1
|
Scheibel JM, Siqueira NM, da Silva LS, Mace MAM, Soares RMD. Progress in galactomannan-based materials for biomedical application. Int J Biol Macromol 2025; 311:143614. [PMID: 40306510 DOI: 10.1016/j.ijbiomac.2025.143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Galactomannan-based biomaterials display a unique behavior in aqueous media due to their mechanical, rheological and solubility properties, which are increasingly attracting their applicability into the biomedical area. The physical-chemical features of galactomannans extracted from different botanical sources provide diverse applicability for the developed systems, which can deliver active substances and be applied in wound healing and bone replacement. Galactomannans have an essential biological role and can be easily chemically modified due to their reactive chemical structure. Besides, their biocompatibility and capacity to be applied in the form of film, hydrogel, micro, nanoparticles, and printed material, could revolutionize personalized medicine. Scientists are investigating ways to functionalize galactomannans with bioactive molecules to enhance their biological performance. This is the first review of galactomannans that combines their chemical modifications with biological activities, presenting various biomaterial possibilities with a focus on biomedical applications. The rising demand for renewable-source materials in the medical field underscores their importance, driving ongoing research to explore their full capabilities. As studies progress, the scope of clinical applications for galactomannan-based materials is expected to broaden. To maximize the bioactive potential of galactomannan-based materials, emphasis should be placed on clinical translation to facilitate its effective incorporation into biomedical applications.
Collapse
Affiliation(s)
- Joice M Scheibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil.
| | - Nataly M Siqueira
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Laiane S da Silva
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Manoela A M Mace
- Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil; Postgraduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| | - Rosane M D Soares
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Sala A-216, Porto Alegre, RS 91540-000, Brazil; Polymeric Biomaterials Lab (Poli-Bio), Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
2
|
Galrinho MF, Silva LM, Lopes GR, Ferreira BAC, Valente SA, Ferreira I, Pinheiro BA, Palma AS, Evtuguin DV, Lopes da Silva JA, Almeida M, Ferreira P, Cruz MT, Coimbra MA, Passos CP. The study of galactomannans with different molecular weights and their ability to form microparticles suitable for pulmonary delivery. Carbohydr Polym 2024; 339:122268. [PMID: 38823931 DOI: 10.1016/j.carbpol.2024.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/03/2024]
Abstract
The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.
Collapse
Affiliation(s)
- Miguel F Galrinho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bernardo A C Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Ferreira
- Centro de Neurociências e Biologia Celular e Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal; Faculdade de Farmácia da Universidade de Coimbra, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Benedita A Pinheiro
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2829-516 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Angelina S Palma
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2829-516 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Dmitry V Evtuguin
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A Lopes da Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Almeida
- CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria T Cruz
- Centro de Neurociências e Biologia Celular e Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal; Faculdade de Farmácia da Universidade de Coimbra, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Ahmad F, Ahmad S, Upadhyay TK, Singh S, Khubaib M, Singh J, Saeed M, Ahmad I, Al-Keridis LA, Sharma R. Rifabutin loaded inhalable β-glucan microparticle based drug delivery system for pulmonary TB. Sci Rep 2024; 14:16437. [PMID: 39013991 PMCID: PMC11253001 DOI: 10.1038/s41598-024-66634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Inhalable microparticle-based anti TB drug delivery systems are being investigated extensively for Tuberculosis [TB] treatment as they offer efficient and deep lung deposition with several advantages over conventional routes. It can reduce the drug dose, treatment duration and toxic effects and optimize the drug bioavailability. Yeast derived β-glucan is a β-[1-3/1-6] linked biocompatible polymer and used as carrier for various biomolecules. Due to presence of glucan chains, particulate glucans act as PAMP and thereby gets internalized via receptor mediated phagocytosis by the macrophages. In this study, β-glucan microparticles were prepared by adding l-leucine as excipient, and exhibited 70% drug [Rifabutin] loading efficiency. Further, the sizing and SEM data of particles revealed a size of 2-4 µm with spherical dimensions. The FTIR and HPLC data confirmed the β-glucan composition and drug encapsulations efficiency of the particles. The mass median aerodynamic diameter [MMAD] and geometric standard deviation [GSD] data indicated that these particles are inhalable in nature and have better thermal stability as per DSC thermogram. These particles were found to be non-toxic upto a concentration of 80 µg/ml and were found to be readily phagocytosed by human macrophage cells in-vitro as well as in-vivo by lung alveolar macrophage. This study provides a framework for future design of inhalable β-glucan particle based host-directed drug delivery system against pulmonary TB.
