1
|
Volpato Maroldi W, de Andrade Arruda Fernandes I, Demczuk Junior B, Cristina Pedro A, Maria Maciel G, Windson Isidoro Haminiuk C. Waste from the food industry: Innovations in biorefineries for sustainable use of resources and generation of value. BIORESOURCE TECHNOLOGY 2024; 413:131447. [PMID: 39245066 DOI: 10.1016/j.biortech.2024.131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biorefineries have attracted significant attention from the scientific community and various industrial sectors due to their use of unconventional biomass sources to produce biofuels and other value-added compounds. Various agro-industrial residues can be applied in biorefinery systems, making them economically and environmentally attractive. However, the cost, efficiency, and profitability of the process are directly affected by the choice of biomass, pre-treatments, and desired products. In biorefineries, the simultaneous production of different products during processing is a valuable approach. Chemical, physical, biological, or combined treatments can generate numerous compounds of high commercial interest, such as phenolic compounds. These treatments, in addition to modifying the biomass structure, are essential for the process's viability. Over the years, complex treatments with high costs and environmental impacts have been simplified and improved, becoming more specific in generating high-value resources as secondary outputs to the main process (generally related to the release of sugars from lignocelluloses to produce second-generation ethanol). Innovative methods involving microorganisms and enzymes are the most promising in terms of efficiency and lower environmental impact. Biorefineries enable the use of varied raw materials, such as different agro-industrial residues, allowing for more efficient resource utilization and reducing dependence on non-renewable sources. In addition to producing low-carbon biofuels, biorefineries generate a variety of high-value by-products, such as packaging materials, pharmaceuticals, and nutritional ingredients. This not only increases the profitability of biorefineries but also contributes to a circular economy.
Collapse
Affiliation(s)
- Wédisley Volpato Maroldi
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Brazil
| | | | - Bogdan Demczuk Junior
- Departamento Acadêmico de Alimentos e Engenharia Química (DAAEQ), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil
| | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil
| | - Charles Windson Isidoro Haminiuk
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil.
| |
Collapse
|
2
|
Liu M, Li S, Guan M, Bai S, Bai W, Jiang X. Leptin pathway is a crucial target for anthocyanins to protect against metabolic syndrome. Crit Rev Food Sci Nutr 2024; 65:2046-2061. [PMID: 38567995 DOI: 10.1080/10408398.2024.2323093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The high prevalence of metabolic syndrome is threatening the health of populations all over the world. Contemporary work demonstrates that high leptin concentration is directly related to the development of metabolic syndrome such as obesity, fatty liver diseases, type 2 diabetes mellitus and cardiovascular diseases. Anthocyanins are a widespread group of dietary polyphenols, which can ameliorate chronic diseases related to metabolic syndrome. In addition, anthocyanins can regulate the leptin pathway in chronic metabolic diseases, however the potential mechanism between anthocyanin and leptin is complex and elusive. In this review paper, we have evaluated the bioactivity of anthocyanins on the mediation of leptin level and the upstream and downstream pathways in chronic metabolic diseases. Anthocyanins could regulate the hypertrophy of adipose tissue, and the expression of leptin level via mediating TNF-α, C/EBP, PPAR, CREB and SREBP-1. Anthocyanins promoted the leptin sensitivity by increasing the level of leptin receptor, phosphorylation of JAK2/STAT3, PI3K/AKT, and additionally ameliorated metabolic disorder related outcome, including oxidative stress, inflammation, lipid accumulation, insulin resistance and the balance of gut microbiota. However, direct evidence of anthocyanins treatment on leptin signal transduction is still limited which calls for future molecular binding and gene regulation test.
Collapse
Affiliation(s)
- Maomao Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Siyu Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Meiyi Guan
- Department of Food Science and Engineering, International School, Jinan University, Guangzhou, P. R. China
| | - Shun Bai
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Kaur J, Farooqi H, Chandra K, Panda BP. Predicting the bioactive compounds of Lentinula edodes and elucidating its interaction with genes associated to obesity through network pharmacology and in-vitro cell-based assay. Heliyon 2024; 10:e27363. [PMID: 38495166 PMCID: PMC10940914 DOI: 10.1016/j.heliyon.2024.e27363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Mushrooms are traditionally used for various medicinal purposes in traditional oriental medicine. The Japanese and Chinese are familiar with the medicinal macro fungus Lentinula edodes (Shiitake mushroom). This study aims to evaluate the role of chemical compounds from L. edodes using network pharmacology and in-vitro studies for management of Obesity. Bioactive compounds in extracts of L. edodes were identified by GC-MS analysis. Compounds were later screened for their drug-like property by Lipinski's rule. In addition, public databases (SEA, STP, Omim and DisGenet) were searched to identify genes associated with selected molecules and obesity, as well as genes that overlap obesity target genes with genes related to L. edodes. Additionally, analysis was performed using Enrichr KG to predict the disease targets of L. edodes. Finally, network was constructed between the overlapping genes and bioactive molecules using Rstudio. Further in-vitro studies were carried out using 3T3-L1 cell line. The genes related to the selected compounds and obesity were identified and overlapped. The disease targets of L. edodes was predicted by enrichment analysis and was found to be linked to obesity. Furthermore, the hub gene was found to be fatty acid amide hydrolase, and the key bioactive compound was hexadecanoic acid methyl ester. The in-vitro cell culture studies confirmed the inhibition of adipogenesis in mushroom extract-treated 3T3-L1 cells and the augmentation of adiponectin. The study suggests that the hub gene fatty acid amide hydrolase might alleviate obesity by inhibiting arachidonoyl ethanolamide signaling, which would enhance the action of fatty acid amide hydrolase and limit appetite in L. edodes extract.