1
|
Lima L, Pereira AI, Vaz CB, Ferreira O, Dias MI, Heleno SA, Calhelha RC, Barros L, Carocho M. Optimization of heat and ultrasound-assisted extraction of Eucalyptus globulus leaves reveals strong antioxidant and antimicrobial properties. Food Chem 2025; 479:143755. [PMID: 40081075 DOI: 10.1016/j.foodchem.2025.143755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
The extraction of phenolic compounds from eucalyptus leaves was optimized using heat and ultrasound-assisted techniques, and the bioactive potential of the resulting extract was assessed. The independent variables, including time (t), solvent concentration (S), and temperature (T) or power (P), were incorporated into a five-level central composite design combined with Response Surface Methodology. Phenolic content was determined by HPLC-DAD-ESI/MS and used as response criteria. The developed models were successfully fitted to the experimental data to identify the optimal extraction conditions. Heat-assisted extraction proved to be the most efficient method for phenolic recovery, yielding 27 ± 2 mg/g extract under optimal conditions (120 min, 76.5 °C, and 25 % ethanol, v/v). The extracts exhibited a high concentration of phenolic glycoside derivatives, including gallotannin, quercetin, and isorhamnetin. These findings suggest that the extracts hold promise as natural additives in food technology, owing to their moderate antimicrobial activity and strong antioxidant properties.
Collapse
Affiliation(s)
- Laíres Lima
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Centro de Investigação em Digitalização e Robótica Inteligente (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana I Pereira
- Centro de Investigação em Digitalização e Robótica Inteligente (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Clara B Vaz
- Centro de Investigação em Digitalização e Robótica Inteligente (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Olga Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
2
|
Infantino IR, Cubisino SAM, Nibali SC, Foti P, Tomasello MF, Boninelli S, Battiato G, Magrì A, Messina A, Romeo FV, Caggia C, De Pinto V, Reina S. Phenolic extract from olive mill wastewater sustains mitochondrial bioenergetics upon oxidative insult. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100234. [PMID: 39791008 PMCID: PMC11713508 DOI: 10.1016/j.fochms.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of olive fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.e. C and OPE extracts, respectively) that exhibited considerable anti-microbial and radical-scavenging activities in vitro. Based on these findings, the present study aimed to assess the impact of C and OPE samples on mitochondrial function and oxidative stress response in mouse fibroblast-like cells (NCTC). Accordingly, OMWW phenolic extracts proved to enhance mitochondrial biogenesis and to reduce cellular sensitivity to hydrogen peroxide. Moreover, high-resolution respirometry experiments first time revealed the efficiency of OMWW phenols recovered by selective resin extraction in preventing mitochondrial respiration failure upon oxidative insult. Collected data definitely demonstrate the bioactivity of our phenolic-rich fractions, supporting the advantages of reusing the olive mill wastewater to generate, at low-cost, high added value molecules that could be useful for the improvement of health and nutrition products.
Collapse
Affiliation(s)
| | | | | | - Paola Foti
- Council for Agricultural Research and Economics (CREA)– Research Centre for Olive, Fruit and Citrus Crops, Acireale, CT, Italy
- Dept. of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Silvia Boninelli
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
| | - Giuseppe Battiato
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
| | - Andrea Magrì
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| | - Angela Messina
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| | - Flora Valeria Romeo
- Council for Agricultural Research and Economics (CREA)– Research Centre for Olive, Fruit and Citrus Crops, Acireale, CT, Italy
| | - Cinzia Caggia
- Dept. of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Vito De Pinto
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| | - Simona Reina
- Dept. of Biomedical and Biotechnological Sciences, University of Catania
- We.Mitobiotech S.R.L
| |
Collapse
|
3
|
Toscano A, Silva AFR, Ramos MP, Komora N, Silva FVM, Fradinho P. Spicy Food Ingredient from Red Habanero By-Product Obtained by Ultrasound-Assisted Extraction. Foods 2025; 14:1407. [PMID: 40282808 PMCID: PMC12026765 DOI: 10.3390/foods14081407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The production of spicy sauces from chili peppers (Capsicum spp.) generates 5-30% of spicy by-product which is rich in valuable compounds (e.g., capsaicinoids, carotenoids, phenolics, etc.) and can serve as a source of Capsicum oleoresins, providing spice and color ingredients for food products. This study primarily focused on the optimization of Capsicum oleoresin extraction from Red Habanero chili pepper (Capsicum chinense Jacq.) by-product using ultrasound-assisted extraction (UAE). A second focus was the comparison between UAE and reflux-assisted extraction (RAE). Response Surface Methodology (RSM) was employed to optimize the extraction time (3 to 17 min) and acoustic power density (APD, 0.30 to 1.00 W/mL). The optimal UAE conditions (8 min, 0.87 W/mL) showed a higher extraction yield (26%) and high quality oleoresin extracts rich in bioactives (capsaicinoids: 7 mg/g; phenolics: 4 mg GAE/g) with antioxidant activity (FRAP: 139 µmol FeSO4 eq/g; DPPH: 33 µmol TEAC/g). Optimum UAE extracts proved more colored, energy-efficient (95% less consumption), equally spicy (466,000 SHU) and had higher antioxidant activity than RAE. These results demonstrated UAE as a sustainable method for producing high value spicy additives from chili pepper by-product, turning them into products with enhanced bioactivity, favoring a circular economy in the agri-food industry.
Collapse
Affiliation(s)
- António Toscano
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Andreia F. R. Silva
- Colab4Food—Collaborative Laboratory for Innovation in the Agri-Food Sector, Rua dos Lagidos, Vairão, 4485-655 Vila do Conde, Portugal;
| | - Maria P. Ramos
- Casa Mendes Gonçalves, Zona Industrial, Lote 6, 2150-268 Golegã, Portugal; (M.P.R.); (N.K.)
| | - Norton Komora
- Casa Mendes Gonçalves, Zona Industrial, Lote 6, 2150-268 Golegã, Portugal; (M.P.R.); (N.K.)
| | - Filipa V. M. Silva
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Patrícia Fradinho
- Colab4Food—Collaborative Laboratory for Innovation in the Agri-Food Sector, Rua dos Lagidos, Vairão, 4485-655 Vila do Conde, Portugal;
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
4
|
Ramzan K, Zehra SH, Balciunaitiene A, Viskelis P, Viskelis J. Valorization of Fruit and Vegetable Waste: An Approach to Focusing on Extraction of Natural Pigments. Foods 2025; 14:1402. [PMID: 40282804 PMCID: PMC12027361 DOI: 10.3390/foods14081402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
The increasing demand for functional foods has spurred interest in bioactive compounds, particularly their role in health promotion and disease prevention. This review comprehensively explores the bioavailability, mechanisms of action, and potential applications of bioactive compounds derived from natural food sources. We have systematically compiled and synthesized data from the recent scientific literature, including peer-reviewed journal articles, clinical studies, and meta-analyses, to present an in-depth evaluation of these compounds' physicochemical properties, stability, and interactions within food matrices. Furthermore, this review discusses advanced delivery systems, such as nanoencapsulation and emulsification, for enhancing bioavailability and targeted release. By addressing critical gaps in the understanding of the functional and technological aspects of bioactive compounds, this review underscores their relevance in formulating novel nutraceuticals and functional foods. The insights presented herein provide a foundation for future research and practical applications in the food industry, ultimately contributing to improving human health and well-being. Although recovering bioactive compounds from food waste is a sustainable way to reduce waste and use resources, additional research is required to make these procedures more efficient for use on an industrial scale.
Collapse
Affiliation(s)
- Khadija Ramzan
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (S.H.Z.); (A.B.); (P.V.)
| | | | | | | | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (S.H.Z.); (A.B.); (P.V.)
| |
Collapse
|
5
|
Castagna A, Aboudia A, Guendouz A, Scieuzo C, Falabella P, Matthes J, Schmid M, Drissner D, Allais F, Chadni M, Cravotto C, Senge J, Krupitzer C, Canesi I, Spinelli D, Drira F, Ben Hlima H, Abdelkafi S, Konstantinou I, Albanis T, Yfanti P, Lekka ME, Lazzeri A, Aliotta L, Gigante V, Coltelli MB. Transforming Agricultural Waste from Mediterranean Fruits into Renewable Materials and Products with a Circular and Digital Approach. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1464. [PMID: 40271629 PMCID: PMC11989941 DOI: 10.3390/ma18071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
The Mediterranean area is one of the major global producers of agricultural food. However, along the entire supply chain-from farming to food distribution and consumption-food waste represents a significant fraction. Additionally, plant waste residues generated during the cultivation of specific fruits and vegetables must also be considered. This heterogeneous biomass is a valuable source of bioactive compounds and materials that can be transformed into high-performance functional products. By analyzing technical and scientific literature, this review identifies extraction, composite production, and bioconversion as the main strategies for valorizing agricultural by-products and waste. The advantages of these approaches as well as efficiency gains through digitalization are discussed, along with their potential applications in the Mediterranean region to support new research activities and bioeconomic initiatives. Moreover, the review highlights the challenges and disadvantages associated with waste valorization, providing a critical comparison of different studies to offer a comprehensive perspective on the topic. The objective of this review is to evaluate the potential of agricultural waste valorization, identifying effective strategies while also considering their limitations, to contribute to the development of sustainable and innovative solutions in Mediterranean bioeconomy.
