1
|
Nakasu PYS, Piccoli V, Ovejero-Pérez A, Kumar P, Al Ghatta A, Melanie S, Polesca C, Martinez L, Hallett JP. Fractionation of Squid Pens with Ionic Liquids-An Upgraded β-Chitin and Shellfish Protein Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:2649-2660. [PMID: 40018296 PMCID: PMC11863544 DOI: 10.1021/acssuschemeng.4c04217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
This study investigates the utilization of squid pen waste through a biocompatible ionic liquid approach, focusing on choline acetate, [Ch][OAc]. This ionic liquid effectively extracts over 80 wt % of protein from squid pen waste. To optimize the extraction process, a factorial design of experiments was employed to achieve a protein recovery of 75% at an estimated purity of 86%, along with highly acetylated, crystalline β-chitin with a purity of up to 95%. The extracted protein was subsequently used to create biocomposite films from α- and β-chitosan, demonstrating impressive tensile strengths of 93.15 ± 7.9 and 83.5 ± 6.2 MPa, respectively, while maintaining hydrophilic properties (θwater < 90°). Molecular dynamics simulations revealed that the anion [OAc]- exhibits a stronger affinity for protein surfaces compared to other anions, while its combination with the cation [Ch]+ optimally facilitates protein recovery. A material mass balance indicated that from 1 kg of dry squid pen, 0.526 kg of protein and 0.34 kg of chitin were recovered. However, high solvent usage significantly impacts energy demands and CO2 emissions, generating approximately 4.27 kg of CO2 per kg of product, with 61% attributed to protein production. Technoeconomic analysis demonstrated that solvent costs account for nearly 65% of the minimum selling price of the protein, estimated at $9 kg-1, which decreases to $0.6 for each kilogram of coproduced β-chitin. Technoeconomic analysis showed that solvent costs comprise nearly 65% of the minimum selling price of the protein, which can reach $9 kg-1, but this price decreases to $0.6 for each kilogram of coproduced β-chitin. This research underscores the potential of squid pen waste as a valuable resource while highlighting the need for sustainable solvent management strategies.
Collapse
Affiliation(s)
- Pedro Y. S. Nakasu
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, U.K.
| | - Vinicius Piccoli
- Department
of Physical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862 Campinas, Brazil
| | | | - Priyanka Kumar
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, U.K.
| | - Amir Al Ghatta
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, U.K.
| | - Susiana Melanie
- Department
of Materials, Imperial College London, SW7 2AZ London, U.K.
| | - Cariny Polesca
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro Martinez
- Department
of Physical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862 Campinas, Brazil
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, U.K.
| |
Collapse
|
2
|
Klakankhai W, Nuntapong N, Meesin S, Yongsue T, Niyombandith T, Tainchum K. Rearing fly larvae on various substrates: nutrient composition of larvae and frass. ENVIRONMENTAL ENTOMOLOGY 2024; 53:1027-1034. [PMID: 39423168 DOI: 10.1093/ee/nvae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Management solutions for waste in southern Thailand, such as fly larvae, are tested in a laboratory using different substrates and wastes from the Thai agricultural sector. The nutritional content of the immature stages of Musca domestica Linnaeus (Diptera: Muscidae) and Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) larvae, especially their protein and fat contents, makes them a potential animal feed. Laboratory strains of M. domestica and H. illucens were reared on selected substrates to examine how diet influenced their performance and nutritional composition. Waste from aquaculture, vegetables, and fruits in southern Thailand was examined for larval diet and showed promise as a rearing substrate for these insects. Musca domestica larvae reared on fishery waste achieved the highest larval weight and fat content, whereas H. illucens larvae reared on an aquaculture waste diet had the highest protein content. These findings imply aquaculture waste could be the best choice for large-scale fly larvae production, particularly as a protein feed additive.
