1
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Louppis AP, Kontominas MG. Analytical insights for ensuring authenticity of Greek agriculture products: Unveiling chemical marker applications. Food Chem 2024; 445:138758. [PMID: 38368700 DOI: 10.1016/j.foodchem.2024.138758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Food authentication, including the differentiation of geographical or botanical origin, the method of production i.e. organic vs. conventional farming as well as the detection of food fraud/adulteration, has been a rapidly growing field over the past two decades due to increasing public awareness regarding food quality and safety, nutrition, and health. Concerned parties include consumers, producers, and legislators. Thus, the development of rapid, accurate, sensitive, and reproducible analytical methods to guarantee the authenticity of foods is of primary interest to scientists and technologists. The aim of the present article is to summarize research work carried out on the authentication of Greek agricultural products using spectroscopic (NIR, FTIR, UV-Vis, Raman and fluorescence spectroscopy, NMR, IRMS, ICP-OES, ICP-MS) and chromatographic (GC, GC/MS, HPLC, HPLC/MS, etc.) methods of analysis in combination with chemometrics highlighting the chemical markers that enable product authentication. The review identified a large number of chemical markers including volatiles, phenolic substances, natural pigments, elements, isotopes, etc. which can be used for (i) the differentiation of botanical/geographical origin; conventional from organic farming; production procedure and vintage year, etc. and (ii) detection of adulteration of high quality plant and animal origin foods with lower value substitutes. Finally, the constant development of reliable analytical techniques in combination with law enforcement authorities will ensure authentic foods in terms of quality and safety for consumers.
Collapse
Affiliation(s)
| | - Michael G Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
3
|
Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol 2024; 108:268. [PMID: 38506962 PMCID: PMC10954923 DOI: 10.1007/s00253-024-13087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Anna Kilanowicz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Panlong District, Kunming, 650200, China
| |
Collapse
|
4
|
Mara A, Caredda M, Addis M, Sanna F, Deroma M, Georgiou CA, Langasco I, Pilo MI, Spano N, Sanna G. Elemental Fingerprinting of Pecorino Romano and Pecorino Sardo PDO: Characterization, Authentication and Nutritional Value. Molecules 2024; 29:869. [PMID: 38398621 PMCID: PMC10892592 DOI: 10.3390/molecules29040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Sardinia, located in Italy, is a significant producer of Protected Designation of Origin (PDO) sheep cheeses. In response to the growing demand for high-quality, safe, and traceable food products, the elemental fingerprints of Pecorino Romano PDO and Pecorino Sardo PDO were determined on 200 samples of cheese using validated, inductively coupled plasma methods. The aim of this study was to collect data for food authentication studies, evaluate nutritional and safety aspects, and verify the influence of cheesemaking technology and seasonality on elemental fingerprints. According to European regulations, one 100 g serving of both cheeses provides over 30% of the recommended dietary allowance for calcium, sodium, zinc, selenium, and phosphorus, and over 15% of the recommended dietary intake for copper and magnesium. Toxic elements, such as Cd, As, Hg, and Pb, were frequently not quantified or measured at concentrations of toxicological interest. Linear discriminant analysis was used to discriminate between the two types of pecorino cheese with an accuracy of over 95%. The cheese-making process affects the elemental fingerprint, which can be used for authentication purposes. Seasonal variations in several elements have been observed and discussed.
Collapse
Affiliation(s)
- Andrea Mara
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Marco Caredda
- Department of Animal Science, Agris Sardegna, S.S. 291 Sassari-Fertilia, Km. 18,600, I-07040 Sassari, Italy; (M.C.); (M.A.)
| | - Margherita Addis
- Department of Animal Science, Agris Sardegna, S.S. 291 Sassari-Fertilia, Km. 18,600, I-07040 Sassari, Italy; (M.C.); (M.A.)
| | - Francesco Sanna
- Department of Environmental Studies, Crop Protection and Production Quality Agris Sardegna, Viale Trieste 111, I-09123 Cagliari, Italy;
| | - Mario Deroma
- Department of Agriculture, University of Sassari, Viale Italia, 39A, I-07100 Sassari, Italy;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece;
- FoodOmics.GR Research Infrastructure, Agricultural University of Athens, 118 55 Athens, Greece
| | - Ilaria Langasco
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Maria I. Pilo
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Nadia Spano
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| | - Gavino Sanna
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy; (I.L.); (M.I.P.); (N.S.)