Collapse
Affiliation(s)
- Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, 56126 Pisa, Italy;
| | - Aouatif Aboudia
- Bioresources and Food Safety Laboratory, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco;
| | - Amine Guendouz
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (Agro Biotech-URL-CNRST-05 Center), Faculty of Science and Technology, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco;
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy; (C.S.); (P.F.)
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy; (C.S.); (P.F.)
| | - Julia Matthes
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anthon-Günther-Straße 51, 72488 Sigmaringen, Germany; (J.M.); (M.S.); (D.D.)
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anthon-Günther-Straße 51, 72488 Sigmaringen, Germany; (J.M.); (M.S.); (D.D.)
| | - David Drissner
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anthon-Günther-Straße 51, 72488 Sigmaringen, Germany; (J.M.); (M.S.); (D.D.)
| | - Florent Allais
- URD Agro-Biotechnologie Industrielles, CEBB, AgroParisTech, 51110 Pomacle, France; (F.A.); (M.C.); (C.C.)
| | - Morad Chadni
- URD Agro-Biotechnologie Industrielles, CEBB, AgroParisTech, 51110 Pomacle, France; (F.A.); (M.C.); (C.C.)
| | - Christian Cravotto
- URD Agro-Biotechnologie Industrielles, CEBB, AgroParisTech, 51110 Pomacle, France; (F.A.); (M.C.); (C.C.)
| | - Julia Senge
- Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; (J.S.); (C.K.)
| | - Christian Krupitzer
- Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; (J.S.); (C.K.)
| | - Ilaria Canesi
- Next Technology Tecnotessile Società Nazionale di Ricerca R.L., 59100 Prato, Italy; (I.C.); (D.S.)
| | - Daniele Spinelli
- Next Technology Tecnotessile Società Nazionale di Ricerca R.L., 59100 Prato, Italy; (I.C.); (D.S.)
| | - Fadoua Drira
- Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (F.D.); (H.B.H.); (S.A.)
| | - Hajer Ben Hlima
- Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (F.D.); (H.B.H.); (S.A.)
| | - Slim Abdelkafi
- Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (F.D.); (H.B.H.); (S.A.)
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Paraskevi Yfanti
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Marilena E. Lekka
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| |
Collapse
|
6
|
Romero-Martínez M, Andrade-Pizarro R, De Paula C. Functional compounds in tropical fruit processing by-products and intrinsic factors affecting their composition: A review. Curr Res Food Sci 2025; 10:101028. [PMID: 40190386 PMCID: PMC11968299 DOI: 10.1016/j.crfs.2025.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Tropical fruits, highly demanded in the food industry, generate a considerable amount of waste during processing. These traditionally discarded by-products, such as peels, seeds and pomace, are rich in bioactive compounds, natural molecules that have beneficial properties for human health, as they participate in various metabolic processes in the organism. Among the most prominent compounds are flavonoids, carotenoids, phenolic compounds, tannins and vitamin C. Beyond their health benefits, these compounds have significant industrial value and are widely used in the textile, pharmaceutical, cosmetic, biotechnological and food fields, in the latter especially as preservatives, additives, colorants and others. This review explores the main bioactive compounds found in fruit by-products, highlighting their functional relevance and analyzing the intrinsic or fruit-derived factors that influence the composition of these compounds, such as the type of by-product (peels, seeds, bagasse, pomace), the variety of fruit, and the state of maturity at the time of processing. In addition, the extraction methods used to obtain these compounds are addressed, differentiating between conventional techniques, such as solvent extraction, and emerging methods, such as ultrasound-assisted extraction and supercritical fluid extraction, which offer advantages in terms of efficiency and sustainability. The diversity of bioactive compounds and their potential application in various industries highlight the importance of ongoing research in this field. It is necessary to further study the factors that influence the composition of these compounds, as well as the development of more efficient and sustainable extraction methods. These advances will not only add value to food industry waste, but will also contribute to the development of natural products with health benefits.
Collapse
Affiliation(s)
- María Romero-Martínez
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Ricardo Andrade-Pizarro
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| | - Claudia De Paula
- University of Córdoba, Faculty of Engineering, Department of Food Engineering, Córdoba, Colombia
| |
Collapse
|
7
|
Fernandes J, Gomes S, Reboredo FH, Pintado ME, Amaral O, Dias J, Alvarenga N. Clean Label Approaches in Cheese Production: Where Are We? Foods 2025; 14:805. [PMID: 40077507 PMCID: PMC11899541 DOI: 10.3390/foods14050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The Clean Label concept has gained significant traction in the cheese industry due to consumer preferences for minimally processed cheeses free from synthetic additives. This review explores different approaches for applying Clean Label principles to the cheese industry while maintaining food safety, sensory quality, and shelf life. Non-thermal technologies, such as high-pressure processing (HPP), pulsed electric fields (PEF), ultra-violet (UV), and visible light (VL), are among the most promising methods that effectively control microbial growth while preserving the nutritional and functional properties of cheese. Protective cultures, postbiotics, and bacteriophages represent microbiological strategies that are natural alternatives to conventional preservatives. Another efficient approach involves plant extracts, which contribute to microbial control, and enhance cheese functionality and potential health benefits. Edible coatings, either alone or combined with other methods, also show promising applications. Despite these advantages, several challenges persist: higher costs of production and technical limitations, possible shorter shelf-life, and regulatory challenges, such as the absence of standardized Clean Label definitions and compliance complexities. Further research is needed to develop and refine Clean Label formulations, especially regarding bioactive peptides, sustainable packaging, and advanced microbial control techniques. Addressing these challenges will be essential for expanding Clean Label cheese availability while ensuring product quality and maintaining consumer acceptance.
Collapse
Affiliation(s)
- Jaime Fernandes
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sandra Gomes
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Olga Amaral
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Agriculture, Polytechnic University of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7006-554 Évora, Portugal
| | - João Dias
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- School of Agriculture, Polytechnic University of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7006-554 Évora, Portugal
| | - Nuno Alvarenga
- UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária IP, Quinta do Marquês, 2780-157 Oeiras, Portugal
- GeoBioTec Research Center, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Crescenzi MA, Cerulli A, Masullo M, Montoro P, Piacente S. Comparison of Vegetable Waste Byproducts of Selected Cultivars of Foeniculum vulgare Mill. by an Integrated LC-(HR)MS and 1H-NMR-Based Metabolomics Approach. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39837564 DOI: 10.1002/pca.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025]
Abstract
INTRODUCTION The metabolome of plants is influenced by various factors, especially environmental, as the season in which they are grown. So, distinct varieties of the identical plant might show an increase or decrease in metabolites. The diversity of content of primary and secondary metabolites can also determine the variation in their biological properties. Due to the current occurrence of various fennel varieties, the crop can now be grown for the entire year. OBJECTIVE This work used an integrated approach of LC/MS and NMR analysis to characterize the metabolome of fennel waste of different varieties by multivariate statistical analysis. METHODS The extracts were investigated by NMR and LC/MS analysis to focus attention on the primary and secondary metabolites. Both LC-HRMS and NMR data were analyzed by principal component analysis (PCA). RESULTS The 1H-NMR analysis led to the identification of 15 primary metabolites, such as amino acids, carbohydrates, and organic acid derivatives. The secondary metabolites identified by LC/MS analysis mainly belong to the phenolic, lipid, and fatty acid compounds classes. CONCLUSION This integrated approach guarantees a precise and complete overview of the variations in the metabolic expression of the fennel varieties grown in different seasons.
