1
|
Laryea MK, Boadu Ampomah G, Ekuadzi E, Dickson RA, Borquaye LS. Antimalarial compounds from the climbing stems of salacia debilis. Nat Prod Res 2024; 38:4034-4043. [PMID: 37867307 DOI: 10.1080/14786419.2023.2272288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023]
Abstract
Salacia debilis Walp., (Celastraceae) is used traditionally in West Africa for the treatment of malaria. However, no scientific reports validating these effects and its active constituents are on record. Therefore, this study is aimed at evaluating the antimalarial effects, of its ethanolic extract and isolated compounds against Plasmodium falciparum 3D7 and P. berghei ANKA strains. Using chromatographic, spectrometric and spectroscopic techniques three compounds were isolated and characterised. The extract of S. debilis was active against P. falciparum 3D7, in an in vitro assay with IC50 of 12.0 ± 0.32 µg/ml. The three isolated compounds, namely 1,10-dihydroxy-6H-benzo[c]chromen-6-one (1), 8- hydroxy-3,4-dimethoxydibenzo[b,d]furan-1-carboxylic acid (2) and benzyl-2-methoxybenzoate (3), also showed antimalarial activity against Plasmodium berghei ANKA strain in curative and suppressive in vivo assays. The ethanolic extract and isolated compounds of S. debilis possess antimalarial effects. The isolated compounds may be responsible, at least in part, for the observed activities of the extract.
Collapse
Affiliation(s)
- Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gilbert Boadu Ampomah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita Akosua Dickson
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Bava R, Castagna F, Palma E, Marrelli M, Conforti F, Musolino V, Carresi C, Lupia C, Ceniti C, Tilocca B, Roncada P, Britti D, Musella V. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet Sci 2023; 10:vetsci10050308. [PMID: 37235392 DOI: 10.3390/vetsci10050308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below the damage threshold. Although these drugs are easy to use and quick to apply, they have numerous disadvantages. Their prolonged use has led to the emergence of pharmacological resistance in treated parasite populations; furthermore, the active ingredients and/or their metabolites accumulate in the beehive products with the possibility of risk for the end consumer. Moreover, the possibility of subacute and chronic toxicity phenomena for adult honeybees and their larval forms must be considered. In this scenario, eco-friendly products derived from plant species have aroused great interest over the years. In recent decades, several studies have been carried out on the acaricidal efficacy of plant essential oils (EOs). Despite the swarming of laboratory and field studies, however, few EO products have come onto the market. Laboratory studies have often yielded different results even for the same plant species. The reason for this discrepancy lies in the various study techniques employed as well as in the variability of the chemical compositions of plants. The purpose of this review is to take stock of the research on the use of EOs to control the V. destructor parasite. It begins with an extensive discussion of the characteristics, properties, and mechanisms of action of EOs, and then examines the laboratory and field tests carried out. Finally, an attempt is made to standardize the results and open up new lines of study in future.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Mediterranean Etnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Gadouche L, Alsoufi ASM, Pacholska D, Skotarek A, Pączkowski C, Szakiel A. Triterpenoid and Steroid Content of Lipophilic Extracts of Selected Medicinal Plants of the Mediterranean Region. Molecules 2023; 28:697. [PMID: 36677757 PMCID: PMC9866667 DOI: 10.3390/molecules28020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The available phytochemical characteristics of the medicinal plants and derived herbal material often lack data concerning the content of steroids (including phytosterols) and triterpenoids, that can be responsible for various beneficial properties and therapeutic effects, either directly, or as a result of synergistic action with other bioactive constituents. The aim of the present work was the analysis of the content of these compounds in herbal material (leaves, aerial parts) derived from selected medicinal plants (Cistus ladanifer, Cistus monspeliensis, Erica arborea, Globularia alypum, Pistacia lentiscus, Rhamnus alaternus), widely used in folk medicine in the Mediterranean region. Results obtained by gas chromatography-mass spectrometry (GC-MS)-targeted profiling revealed the diversity in the profiles and contents of steroids and triterpenoids in the analyzed plant material, ranging from 5.7% d.w. in E. arborea to 0.1% in G. alypum. The obtained results supplement the existing phytochemical data of the investigated medicinal plants, pointing to the E. arborea aerial parts and P. lentiscus leaves as valuable resources of phytosterols and bioactive triterpenoids.
