1
|
Wang Z, Yan W, Lin X, Qin G, Li K, Jiang L, Li X, Xiao X, Luo T, Hou Y. Forsythiaside A Alleviates Ulcerative Colitis and Inhibits Neutrophil Extracellular Traps Formation in the Mice. Phytother Res 2025. [PMID: 40099671 DOI: 10.1002/ptr.8440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/10/2024] [Accepted: 01/05/2025] [Indexed: 03/20/2025]
Abstract
Forsythiaside A (FA), the primary compound found in Forsythia suspensa (Thunb.) Vahl, has demonstrated various pharmacological effects, but its impact on ulcerative colitis (UC) is underexplored. Our study examined the distribution of FA in different parts of the gastrointestinal tracts and its therapeutic effects on UC, along with the underlying mechanisms. The levels of FA in gastrointestinal tracts and plasma were analyzed by high-performance liquid chromatography; mice were given dextran sulfate sodium in drinking water to develop the UC model. The UC mice were treated with FA (15, 30, and 60 mg/kg) for 10 days. FA showed relatively high concentration retention in the colon within 4 h. The treatment of FA improved body weight loss, diarrhea, rectal bleeding, colon shortening, and histological damage in UC mice. It also increased the expression of the tight junction protein and decreased inflammatory cytokines in the colon. The microbiota analysis using 16S rRNA sequencing revealed that FA could alleviate gut dysbiosis in colitis mice. Of importance, we found FA resulted in a reduction of neutrophil extracellular traps formation (NETosis) and inhibited peptidyl arginine deiminase 4 (PAD4) in colon tissue of colitis mice. In cultured neutrophils, FA pretreatment led to a suppression of PAD4 expression and NETosis induced by PMA. These findings suggest that FA can be retained in the colon and may alleviate UC by inhibiting NETs formation, indicating its potential for preventing or treating UC.
Collapse
Affiliation(s)
- Zhuyun Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Yan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kemeng Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincheng Jiang
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingwang Li
- Laboratory of Traditional Chinese Medicine, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Hou
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Traditional Chinese Medicine, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Yang Y, Shen J, Deng P, Chen P. Mechanism investigation of Forsythoside A against esophageal squamous cell carcinoma in vitro and in vivo. Cancer Biol Ther 2024; 25:2380023. [PMID: 39046082 PMCID: PMC11271126 DOI: 10.1080/15384047.2024.2380023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
CONTEXT Forsythoside A (FSA) was extracted from Forsythia suspensa, a traditional Chinese medicine, which has been demonstrated to exert anti-inflammatory, antibacterial, and other pharmacological effects. However, the anticancer effect of FSA in esophageal squamous cell carcinoma (ESCC) has not been documented. OBJECTIVE The present study aimed to elucidate the mechanism of FSA against ESCC. MATERIALS AND METHODS Network pharmacology and molecular docking were employed to predict the mechanism. FSA was utilized to treat ESCC cell lines KYSE450 and KYSE30, followed by CCK-8 assay, cell cloning formation assay, flow cytometry, Western blot, RNA-seq analysis, and subsequent in vivo experiments. RESULTS Network pharmacology and molecular docking predicted that the therapeutic effect of FSA in ESCC is mediated through proteins such as BCL2 and BAX, influencing KEGG pathways associated with apoptosis. In vitro experiments showed that FSA inhibited cell proliferation and plate clone formation, promoted cell apoptosis and impacted the cell cycle distribution of G2/M phase by regulating BCL2, BAX, and p21. Further RNA-seq in KYSE450 cells showed that FSA regulated the expression of 223 genes, specifically affecting the biological process of epidermal development. In vivo experiments showed that gastric administration of FSA resulted in notable reductions in both tumor volume and weight by regulating BCL2, BAX, and p21. 16S rRNA sequencing showed that FSA led to significant changes of beta diversity. Abundance of 11 specific bacterial taxa were considerably changed following administration of FSA. CONCLUSIONS This study presents a novel candidate drug against ESCC and establishes a foundation for future clinical application.
Collapse
Affiliation(s)
- Yingying Yang
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Junru Shen
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Peiyuan Deng
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
3
|
Li JJ, Chen ZH, Liu CJ, Kang YS, Tu XP, Liang H, Shi W, Zhang FX. The phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity of Forsythiae Fructus: An updated systematic review. PHYTOCHEMISTRY 2024; 222:114096. [PMID: 38641141 DOI: 10.1016/j.phytochem.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.
Collapse
Affiliation(s)
- Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yu-Shuo Kang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Xin-Pu Tu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
4
|
Deng L, Wei SL, Wang L, Huang JQ. Feruloylated Oligosaccharides Prevented Influenza-Induced Lung Inflammation via the RIG-I/MAVS/TRAF3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9782-9794. [PMID: 38597360 DOI: 10.1021/acs.jafc.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-β, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lei Wei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Zhang L, Lang F, Feng J, Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117275. [PMID: 37797873 DOI: 10.1016/j.jep.2023.117275] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Fenglong Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
6
|
Su J, Chen XM, Xie YL, Li MQ, Shang Q, Zhang DK, Cai XF, Liu H, Huang HZ, Zheng C, Han L. Clinical efficacy, pharmacodynamic components, and molecular mechanisms of antiviral granules in the treatment of influenza: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117011. [PMID: 37567423 DOI: 10.1016/j.jep.2023.117011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear. AIM OF THE STUDY The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus. MATERIALS AND METHODS Enter the data retrieval room, search for Antiviral Granules, as well as the scientific names, common names, and Chinese names of each Chinese medicine. Additionally, search for the relevant clinical applications, pharmacodynamic composition, pharmacological action, and molecular mechanism of both Antiviral Granules and single-ingredient medicines. Keywords includes terms such as "antiviral granules", "influenza", "Isatis indigotica Fort.", "Radix Isatidis", "Banlangeng", "pharmacology", "clinical application", "pharmacologic action", etc. and their combinations. Obtain results from the Web of Science, PubMed, Google Scholar, Sci Finder Scholar, CNKI and other resources. RESULTS AG is effective in the treatment of influenza and is often used in combination with other drugs to treat viral diseases. Its chemical composition is complex, including alkaloids, polysaccharides, volatile oils, steroid saponins, phenylpropanoids, terpenoids and other compounds. These compounds have a variety of pharmacological activities, which can interfere with the replication cycle of the influenza virus, regulate RIG-I-MAVS, JAK/STAT, TLRs/MyD88, NF-κB signaling pathways and related cytokines, regulate intestinal microorganisms, and protect both the lungs and extrapulmonary organs. CONCLUSIONS AG can overcome the limitations of traditional antiviral drug therapy, play a synergistic role in fighting influenza virus with the characteristics of multi-component, multi-pathway and multi-target therapy, and reverse the bodily function damage caused by influenza virus. AG may be a potential drug in the prevention and treatment of influenza and related diseases.