Collapse
Affiliation(s)
- Maria Assunta Crescenzi
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Antonietta Cerulli
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Milena Masullo
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Paola Montoro
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of the Study of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
9
|
Kamalesh R, Saravanan A, Yaashikaa PR, Vijayasri K. Innovative approaches to harnessing natural pigments from food waste and by-products for eco-friendly food coloring. Food Chem 2025; 463:141519. [PMID: 39368203 DOI: 10.1016/j.foodchem.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
With unprecedented growth in the world population, the demand for food has risen drastically leading to increased agricultural production. One promising avenue is recovery of value-added pigments from food waste which has been gaining global attention. This review focuses on sustainable strategies for extracting pigments, examining the factors that influence extraction, their applications, and consumer acceptability. The significant findings of the study state the efficiency of pigment extraction through innovative extraction techniques rather than following conventional methods that are time-consuming, and unsustainable. In addition to their vibrant colors, these pigments provide functional benefits such as antioxidant properties, extended shelf life and improved food quality. Societal acceptance of pigments derived from food waste is positively driven by environmental awareness and sustainability. The study concludes by highlighting the stability challenges associated with various natural pigments, emphasizing the need for tailored stabilization methods to ensure long-term stability and effective utilization in food matrices.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
10
|
Ishimoto CK, Lima Junior RD, Scaramussa SADL, Fill TP, Oliveira VM, Bicas JL. Improving the medium composition for the production of the natural blue-violet pigment violacein by a new Janthinobacterium sp. isolate. Lett Appl Microbiol 2024; 77:ovae091. [PMID: 39317672 DOI: 10.1093/lambio/ovae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
The interest in natural compounds has increased primarily due to their beneficial health and environmental aspects. However, natural sources of some compounds, such as bluish pigments, are limited, requiring the development of efficient processes to meet commercial demands. This study isolated a blue-violet bacterium from spoiled cooked rice and identified it as a potential new species of Janthinobacterium through 16S rDNA analysis. Ultra-high performance liquid chromatography-tandem mass spectrometry analyses confirmed that the blue-violet pigment violacein was responsible for the bluish color. In laboratory conditions, different carbon and nitrogen sources were evaluated in submerged culture media to enhance pigment production. Glycerol did not result in significant pigment production by this strain, as expected from previous reports. Instead, a culture medium composed of yeast extract and fructose yielded higher pigment production, reaching about 113.68 ± 16.68 mg l-1 after 120 h. This result provides crucial insights for future studies aiming for sustainable and commercially viable violacein production. Based on a bioeconomy concept, this approach has the potential to supply natural and economic bluish pigments for various industrial sectors, including pharmaceutical, cosmetic, and food.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| | | | | | - Taicia Pacheco Fill
- Department of Organic Chemistry, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Valéria Maia Oliveira
- Multidisciplinary Center for Chemical, Biological and Agricultural Research, Universidade Estadual de Campinas, 13148-218, Paulinia, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
11
|
Pinton MB, Lorenzo JM, Dos Santos BA, Correa LP, Padilha M, Trindade PCO, Cichoski AJ, Bermúdez R, Purriños L, Campagnol PCB. Evaluation of nutritional, technological, oxidative, and sensory properties of low-sodium and phosphate-free mortadellas produced with bamboo fiber, pea protein, and mushroom powder. Meat Sci 2024; 216:109588. [PMID: 38964226 DOI: 10.1016/j.meatsci.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
This study examined the effects of replacing alkaline phosphate (AP) with bamboo fiber (BF), isolated pea protein (PP), and mushroom powder (MP) on the nutritional, technological, oxidative, and sensory characteristics of low-sodium mortadellas. Results indicated that this reformulation maintained the nutritional quality of the products. Natural substitutes were more effective than AP in reducing water and fat exudation. This led to decreased texture profile analysis (TPA) values such as hardness, cohesiveness, gumminess, and chewiness. The reformulation reduced the L* values and increased the b* values, leading to color modifications rated from noticeable to appreciable according to the National Bureau of Standards (NBS) index. Despite minor changes in oxidative stability indicated by increased values in TBARS (from 0.19 to 0.33 mg MDA/kg), carbonyls (from 2.1 to 4.4 nmol carbonyl/mg protein), and the volatile compound profile, the sensory profile revealed a beneficial increase in salty taste, especially due to the inclusion of MP, which was enhanced by the synergy with BF and PP. In summary, the results confirmed the potential of natural alternatives to replace chemical additives in meat products. Incorporating natural antioxidants into future formulations could address the minor oxidation issues observed and enhance the applicability of this reformulation strategy.
Collapse
Affiliation(s)
- Mariana Basso Pinton
- Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain; Area de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Leticia Pereira Correa
- Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Milena Padilha
- Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | | | | | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain
| | - Laura Purriños
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain
| | | |
Collapse
|
12
|
Ualema NJM, Dos Santos LN, Bogusz S, Ferreira NR. From Conventional to Craft Beer: Perception, Source, and Production of Beer Color-A Systematic Review and Bibliometric Analysis. Foods 2024; 13:2956. [PMID: 39335885 PMCID: PMC11431606 DOI: 10.3390/foods13182956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Beer is a popular beverage consumed globally, and studies have emphasized the benefits of moderate consumption as well as its sensory effects on consumers. Color is a crucial sensory attribute, being the first aspect a consumer notices when assessing a beer's quality. This review seeks to offer detailed insights into how brewing methods, raw materials, and the chemical diversity of beer influence the production of beer color. The chemical mechanisms responsible for color development and how consumers and color systems perceive the color of beer were assessed. A systematic review following the PRISMA methodology, coupled with a bibliometric analysis, was performed using (Rayyan 2022) and (VOSviewer 1.6.20) software to assess and evaluate the scientific research retrieved from the Web of Science Core Collection. The findings highlight the significant roles of malt types, heat brewing processes, control of chemical parameters, and innovative brewing techniques in conventional beer color production. Novel chromophores like perlolyrine, pyrrolothiazolate, and furpenthiazinate are thought to affect Pilsen-style beers, along with melanoidins, Strecker aldehydes, and 5-hydroxymethylfurfural (HMF) in conventional beers. In craft beers, such as fruit- or herb-based beers, flavonoids like anthocyanins, along with other natural pigments and synthetic colorants, are identified as the primary sources of color. However, studies related to the influence of chromophores like perlolyrine, pyrrolothiazolate, and furpenthiazinate on beer color are scarce, and emerging additives, such as pigments from microorganisms, spices, exotic herbs, and leaves of plants, on craft beer offer insights for future research.
Collapse
Affiliation(s)
- Nélio Jacinto Manuel Ualema
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, Brazil
- Department of Agriculture Science, High School of Agriculture Science, Save University, National Road No. 1, Parcel No. 76, Chongoene 1200, Mozambique
| | - Lucely Nogueira Dos Santos
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, Brazil
| | - Stanislau Bogusz
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Nelson Rosa Ferreira
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Technology, Faculty of Food Engineering, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
13
|
Soni S, W. AJ, Kurian C, Chakraborty P, Paari KA. Food additives and contaminants in infant foods: a critical review of their health risk, trends and recent developments. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:63. [DOI: 10.1186/s43014-024-00238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe infant food market has expanded rapidly over the past two decades. However, the industry faces significant challenges, including concerns over the health effects of infant food additives and issues with food safety. However, new evidences suggest that certain food additives, such as those used to preserve and transport infant formula to keep it fresh for longer, should be avoided. Science into the effects of additives on human behavior makes up a sizable sector of the additives market. Problems such as hypernatremic dehydration, malnutrition, and obesity in infants are directly linked to faulty formula production. The Food and Drug Administration (FDA) has established the toxicity types and chemical tests necessary for evaluating the safety of food additives and GRAS (Generally Recognized as Safe) compounds. These tests are crucial in understanding the food safety aspects of food additives. The health effects of different types of food additives on infants are discussed in this context. The article gives an outline of various national and global agencies that provides recommendations and standards to gauge the quality of baby food. The immunological responses, allergic reaction pathways and other related health hazards among the infants and young children caused by the food additive are discussed in this article.
Graphical Abstract
Collapse
|
14
|
Ferroni Passos T, Nitschke M. The combined effect of pH and NaCl on the susceptibility of Listeria monocytogenes to rhamnolipids. Food Res Int 2024; 192:114744. [PMID: 39147550 DOI: 10.1016/j.foodres.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
The use of natural and sustainable additives, that are less aggressive to the environment, is a trend in the food industry. Rhamnolipids (RL) biosurfactants have shown potential for controlling food pathogens however, due to the presence of free carboxyl groups, the pH and ionic strength may influence the properties of such surfactants. In this study, we describe the antimicrobial activity of RL under different pH values and NaCl concentrations, towards both planktonic and biofilms of Listeria monocytogenes. RL were effective at pH 5.0 and the addition of 5 % NaCl improved the bactericidal efficacy for planktonic and sessile cells. The effect of NaCl was more pronounced at pH above 6 showing a significant increase in RL antimicrobial activity. At pH 7.0 planktonic population was eradicated by RL only when salt was present whereas biofilm viability was decreased by 5 log with MBIC varying from > 2500.0 mg/L (RL) to 39.0 mg/L (RL + 5 % NaCl). Larger vesicular and lamellar RL self-assembly structures were predominant when NaCl was present, suggesting their association with the antimicrobial activity observed. The pH and ionic strength of the medium are important parameters to be considered for the development of RL-based strategies to control L. monocytogenes.