Collapse
Grants
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
- Small Research Group Project under Grant no. [R.G.P.1/226/44] Irfan Ahmad Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia; Email: irfancsmmu@gmail.com
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, UP, 226026, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, 226014, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, UP, 224001, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Sanjay Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, UP, 226201, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, UP, 226026, India
| | - Jyotsna Singh
- Inhalation Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, UP, 226008, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, 34464, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Rolee Sharma
- Department of Life Sciences and Biotechnology, CSJM University, Kanpur, UP, 228024, India.
| |
Collapse
|
4
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
5
|
Knap K, Reczyńska-Kolman K, Kwiecień K, Niewolik D, Płonka J, Ochońska D, Jeleń P, Mielczarek P, Kazek-Kęsik A, Jaszcz K, Brzychczy-Włoch M, Pamuła E. Poly(sebacic acid) microparticles loaded with azithromycin as potential pulmonary drug delivery system: Physicochemical properties, antibacterial behavior, and cytocompatibility studies. BIOMATERIALS ADVANCES 2023; 153:213540. [PMID: 37429048 DOI: 10.1016/j.bioadv.2023.213540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS). The antibacterial properties were evaluated using the Kirby-Bauer method against Staphylococcus aureus. Potential cytotoxicity was evaluated in BEAS-2B and A549 lung epithelial cells by the resazurin reduction assay and live/dead staining. The results show that microparticles are spherical and their size, being in the range of 1-5 μm, should be optimal for pulmonary delivery. The AZ encapsulation efficiency is nearly 100 % for all types of microparticles. The microparticles degradation rate is relatively fast - after 24 h their mass decreased by around 50 %. The antibacterial test showed that released AZ was able to successfully inhibit bacteria growth. The cytotoxicity test showed that the safe concentration of both unloaded and AZ-loaded microparticles was equal to 50 μg/ml. Thus, appropriate physicochemical properties, controlled degradation and drug release, cytocompatibility, and antibacterial behavior showed that our microparticles may be promising for the local treatment of lung infections.
Collapse
Affiliation(s)
- Karolina Knap
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Reczyńska-Kolman
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Konrad Kwiecień
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Daria Niewolik
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Dorota Ochońska
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Piotr Jeleń
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicate Chemistry and Macromolecular Compounds, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Przemysław Mielczarek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Kazek-Kęsik
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Katarzyna Jaszcz
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
6
|
Guerreiro F, Pontes JF, Gaspar MM, Rosa da Costa AM, Faleiro ML, Grenha A. Respirable konjac glucomannan microparticles as antitubercular drug carriers: Effects of in vitro and in vivo interactions. Int J Biol Macromol 2023; 248:125838. [PMID: 37455007 DOI: 10.1016/j.ijbiomac.2023.125838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Pulmonary delivery of drugs is potentially beneficial in the context of lung disease, maximising drug concentrations in the site of action. A recent work proposed spray-dried konjac glucomannan (KGM) microparticles as antitubercular drug (isoniazid and rifabutin) carriers to treat pulmonary tuberculosis. The present work explores in vitro and in vivo effects of these microparticles, focusing on the ability for macrophage uptake, the exhibited antibacterial activity and safety issues. Efficient uptake of KGM microparticles by macrophages was demonstrated in vitro, while the antitubercular activity of the model drugs against Mycobacterium bovis was not affected by microencapsulation in KGM microparticles. Despite the good indications provided by the developed system, KGM is not yet approved for pulmonary applications, which is a limiting characteristic. To reinforce the available data on the performance of the material, safety parameters were evaluated both in vitro and in vivo, showing promising results. No significant cell toxicity was observed at concentrations considered realistic for lung delivery approaches (up to 125 μg/mL) when lung epithelial cells and macrophages were exposed to KGM microparticles (both drug-loaded and unloaded). Finally, no signs of systemic or lung inflammatory response were detected in mice after receiving 10 administrations of unloaded KGM microparticles.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Jorge F Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Department of Chemistry and Pharmacy, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- Algarve Biomedical Center (ABC), Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
7
|
Barrera-Rosales A, Rodríguez-Sanoja R, Hernández-Pando R, Moreno-Mendieta S. The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges. Microorganisms 2023; 11:1988. [PMID: 37630548 PMCID: PMC10459556 DOI: 10.3390/microorganisms11081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic or prophylactic approaches to control tuberculosis, one of the most important infectious diseases worldwide. This article reviews the progress and current state of the use of particles for the administration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric particles. In addition, we discuss the challenges and benefits of using these particulate systems to provide researchers with an overview of the most promising strategies in current preclinical trials, offering a perspective on their progress to clinical trials.