Collapse
Affiliation(s)
- Juan Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Ming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi-Ling Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meng-Qi Li
- Pharmacy Department, Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Qiang Shang
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Xin-Fu Cai
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Hui Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Xu J, Yin P, Liu X, Hou X. Forsythoside A inhibits apoptosis and autophagy induced by infectious bronchitis virus through regulation of the PI3K/Akt/NF-κB pathway. Microbiol Spectr 2023; 11:e0192123. [PMID: 37971265 PMCID: PMC10715169 DOI: 10.1128/spectrum.01921-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Infectious bronchitis virus (IBV) is an acute and highly infectious viral disease that seriously endangered the development of the chicken industry. However, due to the limited effectiveness of commercial vaccines, there is an urgent need to develop safe and effective anti-IBV drugs. Forsythoside A (FTA) is a natural ingredient with wide pharmacological and biological activities, and it has been shown to have antiviral effects against IBV. However, the antiviral mechanism of FTA is still unclear. In this study, we demonstrated that FTA can inhibit cell apoptosis and autophagy induced by IBV infection by regulating the PI3K/AKT/NF-κB signaling pathway. This finding is important for exploring the role and mechanism of FTA in anti-IBV infection, indicating that FTA can be further studied as an anti-IBV drug.
Collapse
Affiliation(s)
- Jun Xu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Xuewei Liu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Chen Y, Wei W, Fu J, Zhang T, Zhao J, Ma T. Forsythiaside A ameliorates sepsis-induced acute kidney injury via anti-inflammation and antiapoptotic effects by regulating endoplasmic reticulum stress. BMC Complement Med Ther 2023; 23:35. [PMID: 36737765 PMCID: PMC9896724 DOI: 10.1186/s12906-023-03855-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis is a systemic inflammatory response syndrome caused by an infection in the body, and accompanying acute kidney injury (AKI) is a common complication of sepsis. It is associated with increased mortality and morbidity. Forsythia Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a commonly used traditional Chinese medicine. AIMS OF THE STUDY This study aimed to elucidate the protective effect of Forsythiaside A (FTA) on sepsis-induced AKI by downregulating inflammatory and apoptotic responses, and exploring its underlying mechanism. METHODS Septic AKI was induced through intraperitoneal injection of LPS (10 mg/kg) using male C57BL/6 mice and pretreated with FTA or control saline. First, we assessed the degree of renal injury by creatinine, blood urea nitrogen measurement, and HE staining of renal tissue; secondly, the inflammation and apoptosis were measured byELISA, qPCR, and TUNEL immunofluorescence; finally, the mechanism was explored by computer molecular docking and Western blot. RESULTS Our data showed that FTA markedly attenuated pathological kidney injuries, alleviated the elevation of serum BUN and Creatinine, suggesting the renal protective effect of FTA. Notably, FTA significantly inhibited the renal expression of proinflammatory cytokine IL-1β, IL-6, and TNF-α both at protein and mRNA levels and attenuated cell apoptosis in the kidney, as measured by caspase-3 immunoblot and TUNEL assay, indicating its anti-Inflammation and antiapoptotic properties. Mechanistically, administration of LPS resulted in robust endoplasmic reticulum (ER) stress responses in the kidney, evidenced by glucose-regulated protein 78(GRP78) upregulation, protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation, eukaryotic initiation factor 2 alpha (elF2α) phosphorylation and C/EBP homologous protein (CHOP) overexpression, which could be significantly blocked by FTA pretreatment. Dynamic simulation and molecular docking were performed to provide further insight. CONCLUSIONS Collectively, our data suggest that FTA ameliorates sepsis-induced acute kidney injury via its anti-inflammation and antiapoptotic properties by regulating PERK signaling dependent ER stress responses.
Collapse
Affiliation(s)
- Yi Chen
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 People’s Republic of China
| | - Jingnan Fu
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| | - Teng Zhang
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| | - Jie Zhao
- grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434Department of Respiratory and Intensive Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Tao Ma
- grid.412645.00000 0004 1757 9434Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China ,grid.412645.00000 0004 1757 9434State Key Laboratory of Integrated Traditional Chinese and Western Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052 China
| |
Collapse
|
9
|
Xu H, Wang S, Jiang Y, Wu J, Chen L, Ding Y, Zhou Y, Deng L, Chen X. Poria cocos Polysaccharide Ameliorated Antibiotic-Associated Diarrhea in Mice via Regulating the Homeostasis of the Gut Microbiota and Intestinal Mucosal Barrier. Int J Mol Sci 2023; 24:1423. [PMID: 36674937 PMCID: PMC9862632 DOI: 10.3390/ijms24021423] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Poria cocos polysaccharides (PCP) have been validated for several biological activities, including antitumor, anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective and modulation on gut microbiota. In this research, we aim to demonstrate the potential prebiotic effects and the therapeutic efficacies of PCP in the treatment of antibiotic-associated diarrhea (AAD), and confirm the beneficial effects of PCP on gut dysbiosis. Antibiotic-associated diarrhea mice models were established by treating them with broad-spectrum antibiotics in drinking water for seven days. Mice in two groups treated with probiotics and polysaccharide were given Bifico capsules (4.2 g/kg/d) and PCP (250 mg/kg/d) for seven days using intragastric gavage, respectively. To observe the regulatory effects of PCP on gut microbiota and intestinal mucosal barrier, we conducted the following experiments: intestinal flora analysis (16S rDNA sequencing), histology (H&E staining) and tight junction proteins (immunofluorescence staining). The levels of mRNA expression of receptors associated with inflammation and gut metabolism were assessed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The study revealed that PCP can comprehensively improve the clinical symptoms of AAD mice, including fecal traits, mental state, hair quality, etc., similar to the effect of probiotics. Based on histology observation, PCP significantly improved the substantial structure of the intestine of AAD mice by increasing the expression levels of colonic tight junction protein zonula-occludens 1 (ZO-1) and its mRNA. Moreover, PCP not only increased the abundance of gut microbiota, but also increased the diversity of gut microbiota in AAD mice, including alpha diversity and beta diversity. Further analysis found that PCP can modulate seven characteristic species of intestinal flora in AAD mice, including Parabacteroides_distasonis, Akkermansia_muciniphila, Clostridium_saccharolyticum, Ruminoc-occus_gnavus, Lactobacillus_salivarius, Salmonella_enterica and Mucispirillum_schaedleri. Finally, enrichment analysis predicted that PCP may affect intestinal mucosal barrier function, host immune response and metabolic function by regulating the microbiota. RT-PCR experiments showed that PCP can participate in immunomodulatory and modulation on metabolic by regulating the mRNA expression of forkhead-box protein 3 (FOXP3) and G protein-coupled receptor 41 (GPR41). These results indicated that Poria cocos polysaccharide may ameliorate antibiotic-associated diarrhea in mice by regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. In addition, polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities and modulation of the metabolism.