Collapse
Affiliation(s)
- Warin Klakankhai
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Nutt Nuntapong
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Sawanya Meesin
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Tepyuda Yongsue
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Taweesak Niyombandith
- Animal Production Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Krajana Tainchum
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
3
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
4
|
Bezrodnykh EA, Blagodatskikh IV, Vyshivannaya OV, Berezin BB, Tikhonov VE. Exploiting specific properties of squid pens for the preparation of oligochitosan hydrochloride. Carbohydr Res 2024; 540:109140. [PMID: 38759342 DOI: 10.1016/j.carres.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024]
Abstract
Herein, we describe in first the application of squid pens for the preparation of pharmaceutical-grade oligochitosan hydrochloride with the physicochemical characteristics corresponding with the requirements of the European Pharmacopoeia. It is shown that the use of specific properties of squid pens as a source of parent chitosan allows preparing the product with a high yield at relatively moderate process conditions used for squid pens treatments and chitosan depolymerization.
Collapse
Affiliation(s)
- Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Inesa V Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Oxana V Vyshivannaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
5
|
Anbarasan R, Tiwari BK, Mahendran R. Upcycling of seafood side streams for circularity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:179-221. [PMID: 38460999 DOI: 10.1016/bs.afnr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
The upcycling of seafood side streams emerges as a crucial facet in the quest for circularity within the food industry, surpassing other food sources in its significance. Seafood side stream plays an indispensable role in global food security and human nutrition. Nevertheless, losses ensue throughout the seafood supply chain, resulting in substantial waste generation. These underutilized seafood by-products contain valuable resources like edible proteins and nitrogenous compounds. Projections indicate that fishery products' utilization for human consumption will soar to 204 MT by 2030. Yet, the industry annually generates millions of tonnes of waste, predominantly from crab, shrimp, and lobster shells, leading to environmental impacts due to COD and BOD issues. A five-tier circular economic model offers a framework to manage seafood side-streams efficiently, with applications spanning pharmaceuticals, food production, animal feed, fertilizers, and energy fuel, thereby maximizing their potential and reducing waste in line with sustainability goals.
Collapse
Affiliation(s)
- R Anbarasan
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
| | | | - R Mahendran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
6
|
Tkaczewska J, Kulawik P, Jamróz E, Čagalj M, Matas RF, Šimat V. Valorisation of prawn/shrimp shell waste through the production of biologically active components for functional food purposes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:707-715. [PMID: 37669418 DOI: 10.1002/jsfa.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The aim of the work was to develop a technology for using waste from prawn and shrimp processing as a source of active ingredients that could be used in the promotion of healthy foods. From fresh and freeze-dried prawn and shrimp shells, protein hydrolysates (carotenoproteins) were obtained using two different enzymes, Flavourzyme and Protamex. RESULTS The obtained hydrolysates were characterised in terms of protein content, degree of hydrolysis, and antioxidant and antimicrobial activity. The hydrolysate with the best antioxidant properties (FRAP value of 2933.33 μmol L-1 TE; ORAC value of 115.58 μmol L-1 TE) was selected and tested for its possible use as a component of functional foods. Molecular weight distribution, amino acid profile and free amino acids, the solubility of the hydrolysate in different pH ranges as well as foaming ability were determined. It was found that this hydrolysate was characterised by an amino acid profile with high nutritional value, flavour enhancement properties and excellent solubility in a wide pH range (from 97.06% to 100%). Afterward, the possibility of using carotenoproteins from prawn waste as a component of an emulsion with furcellaran and a lipid preparation of astaxanthin, taken from post-hydrolysate production waste, was investigated. The obtained complexes were stable as proved by the measurement of zeta potential (ζ = -23.87 and -22.32 to -27.79 mV). CONCLUSION It is possible to produce stable complexes of the hydrolysate with furcellaran and to emulsify a lipid preparation of astaxanthin, obtained from waste following production of the hydrolysate, in them. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Roberta Frleta Matas
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| |
Collapse
|
7