Collapse
Affiliation(s)
- Leila Gadouche
- Department of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, P.O. Box 32, El Alia, Bab Ezzouar, Algiers 16111, Algeria
- Laboratory of Natural Bio-Resources, Faculty of Natural and Life Sciences, Hassiba Benbouali University of Chlef, P.O. Box 151, Chlef 02000, Algeria
| | | | - Dominika Pacholska
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | - Anna Skotarek
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Shaban NZ, Mohammed AS, Abu-Serie MM, Maher AM, Habashy NH. Inhibition of oxidative stress, IL-13, and WNT/β-catenin in ovalbumin-sensitized rats by a novel organogel of Punica granatum seed oil saponifiable fraction. Biomed Pharmacother 2022; 154:113667. [PMID: 36942603 DOI: 10.1016/j.biopha.2022.113667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/19/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory disease marked by inflammation, oxidative stress, and structural remodeling. Here, we prepared two pomegranate fractions from the seed oil, saponifiable (Sap) and unsaponifiable (UnSap). Two organogels (Orgs) were also formulated with the Sap (Org1) or the UnSap (Org2) fraction and beeswax (BW). All preparations were evaluated in vitro for their antioxidant and anti-inflammatory impacts. The transdermal delivery of the most efficient one was evaluated against ovalbumin (OV)-induced bronchial asthma in rats compared to dexamethasone (DEX). The results showed that the prepared pomegranate fractions and BW had considerable amounts of phenolics (flavonoids and tannins) and triterpenoids. Org1 was shown to be the most effective antioxidant and anti-inflammatory fraction with synergistic activities (combination index, 1), as well as having protective and therapeutic influences on OV-sensitized rats. Org1 inhibited the multiple OV-induced signaling pathways, comprising ROS, WNT/β-catenin, and AKT, with an efficiency superior to DEX. Subsequently, the pro-inflammatory (COX-2, NO, and IL-13), and pro-fibrotic (COL1A1) mediators, oxidative stress, and mucin secretion, were all down-regulated. These outcomes were verified by the histopathological results of lung tissue. Collectively, these outcomes suggest that the transdermal delivery of Org1 to OV-sensitized rats shows promise in the protection and treatment of the pathological hallmarks of asthma.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Alaa S Mohammed
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Schindler MSZ, Calisto JFF, Marins K, Regginato A, Mezzomo H, Zanatta AP, Radunz AL, Mariot MP, Dal Magro J, Zanatta L. Characterization of the chemical profile and the effects of ethanolic extracts of Maytenus ilicifolia Mart. ex Reissek on glucose metabolism in normal hyperglycemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114173. [PMID: 33932519 DOI: 10.1016/j.jep.2021.114173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maytenus ilicifolia Mart. ex Reissek, Celastraceae, is popularly known as "espinheira-santa" and used to treat pathologies related to the stomach. However, in popular culture, this species has also been used to treat other disorders such as diabetes, but without scientific evidence, requiring more phytochemical and pharmacological studies on the plant. AIM OF THE STUDY This work aims to investigate the anti-hyperglycemic potential of ethanolic extracts obtained from leaves from two different accessions of Maytenus ilicifolia (MIA and MIB) in normal hyperglycemic rats. MATERIALS AND METHODS The animals were divided into different experimental groups: normal hyperglycemic (negative control); MIA (treatment of Maytenus ilicifolia extract from access 116); MIB (treatment with Maytenus ilicifolia extract from access 122; and glipizide (positive control). At 30 min after treatment, all animals received glucose overload orally. Blood collection occurred at different periods for the assessment of blood glucose (0, 60, 90 and 210 min after treatment) and at the end of the experiment blood was collected through cardiac puncture and the liver, muscle, pancreas and intestine were dissected for further analysis. RESULTS Chromatographic analysis identified oleic and palmitic acid as the most common constituents, and both extracts of Maytenus ilicifolia caused a reduction in blood glucose levels within 60 min after administration of glucose overload when compared to the normal hyperglycemic group. No significant changes were observed in hepatic and muscular glycogen levels, plasma insulin concentration and disaccharidases activity with none of the extracts in the model employed. However, hyperglycemic rats treated with the extracts showed a marked increase in triglyceride and HDL cholesterol levels. CONCLUSIONS Our data suggest that Maytenus ilicifolia extracts from different locations showed differences in chemical composition which did not reflect significant differences in the results of biological tests. In addition, it was possible to conclude that the treatment with Maytenus ilicifolia had a discreet anti-hyperglycemic effect; however, it was not possible to identify the responsible mechanism, being necessary, therefore, new studies using different technologies in order to determine the possible mechanisms of action of the extract.