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences & Research (HIMSR), Jamia Hamdard, New Delhi 110062 India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Dilshad R, Khan KUR, Ahmad S, Shaik Mohammad AA, Sherif AE, Rao H, Ahmad M, Ghalloo BA, Begum MY. Phytochemical characterization of Typha domingensis and the assessment of therapeutic potential using in vitro and in vivo biological activities and in silico studies. Front Chem 2023; 11:1273191. [PMID: 38025070 PMCID: PMC10663946 DOI: 10.3389/fchem.2023.1273191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Typha domingensis, a medicinal plant with significant traditional importance for curing various human diseases, has potentially bioactive compounds but was less explored previously. Therefore, this study aims to investigate the therapeutic potential of T. domingensis by evaluating the phytochemical profile through high-performance liquid chromatography (HPLC) techniques and its biological activities (in vitro and in vivo) from the methanolic extract derived from the entire plant (TDME). The secondary metabolite profile of TDME regulated by reverse phase ultra-high-performance liquid chromatography-mass spectrometry (RP-UHPLC-MS) revealed some bioactive compounds by -ve and +ve modes of ionization. The HPLC quantification study showed the precise quantity of polyphenols (p-coumaric acid, 207.47; gallic acid, 96.25; and kaempferol, 95.78 μg/g extract). The enzyme inhibition assays revealed the IC50 of TDME as 44.75 ± 0.51, 52.71 ± 0.01, and 67.19 ± 0.68 µgmL-1, which were significant compared to their respective standards (indomethacin, 18.03 ± 0.12; quercetin, 4.11 ± 0.01; and thiourea, 8.97 ± 0.11) for lipoxygenase, α-glucosidase, and urease, respectively. Safety was assessed by in vitro hemolysis (4.25% ± 0.16% compared to triton × 100, 93.51% ± 0.36%), which was further confirmed (up to 10 g/kg) by an in vivo model of rats. TDME demonstrated significant (p < 0.05) potential in analgesic activity by hot plate and tail immersion tests and anti-inflammatory activity by the carrageenan-induced hind paw edema model. Pain latency decreased significantly, and the anti-inflammatory effect increased in a dose-dependent way. Additionally, in silico molecular docking revealed that 1,3,4,5-tetracaffeoylquinic acid and formononetin 7-O-glucoside-6″-O-malonate possibly contribute to enzyme inhibitory activities due to their higher binding affinities compared to standard inhibitors. An in silico absorption, distribution, metabolism, excretion, and toxicological study also predicted the pharmacokinetics and safety of the chosen compounds identified from TDME. To sum up, it was shown that TDME contains bioactive chemicals and has strong biological activities. The current investigations on T. domingensis could be extended to explore its potential applications in nutraceutical industries and encourage the isolation of novel molecules with anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- Rizwana Dilshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdul Aziz, Al-Khar, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maqsood Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
5
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
6
|
Ugusman A, Shahrin SAS, Azizan NH, Pillai SB, Krishnan K, Salamt N, Aminuddin A, Hamid AA, Kumar J, Mokhtar MH. Role of Honey in Obesity Management: A Systematic Review. Front Nutr 2022; 9:924097. [PMID: 35811958 PMCID: PMC9263567 DOI: 10.3389/fnut.2022.924097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/02/2022] [Indexed: 12/20/2022] Open
Abstract
Obesity is a metabolic disorder that has become critically prevalent throughout the world. Obesity has been linked to other chronic diseases such as diabetes mellitus, cardiovascular diseases and cancer. Natural products such as honey have been investigated for their potential effect on obesity. Hence, this study systematically reviewed the recent literature concerning the effects of honey on obesity in obese animal models and in people with obesity. The Ovid MEDLINE, PubMed, Scopus, Web of Science and Google Scholar electronic databases were searched for relevant articles. A total of 130 relevant articles were obtained from the initial search. Following a thorough screening, nine articles were selected for data extraction, including six animal studies and three clinical trials. In most of the animal studies, honey demonstrated an anti-obesity effect by reducing body weight, body fat composition and adipocyte size, among others. However, supplementation of honey in clinical trials showed conflicting results. Even though honey supplementation did not demonstrate any weight-reducing effect in some of the clinical trials, none of the trials showed that honey increases body weight. However, the results should be interpreted with caution as most of the studies involved animal models and there is a limited number of high quality, randomized, controlled clinical trials. Systematic Review Registration https://inplasy.com/inplasy-2022-6-0038/ PROSPERO, identifier 10.37766/inplasy2022.6.0038.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
John CM, Arockiasamy S. Sinapic acid prevents adipogenesis by regulating transcription factors and exerts an anti-ROS effect by modifying the intracellular anti-oxidant system in 3T3-L1 adipocytes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:611-620. [PMID: 35911638 PMCID: PMC9282747 DOI: 10.22038/ijbms.2022.62590.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
Objectives In this study, we tested the hypothesis that sinapic acid (SA), a naturally occurring hydroxycinnamic acid found in vegetables, cereal grains, and oilseed crops with various biological activities suppresses adipogenesis in 3T3-L1 adipocytes by down-regulating adipogenesis transcription factor. Materials and Methods 3T3-L1 adipocytes were treated with SA and evaluated by Oil Red O staining, triglyceride estimation, lipolysis, and reverse transcription-polymerase chain reaction. 3T3-L1 adipocytes were treated with various concentrations of SA (100 to 1000 μmol) during differentiation. Results SA prevented an increase in adipocytes by reducing preadipocyte clonal expansion. ORO staining analyses revealed that SA reduced cytoplasmic lipid droplet accumulation in 3T3-L1 by 57% at the highest concentration of 1000 μmol without affecting cell viability. Furthermore, SA down-regulated the expression of peroxisome proliferator-activated receptor-gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein 1c, and fatty acid synthase. ROS generated during adipogenesis was also attenuated by SA treatment by increasing antioxidant enzymes superoxide dismutase, catalase, and the cellular antioxidant glutathione. SA demonstrated no in vivo toxicity in the Drosophila melanogaster model. Conclusion These results suggest that SA exerts anti-oxidant and anti-adipogenic effects and could be used as a functional nutraceutical ingredient in combatting obesity-related diseases.