Collapse
Affiliation(s)
- Tathiane Ferroni Passos
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), Av. Trabalhador São Carlense, 400, CP-780, São Carlos, SP - CEP 13566-590, Brazil
| | - Marcia Nitschke
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), Av. Trabalhador São Carlense, 400, CP-780, São Carlos, SP - CEP 13566-590, Brazil.
| |
Collapse
|
15
|
Murugu J, Narayanan R. Production, Purification, and Characterization of a Novel Exopolysaccharide from Probiotic Lactobacillus amylovorus: MTCC 8129. Indian J Microbiol 2024; 64:1355-1365. [PMID: 39282197 PMCID: PMC11399548 DOI: 10.1007/s12088-024-01346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/24/2024] [Indexed: 09/18/2024] Open
Abstract
Extracellular polysaccharides (EPS) produced by Lactic Acid Bacteria have an individual effect on the flavour and consistency of novel food materials, as well as potential therapeutic applications. The purpose of this study was to create, improve, and characterise EPS from Lactobacillus amylovorus MTCC 8129. FTIR examination showed the compound's composition (acetyl group, hydroxy group, ring structure) as well as the numerous interlinks between sugar residues, which were then validated by Nuclear Magnetic Resonance Spectroscopy. Thermogravimetric examination showed that the EPS exhibited resistance to heat at a temperature of 640 °C, with antioxidant levels ranging from 70 to 85% and emulsification activity above 50%. Furthermore, it has 180% water holding capacity and 140% oil holding capacity. Based on these findings, it seems that the EPS that was reviewed might potentially be an advantageous addition to the food processing industry.
Collapse
Affiliation(s)
- Janani Murugu
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
| | - Rajnish Narayanan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203 India
| |
Collapse
|
16
|
Hosseini H, Abbasi A, Sabahi S, Akrami S, Yousefi-Avarvand A. Assessing the Potential Biological Activities of Postbiotics Derived from Saccharomyces cerevisiae: An In Vitro Study. Probiotics Antimicrob Proteins 2024; 16:1348-1364. [PMID: 37402072 DOI: 10.1007/s12602-023-10117-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
A new biotherapeutic strategy involves the use of microbial bioactive substances (postbiotics) that exhibit optimum compatibility and intimate contact with the immune system of the host. This study was aimed at investigating the potential biological activities of postbiotics derived from Saccharomyces cerevisiae (PTCC 5269) (PSC) under in vitro circumstances. Based on the outcomes, the synthesized PSC possessing a high level of phenolic (102.46 ± 0.25 mg GAE/g) and flavonoid (19.87 ± 75.32 mg QE/g) content demonstrated significant radical scavenging activity (87.34 ± 0.56%); antibacterial action towards Listeria monocytogenes, Streptococcus mutans, Salmonella typhi, and Escherichia coli (in order of effectiveness) in both in vitro and food models (whole milk and ground meat); probiotics' growth-promoting activity in the fermentation medium; α-glucosidase enzyme-inhibiting and cholesterol-lowering properties in a concentration- and pH-dependent manner; reduction in the cell viability (with the significant IC50 values of 34.27 and 23.58 μg/mL after 24 and 48 h, respectively); suppressed the initial (G0/G1) phase of the cell's division; induced apoptosis; and increased the expression of PTEN gene, while the IkB, RelA, and Bcl-XL genes indicated diminished expression in treated SW480 cancer cells. These multiple health-promoting functions of PSC can be extended to medical, biomedical, and food scopes, as novel biotherapeutic approaches, in order to design efficient and optimized functional food formulations or/and supplementary medications to use as adjuvant agents for preventing or/and treating chronic/acute disorders.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshid Yousefi-Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Cirrincione F, Ferranti P, Ferrara A, Romano A. A critical evaluation on the valorization strategies to reduce and reuse orange waste in bakery industry. Food Res Int 2024; 187:114422. [PMID: 38763672 DOI: 10.1016/j.foodres.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.
Collapse
Affiliation(s)
- Federica Cirrincione
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy.
| |
Collapse
|
18
|
Wijesekara T, Abeyrathne EDNS, Ahn DU. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024; 13:1853. [PMID: 38928795 PMCID: PMC11202804 DOI: 10.3390/foods13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | | | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
19
|
Trajkovska B, Nakov G, Prabhat ST, Badgujar PC. Effect of Blueberry Pomace Addition on Quality Attributes of Buttermilk-Based Fermented Drinks during Cold Storage. Foods 2024; 13:1770. [PMID: 38890998 PMCID: PMC11171537 DOI: 10.3390/foods13111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The fruit and beverage industry faces challenges related to waste management and environmental pollution due to rapid industrial expansion. Fruit industry waste, such as blueberry pomace, holds the promise of enhancing gut health and providing valuable antioxidants. Concurrently, buttermilk, a prominent dairy product, offers nutritional and technological benefits but remains underutilized. This study aimed to evaluate the incorporation of blueberry pomace (0%, 2%, 4%, 6%, 8%, and 10%) into buttermilk at varying levels and assess its impact on the physicochemical, antioxidant, microbiological, and sensory characteristics of the buttermilk. Buttermilk samples were supplemented with different concentrations of blueberry pomace and subjected to analysis over a two-week storage period (4 ± 1 °C). The addition of blueberry pomace led to alterations in the pH, dry matter, water holding capacity, color parameters, total phenolic content, and antioxidant activity. Microbiological analysis revealed the absence of Enterobacteriaceae, yeast, or molds. Sensory evaluation indicated significant differences among samples, with the highest scores observed for the buttermilk supplemented with 2% and 4% blueberry pomace. Incorporating blueberry pomace improved the overall acceptability and sensory properties. This research highlights the potential of fruit industry by-products to enhance the functionality and health benefits of dairy products, which is a promising way to effectively utilize waste.
Collapse
Affiliation(s)
- Biljana Trajkovska
- Faculty of Biotechnical Sciences—Bitola, University “St. Kliment Ohridski”—Bitola, 7000 Bitola, North Macedonia
| | - Gjore Nakov
- College of Sliven, Technical University of Sofia, 8800 Sliven, Bulgaria;
| | - Sari Thachappully Prabhat
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (S.T.P.); (P.C.B.)
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India; (S.T.P.); (P.C.B.)
| |
Collapse
|
20
|
Şahin S, Kurtulbaş E. Green Extraction and Valorization of By-Products from Food Processing. Foods 2024; 13:1589. [PMID: 38790889 PMCID: PMC11120847 DOI: 10.3390/foods13101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Agro-industrial valorization has been a hot topic recently since it leads to resource conservation and is economically and environmentally valuable [...].
Collapse
Affiliation(s)
- Selin Şahin
- Chemical Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey;
| | | |
Collapse
|
21
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
22
|
Glišić M, Bošković Cabrol M, Čobanović N, Starčević M, Samardžić S, Veličković I, Maksimović Z. The Effects of Sunflower and Maize Crop Residue Extracts as a New Ingredient on the Quality Properties of Pork Liver Pâtés. Foods 2024; 13:788. [PMID: 38472901 DOI: 10.3390/foods13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The present study aimed to evaluate the antioxidant capacity of ethanolic extracts from post-harvest sunflower and maize stalk residues, and their impact on the chemical composition, physicochemical parameters, lipid oxidative stability, microbiological properties, and sensory characteristics of pork liver pâtés over a 90-day storage period. Four formulations were prepared: a control group (CON), a batch with butylated hydroxytoluene as a synthetic antioxidant (BHT), 1% ethanolic extract from sunflower residues (SSRE), and 1% ethanolic extract from maize residues (MSRE). The MSRE had a higher total phenol content and showed better antioxidant activity relative to the SSRE (p < 0.01). The addition of SSRE decreased the lightness and increased the redness in the pork liver pâtés, with these pâtés showing the highest total color difference compared to the control (p < 0.01). The crop extracts increased the n-6 and total PUFA contents in pâtés and improved the PUFA/SFA ratio (p < 0.01). Formulations containing crop residue extracts showed higher TBARs and POV values than the control and BHT group (p < 0.01), indicating a pro-oxidant effect and accelerated lipid oxidation in pâtés during storage. As far as microbiological quality, the presence of crop residue extracts decreased the total viable count, lactic acid bacteria, and psychotropic aerobic bacteria (p < 0.01). The incorporation of crop extracts in the pork pâtés impaired their sensory quality, particularly color, odor, aroma, and flavor, and decreased their overall acceptability. These results indicated that, while the crop residue extracts were not as effective as synthetic antioxidants in preserving the lipid stability of pâtés, they demonstrated potential for enhancing the microbial quality of this type of meat product.