Collapse
Affiliation(s)
- Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México;
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México 14080, México
| | - Silvia Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
8
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
9
|
Valente SA, Lopes GR, Ferreira I, Galrinho MF, Almeida M, Ferreira P, Cruz MT, Coimbra MA, Passos CP. Polysaccharide-Based Carriers for Pulmonary Insulin Delivery: The Potential of Coffee as an Unconventional Source. Pharmaceutics 2023; 15:pharmaceutics15041213. [PMID: 37111698 PMCID: PMC10144660 DOI: 10.3390/pharmaceutics15041213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Non-invasive routes for insulin delivery are emerging as alternatives to currently painful subcutaneous injections. For pulmonary delivery, formulations may be in powdered particle form, using carriers such as polysaccharides to stabilise the active principle. Roasted coffee beans and spent coffee grounds (SCG) are rich in polysaccharides, namely galactomannans and arabinogalactans. In this work, the polysaccharides were obtained from roasted coffee and SCG for the preparation of insulin-loaded microparticles. The galactomannan and arabinogalactan-rich fractions of coffee beverages were purified by ultrafiltration and separated by graded ethanol precipitations at 50% and 75%, respectively. For SCG, galactomannan-rich and arabinogalactan-rich fractions were recovered by microwave-assisted extraction at 150 °C and at 180 °C, followed by ultrafiltration. Each extract was spray-dried with insulin 10% (w/w). All microparticles had a raisin-like morphology and average diameters of 1-5 µm, which are appropriate for pulmonary delivery. Galactomannan-based microparticles, independently of their source, released insulin in a gradual manner, while arabinogalactan-based ones presented a burst release. The microparticles were seen to be non-cytotoxic for cells representative of the lung, specifically lung epithelial cells (A549) and macrophages (Raw 264.7) up to 1 mg/mL. This work shows how coffee can be a sustainable source of polysaccharide carriers for insulin delivery via the pulmonary route.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel F Galrinho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Almeida
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria T Cruz
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery - A review of their properties and fates. Carbohydr Polym 2022; 277:118784. [PMID: 34893219 DOI: 10.1016/j.carbpol.2021.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022]
Abstract
Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Sarmento
- INEB - Institute of Biomedical Engineering Instituto, University of Porto, 4150-180 Porto, Portugal; i3S - Institute for Research & Innovation in Health, University of Porto, 4150-180 Porto, Portugal; CESPU - Institute for Research and Advanced Training in Health Sciences and Technologies, 4585-116 Gandra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Fernández-Paz E, Fernández-Paz C, Barrios-Esteban S, Santalices I, Csaba N, Remuñán-López C. Dry powders containing chitosan-based nanocapsules for pulmonary administration: Adjustment of spray-drying process and in vitro evaluation in A549 cells. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Fernández-Paz C, Fernández-Paz E, Salcedo-Abraira P, Rojas S, Barrios-Esteban S, Csaba N, Horcajada P, Remuñán-López C. Microencapsulated Isoniazid-Loaded Metal-Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs. Molecules 2021; 26:molecules26216408. [PMID: 34770817 PMCID: PMC8587908 DOI: 10.3390/molecules26216408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal–organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.
