36819669 PMCID: PMC9935054 DOI: 10.1055/s-0043-1761924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A coronavirus disease 2019 (COVID-19) disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created significant concern since December 2019 worldwide. The virus is known to be highly transmissible. Heterogenic clinical features even vary more among SARS-CoV-2 variants from asymptomatic forms to severe symptoms. Previous studies revealed an association between COVID-19 and vitamin D deficiency resulting from its low levels in COVID-19 patients. To our knowledge, there is no scientific investigation that evaluates the direct association between SARS-CoV-2 variants of concern and vitamin D receptor ( VDR ) gene markers in Cyprus. Thus, the present study aimed to identify the putative impact of VDR gene polymorphisms on SARS-CoV-2 infection among different variants. The nasopharyngeal swabs were taken from a total number of 600 patients who were admitted to Near East University Hospital COVID-19 Polymerase Chain Reaction (PCR) Diagnosis Laboratory for routine SARS-CoV-2 real-time quantitative reverse transcription PCR (RT-qPCR) test. The RT-qPCR negative resulting samples were taken as control samples ( n = 300). On the contrary, the case group consisted of patients who were SARS-CoV-2 RT-qPCR positive, infected with either SARS-CoV-2 Alpha ( n = 100), Delta ( n = 100), or Omicron ( n = 100) variants. Two VDR gene polymorphisms, Taq I-rs731236 T > C and Fok I-rs10735810 C > T, were genotyped by polymerase chain reaction-restriction fragment length polymorphism. The mean age of the COVID-19 patient's ± standard deviation was 46.12 ± 12.36 and 45.25 ± 12.71 years old for the control group ( p > 0.05). The gender distribution of the patient group was 48.3% female and 51.7% male and for the control group 43% female and 57% male ( p > 0.05). Significant differences were observed in genotype frequencies of FokI and TaqI variants between SARS-CoV-2 patients compared to the control group ( p < 0.005). Furthermore, the risk alleles, FokI T allele and TaqI C, were found to be statistically significant (odds ratio [OR] = 1.80, 95% confidence interval [CI] = 1.42-2.29, OR = 1.62, 95% CI = 1.27-2.05, respectively) in COVID-19 patients. The highest number of patients with wild-type genotype was found in the control group, which is 52.9% compared with 17.5% in the case group. Moreover, most of the COVID-19 patients had heterozygous/homozygous genotypes, reaching 82.5%, while 47.1% of the control group patients had heterozygous/homozygous genotypes. Our results suggested that patients with FokI and TaqI polymorphisms might tend to be more susceptible to getting infected with SARS-CoV-2. Overall, findings from this study provided evidence regarding vitamin D supplements recommendation in individuals with vitamin D deficiency/insufficiency in the peri- or post-COVID-19 pandemic.
Collapse
Affiliation(s)
- Begimai Mamurova
- Department of Molecular Medicine, Institute of Graduate Studies, Near East University, Nicosia, Cyprus
| | - Gokce Akan
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Evren Mogol
- Department of Molecular Medicine, Institute of Graduate Studies, Near East University, Nicosia, Cyprus
| | - Ayla Turgay
- Department of Molecular Medicine, Institute of Graduate Studies, Near East University, Nicosia, Cyprus
- Laboratory of Medical Genetics, Near East University Hospital, Near East University, Nicosia, Cyprus
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Emine Unal Evren
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, Kyrenia University
| | - Hakan Evren
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, Kyrenia University
| | - Kaya Suer
- Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Mahmut Cerkez Ergoren
- Department of Molecular Medicine, Institute of Graduate Studies, Near East University, Nicosia, Cyprus
- Laboratory of Medical Genetics, Near East University Hospital, Near East University, Nicosia, Cyprus
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
17
|
AlMatar M, Ramli ANM, Albarri O, Yi CX. Insights into the Structural Complexities of SARS-CoV-2 for Therapeutic and Vaccine Development. Comb Chem High Throughput Screen 2023; 26:1945-1959. [PMID: 36366840 DOI: 10.2174/1386207326666221108095705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022]
Abstract
SARS-CoV-2 is a disease that endangers both human life and the economy. There was an 11- month period of relative evolutionary standstill following the appearance of SARS-CoV-2 in late 2019. However, the emergence of clusters of mutations known as' variants of concern 'with variable viral properties such as transmissibility and antigenicity defined the evolution of SARS-CoV-2. Several efforts have been made in recent months to understand the atomic level properties of SARS-CoV-2. A review of the literature on SARS-CoV-2 mutations is offered in this paper. The critical activities performed by different domains of the SARS-CoV-2 genome throughout the virus's entry into the host and overall viral life cycle are discussed in detail. These structural traits may potentially pave the way for the development of a vaccine and medication to combat the SARS-CoV-2 sickness.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Education and Art, Sohar University, Sohar, 311, Sultanate of Oman
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova
University, Adana, Turkey
| | - Osman Albarri
- Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Choong Xin Yi
- Faculty of Industrial Science and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
18
|
Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022). Vaccines (Basel) 2022; 10:vaccines10122112. [PMID: 36560522 PMCID: PMC9784531 DOI: 10.3390/vaccines10122112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biothermodynamics of viruses is among the youngest but most rapidly developing scientific disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermodynamics of viruses during the last several decades and intense development during the last 3 years is described in this paper.