Collapse
Affiliation(s)
| | | | - Katiuska Marins
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil.
| | - Alissara Regginato
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil.
| | - Hemilli Mezzomo
- Pharmacy Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Ana Paula Zanatta
- Pharmacy Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Andre Luiz Radunz
- Agronomy Course - Federal University of Fronteira Sul (UFFS), Brazil.
| | - Márcio Paim Mariot
- Agronomy Course - Federal Institute of Science and Technology of Rio Grande do Sul (IFSul), Brazil.
| | - Jacir Dal Magro
- Graduate Program in Environmental Sciences, Community University of the Region of Chapecó - Unochapecó, Brazil; Chemical Engineering Course, Community University of Chapecó Region - Unochapecó, Brazil.
| | - Leila Zanatta
- Western Higher Education Center, Santa Catarina State University - UDESC, Brazil.
| |
Collapse
|
6
|
Pitakbut T, Spiteller M, Kayser O. In Vitro Production and Exudation of 20-Hydroxymaytenin from Gymnosporia heterophylla (Eckl. and Zeyh.) Loes. Cell Culture. PLANTS (BASEL, SWITZERLAND) 2021; 10:1493. [PMID: 34451538 PMCID: PMC8398937 DOI: 10.3390/plants10081493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022]
Abstract
The metabolite 20-Hydroxymaytenin (20-HM) is a member of the quinone-methide pentacyclic triterpenoids (QMTs) group. This metabolite group is present only in Celastraceae plants, and it has shown various biological activities from antioxidant to anticancer properties. However, most QMTs metabolites including 20-HM cannot be synthesized in a laboratory. Therefore, we optimized a plant tissue culture protocol and examined the potential of Gymnosporia heterophylla (synonym. Maytenus heterophylla) to produce 20-HM in an in vitro experiment. For the first time, we reported the optimum callus induction medium with a high percentage success rate of 82% from the combination of 1 mg/L indole-3-butyric acid and 5 mg/L naphthalene acetic acid. Later, our cell suspension culture cultivated in the optimum medium provided approximately 0.35 mg/g fresh weight of 20-HM. This concentration is roughly 87.5 times higher than a concentration of 20-HM presenting in Elaeodendron croceum (Celastraceae) leaves. In addition, we also found that 20-HM presented in a cultivation medium, suggesting that G. heterophylla cells secreted 20-HM as an exudate in our experiment. Noticeably, 20-HM was missing when Penicillium cf. olsonii occurred in the medium. These findings hint at an antifungal property of 20-HM.
Collapse
Affiliation(s)
- Thanet Pitakbut
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| |
Collapse
|
7
|
Qi D, Liu H, Sun X, Luo D, Zhu M, Tao T, Gao C, Zhou C, Zhou W, Xiao J. Pristimerin Suppresses RANKL-Induced Osteoclastogenesis and Ameliorates Ovariectomy-Induced Bone Loss. Front Pharmacol 2021; 11:621110. [PMID: 33628184 PMCID: PMC7898668 DOI: 10.3389/fphar.2020.621110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/07/2020] [Indexed: 02/02/2023] Open
Abstract
Osteoporosis is characterized by bone loss and destruction of trabecular architecture, which greatly increases the burden on the healthcare system. Excessive activation of osteoclasts is an important cause of osteoporosis, and suppression of osteoclastogenesis is helpful for the treatment of osteoporosis. Pristimerin, a natural compound, possesses numerous pharmacological effects via inactivating the NF-κB and MAPK pathways, which are closely related to osteoclastogenesis process. However, the relationship between Pristimerin and osteoclastogenesis requires further investigation. In this research, we examined the effect of Pristimerin on osteoclastogenesis and investigated the related mechanisms. Our results showed Pristimerin inhibited RANKL-induced osteoclast differentiation and osteoclastic bone resorption in vitro, with decreased expression of osteoclastogenesis-related markers including c-Fos, NFATc1, TRAP, Cathepsin K, and MMP-9 at both mRNA and protein levels. Furthermore, Pristimerin suppressed NF-κB and MAPK signaling pathways, reduced reactive oxygen species (ROS) production and activated the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling during osteoclastogenesis. Our in vivo experiments showed that Pristimerin remarkably ameliorated ovariectomy-induced bone loss, reduced serum levels of TNF-α, IL-1β, IL-6, and RANKL, and increased serum level of osteoprotegerin (OPG). Therefore, our research indicated that Pristimerin is a potential chemical for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dahu Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tenghui Tao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