Collapse
Affiliation(s)
- Cristina Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Estefanía Fernández-Paz
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Sheila Barrios-Esteban
- Nanobiofar Group-Natural Polymers and Biomimetics (NPNB) Group, Center of Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Galicia, Spain
| | - Noemi Csaba
- Nanobiofar Group-Natural Polymers and Biomimetics (NPNB) Group, Center of Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Galicia, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra, 3, 28035 Móstoles, Madrid, Spain
| | - Carmen Remuñán-López
- Nanobiofar Group, Department of Pharmacology, Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
13
|
Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13091377. [PMID: 34575452 PMCID: PMC8472419 DOI: 10.3390/pharmaceutics13091377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we propose chitosan (CS)-based nanocapsules (NCs) for pulmonary gene delivery. Hyaluronic acid (HA) was incorporated in the NCs composition (HA/CS NCs) aiming to promote gene transfection in the lung epithelium. NCs were loaded with a model plasmid (pCMV-βGal) to easily evaluate their transfection capacity. The plasmid encapsulation efficiencies were of approx. 90%. To facilitate their administration to the lungs, the plasmid-loaded NCs were microencapsulated in mannitol (Ma) microspheres (MS) using a simple spray-drying technique, obtaining dry powders of adequate properties. In vivo, the MS reached the deep lung, where the plasmid-loaded CS-based NCs were released and transfected the alveolar cells more homogeneously than the control formulation of plasmid directly microencapsulated in Ma MS. The HA-containing formulation achieved the highest transfection efficiency, in a more extended area and more homogeneously distributed than the rest of tested formulations. The new micro-nanostructured platform proposed in this work represents an efficient strategy for the delivery of genetic material to the lung, with great potential for the treatment of genetic lung diseases.
Collapse
|
14
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
15
|
Guerreiro F, Swedrowska M, Patel R, Flórez-Fernández N, Torres MD, Rosa da Costa AM, Forbes B, Grenha A. Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. Int J Pharm 2021; 604:120731. [PMID: 34029661 DOI: 10.1016/j.ijpharm.2021.120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Few medically-approved excipients are available for formulation strategies to endow microcarriers with improved performance in lung drug targeting. Konjac glucomannan (KGM) is a novel, biocompatible material, comprising mannose units potentially inducing macrophage uptake for the treatment of macrophage-mediated diseases. This work investigated spray-dried KGM microparticles as inhalable carriers of model antitubercular drugs, isoniazid (INH) and rifabutin (RFB). The polymer was characterised and different polymer/drug ratios tested in the production of microparticles for which respirability was assessed in vitro. The swelling of KGM microparticles and release of drugs in simulated lung fluid were characterised and the biodegradability in presence of β-mannosidase, a lung hydrolase, determined. KGM microparticles were drug loaded with 66-91% association efficiency and had aerodynamic diameter around 3 µm, which enables deep lung penetration. The microparticles swelled upon liquid contact by 40-50% but underwent size reduction (>62% in 90 min) in presence of β-mannosidase, indicating biodegradability. Finally, drug release was tested showing slower release of RFB compared with INH but complete release of both within 24 h. This work identifies KGM as a biodegradable polymer of natural origin that can be engineered to encapsulate and release drugs in respirable microparticles with physical and chemical macrophage-targeting properties.
Collapse
Affiliation(s)
- Filipa Guerreiro
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Magda Swedrowska
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Roshnee Patel
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Noelia Flórez-Fernández
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, Ourense 32004, Spain.
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, Ourense 32004, Spain.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK.
| | - Ana Grenha
- Centre for Marine Sciences (CCMar), Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal.
| |
Collapse
|
16
|
da Silva Leite JM, Patriota YBG, de La Roca MF, Soares-Sobrinho JL. New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Curr Med Chem 2021; 29:1936-1958. [PMID: 34212827 DOI: 10.2174/0929867328666210629154908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis is a chronic respiratory disease caused by Mycobacterium tuberculosis. The common treatment regimens of tuberculosis are lengthy with adverse side effects, low patient compliance, and antimicrobial resistance. Drug delivery systems (DDSs) can overcome these limitations. OBJECTIVE This review aims to summarize the latest DDSs for the treatment of tuberculosis. In the first section, the main pharmacokinetic and pharmacodynamic challenges, due to the innate properties of the drugs, are put forth. The second section elaborates on the use of DDS to overcome the disadvantages of the current treatment of tuberculosis. CONCLUSION We reviewed research articles published in the last 10 years. DDSs can improve the physicochemical properties of anti-tuberculosis drugs, improving solubility, stability, and bioavailability, with better control of drug release and can target alveolar macrophages. However, more preclinical studies and robust bio-relevant analyses are needed for DDSs to become a feasible option to treat patients and attract investors.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Yuri Basilio Gomes Patriota