Collapse
|
19
|
Sharma P, Kumar M, Tripathi MK, Gupta D, Vishwakarma P, Das U, Kaur P. Genomic and structural mechanistic insight to reveal the differential infectivity of omicron and other variants of concern. Comput Biol Med 2022; 150:106129. [PMID: 36195045 PMCID: PMC9493144 DOI: 10.1016/j.compbiomed.2022.106129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The genome of SARS-CoV-2, is mutating rapidly and continuously challenging the management and preventive measures adopted and recommended by healthcare agencies. The spike protein is the main antigenic site that binds to the host receptor hACE-2 and is recognised by antibodies. Hence, the mutations in this site were analysed to assess their role in differential infectivity of lineages having these mutations, rendering the characterisation of these lineages as variants of concern (VOC) and variants of interest (VOI). METHODS In this work, we examined the genome sequence of SARS-CoV-2 VOCs and their phylogenetic relationships with the other PANGOLIN lineages. The mutational landscape of WHO characterized variants was determined and mutational diversity was compared amongst the different severity groups. We then computationally studied the structural impact of the mutations in receptor binding domain of the VOCs. The binding affinity was quantitatively determined by molecular dynamics simulations and free energy calculations. RESULTS The mutational frequency, as well as phylogenetic distance, was maximum in the case of omicron followed by the delta variant. The maximum binding affinity was for delta variant followed by the Omicron variant. The increased binding affinity of delta strain followed by omicron as compared to other variants and wild type advocates high transmissibility and quick spread of these two variants and high severity of delta variant. CONCLUSION This study delivers a foundation for discovering the improved binding knacks and structural features of SARS-CoV-2 variants to plan novel therapeutics and vaccine candidates against the virus.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Manish Kumar Tripathi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorvi Vishwakarma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
20
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Tyrkalska SD, Martínez-López A, Arroyo AB, Martínez-Morcillo FJ, Candel S, García-Moreno D, Mesa-del-Castillo P, Cayuela ML, Mulero V. Differential proinflammatory activities of Spike proteins of SARS-CoV-2 variants of concern. SCIENCE ADVANCES 2022; 8:eabo0732. [PMID: 36112681 PMCID: PMC9481140 DOI: 10.1126/sciadv.abo0732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic turned the whole world upside down in a short time. One of the main challenges faced has been to understand COVID-19-associated life-threatening hyperinflammation, the so-called cytokine storm syndrome (CSS). We report here the proinflammatory role of Spike (S) proteins from different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern in zebrafish. We found that wild-type/Wuhan variant S1 (S1WT) promoted neutrophil and macrophage recruitment, local and systemic hyperinflammation, emergency myelopoiesis, and hemorrhages. In addition, S1γ was more proinflammatory S1δ was less proinflammatory than S1WT, and, notably, S1β promoted delayed and long-lasting inflammation. Pharmacological inhibition of the canonical inflammasome alleviated S1-induced inflammation and emergency myelopoiesis. In contrast, genetic inhibition of angiotensin-converting enzyme 2 strengthened the proinflammatory activity of S1, and angiotensin (1-7) fully rescued S1-induced hyperinflammation and hemorrhages. These results shed light into the mechanisms orchestrating the COVID-19-associated CSS and the host immune response to different SARS-CoV-2 S protein variants.