Collapse
Affiliation(s)
- Cordelia Mano John
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai – 600116, Tamil Nadu, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai – 600116, Tamil Nadu, India,Corresponding author: Sumathy Arockiasamy. Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology Sri Ramachandra Institute of Higher Education and Research Porur, Chennai – 600116 Tamil Nadu. Tel: 044 – 24768027/29; Extn:8760;
| |
Collapse
|
8
|
Felice F, Cesare MM, Fredianelli L, De Leo M, Conti V, Braca A, Di Stefano R. Effect of Tomato Peel Extract Grown under Drought Stress Condition in a Sarcopenia Model. Molecules 2022; 27:molecules27082563. [PMID: 35458760 PMCID: PMC9031685 DOI: 10.3390/molecules27082563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tomatoes and their derivates represent an important source of natural biologically active components. The present study aims to investigate the protective effect of tomato peel extracts, grown in normal (RED-Ctr) or in drought stress (RED-Ds) conditions, on an experimental model of sarcopenia. The phenolic profile and total polyphenols content (TPC) of RED-Ctr and RED-Ds were determined by Ultra High-Performance Liquid Chromatography (UHPLC) analyses coupled to electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). Human skeletal muscle myoblasts (HSMM) were differentiated in myotubes, and sarcopenia was induced by dexamethasone (DEXA) treatment. Differentiation and sarcopenia were evaluated by both real-time PCR and immunofluorescent techniques. Data show that myosin heavy chain 2 (MYH2), troponin T (TNNT1), and miogenin (MYOG) were expressed in differentiated myotubes. 5 μg Gallic Acid Equivalent (GAE/mL) of TPC from RED-Ds extract significantly reduced muscle atrophy induced by DEXA. Moreover, Forkhead BoxO1 (FOXO1) expression, involved in cell atrophy, was significantly decreased by RED-Ds extract. The protective effect of tomato peel extracts depended on their qualitative polyphenolic composition, resulting effectively in the in vitro model of sarcopenia.
Collapse
Affiliation(s)
- Francesca Felice
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (M.M.C.); (V.C.)
| | - Luca Fredianelli
- Institute for Chemical-Physical Processes of the Italian Research Council (CNR-IPCF), Via Moruzzi 1, 56100 Pisa, Italy;
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Veronica Conti
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (M.M.C.); (V.C.)
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing, University of Pisa, 56126 Pisa, Italy
| | - Rossella Di Stefano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.D.L.); (A.B.)