Collapse
Affiliation(s)
- Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| | - Shiqi Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yawen Jiang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jialin Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lili Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yujia Ding
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yingtong Zhou
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|
11
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Zheng X, Chen Z, Shi S, Yan H, Zhou J, Jiang L, Wang H, Hou G, Jiang Z. Forsythiaside A improves Influenza A virus infection through TLR7 signaling pathway in the lungs of mice. BMC Complement Med Ther 2022; 22:164. [PMID: 35733131 PMCID: PMC9214192 DOI: 10.1186/s12906-022-03644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Influenza A virus infection due to drug resistance and side effects of the conventional antiviral drugs yet remains a serious public health threat for humans and animals. Forsythiaside A is an effective ingredient isolated from the Chinese herbal medicine forsythia. It has various pharmacological effects and has a good therapeutic effect against a variety of infectious diseases. This study aimed to further explore the immunological mechanism of Forsythiaside A in the treatment of influenza virus-infected mice and its effect on the Toll-like receptor 7 (TLR7) signaling pathway in the lungs of these mice.
Methods
C57/BL6J mice and TLR7−/− mice were infected with the FM1 strains (H1N1 and A/FM/1/4) of the Influenza A virus. Each group of experimental mice were divided into the mock, virus, oseltamivir, and Forsythiaside A groups. Weight change, lung index change, and the mRNA and protein expression levels of key factors in the TLR7 signaling pathway were detected. Flow cytometry was used to detect the changes in the Th1/Th2 and Th17/Treg ratios.
Results
After infection with the Influenza A virus, the weight loss of C57/BL6J mice treated with forsythoside A and oseltamivir decreased, and the pathological tissue sections showed that the inflammatory damage was reduced. The expression levels of the key factors, TLR7, myeloid differentiation factor 88(Myd88), and nuclear factor-kappa B (NF-κB) in the TLR7 signaling pathway were significantly reduced. Flow cytometry showed that Th1/Th2 and Th17/Treg ratios decreased after Forsythiaside A treatment. In the TLR7−/− mice, there was no significant change after Forsythiaside A treatment in the virus group.
Conclusions
Forsythiaside A affects the TLR7 signaling pathway in mouse lung immune cells and reduces the inflammatory response caused by the Influenza A virus FM1 strain in mouse lungs.
Collapse
|
13
|
Yang HX, Liu QP, Zhou YX, Chen YY, An P, Xing YZ, Zhang L, Jia M, Zhang H. Forsythiasides: A review of the pharmacological effects. Front Cardiovasc Med 2022; 9:971491. [PMID: 35958429 PMCID: PMC9357976 DOI: 10.3389/fcvm.2022.971491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Forsythiasides are a kind of phenylethanol glycosides existing in Forsythia suspensa (Thunb.) Vahl, which possesses extensive pharmacological activities. According to the different groups connected to the nucleus, forsythiasides can be divided into A-K. In recent years, numerous investigations have been carried out on forsythiasides A, B, C, D, E, and I, which have the effects of cardiovascular protection, anti-inflammation, anti-oxidation, neuroprotection, et al. Mechanistically, forsythiasides regulate toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappaB (NF-κB), nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and other signaling pathways, as well as the expression of related cytokines and kinases. Further exploration and development may unearth more treatment potential of forsythiasides and provide more evidence for their clinical applications. In summary, forsythiasides have high development and application value.
Collapse
Affiliation(s)
- Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Zhuo Xing
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Min Jia
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai, China
- Min Jia,
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong Zhang,
| |
Collapse
|
14
|
Duan Z, Xing J, Shi H, Wang Y, Zhao C. The matrix protein of Newcastle disease virus inhibits inflammatory response through IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 218:295-309. [PMID: 35872314 DOI: 10.1016/j.ijbiomac.2022.07.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The matrix (M) protein of several cytoplasmic RNA viruses has been reported to be an NF-κB pathway antagonist. However, the function and mechanism of NDV M protein antagonizing NF-κB activation remain largely unknown. In this study, we found that the expression levels of IRAK4, TRAF6, TAK1, and RELA/p65 were obviously reduced late in NDV infection. In addition, the cytoplasmic M protein rather than other viral proteins decreased the expression of these proteins in a dose-dependent manner. Further indepth analysis showed that the N-terminal 180 amino acids of M protein were not only responsible for the reduced expression of these proteins, but also responsible for the inhibition of NF-κB activation and nuclear translocation of RELA/p65, as well as the production of inflammatory cytokines. Moreover, small interference RNA-mediated knockdown of IRAK4 or overexpression of IRAK4 markedly enhanced or reduced NDV replication by decreasing or increasing inflammatory cytokines production through the IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Strangely, there were no interactions detected between NDV M protein and IRAK4, TRAF6, TAK1 or RELA/p65. Our findings described here contribute to a better understanding of the innate immune antagonism function of M protein and the molecular mechanism underlying the replication and pathogenesis of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Jingru Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Haiying Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yanbi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Caiqin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Xu H, Wu J, Wang S, Xu L, Liu P, Shi Y, Wu S, Deng L, Chen X. Network pharmacology and in vivo experiments reveal the pharmacological effects and molecular mechanisms of Simiao Powder in prevention and treatment for gout. BMC Complement Med Ther 2022; 22:152. [PMID: 35672755 PMCID: PMC9175488 DOI: 10.1186/s12906-022-03622-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gout is a common disease with high incidence due to unhealthy diet and living habits. Simiao Powder, as a classic formula consisted of four common herbs, has been widely used in clinical practice since ancient times to prevent and treat gout. However, the pharmacological mechanism of Simiao Powder is still unclear. METHODS Based on network pharmacology, Simiao Powder active compounds were identified in TCMSP, ETCM and BATMAN database, used to establish a network of interaction between potential targets of Simiao Powder and known therapeutic targets of gout. Subsequently, the key potential targets are being used for protein-protein interaction, GO enrichment analysis and KEGG pathway enrichment analysis through several authoritative open databases. Molecular docking through AutoDockTools software can verify interaction between molecules. Finally, to validate the predicted results, in vivo experiments based on hyperuricemic-gout mice model were designed and treated with Simiao powder and allopurinol. Serum levels of uric acid (UA), creatinine (Cr), blood urea nitrogen (BUN) and xanthine oxidase (XOD) were determined using a customized assay kit while the expression of PPAR-γ, PTGS1, IL-6 and Bcl2 mRNA were analyzed through qRT-PCR. RESULTS Disease-target-compound network was visualized basing on the 20 bioactive compounds and the 19 potential targets using Cytoscape software. The results of PPI analysis, GO enrichment and KEGG pathway enrichment analysis indicate that the potential mechanism of Simiao Powder in treating gout may be achieved by regulating immune and inflammatory reactions, improving metabolism and endocrine. The results of molecular docking show that most of the targets and components have good binding activity. In vivo experiments revealed that Simiao powder can decreased serum UA and XOD levels in hyperuricemic-gout mice, and improved renal function. Furthermore, Simiao powder certainly regulates the expression of PPAR-γ, PTGS1, IL-6 and Bcl2 mRNA in ankle tissue in hyperuricemic-gout mice. CONCLUSION Collectively, this research predicted a multiple compounds, targets, and pathways model mechanism of Simiao Powder in the prevention and treatment of gout, providing new ideas and methods for in-depth research, via vivo experiments.