Collapse
Affiliation(s)
- Sylwia D. Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Martínez-López
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana B. Arroyo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pablo Mesa-del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Struct Chem 2022. [DOI: 10.1007/s11224-022-01996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Shahhosseini N. Characterization of mutations modulating enhanced transmissibility of SARS-CoV-2 B.1.617+ (Delta) variant using In Silico tools. GENE REPORTS 2022; 27:101636. [PMID: 35721780 PMCID: PMC9195409 DOI: 10.1016/j.genrep.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/14/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Since the beginning of the of SARS-CoV-2 (Covid-19) pandemic, variants of concern (VOC) have emerged taxing health systems worldwide. In October 2020, a new variant of SARS-CoV-2 (B.1.617+/Delta variant) emerged in India, triggering a deadly wave of Covid-19. Epidemiological data strongly suggests that B.1.617+ is more transmissible and previous reports have revealed that B.1.617+ has numerous mutations compared to wild type (WT), including several changes in the spike protein (SP). The main goal of this study was to use In Silico (computer simulation) techniques to examine mutations in the SP, specifically L452R and E484Q (part of the receptor binding domain (RBD) for human angiotensin-converting enzyme 2 (hACE2)) and P681R (upstream of the Furin cleavage motif), for effects in modulating the transmissibility of the B.1.617+ variant. Using computational models, the binding free energy (BFE) and H-bond lengths were calculated for SP-hACE2 and SP-Furin complexes. Comparison of the SP-hACE2 complex in the WT and B.1.617+ revealed both complexes have identical receptor-binding modes but the total BFE of B.1.617+ binding was more favorable for complex formation than WT, suggesting L452R and E484Q have a moderate impact on binding affinity. In contrast, the SP-Furin complex of B.1.617+ substantially lowered the BFE and revealed changes in molecular interactions compared to the WT complex, implying stronger complex formation between the variant and Furin. This study provides an insight into mutations that modulate transmissibility of the B.1.617+ variant, specifically the P681R mutation which appears to enhance transmissibility of the B.1.617+ variant by rendering it more receptive to Furin.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Centre for Vector-Borne Diseases, National Center for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW We reviewed three leading strategies of vaccine development against coronavirus disease 2019 (COVID- 19): mRNA vaccines, adenoviral vector vaccines and recombinant nanoparticles. We also considered the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and their impact on the effectiveness of the most widely implemented vaccines. RECENT FINDINGS General properties, efficacy, safety and global uptake of Pfizer/BioNTech's Comirnaty (BNT162b2), Moderna's Spikevax (mRNA-1273), Oxford/AstraZeneca's ChAdOx1 nCoV-19, J&J/Janssen's Ad26.COV2.S and Novavax's NVX-CoV2373 vaccines at the end of the year 2021 were presented. We summarized the information on the effectiveness against COVID-19 infection, severe disease and death. We then focused on important missense mutations in the five variants of concern (VoC): Alpha, Beta, Gamma, Delta and Omicron. We explored the evidence for the effectiveness of the vaccines against those five VoC. SUMMARY It is difficult to predict the further development of the COVID-19 pandemic. The development of vaccines of an increasingly broad spectrum against coronaviruses, more easily deliverable and conferring more durable immune protection is likely. However, the very large number of infections may lead to new mutations with unpredictable impacts. Interventions that would control COVID-19 more effectively and enable a safer coexistence with the SARS-CoV-2 virus and its emerging variants are still needed in early 2022.