| |
Collapse
|
9
|
Tian Y, Wang TS, Bu H, Shao G, Zhang W, Zhang L. Role of Exosomal miR-223 in Chronic Skeletal Muscle Inflammation. Orthop Surg 2022; 14:644-651. [PMID: 35293669 PMCID: PMC9002075 DOI: 10.1111/os.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
As skeletal muscle is one of the largest organs in the body, its damage can directly reflect a decline in somatic function, thus, further affecting daily life and health. Inflammation is a prerequisite for the repair of injured skeletal muscles. Chronic inflammation induced by inadequate repair in skeletal muscle aggravates tissue injury. Exosomes regulate inflammatory responses to facilitate the repair of skeletal muscle injury. Moreover, exosomal miR‐223 with high specificity is the most abundant miRNA in peripheral blood and regarded as biomarkers for inflammation post skeletal muscle injury, which warrants further investigation. Available studies have demonstrated that exosomal miR‐223 negatively correlates with TNF‐α levels in serum and regulates the canonical inflammatory NF‐κB signaling pathway. miR‐223 is a negative feedback regulator with great potential for adjusting inflammatory imbalance and promoting skeletal muscle repair. The research on the regulation of negative feedback factors in the inflammatory signaling pathway is essential in biology and medicine. Therefore, this review mainly elaborates the formation, heterogeneity and markers of exosomes and points out exosomal miR‐223 as a beneficial role in chronic skeletal muscle inflammation and can be expected to be a potential therapeutic target for skeletal muscle damage.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tie-Shan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Bu
- Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Guo Shao
- Center for Translational Medicine and Department of Laboratory Medicine, the Third People's Hospital of Longgang District, Shenzhen, China
| | - Wei Zhang
- Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Li Zhang
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
11
|
Huang H, Xue J, Zheng J, Tian H, Fang Y, Wang W, Wang G, Hou D, Lin J. Bioinformatic analysis of the gene expression profile in muscle atrophy after spinal cord injury. Sci Rep 2021; 11:21903. [PMID: 34754020 PMCID: PMC8578571 DOI: 10.1038/s41598-021-01302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injury (SCI) is often accompanied by muscle atrophy; however, its underlying mechanisms remain unclear. Here, the molecular mechanisms of muscle atrophy following SCI were investigated. The GSE45550 gene expression profile of control (before SCI) and experimental (14 days following SCI) groups, consisting of Sprague–Dawley rat soleus muscle (n = 6 per group), was downloaded from the Gene Expression Omnibus database, and then differentially expressed gene (DEG) identification and Gene Ontology, pathway, pathway network, and gene signal network analyses were performed. A total of 925 differentially expressed genes, 149 biological processes, and 55 pathways were screened. In the pathway network analysis, the 10 most important pathways were citrate cycle (TCA cycle), pyruvate metabolism, MAPK signalling pathway, fatty acid degradation, propanoate metabolism, apoptosis, focal adhesion, synthesis and degradation of ketone bodies, Wnt signalling, and cancer pathways. In the gene signal network analysis, the 10 most important genes were Acat1, Acadvl, Acaa2, Hadhb, Acss1, Oxct1, Hadha, Hadh, Acaca, and Cpt1b. Thus, we screened the key genes and pathways that may be involved in muscle atrophy after SCI and provided support for finding valuable markers for this disease.
Collapse
Affiliation(s)
- Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China
| | - Jinju Xue
- Department of Geriatrics, Affiliated Haikou Hospital, Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China
| | - Haiquan Tian
- Department of Orthopaedic Surgery, The Second People's Hospital of Changzhi, Changzhi, 046000, Shanxi, China
| | - Yehan Fang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China
| | - Wei Wang
- Department of Emergency, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China
| | - Dan Hou
- Department of Neurology, Affiliated Haikou Hospital, Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China.
| | - Jianping Lin
- Department of Joint Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China.
| |
Collapse
|
12
|
Yang L, Liao M. Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat. Saudi J Biol Sci 2021; 28:5555-5560. [PMID: 34588865 PMCID: PMC8459075 DOI: 10.1016/j.sjbs.2020.11.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
There is only limited literature studies on the activities of inflammation and matrix accumulation in the renal tissues of rats induced with diabetes through Streptozotocin. The present the investigation involves the examination of the protective actions of Myrcene (MYN), a monoterpene on the oxidative stress, inflammation, and matrix accumulation. For this purpose an experimental setup was created which involves injecting MYN 50 mg/kg for about 45 days in the STZ diabetic rats. Modifications in the enzymes, collagens, growth factor B1 and Kappa factor P65 were identified and tracked. The levels of the inflammatory markers like TF-α1, ICAM-1, VCAM-1, MCP-1 were tracked and noted. The current experimental results showed an alteration in the glucose metabolism and enhanced condition. Also an increased level of TGF-β-1 and Nuclear factor-kB expression was seen in the renal tissues. MYN was found to reduce glucose oxidative stress and exhibit an anti-inflammatory effect via inhibiting NF-kB signalling. The conclusion of the current study reveals that MYN regulates the inflammatory activities and matrix accumulation by inhibiting the activities of inflammatory cytokine, pro-inflammatory signalling.
Collapse
Affiliation(s)
- Lihong Yang
- School of nursing, ChiFeng University, Chifeng, Inner Mongolia 024000, China
| | - Min Liao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
13
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
14
|
Low-level laser irradiation potentiates anticancer activity of p-coumaric acid against human malignant melanoma cells. Melanoma Res 2020; 30:136-146. [PMID: 30855528 DOI: 10.1097/cmr.0000000000000603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
p-Coumaric acid (PCA) is a kind of phenolic compound, and as one of the cinnamic acid derivatives, it has many biological functions such as antioxidants, anti-inflammatory, antiplatelet, and anticancer activity. Low-level laser irradiation has received increasing interest in the fields of tissue regeneration and wound healing. In this study, the effect of low-level laser irradiation on human fibroblast cells (human dermal fibroblast) and human melanoma cancer cells (A375 and SK-MEL-37) treated with PCA was investigated. The human dermal fibroblast, A375, and SK-MEL-37 cells were exposed to low-level laser at 660-nm wavelength with 3 J/cm for 90 s, and then the cells were treated with different concentrations of PCA (0-1000 μg/ml for 24 h), separately. In another experiment, first the cells were treated by PCA and then irradiated with low-level laser as described before. The effect of various irradiation energy (1-6 J/cm) on the melanoma cells, which were then treated by PCA, was studied. The cell viability using MTT assay and lactate dehydrogenase assay was determined. Morphological changes owing to apoptosis induction by irradiation and PCA were detected by fluorescence microscopy using acridine orange/ethidium bromide double staining. The results showed that pretreatment with low-level laser irradiation and then PCA reduced the survival and growth of melanoma cells more than the early treatment with PCA and then low-level laser irradiation. Lactate dehydrogenase activity was reduced significantly by preirradiation and then PCA treatment in comparison with the dark group in melanoma cells. The cell cytotoxicity at different irradiation energy and then IC50 concentration of PCA was increased up to 3 J/cm and then decreased following increasing irradiation energy. The morphology study with light microscopy and apoptotic assay using acridine orange/ethidium bromide dual staining confirmed the MTT results. This study showed that low-level laser irradiation alone is not able to kill human normal fibroblast and human melanoma cancer cells. Preirradiation followed by treatment with PCA did not change the cell viability in human fibroblast significantly but reduced the cell viability in melanoma cells presumably through the apoptosis pathway.