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Hwang JW, Lee SG, Kang H. Antioxidant, Antibacterial Properties of Novel Peptide CP by Enzymatic Hydrolysis of Chromis notata By-Products and Its Efficacy on Atopic Dermatitis. Mar Drugs 2024; 22:44. [PMID: 38248669 PMCID: PMC10817315 DOI: 10.3390/md22010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
This study investigated the antioxidant, antimicrobial, and anti-atopic dermatitis (AD) effects of a novel peptide (CP) derived from a Chromis notata by-product hydrolysate. Alcalase, Flavourzyme, Neutrase, and Protamex enzymes were used to hydrolyze the C. notata by-product protein, and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity was measured. Alcalase hydrolysate exhibited the highest ABTS radical-scavenging activity, leading to the selection of Alcalase for further purification. The CHAO-1-I fraction, with the highest ABTS activity, was isolated and further purified, resulting in the identification of the peptide CP with the amino acid sequence Ala-Gln-Val-Met-Lys-Leu-Pro-His-Arg-Met-Gln-His-Ser-Gln-Ser. CP demonstrated antimicrobial activity against Staphylococcus aureus, inhibiting its growth. In a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin model in mice, CP significantly alleviated skin lesions, reduced epidermal and dermal thickness, and inhibited mast cell infiltration. Moreover, CP suppressed the elevated levels of interleukin-6 (IL-6) in the plasma of DNCB-induced mice. These findings highlight the potential of CP as a therapeutic agent for AD and suggest a novel application of this C. notata by-product in the fish processing industry.
Collapse
Affiliation(s)
| | - Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
9
|
Yin T, Park JW. Comprehensive review: by-products from surimi production and better utilization. Food Sci Biotechnol 2023; 32:1957-1980. [PMID: 37860730 PMCID: PMC10581993 DOI: 10.1007/s10068-023-01360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 10/21/2023] Open
Abstract
Over 1 million MT of surimi is produced globally, which theoretically would generate approximate 2 million MT of solid by-products and more than 1 million MT of wash water. Utilization of the by-products has increasingly become interested based on their nutritional, economical, and environmental issues. Surimi by-products represent an important source of valuable compounds such as functional protein, collagen, gelatin, fish oil, peptides, minerals, and enzymes. Better utilization of the by-products would make the surimi industry sustainable and profitable. This review paper characterizes sources and composition of the solid by-products and wash water generated from the surimi production as well as factors related to extraction and processing techniques. In addition, the potential food applications are explored including specialty foods and snacks, flavor ingredients, bioactive ingredients, and functional ingredients. Moreover, an outlook summarizing the challenges and prospects on the utilization of surimi by-products is provided.
Collapse
Affiliation(s)
- Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070 People’s Republic of China
| | - Jae W. Park
- Oregon State University Seafood Research and Education Center, 2001 Marine Drive #253, Astoria, OR 97103 USA
| |
Collapse
|
10
|
Doan CT, Tran TN, Tran TPH, Nguyen TT, Nguyen HK, Tran TKT, Vu BT, Trinh THT, Nguyen AD, Wang SL. Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii. Polymers (Basel) 2023; 15:3724. [PMID: 37765578 PMCID: PMC10537793 DOI: 10.3390/polym15183724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum chitosanase activity were determined: a squid pens powder amount of 5.278% (w/v), an initial pH value of 8.93, an incubation temperature of 38 °C, and an incubation duration of 5.73 days. The resulting chitosanase activity of the culture medium was 2.023 U/mL. A chitosanase with a molecular weight of 25 kDa was isolated from the culture medium of P. elgii TKU051 and was biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed that P. elgii TKU051 chitosanase exhibited a maximum amino acid identity of 43% with a chitosanase of Bacillus circulans belonging to the glycoside hydrolase (GH) family 46. P. elgii TKU051 chitosanase demonstrated optimal activity at pH 5.5 while displaying remarkable stability within the pH range of 5.0 to 9.0. The enzyme displayed maximum efficiency at 60 °C and demonstrated considerable stability at temperatures ≤40 °C. The presence of Mn2+ positively affected the activity of the enzyme, while the presence of Cu2+ had a negative effect. Thin-layer chromatography analysis demonstrated that P. elgii TKU051 chitosanase exhibited an endo-type cleavage pattern and hydrolyzed chitosan with 98% degree of deacetylation to yield (GlcN)2 and (GlcN)3. The enzymatic properties of P. elgii TKU051 chitosanase render it a promising candidate for application in the production of COS.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Huu Kien Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Kim Thi Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Bich Thuy Vu
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Huyen Trang Trinh
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
11
|