de la Torre R, Carbó M, Pujadas M, Biel S, Mesa MD, Covas MI, Expósito M, Espejo JA, Sanchez-Rodriguez E, Díaz-Pellicer P, Jimenez-Valladares F, Rosa C, Pozo O, Fitó M. Pharmacokinetics of maslinic and oleanolic acids from olive oil - Effects on endothelial function in healthy adults. A randomized, controlled, dose-response study. Food Chem 2020; 322:126676. [PMID: 32305871 DOI: 10.1016/j.foodchem.2020.126676] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/20/2020] [Accepted: 03/21/2020] [Indexed: 11/19/2022]
Abstract
To date, pharmacokinetics of maslinic (MA) and oleanolic (OA) acids, at normal dietary intakes in humans, have not been evaluated, and data concerning their bioactive effects are scarce. We assessed MA and OA pharmacokinetics after ingestion of olive oils (OOs) with high and low triterpenic acid contents, and specifically the effect of triterpenes on endothelial function. We performed a double-blind, dose-response, randomized, cross-over nutritional intervention in healthy adults, and observed that MA and OA increased in biological fluids in a dose-dependent manner. MA bioavailability was greater than that of OA, and consumption of pentacyclic triterpenes was associated with improved endothelial function. To the best of our knowledge, this is the first time MA pharmacokinetics, and effects on endothelial function in vivo, have been reported in humans.
Collapse
Affiliation(s)
- Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003 Barcelona, Spain; UniversitatPompeuFabra (CEXS-UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER de Fisiopatología Obesidad y Nutrición (CIBEROBN), Santiago de Compostela 15706, Spain.
| | - Marceli Carbó
- UniversitatPompeuFabra (CEXS-UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Mitona Pujadas
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003 Barcelona, Spain; CIBER de Fisiopatología Obesidad y Nutrición (CIBEROBN), Santiago de Compostela 15706, Spain.
| | - Sarah Biel
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental "Alejandro Otero" (FIBAO), Granada, Spain.
| | - María-Dolores Mesa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Health Science Technological Park, University of Granada, Avenida del Conocimiento s/n. 18100 Armilla, Granada, Spain; Instituto de Investigación Biosanitariaibs GRANADA, Complejo Hospitalario Universitario de Granada, Granada 18014, Spain.
| | - María-Isabel Covas
- CIBER de Fisiopatología Obesidad y Nutrición (CIBEROBN), Santiago de Compostela 15706, Spain; NUPROAS (Nutritional Project Assessment), Handesbolag (NUPROAS HB), Nacka, Sweden
| | - Manuela Expósito
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental "Alejandro Otero" (FIBAO), Granada, Spain.
| | | | - Estefanía Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Health Science Technological Park, University of Granada, Avenida del Conocimiento s/n. 18100 Armilla, Granada, Spain
| | - Patricia Díaz-Pellicer
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Carmen Rosa
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental "Alejandro Otero" (FIBAO), Granada, Spain.
| | - Oscar Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Montserrat Fitó
- CIBER de Fisiopatología Obesidad y Nutrición (CIBEROBN), Santiago de Compostela 15706, Spain; Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital del Mar Research Institute), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
9
|
|
10
|
Ahmadi S, Mehrabi M, Rezaei S, Mardafkan N. Structure-activity relationship of the radical scavenging activities of some natural antioxidants based on the graph of atomic orbitals. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Structural Requirements for Antimicrobial Activity of Phenolic Nor-Triterpenes from Celastraceae Species. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9152957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence of pathogenic bacteria-resistant strains is a major public health issue. In this regard, natural product scaffolds offer a promising source of new antimicrobial drugs. In the present study, we report the antimicrobial activity against Gram-positive and Gram-negative bacteria and the yeast Candida albicans of five phenolic nor-triterpenes (1–5) isolated from Maytenus blepharodes and Maytenus canariensis in addition to four derivatives (6–9), three of them reported for the first time. Their stereostructures have been elucidated on the basis of spectroscopic analysis, including one-dimensional (1D) and two-dimensional (2D) NMR techniques, spectrometric methods, and comparison with data reported in the literature. To understand the structural basis for the antimicrobial activity of this type of compounds, we have performed an in-depth study of the structure–activity relationship (SAR) of a series of previously reported phenolic nor-triterpenes. The SAR analysis was based on the skeleton framework, oxidation degree, functional groups, and regiosubstitution patterns, revealing that these aspects modulate the antimicrobial activity.