Collapse
|
15
|
Sinapic Acid Promotes Browning of 3T3-L1 Adipocytes via p38 MAPK/CREB Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5753623. [PMID: 32351999 PMCID: PMC7171644 DOI: 10.1155/2020/5753623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/18/2023]
Abstract
Sinapic acid is a plant-derived phenolic compound, which acts as an antioxidant, anticancer, and anti-inflammatory agent. Although sinapic acid is valuable in a variety of therapeutic applications, its role in the improvement of obesity-related metabolic disease is relatively unexplored. Brown-like adipocytes (beige adipocytes) are characterized by a high concentration of mitochondria and high expression of uncoupling protein 1 (UCP1), which has specific functions in energy expenditure and thermogenesis. This study assessed the browning effects of sinapic acid in 3T3-L1 adipocytes. We investigated the expression of beige marker genes in 3T3-L1 adipocytes treated with sinapic acid. Sinapic acid increased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and UCP1. Sinapic acid also promoted mitochondrial biogenesis by dose-dependently upregulating the oxygen consumption rate and enhancing the expression of representative subunits of oxidative phosphorylation complexes. In addition, treatment with p38 mitogen-activated protein kinase (MAPK) inhibitor and cAMP response element binding (CREB) inhibitor decreased the expressions of genes associated with thermogenesis, mitochondrial biogenesis, and oxidative phosphorylation. In summary, sinapic acid initiates browning 3T3-L1 adipocytes via the p38 MAPK/CREB signaling pathway. Thus, sinapic acid may have potential therapeutic implication in obesity.
Collapse
|
16
|
Senthil R, Sakthivel M, Usha S. Structure-based drug design of peroxisome proliferator-activated receptor gamma inhibitors: ferulic acid and derivatives. J Biomol Struct Dyn 2020; 39:1295-1311. [PMID: 32151198 DOI: 10.1080/07391102.2020.1740790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), ligand-activated transcription factor, is a key modulator of genes considered in diabetes development as well as treatment. Adipogenesis differentiation through PPARγ, CCAAT-enhancer protein alpha (C/EBPα) is identified as a critical mechanism in fat accumulation and weight gain. Polyphenols studied against adipocyte differentiation is taken up for consistent support and drug discovery. Structure-based drug design found useful to distinguish the underlying mechanism of receptor-ligand interaction and function. In this work, phenolic acids, ferulic acid and its derivatives are used as ligands. Molecular parameters have been set to filter and sort the 34 derivatives from ZINC and PubChem databases. Besides, for affinity and activity identification, troglitazone and resveratrol co-crystallized ligands have been studied. Absorption, distribution, metabolism, elimination and toxicity, density functional theory, highest occupied molecular orbital-lowest unoccupied molecular orbital values and docking scores define the drug candidate as a potential inhibitor. Residues Ser 342 and Arg 280 bind with the ligands by forming hydrogen bonds and hydrophobic contacts. Based on the docking score, pharmacophore properties and functional energy values of the top six compounds are chosen for molecular dynamics and simulation. Consistency and stability maintained throughout the simulation up to 50 ns were observed. Free binding energy values and standard deviation of receptor and ligand calculated using molecular mechanics-generalized Born and surface area solvation method (MM_GBSA) is found significant. Therefore, ferulic acid derivatives and phenolic acids could be a potential inhibitor for adipocyte differentiation and lipid accumulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Renganathan Senthil
- Department of Bioinformatics, Marudupandiyar College, Thanjavur, Tamilnadu, India.,Lysine Biotech Private Limited, Thanjavur, Tamilnadu, India
| | - Manokaran Sakthivel
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Singaravelu Usha
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| |
Collapse
|
17
|
Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020; 74:10-22. [DOI: 10.1016/j.nutres.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/18/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
18
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
19
|
Dziadek K, Kopeć A, Piątkowska E, Leszczyńska T. High-Fructose Diet-Induced Metabolic Disorders Were Counteracted by the Intake of Fruit and Leaves of Sweet Cherry in Wistar Rats. Nutrients 2019; 11:nu11112638. [PMID: 31684199 PMCID: PMC6893591 DOI: 10.3390/nu11112638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have indicated that the use of plants rich in bioactive compounds may reduce the risk of non-communicable diseases. The aim of this study was to investigate how the addition of fruit and leaves to high-fructose diet affects lipid metabolism, including the expression of genes involved in fatty acid synthesis and oxidation in the liver and adipose tissue, as well as oxidative stress and inflammation in Wistar rats. The animals were fed with AIN-93G diet, high fructose (HFr) diet, HFr diet with addition of 5% or 10% freeze-dried fruits, and HFr diet with addition of 1% or 3% freeze-dried leaves. The experiment lasted 12 weeks. The results showed that the intake of fruit and leaves of sweet cherry caused the improvement of the liver function, as well as beneficially affected lipid metabolism, among others, by regulating the expression of genes associated with fatty acid synthesis and β-oxidation. Additionally, they exhibited antioxidant and anti-inflammatory properties. In conclusion, the addition of fruit and leaves reduced the adverse changes arising from the consumption of high fructose diet. Therefore, not only commonly consumed fruits, but also leaves can be potentially used as functional foods. These findings may be helpful in prevention and treatment of the obesity-related metabolic diseases, especially cardiovascular diseases.