Ren F, Ji N, Zhu Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023; 12:3344. [PMID: 37761053 PMCID: PMC10529981 DOI: 10.3390/foods12183344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the easy cultivation of microorganisms and their short cycle time, research on α-glucosidase inhibitors (α-GIs) of microbial origin is receiving extensive attention. Raw materials used in food production, such as cereals, dairy products, fruits, and vegetables, contain various bioactive components, like flavonoids, polyphenols, and alkaloids. Fermentation with specific bacterial strains enhances the nutritional value of these raw materials and enables the creation of hypoglycemic products rich in diverse active ingredients. Additionally, conventional food processing often results in significant byproduct generation, causing resource wastage and environmental issues. However, using bacterial strains to ferment these byproducts into α-GIs presents an innovative solution. This review describes the microbial-derived α-GIs that have been identified. Moreover, the production of α-GIs using industrial food raw materials and processing byproducts as a medium in fermentation is summarized. It is worth analyzing the selection of strains and raw materials, the separation and identification of key compounds, and fermentation broth research methods. Notably, the innovative ideas in this field are described as well. This review will provide theoretical guidance for the development of microbial-derived hypoglycemic foods.
Collapse
Affiliation(s)
- Fei Ren
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Nairu Ji
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
De Ungria ST, Fernandez LTT, Sabado SEF, Santos JPE, Sararaña ARB, VinceCruz-Abeledo CC. How is fish market waste managed in the Philippines? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49512-49522. [PMID: 36781663 DOI: 10.1007/s11356-023-25882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Improper management of fish waste is one of the factors that makes Philippine fisheries unsustainable. A considerable portion of fish waste is produced in wet markets where bulk of fish products are sold. A comparison of existing practices in different municipalities can indicate the best points of intervention and identify existing traditional practices that can be promoted. This study interviewed stakeholders of the fisheries industry and collected information at the market level to determine existing fish waste management systems. From the responses gathered, the average daily production of fish waste in Philippine wet markets was 70.3 + 0.93 kg, with no significant differences across locations (p = 0.2501). Of the fish waste produced, 32.3 + 1.33 kg per wet market were disposed of, 18.9 + 0.81 kg were sold, and 19.1 + 1.15 kg were given away to stakeholders who re-use the fish waste. A significantly greater proportion of fish waste in rural areas were re-used compared to Metro Manila (p = 0.0311). Incentivizing innovations that maximize the use of derived fish waste at the municipal level, and promoting existing traditional practices, can prove effective in contributing to the Philippine circular economy while providing alternative sources of income for the stakeholders of the fisheries industry.
Collapse
|
13
|
Hou CY, Hazeena SH, Shih MK, Hsieh SL, Hsieh CW, Liu TT, Chen MH, Huang YW. Structural characteristics of collagen from cuttlefish skin waste extracted at optimized conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tsu Tung Liu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Min-Hung Chen
- Yuan Marketing & Processing Division, Agriculture & Food Agency Council of Agriculture Executive, Nantou, Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Lee GY, Jung MJ, Nam JW, Han AR, Kim BM, Jun JY. Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound. Foods 2022; 11:foods11233911. [PMID: 36496720 PMCID: PMC9741261 DOI: 10.3390/foods11233911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The red snow crab (Chionoecetes japonicus) is the most industrially processed in the Republic of Korea, and the meat is very popular, owing to its savory taste and flavor. Its body meat production comprises a two-step separation to increase meat yield. However, during the secondary separation, broken shell debris is occasionally entrained in the meat products, which is a concern for manufacturers. As the residues from first separation contain 39.9% protein, it can be utilized as an enzymatic protein hydrolysate (FPH) rich in free amino acids (FAAs). A combination of flavourzyme and alcalase (1:1) superiorly hydrolyzed the protein of the residues, and the best hydrolysis condition was suggested at 60 °C for 15 h with fourfold water and 2% enzyme addition, achieving a 57.4% degree of hydrolysis. The EPH was mostly composed of FAAs containing most essential amino acids; however, bitter-tasting amino acids accounted for 46.4% of the FAAs. To reduce the bitter taste, different nonvolatile organic acids were considered as masking agents, and citric and malic acids were effective, though the umami taste is slightly decreased. In conclusion, the crab processing residues can be utilized as an FAA-based natural seasoning compound through enzymatic hydrolysis and organic acid treatment.