Collapse
Affiliation(s)
- Igor Rudan
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
26
|
Kim SB, Zoepfl M, Samanta P, Zhang F, Xia K, Thara R, Linhardt RJ, Doerksen RJ, McVoy MA, Pomin VH. Fractionation of sulfated galactan from the red alga Botryocladia occidentalis separates its anticoagulant and anti-SARS-CoV-2 properties. J Biol Chem 2022; 298:101856. [PMID: 35337800 PMCID: PMC8940257 DOI: 10.1016/j.jbc.2022.101856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/28/2023] Open
Abstract
Sulfation pattern and molecular weight (MW) play a key role in the biological actions of sulfated glycans. Besides anticoagulant effects, certain sulfated glycans can also exhibit anti-SARS-CoV-2 properties. To develop a more selective antiviral carbohydrate, an efficient strategy to separate these two actions is required. In this work, low MW fractions derived from the red alga Botryocladia occidentalis sulfated galactan (BoSG) were generated, structurally characterized, and tested for activity against SARS-CoV-2 and blood coagulation. The lowest MW fraction was found to be primarily composed of octasaccharides of monosulfated monosaccharides. Unlike heparin or native BoSG, we found that hydrolyzed BoSG products had weak anticoagulant activities as seen by aPTT and inhibitory assays using purified cofactors. In contrast, lower MW BoSG-derivatives retained anti-SARS-CoV-2 activity using SARS-CoV-2 spike (S)-protein pseudotyped lentivirus vector in HEK-293T-hACE2 cells monitored by GFP. Surface plasmon resonance confirmed that longer chains are necessary for BoSG to interact with coagulation cofactors but is not required for interactions with certain S-protein variants. We observed distinct affinities of BoSG derivatives for the S-proteins of different SARS-CoV-2 strains, including WT, N501Y (Alpha), K417T/E484K/N501Y (Gamma), and L542R (Delta) mutants, and stronger affinity for the N501Y-containing variants. Docking of the four possible monosulfated BoSG disaccharides in interactions with the N501Y mutant S-protein predicted potential binding poses of the BoSG constructs and favorable binding in close proximity to the 501Y residue. Our results demonstrate that depolymerization and fractionation of BoSG are an effective strategy to segregate its anticoagulant property from its anti-SARS-CoV-2 action.
Collapse
Affiliation(s)
- Seon Beom Kim
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Mary Zoepfl
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Priyanka Samanta
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Reena Thara
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA.
| |
Collapse
|
27
|
Aydogdu MO, Rohn JL, Jafari NV, Brako F, Homer‐Vanniasinkam S, Edirisinghe M. Severe Acute Respiratory Syndrome Type 2-Causing Coronavirus: Variants and Preventive Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104495. [PMID: 35037418 PMCID: PMC9008798 DOI: 10.1002/advs.202104495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/17/2021] [Indexed: 05/03/2023]
Abstract
COVID-19 vaccines have constituted a substantial scientific leap in countering severe acute respiratory syndrome type 2-causing coronavirus (SARS-CoV-2), and worldwide implementation of vaccination programs has significantly contributed to the global pandemic effort by saving many lives. However, the continuous evolution of the SARS-CoV-2 viral genome has resulted in different variants with a diverse range of mutations, some with enhanced virulence compared with previous lineages. Such variants are still a great concern as they have the potential to reduce vaccine efficacy and increase the viral transmission rate. This review summarizes the significant variants of SARS-CoV-2 encountered to date (December 2021) and discusses a spectrum of possible preventive strategies, with an emphasis on physical and materials science.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Mechanical EngineeringUniversity College London (UCL)Torrington PlaceLondonWC1E 7JEUK
| | - Jennifer L. Rohn
- Department of Renal MedicineDivision of MedicineUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Nazila V. Jafari
- Department of Renal MedicineDivision of MedicineUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Francis Brako
- Medway School of PharmacyUniversities at MedwayChathamME4 4TBUK
| | | | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College London (UCL)Torrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
28
|
Wotring JW, Fursmidt R, Ward L, Sexton JZ. Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. J Dairy Sci 2022; 105:2791-2802. [PMID: 35221061 PMCID: PMC8872794 DOI: 10.3168/jds.2021-21247] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Bovine lactoferrin (bLF), a naturally occurring glycoprotein found in milk, has bioactive characteristics against many microbes, viruses, and other pathogens. Bovine lactoferrin strongly inhibits SARS-CoV-2 infection in vitro through direct entry inhibition and immunomodulatory mechanisms. This study reports on the anti-SARS-CoV-2 efficacy of commercially available bLF and common dairy ingredients in the human lung cell line H1437 using a custom high-content imaging and analysis pipeline. We also show for the first time that bLF has potent efficacy across different viral strains including the South African B.1.351, UK B.1.1.7, Brazilian P.1, and Indian Delta variants. Interestingly, we show that bLF is most potent against the B.1.1.7 variant [half-maximal inhibitory concentration (IC50) = 3.7 µg/mL], suggesting that this strain relies on entry mechanisms that are strongly inhibited by bLF. We also show that one of the major proteolysis products of bLF, lactoferricin B 17-41, has a modest anti-SARS-CoV-2 activity that could add to the clinical significance of this protein for SARS-CoV-2 treatment as lactoferricin is released by pepsin during digestion. Finally, we show that custom chewable lactoferrin tablets formulated in dextrose or sorbitol have equivalent potency to unformulated samples and provide an option for future human clinical trials. Lactoferrin's broad inhibition of SARS-CoV-2 variants in conjunction with the low cost and ease of production make this an exciting clinical candidate for treatment or prevention of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Jesse W Wotring
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109
| | - Reid Fursmidt
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor 48109
| | - Loren Ward
- Glanbia Nutritionals, Twin Falls, ID 83301
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109; Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor 48109; UM Center for Drug Repurposing, University of Michigan, Ann Arbor 48109; Michigan Institute for Clinical and Health Research (MICHR), University of Michigan, Ann Arbor 48109.