Collapse
Affiliation(s)
- Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland.
| | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland.
| | - Ewa Piątkowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland.
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland.
| |
Collapse
|
20
|
Naumowicz M, Kusaczuk M, Kruszewski MA, Gál M, Krętowski R, Cechowska-Pasko M, Kotyńska J. The modulating effect of lipid bilayer/p-coumaric acid interactions on electrical properties of model lipid membranes and human glioblastoma cells. Bioorg Chem 2019; 92:103242. [DOI: 10.1016/j.bioorg.2019.103242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
21
|
Ekowati J, Diyah NW, Syahrani A. Synthesis and Antiplatelet Activites of Some Derivatives of p-Coumaric Acid. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.03.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Kuppusamy P, Soundharrajan I, Kim DH, Hwang I, Choi KC. 4-hydroxy-3-methoxy cinnamic acid accelerate myoblasts differentiation on C2C12 mouse skeletal muscle cells via AKT and ERK 1/2 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152873. [PMID: 30879871 DOI: 10.1016/j.phymed.2019.152873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The dietary intake of plant-based supplements has a vital role in human health and development. However, the actions of secondary plant metabolites on cell growth, differentiation and their signaling mechanisms are still unclear. PURPOSE In this study, we aim to investigate the C2C12 myoblast cells proliferation and differentiation by 4-hydroxy-3-methoxy cinnamic acid (=HMCA, ferulic acid) in a dose-dependent manner and to reveal its underlying mechanism of action. METHODS The effect of HMCA on C2C12 cell proliferation and differentiation were evaluated by expression of BMP's marker genes (-2, -4, -6, -7) and related myogenic proteins were analyzed by quantitative PCR and western blot techniques, respectively. RESULTS The in vitro findings confirmed that the HMCA upregulates BMPs (including BMP-2, -4, -6, and-7), gene expression in C2C12 skeletal muscle cells. Exposure to the lower dose of HMCA caused a significantly greater induction of myogenic differentiation than the higher dose during three- and six-day treatments. Further, the C2C12 myogenic differentiation signaling proteins MyoD, myogenin, JAK-1, -2, -3, STAT -2, -3, AMPK-α, ERK(1/2), and AKT were more preferentially activated by HMCA exposure cells than by untreated models. Thus, the experiment with inhibitors revealed that the HMCA induced muscle cell proliferation and differentiation through AKT and ERK (1/2) signaling cascades. Also, HMCA enhanced the C2C12 muscle cell differentiation protein markers such as myogenin, AKT and ERK (1/2) significantly (p ≤ 0.05) at day three in chemical inhibitors of LY 294002 and PD98056 treated samples. CONCLUSION The HMCA has a significant effect on muscle cell differentiation through ERK(1/2) and AKT signaling activation. Also, the HMCA promotes C2C12 muscle cell proliferation and differentiation via activation of osteogenic genes and myogeneic protein markers. Therefore, this study suggests that the natural phenolic compound HMCA has a potent function in muscle cell proliferation, differentiation, and development.
Collapse
Affiliation(s)
- Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Republic of Korea; Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Republic of Korea
| | - Da Hye Kim
- Center for Research on Environmental Disease, Department of Animal Husbandry, University of Kentucky, Lexington, KY 40536, USA
| | - Inho Hwang
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Republic of Korea.
| |
Collapse
|
23
|
Soundharrajan I, Kim DH, Kuppusamy P, Choi KC. Modulation of osteogenic and myogenic differentiation by a phytoestrogen formononetin via p38MAPK-dependent JAK-STAT and Smad-1/5/8 signaling pathways in mouse myogenic progenitor cells. Sci Rep 2019; 9:9307. [PMID: 31243298 PMCID: PMC6594940 DOI: 10.1038/s41598-019-45793-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Da Hye Kim
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY, 40536, USA
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea.
| |
Collapse
|
24
|
Chang E, Kim CY. Natural Products and Obesity: A Focus on the Regulation of Mitotic Clonal Expansion during Adipogenesis. Molecules 2019; 24:molecules24061157. [PMID: 30909556 PMCID: PMC6471203 DOI: 10.3390/molecules24061157] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Obesity is recognized as a worldwide health crisis. Obesity and its associated health complications such as diabetes, dyslipidemia, hypertension, and cardiovascular diseases impose a big social and economic burden. In an effort to identify safe, efficient, and long-term effective methods to treat obesity, various natural products with potential for inhibiting adipogenesis were revealed. This review aimed to discuss the molecular mechanisms underlying adipogenesis and the inhibitory effects of various phytochemicals, including those from natural sources, on the early stage of adipogenesis. We discuss key steps (proliferation and cell cycle) and their regulators (cell-cycle regulator, transcription factors, and intracellular signaling pathways) at the early stage of adipocyte differentiation as the mechanisms responsible for obesity.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea.