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
17
|
Sánchez M, Gómez C, Avendaño C, Harmsen I, Ortiz D, Ceballos R, Villamizar-Sarmiento MG, Oyarzun-Ampuero F, Wacyk J, Valenzuela C. House fly (Musca domestica) larvae meal as an ingredient with high nutritional value: Microencapsulation and improvement of organoleptic characteristics. Food Res Int 2021; 145:110423. [PMID: 34112425 DOI: 10.1016/j.foodres.2021.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Insects have potential to become food ingredients, but it is necessary to improve the sensory properties of insects to help them to be better accepted by the population. The purpose of this study was to produce and characterize house fly larval meal (FLM) converted to a micro-encapsulated powder to improve appearance and other organoleptic characteristics. FLM showed high protein (54%) and lipid (22%) content, with a microbiological activity compatible for food purposes. Moreover, the high content of essentials amino acids (lysine, cysteine and leucine) and unsaturated fatty acids (oleic, linoleic and palmitoleic) make FLM a valuable nutritional source. Spray drying was selected to encapsulate FLM (0.5-2% w/v) using maltodextrin (20% w/v) and alginate (0.5% w/v). Encapsulation improved the appearance of FLM, creating a white-beige, monodispersed micro-powder (9 µm in size). Micro-powder with 2% FLM is considered a good source of protein (5.1%). Microencapsulation also dramatically reduced the volatile emissions of FLM. In conclusion, novel FLM micro-powders were developed using a simple and scalable encapsulation technique. The micro-powder with 2% FLM is a good source of protein, has a pleasant appearance similar to vegetable meals and has improved odor compared to typical insect meals. Thus, insect-based food ingredients in micro-powders could become more accepted by the general population.
Collapse
Affiliation(s)
- Manuel Sánchez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile.
| | - Carolaynne Gómez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile.
| | - Constanza Avendaño
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile.
| | - Iliak Harmsen
- Laboratorio de Nutrición Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago, Chile.
| | - Daniela Ortiz
- Laboratorio de Nutrición Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago, Chile.
| | - Ricardo Ceballos
- Instituto de Investigaciones Agropecuarias (INIA) Quilamapu, Av. Vicente Méndez 515, Chillán, Chile.
| | - María Gabriela Villamizar-Sarmiento
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile; Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Jurij Wacyk
- Laboratorio de Nutrición Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago, Chile.
| | - Carolina Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile.
| |
Collapse
|
18
|
Cytocompatibility and cellular interactions of chondroitin sulfate microparticles designed for inhaled tuberculosis treatment. Eur J Pharm Biopharm 2021; 163:171-178. [PMID: 33838263 DOI: 10.1016/j.ejpb.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Tuberculosis remains a leading cause of death, therapeutic failure being mainly due to non-compliance with prolonged treatments, often associated with severe side-effects. New therapeutic strategies are demanded and, considering that the lung is the primary site of infection, direct lung delivery of antibiotics is possibly an effective approach. Therapeutic success in this context depends on suitable carriers that reach the alveoli where Mycobacterium hosts (macrophages) reside, as well as on their ability to promote macrophage capture and intracellular accumulation of drugs. In this work, we propose inhalable polymeric microparticles produced from chondroitin sulfate, a polymer composed by moieties recognized by macrophage receptors. Spray-drying of chondroitin sulfate in combination with two first-line antitubercular drugs (isoniazid and rifabutin) yielded respirable microparticles that evidenced no cytotoxic effects on lung epithelial cells (A549) and macrophages (dTHP1 and J744A.1). The microparticles exhibited tendency for macrophage capture in a dose-dependent manner, which was validated through imaging. High content image analysis revealed that rifabutin induced a dose-dependent increase in phospholipid content of macrophages, which could be prevented by formulation in chondroitin sulfate microparticles. This work provides indications on the potential of chondroitin sulfate carriers to interact with macrophages, thus providing a platform for drug delivery in the context of macrophage intracellular diseases, namely tuberculosis.