| |
Collapse
|
29
|
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility, pathogenicity, and immune escape ability have ravaged many countries and regions, which has brought substantial challenges to pandemic prevention and control. Real-time reverse transcriptase PCR (rRT-PCR) is widely used for SARS-CoV-2 detection but may be limited by the continuous evolution of the virus. However, the sensitivity of Chinese commercial rRT-PCR kits to critical SARS-CoV-2 variants remains unknown. In this study, contrived MS2 virus-like particles were used as reference materials to evaluate the analytical sensitivity of Daan, BioGerm, EasyDiagnosis, Liferiver, and Sansure kits when detecting six important variants (Alpha, Beta, Gamma, Delta, Omicron, and Fin-796H). The Beta and Delta variants adversely affected the analytical sensitivity of the BioGerm ORF1ab gene assay (9.52% versus 42.96%, P = 0.014, and 14.29% versus 42.96%, P = 0.040, respectively), whereas the N gene assay completely failed in terms of the Fin-796H variant. The Gamma and Fin-796H variants impeded the PCR amplification efficiency for the Sansure ORF1ab gene assay (33.33% versus 66.67%, P = 0.031, and 66.67% versus 95.24%, P = 0.040, respectively), and the Delta variant compromised the E gene assay (52.38% versus 85.71%, P = 0.019). The Alpha and Omicron variants had no significant effect on the kits. This study highlights the necessity of identifying the potential effect of viral mutations on the efficacy and sensitivity of clinical detection assays. It can also provide helpful insights regarding the development and optimization of diagnostic assays and aid the strategic management of the ongoing pandemic.
Collapse
|
30
|
Davies E, Farooq HZ, Brown B, Tilston P, McEwan A, Birtles A, O'Hara RW, Ahmad S, Machin N, Hesketh L, Guiver M. An Overview of SARS-CoV-2 Molecular Diagnostics in Europe. Clin Lab Med 2022; 42:161-191. [PMID: 35636820 PMCID: PMC8901364 DOI: 10.1016/j.cll.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma Davies
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK.
| | - Hamzah Z Farooq
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK; Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Manchester Foundation Trust, Manchester, UK
| | - Benjamin Brown
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Peter Tilston
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Ashley McEwan
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Andrew Birtles
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Robert William O'Hara
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Shazaad Ahmad
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Nicholas Machin
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Louise Hesketh
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Malcolm Guiver
- Department of Virology, UK Health Security Agency, Manchester Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| |
Collapse
|
31
|
Negi SS, Schein CH, Braun W. Regional and temporal coordinated mutation patterns in SARS-CoV-2 spike protein revealed by a clustering and network analysis. Sci Rep 2022; 12:1128. [PMID: 35064154 PMCID: PMC8782831 DOI: 10.1038/s41598-022-04950-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 has steadily mutated during its spread to > 300 million people throughout the world. The WHO has designated strains with certain mutations, "variants of concern" (VOC), as they may have higher infectivity and/or resist neutralization by antibodies in sera of vaccinated individuals and convalescent patients. Methods to detect regionally emerging VOC are needed to guide treatment and vaccine design. Cluster and network analysis was applied to over 1.2 million sequences of the SARS-CoV-2 spike protein from 36 countries in the GISAID database. While some mutations rapidly spread throughout the world, regionally specific groups of variants were identified. Strains circulating in each country contained different sets of high frequency mutations, many of which were known VOCs. Mutations within clusters increased in frequency simultaneously. Low frequency, but highly correlated mutations detected by the method could signal emerging VOCs, especially if they occur at higher frequency in other regions. An automated version of our method to find high frequency mutations in a set of SARS-COV-2 spike sequences is available online at http://curie.utmb.edu/SAR.html .