Collapse
Affiliation(s)
- Milica Glišić
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Bošković Cabrol
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Padova, Italy
| | - Nikola Čobanović
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Stevan Samardžić
- Faculty of Pharmacy, Department of Pharmacognosy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivona Veličković
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Maksimović
- Faculty of Pharmacy, Department of Pharmacognosy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
23
|
Filipa-Silva A, Castro R, Rebelo M, Mota MJ, Almeida A, Valente LMP, Gomes S. Enhancing the authenticity of animal by-products: harmonization of DNA extraction methods from novel ingredients. Front Chem 2024; 12:1350433. [PMID: 38444734 PMCID: PMC10912508 DOI: 10.3389/fchem.2024.1350433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction: The increasing global pressure to explore alternative protein sources derived from animal by-products has opened-up opportunities, but it has also created the need to assess their compliance with labelling statements, to ensure consumer's trust in the composition of both feed and food products. Assessing the authenticity of highly processed animal by-products, particularly within the rapidly expanding Halal food market, presents a significant challenge due to the lack of robust and standardized methodologies. However, the success of DNA based authenticity system is highly dependent on the extracted DNA quantity, quality, and purity ratios from heterogeneous matrices. Material and methods: In this work, nine DNA extraction methods were tested on selected processed animal by-products with high-value and interest for the feed industry: meals from poultry meat, blood and feather, and hydrolysates from swine meat and bone, fish, and black soldier fly. The proposed DNA extraction methods are developed to specifically target swine-specific mitochondrial region, as a case study. Results and discussion: Both the conventional CTAB method and the commercial kits, specifically Invisorb® Spin Tissue Mini and NucleoSpin™ Food, demonstrated superior extraction efficiency and quality ratios. Nevertheless, commercial kits enabled faster detection in comparison to the conventional methods. The absence of swine DNA was successfully validated and confirmed in all animal meals and hydrolysates that did not contain swine in their composition beforehand, demonstrating their compliance with the Halal market requirements.
Collapse
Affiliation(s)
- Andreia Filipa-Silva
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Raquel Castro
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mariana Rebelo
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria J. Mota
- SORGAL, Sociedade de Óleos e Rações, S.A., São João de Ovar, Portugal
- SAVINOR - Sociedade Avícola do Norte S.A., Trofa, Portugal
| | - André Almeida
- SEBOL, Comércio e Indústria do Sebo, S.A., Loures, Portugal
- ITS, Indústria Transformadora de Subprodutos, S.A., Coruche, Portugal
| | - Luísa M. P. Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Banerjee S, Cabrera-Barjas G, Tapia J, Fabi JP, Delattre C, Banerjee A. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:15. [PMID: 38310179 PMCID: PMC10838260 DOI: 10.1007/s13659-024-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
Collapse
Affiliation(s)
- Srijan Banerjee
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Universidad San Sebastián Campus Las Tres Pascualas, Facultad de Ciencias Para el Cuidado de la Salud, Lientur 1457, CP 4080871, Concepción, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, CP 3467987, Talca, Chile.
| |
Collapse
|
25
|
Yuan D, Du J, Xin M, Bai G, Zhang C, Liu G. Influence of myoglobin on the antibacterial activity of carvacrol and the binding mechanism between the two compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1063-1073. [PMID: 37743570 DOI: 10.1002/jsfa.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Myoglobin (MB), a pigmentation protein, can adversely affect the antibacterial activity of carvacrol (CAR) and weaken its bacteriostasis effect. This study aimed to clarify the influence of MB on the antibacterial activity of CAR and ascertain the mechanism involved in the observed influence, especially the interaction between the two compounds. RESULTS Microbiological analysis indicated that the presence of MB significantly suppressed the antibacterial activity of CAR against Listeria monocytogenes. Ultraviolet-visible spectrometry and fluorescence spectroscopic analysis confirmed the interaction between CAR and MB. The stoichiometric number was determined as ~0.7 via double logarithmic Stern-Volmer equation analysis, while thermodynamic analysis showed that the conjugation of the two compounds occurred as an exothermal reaction (ΔH° = -32.3 ± 11.4 kJ mol-1 and ΔS° = -75 J mol-1 K-1 ). Circular dichroism, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy showed hydrogen bonding in the carvacrol-myoglobin complex (CAR-MB). Molecular docking analysis confirmed that amino acid residues, including GLY80 and HIS82, were most likely to form hydrogen bonds with CAR, while hydrogen bonds represented the main driving force for CAR-MB formation. CONCLUSION CAR antibacterial activity was significantly inhibited by the presence of MB in the environment due to the notable reduction in the effective concentration of CAR caused by CAR-MB formation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Yuan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jing Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mengna Xin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guohui Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chan Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guorong Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
26
|
Kim M, Doh H. Upcycling Food By-products: Characteristics and Applications of Nanocellulose. Chem Asian J 2024:e202301068. [PMID: 38246883 DOI: 10.1002/asia.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Rising global food prices and the increasing prevalence of food insecurity highlight the imprudence of food waste and the inefficiencies of the current food system. Upcycling food by-products holds significant potential for mitigating food loss and waste within the food supply chain. Food by-products can be utilized to extract nanocellulose, a material that has obtained substantial attention recently due to its renewability, biocompatibility, bioavailability, and a multitude of remarkable properties. Cellulose nanomaterials have been the subject of extensive research and have shown promise across a wide array of applications, including the food industry. Notably, nanocellulose possesses unique attributes such as a surface area, aspect ratio, rheological behavior, water absorption capabilities, crystallinity, surface modification, as well as low possibilities of cytotoxicity and genotoxicity. These qualities make nanocellulose suitable for diverse applications spanning the realms of food production, biomedicine, packaging, and beyond. This review aims to provide an overview of the outcomes and potential applications of cellulose nanomaterials derived from food by-products. Nanocellulose can be produced through both top-down and bottom-up approaches, yielding various types of nanocellulose. Each of these variants possesses distinctive characteristics that have the potential to significantly enhance multiple sectors within the commercial market.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| |
Collapse
|
27
|
Sordini B, Urbani S, Esposto S, Selvaggini R, Daidone L, Veneziani G, Servili M, Taticchi A. Evaluation of the Effect of an Olive Phenolic Extract on the Secondary Shelf Life of a Fresh Pesto. Antioxidants (Basel) 2024; 13:128. [PMID: 38275653 PMCID: PMC10813149 DOI: 10.3390/antiox13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the olive oil sector aim to develop sustainable strategies for the valorisation of mechanical extraction co-products as a rich source of bioactive compounds with antioxidant and antimicrobial activities. In this work, we studied the effectiveness of a phenolic extract (PE) from olive vegetation water (OVW) as a new antioxidant of natural origin for improving the quality and extending the secondary shelf life (SSL) of a fresh basil pesto sold as a served loose product at the deli counter, simulating the storage conditions after packaging, opening, and serving. For that, the PE was mixed with the oily phase of fresh pesto in two different concentrations and compared to a control pesto (CTRL) made with the addition of common additives (ascorbic acid (E300) and sorbic acid (E200)). The physicochemical parameters, phenolic and volatile composition, sensory profiles, and antioxidant capacity of the experimental pesto samples were evaluated after opening. The results proved that the enrichment with the PE improved the stability of the pesto and, hence, its overall quality. The PE provided higher protection than the CTRL against primary and secondary oxidation at both concentrations tested and delayed the accumulation of the volatile compounds responsible for the 'rancid' off-flavour up to 7 days after first opening, while also preserving higher levels of the pesto phytonutrients (such as the rosmarinic, caffeic, and chicoric acids and α-tocopherol). These results show that the generation of food waste in households, catering chains, retail, and/or restaurants can be reduced, improving the sustainability of the food industry and the competitiveness of the olive oil sector.