Collapse
|
19
|
Rodrigues S, da Costa AMR, Flórez-Fernández N, Torres MD, Faleiro ML, Buttini F, Grenha A. Inhalable Spray-Dried Chondroitin Sulphate Microparticles: Effect of Different Solvents on Particle Properties and Drug Activity. Polymers (Basel) 2020; 12:polym12020425. [PMID: 32059360 PMCID: PMC7077709 DOI: 10.3390/polym12020425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/26/2023] Open
Abstract
Spray-drying stands as one of the most used techniques to produce inhalable microparticles, but several parameters from both the process and the used materials affect the properties of the resulting microparticles. In this work, we describe the production of drug-loaded chondroitin sulphate microparticles by spray-drying, testing the effect of using different solvents during the process. Full characterisation of the polymer and of the aerodynamic properties of the obtained microparticles are provided envisaging an application in inhalable tuberculosis therapy. The spray-dried microparticles successfully associated two first-line antitubercular drugs (isoniazid and rifabutin) with satisfactory production yield (up to 85%) and drug association efficiency (60%–95%). Ethanol and HCl were tested as co-solvents to aid the solubilisation of rifabutin and microparticles produced with the former generally revealed the best features, presenting a better ability to sustainably release rifabutin. Moreover, these presented aerodynamic properties compatible with deep lung deposition, with an aerodynamic diameter around 4 μm and fine particle fraction of approximately 44%. Finally, it was further demonstrated that the antitubercular activity of the drugs remained unchanged after encapsulation independently of the used solvent.
Collapse
Affiliation(s)
- Susana Rodrigues
- Centre for Marine Sciences, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (N.F.-F.)
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Ana M. Rosa da Costa
- Algarve Chemistry Research Centre and Department of Chemistry and Pharmacy, Universidade do Algarve, 8005-139 Faro, Portugal;
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Noelia Flórez-Fernández
- Centre for Marine Sciences, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (N.F.-F.)
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal;
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, 32004 Ourense, Spain;
| | - María Dolores Torres
- Department of Chemical Engineering, University of Vigo, Faculty of Sciences, As Lagoas, 32004 Ourense, Spain;
| | - Maria Leonor Faleiro
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal;
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | - Ana Grenha
- Centre for Marine Sciences, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (N.F.-F.)
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal;
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441
| |
Collapse
|
20
|
Grenha A, Alves AD, Guerreiro F, Pinho J, Simões S, Almeida AJ, Gaspar MM. Inhalable locust bean gum microparticles co-associating isoniazid and rifabutin: Therapeutic assessment in a murine model of tuberculosis infection. Eur J Pharm Biopharm 2020; 147:38-44. [DOI: 10.1016/j.ejpb.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022]
|
21
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|
22
|
Synthesis and Characterization of pH-Sensitive Inulin Conjugate of Isoniazid for Monocyte-Targeted Delivery. Pharmaceutics 2019; 11:pharmaceutics11110555. [PMID: 31661841 PMCID: PMC6920787 DOI: 10.3390/pharmaceutics11110555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
The use of particles for monocyte-mediated delivery could be a more efficient strategy and approach to achieve intracellular targeting and delivery of antitubercular drugs to host macrophages. In this study, the potential of inulin microparticles to serve as a drug vehicle in the treatment of chronic tuberculosis using a monocytes-mediated drug targeting approach was evaluated. Isoniazid (INH) was conjugated to inulin via hydrazone linkage in order to obtain a pH-sensitive inulin-INH conjugate. The conjugate was then characterized using proton nuclear magnetic resonance (1HNMR), Fourier transform infrared spectroscopy (FTIR) as well as in vitro, cellular uptake and intracellular Mycobacterium tuberculosis (Mtb) antibacterial efficacy. The acid-labile hydrazone linkage conferred pH sensitivity to the inulin-INH conjugate with ~95, 77 and 65% of the drug released after 5 h at pH 4.5, 5.2, and 6.0 respectively. Cellular uptake studies confirm that RAW 264.7 monocytic cells efficiently internalized the inulin conjugates into endocytic compartments through endocytosis. The intracellular efficacy studies demonstrate that the inulin conjugates possess a dose-dependent targeting effect against Mtb-infected monocytes. This was through efficient internalization and cleavage of the hydrazone bond by the acidic environment of the lysosome, which subsequently released the isoniazid intracellularly to the Mtb reservoir. These results clearly suggest that inulin conjugates can serve as a pH-sensitive intracellular drug delivery system for TB treatment.