| |
Collapse
|
25
|
R-Limonene Enhances Differentiation and 2-Deoxy-D-Glucose Uptake in 3T3-L1 Preadipocytes by Activating the Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4573254. [PMID: 30250490 PMCID: PMC6140011 DOI: 10.1155/2018/4573254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Adipocyte is an important place for lipid storage. Defects in lipid storage in adipocytes can lead to lipodystrophy and lipid accumulation in muscle, liver, and other organs. It is the condition of mixed dyslipidemia which may favor the development of insulin resistance via lipotoxic mechanisms. Our objective of the study was to investigate the potential role of R-limonene (LM) on differentiation, lipid storage, and 2-deoxy-D-glucose (2DG) uptake in 3T3-L1 preadipocytes. Genes and proteins associated with differentiation, lipid accumulation, 2DG uptake and its signaling pathways in the adipocytes were analyzed using qPCR and western blot methods. LM treatment increased differentiation, lipid accumulation, and the expression of adipogenic and lipogenic markers such as C/EBP-α, C/EBP-β, PPARγ, SREBP-1, RXR, FAS, and adiponectin. However, the LM concentration at 10μM decreased (p < 0.05) adipogenesis and lipogenesis via regulating key transcriptional factors. LM treatment increased activation of Akt by increasing its phosphorylation, but p44/42 activation was not altered. MK-2206, an Akt specific inhibitor, reduced the activation of Akt phosphorylation whereas LM treatment aborted the MK-2206 mediated inhibition of Akt activation. LM enhanced glucose uptake in differentiated adipocytes. Overall data suggested that LM treatment favored lipid storage and glucose uptake in adipocytes via activation of key transcriptional factors through activation of Akt phosphorylation in 3T3-L1 adipocytes.
Collapse
|
26
|
Gurukar MSA, Chilkunda ND. Morus alba Leaf Bioactives Modulate Peroxisome Proliferator Activated Receptor γ in the Kidney of Diabetic Rat and Impart Beneficial Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7923-7934. [PMID: 29969905 DOI: 10.1021/acs.jafc.8b01357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peroxisome proliferator activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that can be activated or repressed by several exogenous and endogenous ligands and acts by modulating genes that regulate lipid, glucose, and insulin homeostasis. In kidney, PPARγ is involved in normal kidney development and other physiological functions. In our earlier report, we showed that feeding Morus alba leaves to experimental diabetic rats ameliorated diabetic nephropathy and significantly decreased microalbuminuria. In this paper, we have attempted to look into the molecular mechanism involving PPARγ modulation by mulberry leaf bioactive compounds by in vitro and in vivo methods and its impact on key inflammatory markers. In vitro assay by TR-FRET suggested that mulberry leaf extracts can serve as a putative modulator of PPARγ. High glucose conditions in vitro and in vivo increased PPARγ levels, which were ameliorated by mulberry leaves or their extracts. Interestingly, PPARγ was significantly phosphorylated at Ser112 by upstream kinases ERK42/44 in kidney of diabetic animals on feeding mulberry leaves. In vitro studies using MDCK cell line revealed that increased Ser112 phosphorylation was observed when cells were treated with bound phenolic acid rich extract but not with free phenolic acid rich extracts. HPLC analysis and bioassay-guided activity revealed that coumaric acid was the bioactive molecule within bound phenolic acid rich extract that was responsible for increased ERK42/44-mediated phosphorylation at Ser112. Furthermore, mulberry leaf bioactive compounds showed beneficial effect on the tested inflammatory markers.
Collapse
Affiliation(s)
- Mulluru Somasundara Abignan Gurukar
- Department of Molecular Nutrition , CSIR-CFTRI Mysuru , 570 020 Karnataka India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-CFTRI campus , Mysuru , 570 020 , Karnataka India
| | - Nandini D Chilkunda
- Department of Molecular Nutrition , CSIR-CFTRI Mysuru , 570 020 Karnataka India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-CFTRI campus , Mysuru , 570 020 , Karnataka India
| |
Collapse
|
27
|
Wei S, Qian L, Niu M, Liu H, Yang Y, Wang Y, Zhang L, Zhou X, Li H, Wang R, Li K, Zhao Y. The Modulatory Properties of Li-Ru-Kang Treatment on Hyperplasia of Mammary Glands Using an Integrated Approach. Front Pharmacol 2018; 9:651. [PMID: 29971006 PMCID: PMC6018463 DOI: 10.3389/fphar.2018.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Li-Ru-Kang (LRK) has been used in the treatment of hyperplasia of mammary glands (HMG) for several decades and can effectively improve clinical symptoms. This study aims to investigate the mechanism by which LRK intervenes in HMG based on an integrated approach that combines metabolomics and network pharmacology analyses. Methods: The effects of LRK on HMG induced by estrogen-progesterone in rats were evaluated by analyzing the morphological and pathological characteristics of breast tissues. Moreover, UPLC-QTOF/MS was performed to explore specific metabolites potentially affecting the pathological process of HMG and the effects of LRK. Pathway analysis was conducted with a combination of metabolomics and network pharmacology analyses to illustrate the pathways and network of LRK-treated HMG. Results: Li-Ru-Kang significantly improved the morphological and pathological characteristics of breast tissues. Metabolomics analyses showed that the therapeutic effect of LRK was mainly associated with the regulation of 10 metabolites, including prostaglandin E2, phosphatidylcholine, leukotriene B4, and phosphatidylserine. Pathway analysis indicated that the metabolites were related to arachidonic acid metabolism, glycerophospholipid metabolism and linoleic acid metabolism. Moreover, principal component analysis showed that the metabolites in the model group were clearly classified, whereas the metabolites in the LRK group were between those in the normal and model groups but closer to those in the normal group. This finding indicated that these metabolites may be responsible for the effects of LRK. The therapeutic effect of LRK on HMG was possibly related to the regulation of 10 specific metabolites. In addition, we further verified the expression of protein kinase C alpha (PKCα), a key target predicted by network pharmacology analysis, and showed that LRK could significantly improve the expression of PKCα. Conclusion: Our study successfully explained the modulatory properties of LRK treatment on HMG using metabolomics and network pharmacology analyses. This systematic method can provide methodological support for further understanding the complex mechanism underlying HMG and possible traditional Chinese medicine (TCM) active ingredients for the treatment of HMG.