| |
Collapse
|
5
|
Hashami Z, Chabook N, Javanmardi F, Mohammadi R, Bashiry M, Mousavi Khaneghah A. The concentration and prevalence of potentially toxic elements (PTEs) in cheese: a global systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:479-498. [PMID: 36469799 DOI: 10.1080/09603123.2022.2153810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The present study aimed to systematically review the concentration of different PTEs, including Arsenic (As), Mercury (Hg), Lead (Pb), and Cadmium (Cd) in cheese among some databases between 2000 and 2021 (from 57 included studies). Estimated concentrations of 160.78 (95% CI = 119.24-202.28), 15.68 (95% CI = 11.88-19.48), 16.94 (95% CI = 13.29-20.59), and 2.47 (95% CI = 1.70-3.23) µg/kg were calculated for As, Pb, Cd, and Hg, respectively. Most of the studies for PTEs are related to Pb, about 40% of the studies, compared to As, which has fewer studies. The results showed that As and Hg concentrations were lower than the Codex Alimentarius Commission standard limits. Nevertheless, Cd and Pb concentrations were higher than the standard limit values. Results showed that cheese making, the ripening period, fat content, and texture are influential factors in a high level of Pb and Cd in cheese samples.
Collapse
Affiliation(s)
- Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Chabook
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Moein Bashiry
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
6
|
Ralli E, Spyros A. A Study of Greek Graviera Cheese by NMR-Based Metabolomics. Molecules 2023; 28:5488. [PMID: 37513360 PMCID: PMC10385548 DOI: 10.3390/molecules28145488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Graviera is a very popular yellow hard cheese produced in mainland Greece and the Aegean islands, and in three PDO (protected denomination of origin) locations. Apart from geographic location, type of milk and production practices are also factors that affect cheese composition, and make this dairy product unique in taste and aroma. In this work, 1H nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics has been used to determine the metabolite profile (40 compounds) of graviera cheese produced in different geographic locations, with emphasis on cheeses produced on the island of Crete. Organic acids and amino acids were the main components quantified in the polar cheese fraction, while the fatty acid (FA) composition of the lipid fraction was also obtained. Analysis of variance (Anova) of the dataset showed that γ-aminobutyric acid (GABA), conjugated linoleic acids (CLA) and linoleic acid differentiate gravieras produced in different areas of Crete, and that the total amino acid content was higher in cheeses produced in eastern Crete. Targeted discriminant analysis models classified gravieras produced in mainland Greece, Cyclades and Crete based on differences in 1,2-diglycerides, sterols, GABA and FA composition. Targeted and untargeted orthogonal partial least squares discriminant analysis (OPLS-DA) models were capable of differentiating gravieras produced in the island of Crete and hold promise as the basis for the authentication of PDO graviera products.
Collapse
Affiliation(s)
- Evangelia Ralli
- NMR Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 710 03 Heraklion, Crete, Greece
| | - Apostolos Spyros
- NMR Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 710 03 Heraklion, Crete, Greece
| |
Collapse
|
7
|
Zhang X, Zheng Y, Liu Z, Su M, Cao W, Zhang H. Review of the applications of metabolomics approaches in dairy science: From factory to human. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Descriptive Characteristics and Cheesemaking Technology of Greek Cheeses Not Listed in the EU Geographical Indications Registers. DAIRY 2023. [DOI: 10.3390/dairy4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Greece has a variety of cheeses that are registered as protected designation of origin and protected geographical indications, and many others that are produced in a traditional way, without such registration. This article aims to describe the characteristics of these cheeses, which do not bear a certification of geographical indication, in order to increase their significance. Therefore, in this work, the scientific data published about the history, production, composition, and other specific properties of some milk cheeses (Kariki, hard Xinotyri, soft Xinotyri, Kefalotyri, Kashkaval Pindos, Graviera, Manoura Sifnos, Teleme, Tsalafouti, Tyraki Tinou, Ladotyri Zakynthou, Touloumotyri, and Melichloro) and whey cheeses (Anthotyros, Myzithra, and Urda) are presented. This information may contribute to their better promotion and recognition, protecting their heritage, and supporting the local economy.