Collapse
Affiliation(s)
- Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Jialin Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Shiqi Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Lu Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
16
|
Li X, Wang M, Liu C, Xiao Y, Li M, Ban C, Huang Y, Cheng M, Song L, Liu G, Lu S, Wang C, Ren Z. Qingfeiyin Decoction Inhibits H1N1 Virus Infection via Modulation of Gut Microbiota and Inflammatory Pathways in a Murine Model. Front Pharmacol 2022; 13:874068. [PMID: 35677448 PMCID: PMC9170074 DOI: 10.3389/fphar.2022.874068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza virus-caused lung infection and its pandemic outbreaks are a persistent public health challenge. The H1N1 subtype is the most common type of influenza infection observed in humans. Maxingshigantang decoction, a classic formula of Chinese herbal medicine, has been used for the prevention and treatment of respiratory infection for many centuries. Qingfeiyin decoction, based on Maxingshigantang, has been used in the clinic for decades. To explore the underlying mechanisms, according to the traditional Chinese medicine theory "the lung and the large intestine are interior-exterior," which can be translated to the "gut-lung axis" in a contemporary term, the composition of gut microbiota was determined using 16S rRNA and the transcriptome of the colon was determined by RNA sequencing. The results showed that Qingfeiyin decoction decreased the viral load, alleviated the lung injury, increased the survival rate, partly restored the shortening of the colon caused by the H1N1 virus, and downregulated inflammatory pathways including MAPK, TNFα, and JAK-STAT signaling pathways. Qingfeiyin decoction increased the relative abundance of the genera of Coprococcus , Ruminococcus, Lactobacillus, and Prevotella and prevented the H1N1 virus-induced decrease in the abundance of the genera of Escherichia, Parabacteroides, Butyricimonas, and Anacrotruncus. These results will help better understand the mechanisms for Qingfeiyin decoction's protective effect against influenza virus infection.
Collapse
Affiliation(s)
- Xianping Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Mingzhe Wang
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Chang Liu
- Department of Internal Medicine, Gulou Hospital of Traditional Chinese Medicine of Beijing, Beijing, China
| | - Yuchun Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Mengde Li
- School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
| | - Chengjun Ban
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Cheng
- Respiratory Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Liqiong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Guoxing Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Linwei Liu Zunji Clinic of Traditional Chinese Medicine, Weinan, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Chengxiang Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Su H, Wu G, Zhan L, Xu F, Qian H, Li Y, Zhu X. Exploration of the Mechanism of Lianhua Qingwen in Treating Influenza Virus Pneumonia and New Coronavirus Pneumonia with the Concept of "Different Diseases with the Same Treatment" Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5536266. [PMID: 35145559 PMCID: PMC8822319 DOI: 10.1155/2022/5536266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
The 31 main components of Lianhua Qingwen (LHQW) were obtained through a literature and database search; the components included glycyrrhizic acid, emodin, chlorogenic acid, isophoroside A, forsythia, menthol, luteolin, quercetin, and rutin. Sixty-eight common targets for the treatment of novel coronavirus pneumonia (NCP) and influenza virus pneumonia (IVP) were also obtained. A "component-target-disease" network was constructed with Cytoscape 3.2.1 software, and 20 key targets, such as cyclooxygenase2 (COX2), interleukin-6 (IL-6), mitogen-activated protein kinase14 (Mapk14), and tumor necrosis factor (TNF), were screened from the network. The David database was used to perform a Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis and gene ontology (GO) biological process enrichment. Results showed that the key targets of LHQW in the treatment of NCP and IVP mainly involved biological processes, such as immune system process intervention, cell proliferation, apoptosis and invasion, toxic metabolism, cytokine activity, and regulation of the synthesis process. KEGG enrichment analysis revealed that 115 signalling pathways were related to the treatment of LHQW. Amongst them, IL-17, T cell receptor, Th17 cell differentiation, TNF, toll-like receptor, MAPK, apoptosis, and seven other signalling pathways were closely related to the occurrence and development of NCP and IVP. Molecular docking showed that each component had different degrees of binding with six targets, namely, 3C-like protease (3CL), angiotensin-converting enzyme 2 (ACE2), COX2, hemagglutinin (HA), IL-6, and neuraminidase (NA). Rutin, isoforsythiaside A, hesperidin and isochlorogenic acid B were the best components for docking with the six core targets. The first five components with the best docking results were isoforsythiaside, hesperidin, isochlorogenic acid B, forsythin E, and quercetin. In conclusion, LHQW has many components, targets, and pathways. The findings of this work can provide an important theoretical basis for determining the mechanism of LHQW in treating NCP and IVP.