Collapse
Affiliation(s)
- Ga-Yang Lee
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Min-Jeong Jung
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong-Woong Nam
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ah-Ram Han
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Byoung-Mok Kim
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Joon-Young Jun
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Correspondence: ; Tel.: +82-33-643-8043
| |
Collapse
|
15
|
Hazeena SH, Hou CY, Zeng JH, Li BH, Lin TC, Liu CS, Chang CI, Hsieh SL, Shih MK. Extraction Optimization and Structural Characteristics of Chitosan from Cuttlefish ( S. pharaonis sp.) Bone. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7969. [PMID: 36431456 PMCID: PMC9698347 DOI: 10.3390/ma15227969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
In fish processing, reducing the waste rate and increasing the economic value of products is an important issue for global environmental protection and resource sustainability. It has been discovered that cuttlefish bones can be an excellent resource for producing attractive amounts of chitin and chitosan. Therefore, this study optimized chitosan extraction conditions using response surface methodology (RSM) to establish application conditions suitable for industrial production and reducing environmental impact. In addition, Fourier-transform infrared spectroscopy (FTIR), 1H NMR and scanning electron microscope (SEM) characteristics of extracted chitosan were evaluated. The optimum extraction conditions for chitosan from cuttlebone chitin were 12.5M NaOH, 6 h and 80 °C, and the highest average yield was 56.47%. FTIR spectroscopy, 1H NMR, and SEM identification proved that the chitosan prepared from cuttlefish bone has a unique molecular structure, and the degree of deacetylation of chitosan was about 81.3%. In addition, it was also confirmed that chitosan has significant anti-oxidation and oil-absorbing abilities. This research has successfully transformed the by-products of cuttlefish processing into value-added products. The process not only achieved the recycling and utilization of by-products but also enhanced industrial competitiveness and resource sustainability.
Collapse
Affiliation(s)
- Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jing-Huei Zeng
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Bo-Heng Li
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tzu-Chih Lin
- Hong Yu Foods Company, Limited, Kaohsiung 806042, Taiwan
| | - Cai-Sian Liu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
16
|
Ren M, Yin T, You J, Liu R, Huang Q, Xiong S. Comparative Study of the Nutritional Composition and Antioxidant Ability of Soups Made from Wild and Farmed Snakehead Fish ( Channa Argus). Foods 2022; 11:3294. [PMCID: PMC9601314 DOI: 10.3390/foods11203294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, fish soup has become an important product for commercial processing of fish due to its health effects. In this study, nutritional composition and antioxidant ability of soups prepared from farmed and wild snakehead fish were analyzed (hereafter FS and WS soup, respectively). For the FS soup, the proximate composition of protein, fat, ash, free amino acids, and soluble peptides were 2.55%, 0.89%, 0.92%, 0.47%, and 0.62%, respectively. The total amino acid was 390.11 mg/ g, and the proportion of essential amino acid was 27.59%. The total fatty acid was 13.64 g/100 g, of which monounsaturated fatty acid was 5.78 g/100 g, n-6 polyunsaturated fatty acid 3.50 g/100 g, and n-3 polyunsaturated fatty acid 0.41 g/100 g, respectively. The contents of Zn and Ca were 9.04 mg/ kg and 1.13 mg/ g, respectively. The DPPH radical-scavenging ability, Fe2+ chelating ability, and hydroxyl radical-scavenging ability was 57.89%, 21.21%, and 25.61%, respectively. Overall, there was no obvious difference in the nutritional composition and antioxidant activity between the FS and WS soups. The protein content (1.90%) of the WS soup was relatively lower, but the total fatty acid (16.22 g/100 g), MUFA (7.17 g/100 g), and Zn (12.57 mg/ kg) contents were significantly higher.