Collapse
|
12
|
Pavarini DP, Selegato DM, Castro-Gamboa I, do Sacramento LVS, Furlan M. Ecological Insights to Track Cytotoxic Compounds among Maytenus ilicifolia Living Individuals and Clones of an Ex Situ Collection. Molecules 2019; 24:molecules24061160. [PMID: 30909567 PMCID: PMC6471723 DOI: 10.3390/molecules24061160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/02/2022] Open
Abstract
Biodiversity is key for maintenance of life and source of richness. Nevertheless, concepts such as phenotype expression are also pivotal to understand how chemical diversity varies in a living organism. Sesquiterpene pyridine alkaloids (SPAs) and quinonemethide triterpenes (QMTs) accumulate in root bark of Celastraceae plants. However, despite their known bioactive traits, there is still a lack of evidence regarding their ecological functions. Our present contribution combines analytical tools to study clones and individuals of Maytenus ilicifolia (Celastraceae) kept alive in an ex situ collection and determine whether or not these two major biosynthetic pathways could be switched on simultaneously. The relative concentration of the QMTs maytenin (1) and pristimerin (2), and the SPA aquifoliunin E1 (3) were tracked in raw extracts by HPLC-DAD and 1H-NMR. Hierarchical Clustering Analysis (HCA) was used to group individuals according their ability to accumulate these metabolites. Semi-quantitative analysis showed an extensive occurrence of QMT in most individuals, whereas SPA was only detected in minor abundance in five samples. Contrary to QMTs, SPAs did not accumulate extensively, contradicting the hypothesis of two different biosynthetic pathways operating simultaneously. Moreover, the production of QMT varied significantly among samples of the same ex situ collection, suggesting that the terpene contents in root bark extracts were not dependent on abiotic effects. HCA results showed that QMT occurrence was high regardless of the plant age. This data disproves the hypothesis that QMT biosynthesis was age-dependent. Furthermore, clustering analysis did not group clones nor same-age samples together, which might reinforce the hypothesis over gene regulation of the biosynthesis pathways. Indeed, plants from the ex situ collection produced bioactive compounds in a singular manner, which postulates that rhizosphere environment could offer ecological triggers for phenotypical plasticity.
Collapse
Affiliation(s)
- Daniel Petinatti Pavarini
- Instituto de Química, University Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Cloreen Park, Malone Road, Belfast BT9 5HN, UK.
| | - Denise Medeiros Selegato
- Instituto de Química, University Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil.
| | - Ian Castro-Gamboa
- Instituto de Química, University Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil.
| | - Luiz Vitor Silva do Sacramento
- Faculdade de Ciências Farmacêuticas, University, Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-903, Brazil.
| | - Maysa Furlan
- Instituto de Química, University Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil.
| |
Collapse
|
13
|
Taddeo VA, Castillo UG, Martínez ML, Menjivar J, Jiménez IA, Núñez MJ, Bazzocchi IL. Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis. MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6010036. [PMID: 30866563 PMCID: PMC6473362 DOI: 10.3390/medicines6010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 04/17/2023]
Abstract
Background: Quinonemethide triterpenoids, known as celastroloids, constitute a relatively small group of biologically active compounds restricted to the Celastraceae family and, therefore, they are chemotaxonomic markers for this family. Among this particular type of metabolite, pristimerin and tingenone are considered traditional medicines in Latin America. The aim of this study was the isolation of the most abundant celastroloids from the root bark of Maytenus chiapensis, and thereafter, to develop an analytical method to identify pristimerin and tingenone in the Celastraceae species. Methods: Pristimerin and tingenone were isolated from the n-hexane-Et₂O extract of the root bark of M. chiapensis through chromatographic techniques, and were used as internal standards. Application of a validated RP HPLC-PDA method was developed for the simultaneous quantification of these two metabolites in three different extracts, n-hexane-Et₂O, methanol, and water, to determine the best extractor solvent. Results: Concentration values showed great variation between the solvents used for extraction, with the n-hexane⁻Et₂O extract being the richest in pristimerin and tingenone. Conclusions: M. chiapensis is a source of two biologically active quinonemethide triterpenoids. An analytical method was developed for the qualification and quantification of these two celastroloids in the root bark extracts of M. chiapensis. The validated method reported herein could be extended and be useful in analyzing Celastraceae species and real commercial samples.