Collapse
Affiliation(s)
- Huihui Su
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Guosong Wu
- Department of Pharmacy, Baiyun Branch of Nanfang Hospital of Southern Medical University, Guangzhou 510599, China
| | - Lulu Zhan
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Fei Xu
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Huiqin Qian
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Ximei Zhu
- Clinical Pharmacists, The Maternal and Child Health Care Hospital of HuaDu District (Huzhong Hospital), Guangzhou 510800, China
| |
Collapse
|
18
|
Forsythoside A Alleviates Imiquimod-Induced Psoriasis-like Dermatitis in Mice by Regulating Th17 Cells and IL-17A Expression. J Pers Med 2022; 12:jpm12010062. [PMID: 35055377 PMCID: PMC8780559 DOI: 10.3390/jpm12010062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a recurrent inflammatory skin disease characterized by redness and scaly skin lesions with itchy or painful sensations. Forsythoside A, one of the main active compounds isolated from the fruit of Forsythia suspensa, has been widely applied to treat inflammatory diseases in the clinical use of traditional oriental medicine. However, the effect of forsythoside A on psoriasis remains unclear. This study aimed to explore the therapeutic effects and immune regulation of forsythoside A on psoriasis. C57BL/6 mice were divided into six groups and treated with imiquimod cream on their shaved back skin to induce psoriasis-like dermatitis. Different doses of forsythoside A (5 mg/kg, 10 mg/kg, or 20 mg/kg) were administered to the respective treatment groups. Skin redness, scaling, and ear thickness were measured; keratinocyte proliferation and inflammatory cytokine expression were detected by hematoxylin–eosin and immunohistochemical staining. Th17 cells in the inguinal lymph nodes were detected by flow cytometric analysis. IL-17A levels were measured using ELISA. The results showed that forsythoside A relieved psoriatic skin symptoms such as skin redness, thickness, scaling, and reduced epidermal thickening. The expression of IL-6, IL-17, and Ki-67 was downregulated in the forsythoside-A-treated groups. Th17 cell expression in inguinal lymph nodes and IL-17A secretion was suppressed by forsythoside A. In conclusion, forsythoside A was found to alleviate imiquimod-induced psoriasis-like dermatitis in mice by suppressing Th17 development and IL-17A secretion. These findings demonstrate the feasibility of forsythoside A in treating human psoriasis.
Collapse
|
19
|
Deng L, Yan J, Xu H, Huang C, Lv Y, Wu Q, Xu Y, Chen X. Prediction of exacerbation frequency of AECOPD based on next-generation sequencing and its relationship with imbalance of lung and gut microbiota: a protocol of a prospective cohort study. BMJ Open 2021; 11:e047202. [PMID: 34475159 PMCID: PMC8413946 DOI: 10.1136/bmjopen-2020-047202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Patients with frequent acute exacerbation phenotype chronic obstructive pulmonary disease (AECOPD) have a higher hospitalisation rate than infrequent exacerbation, the disease progresses quickly and treatment is more difficult. At present, it is impossible to predict patients with COPD with frequent acute exacerbation phenotypes. The composition of the lower respiratory tract flora and the intestinal flora is closely related to AECOPD, but the specific association mechanism between them is not very clear. This study used metagenomic next-generation sequencing (mNGS) technology to explore the microbial characteristics of the intestinal tract and airways of patients with COPD, and analyse the correlation between the sequencing results and inflammatory factors, immune factors and nutritional factors. METHODS AND ANALYSIS This will be a prospective cohort study. We intend to recruit 152 patients with stable COPD. In the baseline, we will detect the participants' induced sputum and faecal flora through mNGS, and changes in blood immune levels, and the patient's condition is evaluated. Every 2 months, we will check the number of acute exacerbation through the phone range. After 12 months, we will check again the changes in the blood immune level, evaluate the patient's condition and count the number of episodes. ETHICS AND DISSEMINATION This study has been approved by the ethics committee of Guangdong Provincial Hospital of Traditional Chinese Medicine (approval number ZF2019-219-03). The results of the study will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (ChiCTR2000032870).
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiali Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunzhen Huang
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qianxin Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinji Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Deng L, Shi Y, Liu P, Wu S, Lv Y, Xu H, Chen X. GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora. Biomed Pharmacother 2021; 141:111896. [PMID: 34246956 DOI: 10.1016/j.biopha.2021.111896] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza in humans is often accompanied by gastroenteritis-like symptoms. GeGen QinLian decoction (GQD), a Chinese herb formula, has been widely used to treat infectious diarrhea for centuries and has the effect of restoring intestinal flora. Studies have also reported that GQD were used to treat patients with influenza. However, whether regulating the intestinal flora is one of the ways GQD treats influenza has not been confirmed. In present research, we conducted a systemic pharmacological study, and the results showed that GQD may acts through multiple targets and pathways. In influenza-infected mice, GQD treatment reduced mortality and lung inflammation. Most importantly, the mortality and lung inflammation were also reduced in influenza-infected mice that have undergone fecal microbiota transplantation (FMT) from GQD (FMT-GQD) treated mice. GQD treatment or FMT-GQD treatment restores the intestinal flora, resulting in an increase in Akkermansia_muciniphila, Desulfovibrio_C21_c20 and Lactobacillus_salivarius, and a decrease in Escherichia_coli. FMT-GQD treatment inhibited the NOD/RIP2/NF-κB signaling pathway in the intestine and affected the expression of downstream related inflammatory cytokines in mesenteric lymph nodes (mLNs) and serum. In addition, FMT-GQD treatment showed systemic protection by restraining the inflammatory differentiation of CD4+ T cells. In conclusion, our study shows that GQD can affect systemic immunity, at least in part, through the intestinal flora, thereby protect the mice against influenza virus infectious pneumonia.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Ti H. Phytochemical Profiles and their Anti-inflammatory Responses Against Influenza from Traditional Chinese Medicine or Herbs. Mini Rev Med Chem 2021; 20:2153-2164. [PMID: 32767941 DOI: 10.2174/1389557520666200807134921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
Traditional Chinese medicine (TCM) or herbs are widely used in the prevention and treatment of viral infectious diseases. However, the underlying mechanisms of TCMs remain largely obscure due to complicated material basis and multi-target therapeutics. TCMs have been reported to display anti-influenza activity associated with immunoregulatory mechanisms by enhancing host antiinfluenza immune responses. Previous studies have helped us understand the direct harm caused by the virus itself. In this review, we have tried to summarize recent progress in TCM-based anti-influenza research on the indirect harmful immune responses caused by influenza viruses. In particular, the phytochemicals from TCMs responsible for molecular mechanisms of action belonging to different classes, including phenolic compounds, flavonoids, alkaloids and polysaccharides, have been identified and demonstrated. In addition, this review focuses on the pharmacological mechanism, e.g., inflammatory responses and the interferon (IFN) signaling pathway, which can provide a theoretical basis and approaches for TCM based anti-influenza treatment.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
22
|
A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 2021; 169:105690. [PMID: 34029711 DOI: 10.1016/j.phrs.2021.105690] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Forsythiae Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a widely used Chinese medicinal herb in clinic for its extensive pharmacological activities. Forsythiaside A is the main active index component isolated from Forsythiae Fructus and possesses prominent bioactivities. Modern pharmacological studies have confirmed that Forsythiaside A exhibits significant activities in treating various diseases, including inflammation, virus infection, neurodegeneration, oxidative stress, liver injury, and bacterial infection. In this review, the pharmacological activities of Forsythiaside A have been comprehensively reviewed and summarized. According to the data, Forsythiaside A shows remarkable anti-inflammation, antivirus, neuroprotection, antioxidant, hepatoprotection, and antibacterial activities through regulating multiple signaling transduction pathways such as NF-κB, MAPK, JAK/STAT, Nrf2, RLRs, TRAF, TLR7, and ER stress. In addition, the toxicity and pharmacokinetic properties of Forsythiaside A are also discussed in this review, thus providing a solid foundation and evidence for further studies to explore novel effective drugs from Chinese medicine monomers.