Collapse
|
23
|
Alsayed SSR, Beh CC, Foster NR, Payne AD, Yu Y, Gunosewoyo H. Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Curr Mol Pharmacol 2019; 12:27-49. [PMID: 30360731 DOI: 10.2174/1874467211666181025141114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Chau C Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Neil R Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
24
|
Cunha L, Rodrigues S, Rosa da Costa AM, Faleiro L, Buttini F, Grenha A. Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment. Drug Dev Ind Pharm 2019; 45:1313-1320. [DOI: 10.1080/03639045.2019.1608231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ludmylla Cunha
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Centre for Marine Sciences, University of Algarve, Faro, Portugal
| | - Susana Rodrigues
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Centre for Marine Sciences, University of Algarve, Faro, Portugal
| | - Ana M. Rosa da Costa
- Algarve Chemistry Research Centre, University of Algarve, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| | - Leonor Faleiro
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | | | - Ana Grenha
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Centre for Marine Sciences, University of Algarve, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Faro, Portugal
| |
Collapse
|
25
|
Guerreiro F, Pontes JF, Rosa da Costa AM, Grenha A. Spray-drying of konjac glucomannan to produce microparticles for an application as antitubercular drug carriers. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother 2018; 107:1218-1229. [DOI: 10.1016/j.biopha.2018.08.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
|
27
|
Miranda MS, Rodrigues MT, Domingues RMA, Torrado E, Reis RL, Pedrosa J, Gomes ME. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1090-1103. [PMID: 30274040 DOI: 10.1016/j.msec.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
The growing interest on polymeric delivery systems for pulmonary administration of drugs anticipates a more direct and efficient treatment of diseases such as tuberculosis (TB) that uses the pulmonary route as the natural route of infection. Polymeric microparticles or nano-in-microparticles offer target delivery of drugs to the lungs and the potential to control and sustain drug release within TB infected macrophages improving the efficiency of the anti-TB treatment and reducing side effects. In a dry powder form these inhalable delivery systems have increased stability and prolonged storage time without requiring refrigeration, besides being cost-effective and patient convenient. Thus, this review aims to compile the recent innovations of inhalable polymeric dry powder systems for the delivery of anti-TB drugs exploring the methods of production, aerodynamic characterization and the efficacy of targeted drug delivery systems using in vitro and in vivo models of the disease. Advanced knowledge and promising outcomes of these systems are anticipated to simplify and revolutionize the pulmonary drug delivery and to contribute towards more effective anti-TB treatments.
Collapse
Affiliation(s)
- Margarida S Miranda
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Egídio Torrado
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Jorge Pedrosa
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
28
|
Cunha L, Rodrigues S, Rosa da Costa AM, Faleiro ML, Buttini F, Grenha A. Inhalable Fucoidan Microparticles Combining Two Antitubercular Drugs with Potential Application in Pulmonary Tuberculosis Therapy. Polymers (Basel) 2018; 10:E636. [PMID: 30966670 PMCID: PMC6403622 DOI: 10.3390/polym10060636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary delivery of antitubercular drugs is a promising approach to treat lung tuberculosis. This strategy not only allows targeting the infected organ instantly, it can also reduce the systemic adverse effects of the antibiotics. In light of that, this work aimed at producing fucoidan-based inhalable microparticles that are able to associate a combination of two first-line antitubercular drugs in a single formulation. Fucoidan is a polysaccharide composed of chemical units that have been reported to be specifically recognised by alveolar macrophages (the hosts of Mycobacterium). Inhalable fucoidan microparticles were successfully produced, effectively associating isoniazid (97%) and rifabutin (95%) simultaneously. Furthermore, the produced microparticles presented adequate aerodynamic properties for pulmonary delivery with potential to reach the respiratory zone, with a mass median aerodynamic diameter (MMAD) between 3.6⁻3.9 µm. The formulation evidenced no cytotoxic effects on lung epithelial cells (A549), although mild toxicity was observed on macrophage-differentiated THP-1 cells at the highest tested concentration (1 mg/mL). Fucoidan microparticles also exhibited a propensity to be captured by macrophages in a dose-dependent manner, as well as an ability to activate the target cells. Furthermore, drug-loaded microparticles effectively inhibited mycobacterial growth in vitro. Thus, the produced fucoidan microparticles are considered to hold potential as pulmonary delivery systems for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Ludmylla Cunha
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - Susana Rodrigues
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre and Department of Chemistry and Pharmacy, University of Algarve, 8005-139 Faro, Portugal.
| | - M Leonor Faleiro
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
| | | | - Ana Grenha
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
29
|
Rodrigues S, Alves AD, Cavaco JS, Pontes JF, Guerreiro F, Rosa da Costa AM, Buttini F, Grenha A. Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles. Int J Pharm 2017; 529:433-441. [DOI: 10.1016/j.ijpharm.2017.06.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022]
|