Collapse
Affiliation(s)
- Shizhang Wei
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Liqi Qian
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Yuxue Yang
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Yingying Wang
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Lu Zhang
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Kun Li
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Hospital of People’s Liberation Army, Beijing, China
| |
Collapse
|
28
|
Soundharrajan I, Kim DH, Srisesharam S, Kuppusamy P, Sivanesan R, Choi KC. Limonene promotes osteoblast differentiation and 2-deoxy-d-glucose uptake through p38MAPK and Akt signaling pathways in C2C12 skeletal muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:41-48. [PMID: 29573911 DOI: 10.1016/j.phymed.2018.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Limonene is a cyclic monoterpene (CTL) found in citrus fruits and many plant kingdoms. It has attracted attention as potential molecule due to its diverse biological activities. However, molecular mechanism involved in the osteogenic induction of CTL in C2C12 skeletal muscle cells remain unclear. PURPOSE Skeletal development maintains the bone homeostasis through bone remodeling process. It coordinated between the osteoblast and osteoblast process. Osteoporosis is one of the most common bone diseases caused by a systemic reduction in bone mass. Recent osteoporosis treatment is based on the use of anti-resorptive and bone forming drugs. However, long term use of these drugs is associated with serious side effects and strategies on the discovery of lead compounds from natural products for osteoblast differentiation are urgently needed. Therefore, we planned to find out the role of CTL on osteoblast differentiation and glucose uptake in C2C12 cells and its effect on signaling pathways. METHODS Cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, genes, and proteins associated with osteoblast activation and glucose utilization were analysed. RESULTS CTL did not affect the cell viability. CTL significantly increased ALP activity, calcium depositions and the expression of osteogenic specific genes such as Myogenin, Myogenic differentiation 1 (MyoD), ALP, Run-related transcription factor 2(RUNX2), osteocalcin (OCN). In addition, CTL induced the mRNA expression of bone morphogenetic proteins (BMP-2 BMP-4 BMP-6 BMP-7 BMP-9). CTL treatment enhanced 2-Deoxy-d-glucose (2DG) uptake. Moreover, CTL stimulated the activation of p38 mitogen activated protein kinase (p38MAPK), Protein kinase B (Akt), Extracellular signal related kinase (ERKs) by increasing phosphorylation. CTL treatment abolished p38 inhibitor (SB203580) mediated inhibition of osteoblast differentiation, but no effect was noted by ERKs specific inhibitor (PD98059). CONCLUSION These results suggest that limonene induces osteoblast differentiation and glucose uptake through activating p38MAPK and Akt signaling pathways, confirming the molecular basis of the osteoblast differentiation by limonene in C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Da Hye Kim
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 980-8577, Japan
| | - Srigopalram Srisesharam
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | | | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
| |
Collapse
|
29
|
Misawa N, Hosoya T, Yoshida S, Sugimoto O, Yamada-Kato T, Kumazawa S. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation. Phytother Res 2018; 32:1304-1310. [DOI: 10.1002/ptr.6060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/27/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Naoki Misawa
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Takahiro Hosoya
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Shuhei Yoshida
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Osamu Sugimoto
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| | - Tomoe Yamada-Kato
- Research and Development Division; Kinjirushi Co. Ltd.; 2-61 Yahata-hontori, Nakagawa-ku Nagoya 454-8526 Japan
| | - Shigenori Kumazawa
- Department of Food and Nutritional Sciences; University of Shizuoka; 52-1 Yada, Suruga-ku Shizuoka 422-8526 Japan
| |
Collapse
|
30
|
Pang D, You L, Zhou L, Li T, Zheng B, Liu RH. Averrhoa carambolafree phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice. Food Funct 2017; 8:4496-4507. [DOI: 10.1039/c7fo00833c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Averrhoa carambolafree phenolic extract ameliorates hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK signaling.
Collapse
Affiliation(s)
- Daorui Pang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
| | - Lijun You
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
| | - Lin Zhou
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates
| | - Tong Li
- Department of Food Science
- Cornell University
- Ithaca
- USA
| | - Bisheng Zheng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
| | - Rui Hai Liu
- Department of Food Science
- Cornell University
- Ithaca
- USA
| |
Collapse
|