Collapse
|
23
|
Shi M, Peng B, Li A, Li Z, Song P, Li J, Xu R, Li N. Broad Anti-Viral Capacities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule and Rational use Against COVID-19 Based on Literature Mining. Front Pharmacol 2021; 12:640782. [PMID: 34054522 PMCID: PMC8160462 DOI: 10.3389/fphar.2021.640782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/14/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.
Collapse
Affiliation(s)
- Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - An Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Nishibe S, Mitsui-Saitoh K, Sakai J, Fujikawa T. The Biological Effects of Forsythia Leaves Containing the Cyclic AMP Phosphodiesterase 4 Inhibitor Phillyrin. Molecules 2021; 26:2362. [PMID: 33921630 PMCID: PMC8073696 DOI: 10.3390/molecules26082362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/14/2023] Open
Abstract
Forsythia fruit (Forsythia suspensa Vahl (Oleaceae)) is a common component of Kampo medicines for treating the common cold, influenza, and allergies. The main polyphenolic compounds in the leaves of F. suspensa are pinoresinol β-d-glucoside, phillyrin and forsythiaside, and their levels are higher in the leaves of the plant than in the fruit. It is known that polyphenolic compounds stimulate lipid catabolism in the liver and suppress dyslipidemia, thereby attenuating diet-induced obesity and polyphenolic anti-oxidants might attenuate obesity in animals consuming high-fat diets. Recently, phillyrin was reported as a novel cyclic AMP phosphodiesterase 4 (PDE4) inhibitor derived from forsythia fruit. It was expected that the leaves of F. suspensa might display anti-obesity effects and serve as a health food material. In this review, we summarized our studies on the biological effects of forsythia leaves containing phillyrin and other polyphenolic compounds, particularly against obesity, atopic dermatitis, and influenza A virus infection, and its potential as a phytoestrogen.
Collapse
Affiliation(s)
- Sansei Nishibe
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Kumiko Mitsui-Saitoh
- Faculty of Health and Sport, Nagoya Gakuin University, 1350 Kamishinano, Seto, Aichi 480-1298, Japan; (K.M.-S.); (J.S.)
| | - Junichi Sakai
- Faculty of Health and Sport, Nagoya Gakuin University, 1350 Kamishinano, Seto, Aichi 480-1298, Japan; (K.M.-S.); (J.S.)
| | - Takahiko Fujikawa
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka-City, Mie 513-8670, Japan
| |
Collapse
|
25
|
Zhang FX, Li ZT, Yang X, Xie ZN, Chen MH, Yao ZH, Chen JX, Yao XS, Dai Y. Discovery of anti-flu substances and mechanism of Shuang-Huang-Lian water extract based on serum pharmaco-chemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113660. [PMID: 33276058 DOI: 10.1016/j.jep.2020.113660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuang-Huang-Lian preparation has captured wide attention since its clinical applications for the successful treatment of upper respiratory tract infection. However, its functional basis under actual therapeutic dose in vivo was still unrevealed. AIM OF THE STUDY This study aimed to reveal the anti-flu substances and mechanism of Shuang-Huang-Lian water extract (SHL) on H1N1 infected mouse model by a strategy based on serum pharmaco-chemistry under actual therapeutic dose and network pharmacology. MATERIALS AND METHODS H1N1 infected mouse model was employed for evaluation of the anti-flu effects of SHL. A simultaneous quantification method was developed by UPLC-TQ-XS MS coupled switch-ions mode and applied to characterize the pharmacokinetics of the multiple components of SHL under actual therapeutic dose. The potential active ingredients were screened out based on their pharmacokinetic parameters. And then, a compound mixture of these active candidates was re-evaluated for the anti-flu activity on H1N1 infected mouse model. Furthermore, the anti-flu mechanism of SHL was also predicted by network pharmacology coupled with the experimental result. RESULTS SHL significantly increased the survival rate and prolonged survival days on H1N1 infected mice at a dosage of 20 g crude drug/kg/day by reversing the increased lung index, down-regulating the inflammatory cytokines (TNF-α, IL-1β, IL-6) and inhibiting the release of IFN-β in bronchoalveolar lavage fluids (BALF). Concomitantly, the pharmacokinetic parameters of fourteen quantified and twenty-one semi-quantified constituents of SHL were characterized. And then, five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin), which displayed satisfactory pharmacokinetic features, were considered as potential active ingredients. Thus, a mixture of these five ingredients was administered to H1N1-infected mice at a dose of 4.24 mg/kg/day. As a result, the therapeutical effects of the mixture were similar to SHL in terms of survival rate, lung index and the release of cytokines (TNF-α, IL-1β and IL-6) in BALF. Moreover, network pharmacology analysis indicated that the TNF-signal pathways might play a role in the anti-flu mechanism of SHL. CONCLUSIONS A mixture of five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin) were the anti-flu substances of SHL. The strategy based on serum pharmaco-chemistry under actual therapeutic dose provided a new sight on exploring in vivo effective substances of TCM.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China; Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Zhi-Neng Xie
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
26
|