Collapse
Affiliation(s)
- Vito Alessandro Taddeo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
- Dipartimento di Farmacia, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Ulises Guardado Castillo
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador.
| | - Morena Lizette Martínez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador.
| | - Jenny Menjivar
- Museo de Historia Natural de El Salvador, Ministerio de Cultura, San Salvador 1101, El Salvador.
| | - Ignacio Antonio Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Marvin José Núñez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador.
| | - Isabel López Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
14
|
Mejía-Manzano LA, Barba-Dávila BA, Vázquez-Villegas P, Serna-Saldívar SO, González-Valdez J. Improved extraction of the natural anticancerigen pristimerin from Mortonia greggii root bark using green solvents and aqueous two-phase systems. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
YUNIARTI TATTY, SUKARNO SUKARNO, YULIANA NANCYDEWI, BUDIJANTO SLAMET. Inhibition of Enzymatic Browning by Onion (Allium cepa L.): Investigation on Inhibitory Mechanism and Identification of Active Compounds. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2018. [DOI: 10.12944/crnfsj.6.3.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Presence of browning or black-spot in fresh foods can adversely affect consumer acceptance. Onion has been reported to exert inhibitory activity against browning reaction. This research aimed to uncover the mechanism and identify active compounds in onion responsible for PPO inhibitors based on metabolomic approach. Onion was fractioned using different solvents, i.e n-hexane; chloroform; ethyl acetate; water, respectively. As a result, ethyl acetate fraction (EAF) of the onion demonstrated the strongest inhibition to PPO in comparison with other fractions, i.e. n-hexane, chloroform, and water. The reversible inhibitory activity of PPO by EAF occurred with presence of L-DOPA as substrate through competitive inhibition and Cu chelation in the active side of the PPO. Based on 1H-NMR (X) score plot and PPO inhibition (Y) using OPLS, NMR signals revealed that active compounds accounting for inhibition of PPO included quercetin, kaempferol, cyanidin 3.4’-di-O-β-glucopyranoside, quercetin 4-O-β-D-glucopyranoside, cyanidin 7-O-(3”-O-glucosyl-6”-O-malonyl-β-glucopyrano-side)-4’-O-β-glucopyranoside, cyanidin 3-(6”-O-malonyl) laminaribioside’.
Collapse
Affiliation(s)
- TATTY YUNIARTI
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - SUKARNO SUKARNO
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - NANCY DEWI YULIANA
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - SLAMET BUDIJANTO
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
16
|
Abu-Serie MM, Habashy NH, Attia WE. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:154. [PMID: 29747629 PMCID: PMC5946467 DOI: 10.1186/s12906-018-2218-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/23/2018] [Indexed: 12/24/2022]
Abstract
Background Since oxidative stress and inflammation are two linked factors in the pathogenesis of several human diseases. Thus identification of effective treatment is of great importance. Edible mushroom and microalgae are rich in the effective antioxidant phytochemicals. Hence, their beneficial effects on oxidative stress-associated inflammation are extremely required to be investigated. Methods This study evaluated the functional constituents, antioxidant and anti-inflammatory activities of Malaysian Ganoderma lucidum aqueous extract (GLE) and Egyptian Chlorella vulgaris ethanolic extract (CVE). Also, the synergistic, addictive or antagonistic activities of the combination between the two extracts (GLE-CVE) were studied. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B, as well as levels of nitric oxide, tumor necrosis factor (TNF)-α, lipid peroxidation, reduced glutathione and antioxidant enzymes were determined using in vitro model of lipopolysaccharide-stimulated white blood cells.