Collapse
|
9
|
Cardin M, Cardazzo B, Mounier J, Novelli E, Coton M, Coton E. Authenticity and Typicity of Traditional Cheeses: A Review on Geographical Origin Authentication Methods. Foods 2022; 11:3379. [PMID: 36359992 PMCID: PMC9653732 DOI: 10.3390/foods11213379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Food fraud, corresponding to any intentional action to deceive purchasers and gain an undue economical advantage, is estimated to result in a 10 to 65 billion US dollars/year economical cost worldwide. Dairy products, such as cheese, in particular cheeses with protected land- and tradition-related labels, have been listed as among the most impacted as consumers are ready to pay a premium price for traditional and typical products. In this context, efficient food authentication methods are needed to counteract current and emerging frauds. This review reports the available authentication methods, either chemical, physical, or DNA-based methods, currently used for origin authentication, highlighting their principle, reported application to cheese geographical origin authentication, performance, and respective advantages and limits. Isotope and elemental fingerprinting showed consistent accuracy in origin authentication. Other chemical and physical methods, such as near-infrared spectroscopy and nuclear magnetic resonance, require more studies and larger sampling to assess their discriminative power. Emerging DNA-based methods, such as metabarcoding, showed good potential for origin authentication. However, metagenomics, providing a more in-depth view of the cheese microbiota (up to the strain level), but also the combination of methods relying on different targets, can be of interest for this field.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
10
|
de Oliveira Filho EF, Miranda M, Ferreiro T, Herrero-Latorre C, Castro Soares P, López-Alonso M. Concentrations of Essential Trace and Toxic Elements Associated with Production and Manufacturing Processes in Galician Cheese. Molecules 2022; 27:molecules27154938. [PMID: 35956892 PMCID: PMC9370589 DOI: 10.3390/molecules27154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to determine the trace element composition and the toxic metal residues in Galician cow’s milk cheese produced in different systems (artisan, industrial, and organic). Fourteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se, and Zn) were determined in 58 representative samples of Galician cheeses by inductively coupled plasma mass spectrometry. The toxic elements were present at low concentrations, similar to those reported for other unpolluted geographical areas. The essential elements were also within the normal range in cheeses. There were no statistically significant differences between smoked and unsmoked cheeses for any of the elements. Chemometric analyses (principal component analysis and cluster analysis) revealed that the industrial cheeses produced in Galicia using the milk from intensive dairy farms were different, in terms of elemental content, from artisan and organic cheeses, in which the elemental contents were similar.
Collapse
Affiliation(s)
- Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine/UFRPE, Rua Dom Manoel de Medeiros, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
- Correspondence:
| | - Tania Ferreiro
- Technological Platform: Aula de Productos Lácteos y Tecnologías Alimentarias, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry, Nutrition and Bromatology Department, Faculty of Sciences, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| | - Pierre Castro Soares
- Department of Veterinary Medicine/UFRPE, Rua Dom Manoel de Medeiros, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
| | - Marta López-Alonso
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| |
Collapse
|
11
|
Malissiova E, Soultani G, Kogia P, Koureas M, Hadjichristodoulou C. Analysis of 20 year data for the assessment of dietary exposure to chemical contaminants in the region of Thessaly, Greece. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Theodoridis G, Pechlivanis A, Thomaidis NS, Spyros A, Georgiou CA, Albanis T, Skoufos I, Kalogiannis S, Tsangaris GT, Stasinakis AS, Konstantinou I, Triantafyllidis A, Gkagkavouzis K, Kritikou AS, Dasenaki ME, Gika H, Virgiliou C, Kodra D, Nenadis N, Sampsonidis I, Arsenos G, Halabalaki M, Mikros E. FoodOmicsGR_RI. A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites 2021; 11:74. [PMID: 33513809 PMCID: PMC7911248 DOI: 10.3390/metabo11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Alexandros Pechlivanis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece;
| | - Stavros Kalogiannis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Alexander Triantafyllidis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Marilena E. Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Helen Gika
- Department of Medicine, Laboratory of Forensic Medicine & Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Dritan Kodra
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - Georgios Arsenos
- Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | | |
Collapse
|
13
|
Katsouri E, Magriplis E, Zampelas A, Drosinos EH, Nychas GJ. Dietary Intake Assessment of Pre-Packed Graviera Cheese in Greece and Nutritional Characterization Using the Nutri-Score Front of Pack Label Scheme. Nutrients 2021; 13:295. [PMID: 33498580 PMCID: PMC7909575 DOI: 10.3390/nu13020295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 11/16/2022] Open
Abstract
Gravieras are 'gruyere' type hard cheeses with a variety of different products and the second highest consumption in Greece. In this study, we present a dietary intake assessment and a nutritional characterization of pre-packed graviera products sold in the Greek market using Nutri-Score Front of Pack Label (FoPL). The nutrient contents of 92 pre-packed graviera products were combined with daily individual consumption data extracted from the Hellenic National Nutrition Health Survey (n = 93), attempting to evaluate the contribution of graviera's consumption to the Greek diet. The analysis of nutrients' intake as a Reference Intake (RI) percentage ranked saturated fat first on the nutrients' intake list, with RI percentage ranging from 36.1 to 109.2% for the 95th percentile of consumption. The respective % RI for energy, total fat, carbohydrates, sugars, proteins and salt ranged from 12.7-20.7%, 21.6-50.4%, 0-3.1%, 0-6.1%, 37-57.1% and 6.3-42%. Nutri-Score classified 1% of the products to C-light orange class, 62% to D-orange and 37% to E-dark orange, while no products were classified to A-dark green or B-green classes. The comparison between the Nutri-Score classification and the nutrients' intake assessment, also separately conducted within the classes, showed a higher salt intake after the consumption of products classified as D-orange and E-dark orange.
Collapse
Affiliation(s)
- Evangelia Katsouri
- Hellenic Food Authority, 11526 Athens, Greece;
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (E.M.); (A.Z.); (E.H.D.)
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (E.M.); (A.Z.); (E.H.D.)
| | - Antonis Zampelas
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (E.M.); (A.Z.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (E.M.); (A.Z.); (E.H.D.)
| | - George-John Nychas
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (E.M.); (A.Z.); (E.H.D.)
| |
Collapse
|
14
|
Vatavali K, Kosma I, Louppis A, Gatzias I, Badeka A, Kontominas M. Characterisation and differentiation of geographical origin of Graviera cheeses produced in Greece based on physico-chemical, chromatographic and spectroscopic analyses, in combination with chemometrics. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Gatzias I, Karabagias I, Kontominas M, Badeka A. Geographical differentiation of feta cheese from northern Greece based on physicochemical parameters, volatile compounds and fatty acids. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Vatavali KA, Kosma IS, Louppis AP, Badeka AV, Kontominas MG. Physicochemical, Spectroscopic, and Chromatographic Analyses in Combination with Chemometrics for the Discrimination of the Geographical Origin of Greek Graviera Cheeses. Molecules 2020; 25:E3507. [PMID: 32752067 PMCID: PMC7435398 DOI: 10.3390/molecules25153507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Seventy-eight graviera cheese samples produced in five different regions of Greece were characterized and discriminated according to geographical origin. For the above purpose, pH, titratable acidity (TA), NaCl, proteins, fat on a dry weight basis, ash, fatty acid composition, volatile compounds, and minerals were determined. Both multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) were applied to experimental data to achieve sample geographical discrimination. The results showed that the combination of fatty acid composition plus minerals provided a correct classification rate of 89.7%. The value for the combination of fatty acid compositions plus conventional quality parameters was 94.9% and for the combination of minerals plus conventional quality parameters was 97.4%. When cheeses of the above five geographical origins were combined with previously studied graviera cheeses from six other geographical origins collected during the same seasons in Greece, the respective values for the discrimination of geographical origin of all eleven origins were 89.3% for conventional quality parameters plus minerals; 94.0% for conventional quality parameters plus fatty acids; 94.1% for minerals plus fatty acids; and 95.2% for conventional quality parameters plus minerals plus fatty acids. Such high correct classification rates demonstrate the robustness of the developed statistical model.
Collapse
Affiliation(s)
- Kornilia A. Vatavali
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.A.V.); (I.S.K.)
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.A.V.); (I.S.K.)
| | - Artemis P. Louppis
- CP FoodLab Ltd., 25 Polyfonti Str. P.O. Box: 28729, Strovolos- Nicosia 2082, Cyprus;
| | - Anastasia V. Badeka
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.A.V.); (I.S.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (K.A.V.); (I.S.K.)
| |
Collapse
|