Zheng Y, Jin D, Lin J, Zhang Y, Tian J, Lian F, Tong X. Understanding COVID-19 in Wuhan From the Perspective of Cold-Dampness: Clinical Evidences and Mechanisms. Front Med (Lausanne) 2021; 8:617659. [PMID: 33693014 PMCID: PMC7939017 DOI: 10.3389/fmed.2021.617659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has played a significant role in the treatment of coronavirus disease 2019 (COVID-19) in Wuhan City. During the epidemic, Academician Tong Xiaolin suggested a close association of COVID-19 with cold-dampness, an etiological factor in TCM, by summarizing the characteristics of the COVID-19 patients in Wuhan. and the theory of Cold-dampness Plague was proposed. Based on the Cold-dampness Plague theory, a series of TCM drugs, such as Huoxiang Zhengqi Dropping Pills, Lianhua Qingwen Granules Hanshiyi Formula, and Tongzhi Granule were developed for the different stages, namely mild, moderate, severe, recovery, of the COVID-19. In addition, clinical evidences were obtained through randomized clinical trials or retrospective cohort studies. The Anti-SARS-CoV-2 mechanism of the TCM prescriptions were then summarized from the four aspects: targeting the ACE2 and 3CLPro, targeting cytokines, targeting acute immune responses to SARS-CoV-2, and targeting pulmonary fibrosis. Despite the clinical efficacy and therapeutic pharmacology speculation, more studies such as large-scale randomized clinical trials, cell and animal experiments are needed to further verify the theory of the Cold-dampness Plague in COVID-19 patients.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Experimental study of Forsythoside A on prevention and treatment of avian infectious bronchitis. Res Vet Sci 2020; 135:523-531. [PMID: 33234322 DOI: 10.1016/j.rvsc.2020.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 02/02/2023]
Abstract
Forsythoside A is the main active ingredient in the Chinese medicine Forsythia suspensa, which has antiviral, anti-inflammatory, antioxidation, and immunoregulatory effects. It is reported that Forsythoside A can significantly inhibit the replication of the avian infectious bronchitis virus(IBV) in cells, but there is no report in chickens. The present study aimed to investigate the effect of Forsythoside A on IBV-M41, experiments were designed using 120 chickens at 12 days of age. The chickens were randomly divided into eight groups: Forsythoside A high-, medium-, and low-dose prevention groups, Forsythoside A high-, medium-, and low-dose treatment groups, model control group and normal control group. All chickens, except the normal control group, were inoculated with 0.2 ml of IBV-M41 at 15 days of age.The antiviral effects were evaluated by clinical signs, weight, histopathology, T-,B-lymphocyte proliferation, T-lymphocyte subsets and cytokine levels.The results showed that the infection rate in each Forsythoside A prevention group was significantly lower than that in the treatment group and model control group (P < 0.05). The recovery rate in each Forsythoside A treatment group was significantly higher than that in the model control group (P < 0.05), and the recovery rate in high- and medium-dose treatment group was the highest, at up to 86.67%. Lymphocytic transformation ability significantly improved in the prevention and treatment groups. Forsythoside A significantly improved the CD3+, CD4+, and CD8+ T-lymphocyte of infected chickens. The cytokine level was able to maintain high concentrations of IL-2 and IFN-α for a long time and maintain a dynamic IL-4-concentration balance. A number of results showed that Forsythoside A had both preventive and therapeutic effects in IBV-M41-infected chickens, among which the high-dose (80 mg/kg/d) prevention group,the high- (80 mg/kg/d) and medium (40 mg/kg/d) -dose treatment group had significant effects.
Collapse
|
28
|
Zheng X, Fu Y, Shi SS, Wu S, Yan Y, Xu L, Wang Y, Jiang Z. Effect of Forsythiaside A on the RLRs Signaling Pathway in the Lungs of Mice Infected with the Influenza A Virus FM1 Strain. Molecules 2019; 24:molecules24234219. [PMID: 31757053 PMCID: PMC6930541 DOI: 10.3390/molecules24234219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023] Open
Abstract
Forsythiaside A, a phenylethanoid glycoside monomer extracted from Forsythia suspensa, shows anti-inflammatory, anti-infective, anti-oxidative, and antiviral pharmacological effects. The precise mechanism underlying the antiviral action of forsythiaside A is not completely clear. Therefore, in this study, we aimed to determine whether the anti-influenza action of forsythiaside A occurs via the retinoic acid-inducible gene-I–like receptors (RLRs) signaling pathway in the lung immune cells. Forsythiaside A was used to treat C57BL/6J mice and MAVS−/− mice infected with mouse-adapted influenza A virus FM1 (H1N1, A/FM1/1/47 strain), and the physical parameters (body weight and lung index) and the expression of key factors in the RLRs/NF-κB signaling pathway were evaluated. At the same time, the level of virus replication and the ratio of Th1/Th2 and Th17/Treg of T cell subsets were measured. Compared with the untreated group, the weight loss in the forsythiaside A group in the C57BL/6J mice decreased, and the histopathological sections showed less inflammatory damage after the infection with the influenza A virus FM1 strain. The gene and protein expression of retinoic acid-inducible gene-I (RIG-I), MAVS, and NF-κB were significantly decreased in the forsythiaside A group. Flow cytometry showed that Th1/Th2 and Th17/Treg differentiated into Th2 cells and Treg cells, respectively, after treatment with forsythiaside A. In conclusion, forsythiaside A reduces the inflammatory response caused by influenza A virus FM1 strain in mouse lungs by affecting the RLRs signaling pathway in the mouse lung immune cells.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Yingjie Fu
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Shan-Shan Shi
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Sha Wu
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Yuqi Yan
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Liuyue Xu
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Yiwei Wang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou 510632, China; (X.Z.); (Y.F.); (S.-S.S.); (S.W.); (Y.Y.); (L.X.); (Y.W.)