Collapse
Affiliation(s)
- Surendra S Negi
- Sealy Center for Structural Biology and Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, 301 University Blvd, Galveston, TX, 77555-0304, USA
- Institute for Human Infections and Immunity (IHII), The University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Catherine H Schein
- Sealy Center for Structural Biology and Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, 301 University Blvd, Galveston, TX, 77555-0304, USA
- Institute for Human Infections and Immunity (IHII), The University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Werner Braun
- Sealy Center for Structural Biology and Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, 301 University Blvd, Galveston, TX, 77555-0304, USA.
- Institute for Human Infections and Immunity (IHII), The University of Texas Medical Branch, Galveston, TX, 77550, USA.
| |
Collapse
|
32
|
Abstract
The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Department of Chemistry, Indian Institute
of Technology Bhilai, Sejbahar, Raipur 492015, Chhattisgarh,
India
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of
Denmark, Building 206, 2800 Kongens Lyngby,
Denmark
| |
Collapse
|
33
|
Hashemi ZS, Zarei M, Mubarak SMH, Hessami A, Mard-Soltani M, Khalesi B, Zakeri A, Rahbar MR, Jahangiri A, Pourzardosht N, Khalili S. Pierce into Structural Changes of Interactions Between Mutated Spike Glycoproteins and ACE2 to Evaluate Its Potential Biological and Therapeutic Consequences. Int J Pept Res Ther 2021; 28:33. [PMID: 34931119 PMCID: PMC8674523 DOI: 10.1007/s10989-021-10346-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
The structural consequences of ongoing mutations on the SARS-CoV-2 spike-protein remains to be fully elucidated. These mutations could change the binding affinity between the virus and its target cell. Moreover, obtaining new mutations would also change the therapeutic efficacy of the designed drug candidates. To evaluate these consequences, 3D structure of a mutant spike protein was predicted and checked for stability, cavity sites, and residue depth. The docking analyses were performed between the 3D model of the mutated spike protein and the ACE2 protein and an engineered therapeutic ACE2 against COVID-19. The obtained results revealed that the N501Y substitution has altered the interaction orientation, augmented the number of interface bonds, and increased the affinity against the ACE2. On the other hand, the P681H mutation contributed to the increased cavity size and relatively higher residue depth. The binding affinity between the engineered therapeutic ACE2 and the mutant spike was significantly higher with a distinguished binding orientation. It could be concluded that the mutant spike protein increased the affinity, preserved the location, changed the orientation, and altered the interface amino acids of its interaction with both the ACE2 and its therapeutic engineered version. The obtained results corroborate the more aggressive nature of mutated SARS-CoV-2 due to their higher binding affinity. Moreover, designed ACe2-baased therapeutics would be still highly effective against covid-19, which could be the result of conserved nature of cellular ACE2. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10346-1.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of medical sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
34
|
Banks JM, Capistrano K, Thakkar P, Ranade H, Soni V, Datta M, Naqvi AR. Current molecular diagnostics assays for SARS-CoV-2 and emerging variants. METHODS IN MICROBIOLOGY 2021; 50:83-121. [PMID: 38620738 PMCID: PMC8655725 DOI: 10.1016/bs.mim.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since the SARS-CoV-2 virus triggered the beginning of the COVID-19 pandemic, scientists, government officials, and healthcare professionals around the world recognized the need for accessible, affordable, and accurate testing to predict and contain the spread of COVID-19. In the months that followed, research teams designed, tested, and rolled out hundreds of diagnostic assays, each with different sampling methods, diagnostic technologies, and sensitivity levels. However, the contagious virus continued to spread; SARS-CoV-2 travelled through airborne particles and spread rapidly, despite the widening use of diagnostic assays. As the pandemic continued, hundreds of millions of people contracted COVID-19 and millions died worldwide. With so many infections, SARS-CoV-2 received many opportunities to replicate and mutate, and from these mutations emerged more contagious, deadly, and difficult-to-diagnose viral mutants. Each change to the viral genome presented potential added challenges to containing the virus, and as such, researchers have continued developing and improving testing methods to keep up with COVID-19. In this chapter, we examine several SARS-CoV-2 variants that have emerged during the pandemic. Additionally, we discuss a few major COVID-19 diagnostic technique categories, including those involving real-time PCR, serology, CRISPR, and electronic biosensors. Finally, we address SARS-CoV-2 variants and diagnostic assays in the age of COVID-19 vaccines.