Collapse
Affiliation(s)
| | | | - Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; (B.S.); (S.U.); (R.S.); (L.D.); (G.V.); (M.S.); (A.T.)
| | | | | | | | | | | |
Collapse
|
28
|
Teslić N, Pojić M, Stupar A, Mandić A, Pavlić B, Mišan A. PhInd-Database on Polyphenol Content in Agri-Food By-Products and Waste: Features of the Database. Antioxidants (Basel) 2024; 13:97. [PMID: 38247521 PMCID: PMC10812704 DOI: 10.3390/antiox13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Timely access to topic-relevant datasets is of paramount importance for the development of any successful strategy (food waste reduction strategy), since datasets illuminate opportunities, challenges and development paths. PhInd is the first comprehensive database on polyphenol content in plant-based by-products from the agri-food sector or the wastewater sector and was developed using peer-reviewed papers published in the period of 2015-2021. In total, >450 scientific manuscripts and >6000 compound entries were included. Database inclusion criteria were polyphenol contents = determined using HPLC/UHPLC quantitative methods. PhInd can be explored through several criteria which are either 'open' or checkboxes. Criteria are given in subsections: (a) plant source; (b) by-product industrial processing; (c) pre-treatment of by-products before the isolation of polyphenols; and (d) the extraction step of polyphenols. Database search results could be explored on the website directly or by downloading Excel files and graphs. This unique database content is beneficial to stakeholders-the food industry, academia, government and citizens.
Collapse
Affiliation(s)
- Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| |
Collapse
|
29
|
Ozkan G, Günal-Köroğlu D, Capanoglu E. Valorization of fruit and vegetable processing by-products/wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:1-39. [PMID: 37898537 DOI: 10.1016/bs.afnr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fruit and vegetable processing by-products and wastes are of great importance due to their high production volumes and their composition containing different functional compounds. Particularly, apple, grape, citrus, and tomato pomaces, potato peel, olive mill wastewater, olive pomace and olive leaves are the main by-products that are produced during processing. Besides conventional techniques, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction (sub-critical water extraction), supercritical fluid extraction, enzyme-assisted extraction, and fermentation are emerging tools for the recovery of target compounds. On the other hand, in the view of valorization, it is possible to use them in active packaging applications, as a source of bioactive compound (oil, phenolics, carotenoids), as functional ingredients and as biofertilizer and biogas sources. This chapter explains the production of fruit and vegetable processing by-products/wastes. Moreover, the valorization of functional compounds recovered from the fruit and vegetable by-products and wastes is evaluated in detail by emphasizing the type of the by-products/wastes, functional compounds obtained from these by-products/wastes, their extraction conditions and application areas.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
30
|
Feiden T, Valduga E, Zeni J, Steffens J. Bioactive Compounds from Artichoke and Application Potential. Food Technol Biotechnol 2023; 61:312-327. [PMID: 38022879 PMCID: PMC10666951 DOI: 10.17113/ftb.61.03.23.8038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Cynara cardunculus L. var. scolymus, known as the artichoke, originated in the Mediterranean region and is now cultivated in several countries. The artichoke has leaves, a stem, and a head, also called a floral capitulum, covered with green and pointed bracts. It is rich in polyphenols, flavonoids, anthocyanins, phenolic compounds, inulin, coumarins, terpenes, dietary fibre, enzymes, polysaccharides, minerals and vitamins, and therefore has a wide range of uses, including in the food industry, medicine and biofuels. Several studies have shown that artichokes have properties such as antioxidant, anti-inflammatory, antimicrobial, anticancer, hypocholesterolaemic, anti-HIV, cardioprotective, hepatoprotective and lipid-lowering effects. The aim of this study is to provide a literature review on the phytochemical composition, bioactivity and applications, focusing on the methods of extraction, purification and concentration of enzymes present in artichoke.
Collapse
Affiliation(s)
- Thais Feiden
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Eunice Valduga
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Jamile Zeni
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Juliana Steffens
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| |
Collapse
|
31
|
García P, Bustamante A, Echeverría F, Encina C, Palma M, Sanhueza L, Sambra V, Pando ME, Jiménez P. A Feasible Approach to Developing Fiber-Enriched Bread Using Pomegranate Peel Powder: Assessing Its Nutritional Composition and Glycemic Index. Foods 2023; 12:2798. [PMID: 37509890 PMCID: PMC10379044 DOI: 10.3390/foods12142798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The consumption of dietary fiber (DF) has been associated with a reduced incidence of non-communicable diseases. Despite various strategies implemented worldwide to increase DF intake, it remains low. Therefore, the development of new fiber-rich food products that are widely consumed could be a strategy to improve DF intake. In this study, an agro-industrial by-product, pomegranate peel powder (PPP), was used as an innovative source of DF and antioxidant. The objective was to develop a bread enriched with DF, antioxidants, and sensory characteristics by partially replacing wheat flour (WF) with PPP at levels of 0%, 2.5%, 5%, 7.5%, and 10%. Bread with 2.5% and 5% PPP was chosen for a clinical trial to evaluate glycemic response (GR) in healthy subjects and determine the bread's glycemic index (GI). As the percentage of PPP increased, both the DF and total polyphenol content increased significantly. The highest overall acceptability was achieved with bread containing up to 5% PPP. Consumption of bread with 2.5% and 5.0% PPP significantly reduced the GI compared to the control bread, while the decrease in GR was not significant. PPP could be a potential food and low-cost ingredient to improve the bread's nutritional quality through its contribution to DF and antioxidants.
Collapse
Affiliation(s)
- Paula García
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Andrés Bustamante
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Francisca Echeverría
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Cristian Encina
- Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Manuel Palma
- P&M Foods, Los Olmos 3465, Santiago 7810668, Chile
| | - Leyla Sanhueza
- Departamento Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Verónica Sambra
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Maria Elsa Pando
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Paula Jiménez
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
32
|
Kumar M, Selvasekaran P, Chidambaram R, Zhang B, Hasan M, Prakash Gupta O, Rais N, Sharma K, Sharma A, Lorenzo JM, Parameswari E, Deshmukh VP, Elkelish A, Abdel-Wahab BA, Chandran D, Dey A, Senapathy M, Singh S, Pandiselvam R, Sampathrajan V, Dhumal S, Amarowicz R. Tea (Camellia sinensis (L.) Kuntze) as an emerging source of protein and bioactive peptides: A narrative review. Food Chem 2023; 428:136783. [PMID: 37450955 DOI: 10.1016/j.foodchem.2023.136783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Tea residues represent one of the major agricultural wastes that are generated after the processing of tea. They account for 21-28% of crude protein and are often discarded without the extraction of valuable proteins. Due to various bioactivity and functional properties, tea proteins are an excellent alternative to other plant-based proteins for usage as food supplements at a higher dosage. Moreover, their good gelation capacity is ideal for the manufacturing of dairy products, jellies, condensation protein, gelatin gel, bread, etc. The current study is the first to comprehend various tea protein extraction methods and their amino acid profile. The preparation of tea protein bioactive peptides and hydrolysates are summarized. Several functional properties (solubility, foaming capacity, emulsification, water/oil absorption capacity) and bioactivities (antioxidant, antihypertensive, antidiabetic) of tea proteins are emphasized.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India; Department of Biology, East Carolina University, Greenville 27858, USA.
| | - Pavidharshini Selvasekaran
- Instrumental and Food Analysis Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India.
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville 27858, USA
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Om Prakash Gupta
- ICAR - Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni 173230, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - E Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| | - Vishal P Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Basel A Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt; Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Kerala 679335, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, India
| | - Vellaikumar Sampathrajan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India.
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
33
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
34
|
Coelho MC, Rodrigues AS, Teixeira JA, Pintado ME. Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chem 2023; 410:135319. [PMID: 36634564 DOI: 10.1016/j.foodchem.2022.135319] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
The tomato processing industry is one of the world's most important markets. This industry aims to optimise production, minimise energy costs and waste streams while ensuring high-quality products. This sector produces substantial amounts of by-products frequently disposed of as waste rather than reintroducing them with a new intent into the supply chain. However, these by-products are rich in bioactive compounds (BC), including carotenoids, fibre, which exhibit antioxidant, anti-inflammatory and chemopreventive properties, and cardiovascular protection. Reusing these compounds is favourable to reducing the environmental impact and enables the development of added-value products with various possible uses such as food and feed additives, nutraceuticals, cosmeceuticals, etc. This review summarises relevant issues towards the recovery and valorisation of BC from industrial tomato by-products within a circular economy context.