Collapse
|
17
|
Périco LL, Rodrigues VP, de Almeida LFR, Fortuna-Perez AP, Vilegas W, Hiruma-Lima CA. Maytenus ilicifolia Mart. ex Reissek. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2018. [DOI: 10.1007/978-94-024-1552-0_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Habashy NH, Abu Serie MM, Attia WE, Abdelgaleil SA. Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Hui B, Zhang L, Zhou Q, Hui L. Pristimerin Inhibits LPS-Triggered Neurotoxicity in BV-2 Microglia Cells Through Modulating IRAK1/TRAF6/TAK1-Mediated NF-κB and AP-1 Signaling Pathways In Vitro. Neurotox Res 2017; 33:268-283. [PMID: 29119451 DOI: 10.1007/s12640-017-9837-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Microglia plays a prominent role in the brain's inflammatory response to injury or infection by migrating to affected locations and secreting inflammatory molecules. However, hyperactivated microglial is neurotoxic and plays critical roles in the pathogenesis of neurodegenerative diseases. Pristimerin, a naturally occurring triterpenoid, possesses antitumor, antioxidant, and anti-inflammatory activities. However, the effect and the molecular mechanism of pristimerin against lipopolysaccharide (LPS)-induced neurotoxicity in microglia remain to be revealed. In the present study, using BV-2 microglial cultures, we investigated whether pristimerin modifies neurotoxicity after LPS stimulation and which intracellular pathways are involved in the effect of pristimerin. Here we show that pristimerin markedly suppressed the release of Regulated on Activation, Normal T Expressed and Secreted (RANTES), transforming growth factor-β1 (TGF-β1), IL-6, tumor necrosis factor-α (TNF-α), and nitric oxide (NO). Pristimerin also significantly inhibited migration of BV-2 microglia and alleviated the death of neuron-like PC12 cell induced by the conditioned medium from LPS-activated BV-2 microglial cells. Moreover, pristimerin reduced the expression and interaction of TNF Receptor-Associated Factor 6 (TRAF6) and Interleukin-1 Receptor-Associated Kinases (IRAK1), limiting TGF-beta activating kinase 1 (TAK1) activation, and resulting in an inhibition of IKKα/β/NF-κB and MKK7/JNK/AP-1 signaling pathway in LPS-activated BV-2 microglia. Taken together, the anti-neurotoxicity action of pristimerin is mediated through the inhibition of TRAF6/IRAK1/TAK1 interaction as well as the related pathways: IKKα/β/NF-κB and MKK7/JNK/AP-1 signaling pathways. These findings may suggest that pristimerin might serve as a new therapeutic agent for treating hyperactivated microglial induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Bin Hui
- College of Pharmacy, Shanghai University of Medical & Health Sciences, Shanghai, China
| | - Liping Zhang
- Department of Emergency Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qinhua Zhou
- College of Pharmacy, Shanghai University of Medical & Health Sciences, Shanghai, China. .,Department of Pharmacology, College of Medicine, Jiaxing University, Jiaxing, China.
| | - Ling Hui
- Center for Experimental Medicine, Lanzhou Military Command, Lanzhou General Hospital, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Effects of Glycyrrhizic Acid on the Pharmacokinetics of Pristimerin in Rats and its Potential Mechanism. Eur J Drug Metab Pharmacokinet 2017. [DOI: 10.1007/s13318-017-0423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Seo WD, Lee DY, Park KH, Kim JH. Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids. ACTA ACUST UNITED AC 2016. [DOI: 10.3839/jabc.2016.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Souza-Moreira TM, Alves TB, Pinheiro KA, Felippe LG, De Lima GMA, Watanabe TF, Barbosa CC, Santos VAFFM, Lopes NP, Valentini SR, Guido RVC, Furlan M, Zanelli CF. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene. Sci Rep 2016; 6:36858. [PMID: 27874020 PMCID: PMC5118845 DOI: 10.1038/srep36858] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022] Open
Abstract
Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.
Collapse
Affiliation(s)
- Tatiana M. Souza-Moreira
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Thaís B. Alves
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Karina A. Pinheiro
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Lidiane G. Felippe
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Gustavo M. A. De Lima
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13563-120, Brazil
| | - Tatiana F. Watanabe
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Cristina C. Barbosa
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902, Brazil
| | - Vânia A. F. F. M. Santos
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Norberto P. Lopes
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Sandro R. Valentini
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902, Brazil
| | - Rafael V. C. Guido
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13563-120, Brazil
| | - Maysa Furlan
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Cleslei F. Zanelli
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902, Brazil
| |
Collapse
|
23
|
Dutra RC, Campos MM, Santos AR, Calixto JB. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res 2016; 112:4-29. [DOI: 10.1016/j.phrs.2016.01.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
|
24
|
Facundo VA, de Oliveira Meneguetti DU, Militão JSLT, Lima RA, Hurtado FB, Casseb AA, Teixeira LF, Silva IDCD, da Silva GVJ, Junior VL. Chemical constituents from Maytenus guianensis Klotzsch ex Reissek (Celastraceae) Amazon rainforest. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2014.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Production of the quinone-methide triterpene maytenin by in vitro adventitious roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and rapid detection and identification by APCI-IT-MS/MS. BIOMED RESEARCH INTERNATIONAL 2013; 2013:485837. [PMID: 24205504 PMCID: PMC3800617 DOI: 10.1155/2013/485837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/27/2013] [Indexed: 11/22/2022]
Abstract
Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L−1 IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin—972.11 μg·g−1 dry weight—was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.