- Institute of Medical Microbiology, Jinan University, GuangZhou 510632, China
- Correspondence: ; Tel.: +86-20-85226677
| |
Collapse
|
29
|
Geng ZK, Li YQ, Cui QH, DU RK, Tian JZ. Exploration of the mechanisms of Ge Gen Decoction against influenza A virus infection. Chin J Nat Med 2019; 17:650-662. [PMID: 31526500 PMCID: PMC7128581 DOI: 10.1016/s1875-5364(19)30079-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Ge Gen Decoction (GGD), a Traditional Chinese Medicine prescription, is mainly used to treat infectious respiratory diseases and can relieve the symptoms of influenza A virus (IAV) infection. However, the underlying mechanism of GGD against IAV infection remains unclear. In this study, we found that GGD had moderate anti-IAV activity in vitro. GGD was more effective when given before the viral infection and targeted the viral attachment and replication stages rather than the internalization stage. In vivo, GGD treatment reduced thevirus titers of lung tissue significantly and improved the survival rate, lung index, and pulmonary histopathological changes in H1N1-infected mice. We observed the changes in several key immuno-related indexes in GGD administrated H1N1-infected mice with anti-IAV drug oseltamivir phosphate as the control. GGD treatment decreased the expression of TNF-α and improved Th1/Th2 immune balance to reduce the excessive immune response in H1N1-infected mice. Besides, the expression of the toll-like receptor 7 signaling pathway in H1N1-infected mice decreased after GGD treatment. Our results showed that GGD has anti-IAV activity and can modulate the immune system to relieve lung inflammation.
Collapse
Affiliation(s)
- Zi-Kai Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ya-Qun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qing-Hua Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China
| | - Rui-Kun DU
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China
| | - Jing-Zhen Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
30
|
Ma T, Shi YL, Wang YL. Forsythiaside A protects against focal cerebral ischemic injury by mediating the activation of the Nrf2 and endoplasmic reticulum stress pathways. Mol Med Rep 2019; 20:1313-1320. [PMID: 31173213 DOI: 10.3892/mmr.2019.10312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/24/2018] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is a common type of stroke with a high mortality and morbidity rate. Preventing and controlling cerebral ischemic injury is particularly important. Forsythiaside A (FA) has been reported to have anti‑inflammatory and antioxidant activities. The aim of the present study was to explore the impact of FA on middle cerebral artery occlusion (MCAO)‑induced cerebral ischemic injury in rats. The results indicated that FA markedly increased the percent survival and decreased the neurological deficit score in rats with cerebral ischemic injury. Furthermore, cell apoptosis was significantly inhibited by FA administration, which was accompanied by decreased caspase‑3 and caspase‑9 expression. A marked increase in the expression levels of nuclear factor‑erythroid 2‑related factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 and glutathione‑s‑transferase was detected in FA‑treated rats. In addition, treatment with FA reduced malonaldehyde expression, and enhanced the expression of superoxide dismutase and glutathione. Furthermore, endoplasmic reticulum (ER) stress was vastly alleviated by FA treatment, as evidenced by the increased expression of B‑cell lymphoma 2, apoptosis regulator and the downregulated expression of phosphorylated (phospho)‑protein kinase RNA‑like ER kinase (PERK)/PERK, phospho‑inositol‑requiring enzyme 1 (IRE1α)/IRE1α and CCAAT‑enhancer‑binding proteins homologous protein. Taken together, the present study demonstrated that FA attenuated cerebral ischemic damage via mediation of the activation of Nrf2 and ER stress pathways. These data may provide ideas for novel treatment strategies of cerebral ischemic damage.
Collapse
Affiliation(s)
- Tao Ma
- Department of Neurology, Xintai Municipal People's Hospital, Xintai, Shandong 271200, P.R. China
| | - Ya-Ling Shi
- Department of Neurology, The First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Yan-Ling Wang
- Department of Neurology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
31
|
Law AHY, Yang CLH, Lau ASY, Chan GCF. Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:236-247. [PMID: 28716571 DOI: 10.1016/j.jep.2017.07.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinqiaosan is a classical traditional Chinese medicine formula, which has been used to treat respiratory diseases since ancient China. It consists of nine herbs and among them, Forsythia suspensa (Thunb.) Vahl fruit is one of the major herbal components. Despite the long history of Yinqiaosan, the active compounds and the mechanisms of action of this formula remain elusive. AIM OF THE STUDY The present study aimed to examine the suppressive effect of Yinqiaosan on influenza virus and to identify the active components in the formula targeting influenza. MATERIALS AND METHODS Anti-influenza virus effect of Yinqiaosan was assessed by tissue culture infective dose assay, and was also tested in an in vivo mouse model. Active compound from the formula was identified with a bioactivity-guided fractionation scheme. The potential mode of action of the compound was further investigated by identifying the host cell signaling pathways and viral protein production using in vitro cell culture models. RESULTS Our results showed that forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit, a major herbal component in Yinqiaosan, reduced the viral titers of different influenza virus subtypes in cell cultures and increased the survival rate of the mice in an in vivo influenza virus infection model. Further experiments on the mode of action of forsythoside A showed that it reduced the influenza M1 protein, which in turn intervened the budding process of the newly formed virions and eventually limited the virus spread. CONCLUSION Results of our present study provides scientific evidence to support to the application of a traditional herbal formula. We also identify novel candidate compound for future drug development against influenza virus.
Collapse
Affiliation(s)
- Anna Hing-Yee Law
- Department of Paediatrics&Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Molecular Laboratory for Traditional Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Cindy Lai-Hung Yang
- Department of Paediatrics&Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Molecular Laboratory for Traditional Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Allan Sik-Yin Lau
- Department of Paediatrics&Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Molecular Laboratory for Traditional Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics&Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Molecular Laboratory for Traditional Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
32
|
Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics. Molecules 2017; 22:molecules22091466. [PMID: 28869577 PMCID: PMC6151565 DOI: 10.3390/molecules22091466] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Forsythiae Fructus, as a traditional Chinese medicine, has been widely used both as a single herb and in compound prescriptions in Asia, mainly due to its heat-clearing and detoxifying effects. Modern pharmacology has proved Forsythiae Fructus possesses various therapeutic effects, both in vitro and in vivo, such as anti-inflammatory, antibacterial and antiviral activities. Up to now, three hundred and twenty-one compounds have been identified and sensitive analytical methods have been established for its quality control. Recently, the pharmacokinetics of Forsythiae Fructus and its bioactive compounds have been reported, providing valuable information for its clinical application. Therefore, this systematic review focused on the newest scientific reports on Forsythiae Fructus and extensively summarizes its phytochemistry, pharmacology, pharmacokinetics and standardization procedures, especially the difference between the two applied types—unripe Forsythiae Fructus and ripe Forsythiae Fructus—in the hope of providing a helpful reference and guide for its clinical applications and further studies.
Collapse
|
33
|
Natural Products and Inflammation. Molecules 2017; 22:molecules22010120. [PMID: 28085099 PMCID: PMC6155884 DOI: 10.3390/molecules22010120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
|