Collapse
Affiliation(s)
- M C Coelho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - A S Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - J A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - M E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
35
|
Madureira J, Gonçalves S, Santos-Buelga C, Margaça FMA, Ferreira ICFR, Barros L, Cabo Verde S. Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films. Microorganisms 2023; 11:1157. [PMID: 37317130 DOI: 10.3390/microorganisms11051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this work was to assess the natural microbiota of packed fresh-cut apples during refrigerated storage. Two different films were tested for the package, a biodegradable (PLA) film and a conventional and commercial one (OPP). Two antioxidant additives were applied, a natural olive pomace extract and the commercial ascorbic acid used by the industries. The results revealed lower bacteria counts in samples with olive pomace extract and PLA films than in those with ascorbic acid and OPP films after 5 and 12 days of storage. These findings suggest that the use of such natural extracts as additives in fruits could delay the growth of mesophilic bacteria. The characterization and identification of the bacterial isolates from fresh-cut apple samples showed that the most prevalent species were Citrobacter freundii, Staphylococcus warneri, Pseudomonas oryzihabitans, Alcalinogenes faecalis, Corynebacterium jeikeium, Micrococcus spp., Pantoea aglomerans and Bacillus spp. Furthermore, an increase in the microbial diversity during the storage time at refrigerated temperatures was observed, except for the sample treated with olive pomace extract and packaged in OPP film. The highest microbial diversity was found for samples with ascorbic acid as an additive. This could indicate a negative effect of ascorbic acid on the microbial inhibition of apple slices. The natural olive pomace extract demonstrated potential as an antimicrobial additive for fresh-cut apples.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EstradaNacional 10 ao km 139.7, 2695-066 Loures, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Sara Gonçalves
- ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
- Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EstradaNacional 10 ao km 139.7, 2695-066 Loures, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Loures, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, EstradaNacional 10 ao km 139.7, 2695-066 Loures, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Loures, Portugal
| |
Collapse
|
36
|
Ardissino D, Colletti A, Pellizzato M, Pagliari G, Di Pierro F, Cravotto G. Short-Term Effect of Nutraceutical Fruit Juices on Lipid Metabolism in Patients with Acquired Hypercholesterolemia. Int J Mol Sci 2023; 24:7358. [PMID: 37108520 PMCID: PMC10139174 DOI: 10.3390/ijms24087358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The crucial role of dyslipidaemia, especially hypercholesterolemia, in the development of atherosclerosis-related cardiovascular diseases has been extensively documented in genetic, pathologic, observational and intervention studies. The European guidelines for dyslipidaemia management include the possible use of lipid-lowering nutraceuticals to support a relatively large number of natural compounds. In this context, we have conducted a study to investigate whether dietary supplementation with a functional nutraceutical beverage, containing a standardized polyphenolic fraction from fruit, red yeast rice, phytosterols, and berberine complexed with β-cyclodextrin, could positively affect serum lipid concentration in 14 subjects with hypercholesterolemia. After 12 weeks of treatment, dietary supplementation with this nutraceutical combination was associated with significant improvements in total cholesterol, low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C) and apolipoprotein B, compared to baseline. Compliance was excellent and no adverse effects were reported. In conclusion, this study demonstrates that 100 mL of a functional beverage containing lipid-lowering nutraceuticals safely leads to significant improvements in serum lipids in subjects with moderate hypercholesterolemia. Future research is needed to unravel the role that the polyphenols contained in fruit extracts play in the reduction of cholesterolemia and in cardiovascular disease prevention.
Collapse
Affiliation(s)
- Diego Ardissino
- Cardiothoracic and Vascular Department, University Hospital of Parma, 43126 Parma, Italy
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| |
Collapse
|
37
|
Molina RE, Bohrer BM, Mejia SMV. Phosphate alternatives for meat processing and challenges for the industry: A critical review. Food Res Int 2023; 166:112624. [PMID: 36914330 DOI: 10.1016/j.foodres.2023.112624] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Meat and meat products provide high levels of nutrition and many health benefits to consumers, yet a controversy exists regarding the use of non-meat additives, such as the inorganic phosphates that are commonly used in meat processing, and particularly their relationship to cardiovascular health and kidney complications. Inorganic phosphates are salts of phosphoric acid (e.g., sodium phosphate, potassium phosphate, or calcium phosphate), whereas organic phosphates are ester compounds (e.g., the phospholipids found in cell membranes). In this sense, the meat industry remains active in its efforts to improve formulations for processed meat products with the use of natural ingredients. Despite efforts to improve formulations, many processed meat products still contain inorganic phosphates, which are used for their technological contributions to meat chemistry including improvements in water-holding capacity and protein solubilization. This review provides a thorough evaluation of phosphate substitutes in meat formulations and other processing technologies that can help eliminate phosphates from the formulations of processed meat products. In general, several ingredients have been evaluated as replacements for inorganic phosphates with varying degrees of success such as plant-based ingredients (e.g., starches, fibers, or seeds), fungi ingredients (e.g., mushrooms and mushroom extracts), algae ingredients, animal-based ingredients (e.g., meat/seafood, dairy, or egg materials), and inorganic compounds (i.e., minerals). Although these ingredients have shown some favorable effects in certain meat products, none have exactly matched the many functions of inorganic phosphates, so the support of extrinsic technologies, such as tumbling, ultrasound, high-pressure processing (HPP), and pulsed electric field (PEF), may be necessary to achieve similar physiochemical properties as conventional products. The meat industry should continue to investigate ways to scientifically innovate the formulations of, and the technologies used in, processed meat products while also listening to (and acting upon) the feedback from consumers.
Collapse
Affiliation(s)
- Rafael Eduardo Molina
- Departamento de producción animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia. Carrera 30, #45-03, Edificio 561A, 111321 Bogotá, Colombia
| | - Benjamin M Bohrer
- Department of Animal Sciences. The Ohio State University. 2029, Fyffe Road, Columbus OH 43210, United States
| | - Sandra Milena Vásquez Mejia
- Departamento de producción animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia. Carrera 30, #45-03, Edificio 561A, 111321 Bogotá, Colombia.
| |
Collapse
|
38
|
Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes (Basel) 2023. [DOI: 10.3390/pr11030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rapid growth of the global population and changes in lifestyle have led to a significant increase in food waste from various industrial, agricultural, and household sources. Nearly one-third of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains rich organic matter, which, if not managed properly, can pose a serious threat to the environment and human health, making the proper disposal of food waste an urgent global issue. However, various types of food waste, such as waste from fruit, vegetables, grains, and other food production and processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market. These bioactive compounds offer the potential to convert food waste into value-added products, and fields including nutritional foods, bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food waste as a novel source. This review reveals the latest insights into the various sources of food waste and the potential of utilizing bioactive compounds to convert it into value-added products, thus enhancing people’s confidence in better utilizing and managing food waste.
Collapse
|
39
|
Impact of food preservatives based on immobilized phenolic compounds on an in vitro model of human gut microbiota. Food Chem 2023; 403:134363. [DOI: 10.1016/j.foodchem.2022.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
40
|
Antipova TV, Zhelifonova VP, Zaitsev KV, Vainshtein MB. Fungal Azaphilone Pigments as Promising Natural Colorants. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722601737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
41
|
Valdés A, Mondragon G, Garrigós MC, Eceiza A, Jiménez A. Microwave-assisted extraction of cellulose nanocrystals from almond ( Prunus amygdalus) shell waste. Front Nutr 2023; 9:1071754. [PMID: 36761988 PMCID: PMC9902720 DOI: 10.3389/fnut.2022.1071754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Almond (Prunus amygdalus) is one of the most common tree nuts on a worldwide basis. This nut is highly regarded in the food and cosmetic industries. However, for all these applications, almonds are used without their shell protection, which is industrially removed contributing approximately 35-75% of the total fruit weight. This residue is normally incinerated or dumped, causing several environmental problems. In this study, a novel cellulose nanocrystal (CNCs) extraction procedure from almond shell (AS) waste by using microwave-assisted extraction was developed and compared with the conventional approach. A three-factor, three-level Box-Behnken design with five central points was used to evaluate the influence of extraction temperature, irradiation time, and NaOH concentration during the alkalization stage in crystallinity index (CI) values. A similar CI value (55.9 ± 0.7%) was obtained for the MAE process, comprising only three stages, compared with the conventional optimized procedure (55.5 ± 1.0%) with five stages. As a result, a greener and more environmentally friendly CNC extraction protocol was developed with a reduction in time, solvent, and energy consumption. Fourier transform infrared (FTIR) spectra, X-ray diffractogram (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) images, and thermal stability studies of samples confirmed the removal of non-cellulosic components after the chemical treatments. TEM images revealed a spherical shape of CNCs with an average size of 21 ± 6 nm, showing great potential to be used in food packaging, biological, medical, and photoelectric materials. This study successfully applied MAE for the extraction of spherical-shaped CNCs from AS with several advantages compared with the conventional procedure, reducing costs for industry.