Collapse
|
26
|
dos Santos VAFFM, Leite KM, da Costa Siqueira M, Regasini LO, Martinez I, Nogueira CT, Galuppo MK, Stolf BS, Pereira AMS, Cicarelli RMB, Furlan M, Graminha MAS. Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae). Molecules 2013; 18:1053-62. [PMID: 23322069 PMCID: PMC6270509 DOI: 10.3390/molecules18011053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/28/2022] Open
Abstract
The present study describes the leishmanicidal and trypanocidal activities of two quinonemethide triterpenes, maytenin (1) and pristimerin (2), isolated from Maytenus ilicifolia root barks (Celastraceae). The compounds were effective against the Trypanosomatidae Leishmania amazonensis and Leishmania chagasi and Trypanosoma cruzi, etiologic agents of leishmaniasis and Chagas' disease, respectively. The quinonemethide triterpenes 1 and 2 exhibited a marked in vitro leishmanicidal activity against promastigotes and amastigotes with 50% inhibitory concentration (IC(50)) values of less than 0.88 nM. Both compounds showed IC(50) lower than 0.3 nM against Trypanosoma cruzi epimastigotes. The selectivity indexes (SI) based on BALB/c macrophages for L. amazonensis and L. chagasi were 243.65 and 46.61 for (1) and 193.63 and 23.85 for (2) indicating that both compounds presented high selectivity for Leishmania sp. The data here presented suggests that these compounds should be considered in the development of new and more potent drugs for the treatment of leishmaniasis and Chagas' disease.
Collapse
Affiliation(s)
| | - Karoline M. Leite
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista, UNESP, Araraquara-SP 14801-902, Brazil
| | - Mariana da Costa Siqueira
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista, UNESP, Araraquara-SP 14801-902, Brazil
| | - Luis O. Regasini
- Instituto de Quimica, Universidade Estadual Paulista, UNESP, PO BOX 355, Araraquara-SP 14801-970, Brazil
| | - Isabel Martinez
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista, UNESP, Araraquara-SP 14801-902, Brazil
| | - Camila T. Nogueira
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista, UNESP, Araraquara-SP 14801-902, Brazil
| | - Mariana Kolos Galuppo
- Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Beatriz S. Stolf
- Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia Vegetal, Universidade de Ribeirão Preto, Ribeirão Preto-SP 14096-900, Brazil
| | - Regina M. B. Cicarelli
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista, UNESP, Araraquara-SP 14801-902, Brazil
| | - Maysa Furlan
- Instituto de Quimica, Universidade Estadual Paulista, UNESP, PO BOX 355, Araraquara-SP 14801-970, Brazil
| | - Marcia A. S. Graminha
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista, UNESP, Araraquara-SP 14801-902, Brazil
| |
Collapse
|
27
|
Santos VAFFM, Regasini LO, Nogueira CR, Passerini GD, Martinez I, Bolzani VS, Graminha MAS, Cicarelli RMB, Furlan M. Antiprotozoal sesquiterpene pyridine alkaloids from Maytenus ilicifolia. JOURNAL OF NATURAL PRODUCTS 2012; 75:991-995. [PMID: 22559947 DOI: 10.1021/np300077r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As part of a bioprospecting program aimed at the discovery of antiprotozoal agents from the Brazilian flora, two new sesquiterpene pyridine alkaloids, ilicifoliunines A (1) and B (2), along with the known alkaloids aquifoliunine E-I (3) and mayteine (4), were isolated from the root bark of Maytenus ilicifolia. The structures of 1 and 2 were established on the basis of spectroscopic data interpretation. Alkaloid 3 displayed potent in vitro antiprotozoal activity against Leishmania chagasi and Trypanosoma cruzi, with IC(50) values of 1.4 and 41.9 μM, respectively, as well as low cytotoxicity against murine peritoneal macrophages (IC(50) of 1.8 mM).
Collapse
Affiliation(s)
- Vânia A F F M Santos
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP 14800-900, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Antifungal activity of maytenin and pristimerin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:340787. [PMID: 22675379 PMCID: PMC3364566 DOI: 10.1155/2012/340787] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/17/2012] [Accepted: 03/23/2012] [Indexed: 12/05/2022]
Abstract
Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents.
Collapse
|