Collapse
Affiliation(s)
- Jonathan M Banks
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Kristelle Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Pari Thakkar
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Hemangi Ranade
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Vaidik Soni
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Thye AYK, Law JWF, Pusparajah P, Letchumanan V, Chan KG, Lee LH. Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines 2021; 9:1303. [PMID: 34680420 PMCID: PMC8533361 DOI: 10.3390/biomedicines9101303] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide battle against the SARS-CoV-2 virus rages on, with millions infected and many innocent lives lost. The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a beta coronavirus that belongs to the Coronaviridae family. Many clinically significant variants have emerged, as the virus's genome is prone to various mutations, leading to antigenic drift and resulting in evasion of host immune recognition. The current variants of concern (VOCs) include B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), and P.1 (Gamma). The emerging variants contain various important mutations on the spike protein, leading to deleterious consequences, such as immune invasion and vaccine escape. These adverse effects result in increased transmissibility, morbidity, and mortality and the evasion of detection by existing or currently available diagnostic tests, potentially delaying diagnosis and treatment. This review discusses the key mutations present in the VOC strains and provides insights into how these mutations allow for greater transmissibility and immune evasion than the progenitor strain. Continuous monitoring and surveillance of VOC strains play a vital role in preventing and controlling the virus's spread.
Collapse
Affiliation(s)
- Angel Yun-Kuan Thye
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| |
Collapse
|
36
|
Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation. BIOLOGY 2021; 10:biology10090880. [PMID: 34571756 PMCID: PMC8470537 DOI: 10.3390/biology10090880] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022]
Abstract
Since the beginning of the coronavirus 19 (COVID-19) pandemic in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been evolving through the acquisition of genomic mutations, leading to the emergence of multiple variants of concern (VOCs) and variants of interest (VOIs). Currently, four VOCs (Alpha, Beta, Delta, and Gamma) and seven VOIs (Epsilon, Zeta, Eta, Theta, Iota, Kappa, and Lambda) of SARS-CoV-2 have been identified in worldwide circulation. Here, we investigated the interactions of the receptor-binding domain (RBD) of five SARS-CoV-2 variants with the human angiotensin-converting enzyme 2 (hACE2) receptor in host cells, to determine the extent of molecular divergence and the impact of mutation, using protein-protein docking and dynamics simulation approaches. Along with the wild-type (WT) SARS-CoV-2, this study included the Brazilian (BR/lineage P.1/Gamma), Indian (IN/lineage B.1.617/Delta), South African (SA/lineage B.1.351/Beta), United Kingdom (UK/lineage B.1.1.7/Alpha), and United States (US/lineage B.1.429/Epsilon) variants. The protein-protein docking and dynamics simulation studies revealed that these point mutations considerably affected the structural behavior of the spike (S) protein compared to the WT, which also affected the binding of RBD with hACE2 at the respective sites. Additional experimental studies are required to determine whether these effects have an influence on drug-S protein binding and its potential therapeutic effect.
Collapse
|
37
|
Matyášek R, Řehůřková K, Berta Marošiová K, Kovařík A. Mutational Asymmetries in the SARS-CoV-2 Genome May Lead to Increased Hydrophobicity of Virus Proteins. Genes (Basel) 2021; 12:826. [PMID: 34072181 PMCID: PMC8227412 DOI: 10.3390/genes12060826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
The genomic diversity of SARS-CoV-2 has been a focus during the ongoing COVID-19 pandemic. Here, we analyzed the distribution and character of emerging mutations in a data set comprising more than 95,000 virus genomes covering eight major SARS-CoV-2 lineages in the GISAID database, including genotypes arising during COVID-19 therapy. Globally, the C>U transitions and G>U transversions were the most represented mutations, accounting for the majority of single-nucleotide variations. Mutational spectra were not influenced by the time the virus had been circulating in its host or medical treatment. At the amino acid level, we observed about a 2-fold excess of substitutions in favor of hydrophobic amino acids over the reverse. However, most mutations constituting variants of interests of the S-protein (spike) lead to hydrophilic amino acids, counteracting the global trend. The C>U and G>U substitutions altered codons towards increased amino acid hydrophobicity values in more than 80% of cases. The bias is explained by the existing differences in the codon composition for amino acids bearing contrasting biochemical properties. Mutation asymmetries apparently influence the biochemical features of SARS CoV-2 proteins, which may impact protein-protein interactions, fusion of viral and cellular membranes, and virion assembly.
Collapse
Affiliation(s)
| | | | | | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic; (R.M.); (K.Ř.); (K.B.M.)
| |
Collapse
|