Collapse
Affiliation(s)
- Arantzazu Valdés
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, San Vicente del Raspeig, Spain
| | - Gurutz Mondragon
- Materials Technologies Group, Chemical and Environmental Engineering Department, University of the Basque Country - UPV/EHU, Donostia-San Sebastián, Spain
| | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, San Vicente del Raspeig, Spain
| | - Arantxa Eceiza
- Materials Technologies Group, Chemical and Environmental Engineering Department, University of the Basque Country - UPV/EHU, Donostia-San Sebastián, Spain
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
42
|
Sorrenti V, Burò I, Consoli V, Vanella L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int J Mol Sci 2023; 24:2019. [PMID: 36768340 PMCID: PMC9916361 DOI: 10.3390/ijms24032019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
43
|
Smogula M, Mila-Kierzenkowska C, Szewczyk-Golec K. The Influence of Selected Factors on the Detection of Giardia intestinalis by Microscopic and Immunoenzymatic Methods. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:30-37. [PMID: 37197064 PMCID: PMC10183453 DOI: 10.18502/ijpa.v18i1.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/12/2022] [Indexed: 05/19/2023]
Abstract
Background Giardia intestinalis is one of the most common parasites in humans. Contaminated food and water can be a source of infection. Substances added to food are intended to increase its safety. We aimed to determination of the influence of various microorganisms and compounds that stimulate digestive functions, as well as preservatives and antioxidants on the detection of G. intestinalis by microscopic and immunoenzymatic methods. Methods Twenty stool samples, archived in 1998-2018 in the Provincial Sanitary and Epidemiological Station in Bydgoszcz (Poland), collected both from patients referred for parasitic examinations by a doctor of a medical facility and from private individuals, were used to assess the impact of selected factors (such as bacterial strains, viruses and substances added to food) on the detection of G. intestinalis by microscopic and immunoenzymatic methods. Results G. intestinalis was detected by both microscopic and immunoenzymatic methods with the same sensitivity (100%). The result of the G. intestinalis determination was positive in 90% of the samples after the addition of potassium sorbate, and in 25% of the samples after the addition of citric acid. Conclusion The presence of other microorganism such as bacteria and viruses does not influence on the detection of G. intestinalis by microscopic and immunoenzymatic methods in stool samples. Citric acid as an antioxidant added to foods affects the detection of G. intestinalis. Due to the small number of samples used, it is necessary to continue research on the impact of various factors on the detection of protozoa.
Collapse
Affiliation(s)
- Malgorzata Smogula
- Department of Medical Biology and Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
44
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Roy T, Lawal AA, Ogah NB, Olorundare OE, Chamcheu JC. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. PLANTS (BASEL, SWITZERLAND) 2022; 11:3271. [PMID: 36501311 PMCID: PMC9737898 DOI: 10.3390/plants11233271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.
Collapse
Affiliation(s)
- Francis Alfred Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Abdulmalik Babatunde Yusuf
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Kelvin Oluwafemi Akhigbe
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Azeemat Adeola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Ngozi Blessing Ogah
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | | | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| |
Collapse
|
46
|
Pinna N, Ianni F, Blasi F, Stefani A, Codini M, Sabatini S, Schoubben A, Cossignani L. Unconventional Extraction of Total Non-Polar Carotenoids from Pumpkin Pulp and Their Nanoencapsulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238240. [PMID: 36500333 PMCID: PMC9736262 DOI: 10.3390/molecules27238240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Pumpkin is considered a functional food with beneficial effects on human health due to the presence of interesting bioactives. In this research, the impact of unconventional ultrasound-assisted extraction (UAE) and microwave-assisted extraction techniques on the recovery of total non-polar carotenoids from Cucurbita moschata pulp was investigated. A binary (hexane:isopropanol, 60:40 v/v) and a ternary (hexane:acetone:ethanol, 50:25:25 v/v/v) mixture were tested. The extracts were characterized for their antioxidant properties by in vitro assays, while the carotenoid profiling was determined by high-performance liquid chromatography coupled with a diode array detector. UAE with the binary mixture (30 min, 45 °C) was the most successful extracting technique, taking into consideration all analytical data and their correlations. In parallel, solid lipid nanoparticles (SLN) were optimized for the encapsulation of the extract, using β-carotene as a reference compound. SLN, loaded with up to 1% β-carotene, had dimensions (~350 nm) compatible with increased intestinal absorption. Additionally, the ABTS ((2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay showed that the technological process did not change the antioxidant capacity of β-carotene. These SLN will be used to load an even higher percentage of the extract without affecting their dimensions due to its liquid nature and higher miscibility with the lipid with respect to the solid β-carotene.
Collapse
Affiliation(s)
- Nicola Pinna
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Federica Ianni
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Blasi
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence: (F.B.); (A.S.); Tel.: +39-075-585-7954 (F.B.); +39-075-585-2057 (A.S.)
| | - Arianna Stefani
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Michela Codini
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Stefano Sabatini
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Aurélie Schoubben
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
- Correspondence: (F.B.); (A.S.); Tel.: +39-075-585-7954 (F.B.); +39-075-585-2057 (A.S.)
| | - Lina Cossignani
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
47
|
Ezati P, Khan A, Rhim JW, Roy S, Hassan ZU. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Skwarek P, Karwowska M. Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules 2022; 12:1695. [PMID: 36421709 PMCID: PMC9688078 DOI: 10.3390/biom12111695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/26/2024] Open
Abstract
The aim of the study was to evaluate the effect of tomato pomace (TP) on physicochemical parameters and fatty acid profile as well as antioxidant properties of dry fermented sausages with a reduced content of nitrites. Four different sausage formulations were prepared: control sample, and samples with 0.5%, 1% and 1.5% addition of freeze-dried TP. The sausages were analyzed for: chemical composition, pH and water activity, fatty acid profile, color parameters, biogenic content, and number of lactic acid bacteria and Enterobacteriacea. The antioxidant properties were also assessed depending on the amount of TP used. The products were characterized by similar water activity and pH in the range of 0.877-0.895 and 4.55-4.81, respectively. The effect of the addition of freeze-dried TP on an increase in antioxidant activity along with an increase in the concentration of the additive was observed. This phenomenon was most likely due to the strong antioxidant properties of tomato as well as the high content of lycopene. The antimicrobial properties of TP in raw fermented sausages were also noted as the product with the highest concentration of pomace had the lowest number of Enterobacteriaceae. In addition, sausages with reduced levels of nitrites to which TP was added were characterized by a higher redness, which will probably have a positive impact on the assessment consumers make of them. The most promising results were obtained for the dry fermented sausage with 1.5% addition of TP.
Collapse
Affiliation(s)
| | - Małgorzata Karwowska
- Department of Animal Food Technology, Sub-Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
49
|
Foti P, Occhipinti PS, Romeo FV, Timpanaro N, Musumeci T, Randazzo CL, Caggia C. Phenols recovered from olive mill wastewater as natural booster to fortify blood orange juice. Food Chem 2022; 393:133428. [PMID: 35696952 DOI: 10.1016/j.foodchem.2022.133428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
In the present study, a tangential membrane filtration system was applied to recover phenols from olive mill wastewater. The obtained concentrates were characterised for physico-chemical traits, antioxidant activity and antimicrobial effects. Results indicated that the highest concentration of hydroxytyrosol (7203.7 mg/L) was detected in the concentrate obtained by reverse osmosis, which also showed the highest antioxidant and antimicrobial activity. Moreover, the same concentrate was added, at different ratio, up to 4:250 v/v, into a commercial blood orange juice. The fortified juice with the addition of the concentrate, up to 2:250 v/v ratio, did not show off-flavour and off-odour compared to the control. Furthermore, after 60 days of refrigerated storage, the fortified juice exhibited a hydroxytyrosol content still complying with the daily intake recommended by EFSA health claim. The obtained results can be industrially useful in producing orange juice added with a natural antioxidant concentrate as a 'clean label' ingredient.
Collapse
Affiliation(s)
- Paola Foti
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy.
| | - Paride S Occhipinti
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy.
| | - Flora V Romeo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy.
| | - Nicolina Timpanaro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy.
| | - Teresa Musumeci
- Department of Drug Sciences and Health, University of Catania, Via Santa Sofia, 64, 6, 95125 Catania, Italy; CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products. University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin-off of University of Catania, Via S. Sofia, 100, 95123 Catania, Italy; CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products. University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin-off of University of Catania, Via S. Sofia, 100, 95123 Catania, Italy; CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products. University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
50
|
Valorization of Food Processing By-Products. Foods 2022. [PMCID: PMC9602028 DOI: 10.3390/foods11203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|