Collapse
Affiliation(s)
- Mengting Ren
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Tao Yin
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-8375
| | - Juan You
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| |
Collapse
|
17
|
Zhao Z, Zhang J, Tong J, Yang C, Deng H, Du Y, Shi X. Ultra-low protein residue of chitosan by one step H2O2 and sodium dodecyl sulfate treatment. Int J Biol Macromol 2022; 222:2977-2986. [DOI: 10.1016/j.ijbiomac.2022.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
18
|
Polaka S, Katare P, Pawar B, Vasdev N, Gupta T, Rajpoot K, Sengupta P, Tekade RK. Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process. ACS OMEGA 2022; 7:30657-30672. [PMID: 36092613 PMCID: PMC9453976 DOI: 10.1021/acsomega.2c02675] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) is considered a double-edged sword. The slightly elevated level of ROS helps in wound healing by inhibiting microbial infection. In contrast, excessive ROS levels in the wound site show deleterious effects on wound healing by extending the inflammation phase. Understanding the ROS-mediated molecular and biomolecular mechanisms and their effect on cellular homeostasis and inflammation thus substantially improves the possibility of exogenously augmenting and manipulating wound healing with the emerging antioxidant therapeutics. This review comprehensively delves into the relationship between ROS and critical phases of wound healing and the processes underpinning antioxidant therapies. The manuscript also discusses cutting-edge antioxidant therapeutics that act via ROS scavenging to enhance chronic wound healing.
Collapse
|
19
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
20
|
Potential of the Liquid Fermentation of Fishery Waste by Paenibacillus elgii for Metalloprotease Production. Polymers (Basel) 2022; 14:polym14132741. [PMID: 35808786 PMCID: PMC9268979 DOI: 10.3390/polym14132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
This study attempted to use fishery processing wastes to produce protease by Paenibacillus elgii TKU051. Of the tested wastes, tuna head powder (THP) was found to be the most effective carbon and nitrogen (C/N) source, and the optimal conditions were as follows: 0.811% THP, 0.052% K2HPO4, 0.073% MgSO4, initial pH of 8.96, incubation temperature of 31.4 °C, and incubation time of 3.092 days to achieve the maximum protease activity of 2.635 ± 0.124 U/mL. A protease with a molecular weight of 29 kDa was purified and biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed an amino acid sequence of STVHYSTR of P. elgii TKU051 protease, suggesting that the enzyme may belong to the M4 family of metalloproteases. The optimal activity of the enzyme was achieved at 60 °C and pH 8. P. elgii TKU051 protease was strongly inhibited by ethylenediaminetetraacetic acid and 1,10-phenanthroline, indicating its precise metalloprotease property. P. elgii TKU051 protease displayed the activity toward casein and raw fishery wastes such as tuna heads, tuna viscera, shrimp heads, and squid pens. Finally, the purified P. elgii TKU051 protease could improve the free-radical scavenging activity of fishery wastes. In short, P. elgii TKU051 has potential application in eco-friendly approaches to efficiently convert fishery wastes to metalloprotease.
Collapse
|
21
|
Conversion of Fishery Waste to Proteases by Streptomyces speibonae and Their Application in Antioxidant Preparation. FISHES 2022. [DOI: 10.3390/fishes7030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen sources, the protease productive activity of S. speibonae TKU048 was optimal on 1% tuna head powder. Further, the casein/gelatin/tuna head powder zymography of the crude enzyme revealed the presence of three/nine/six proteases, respectively. The crude-enzyme cocktail of S. speibonae TKU048 exhibited the best proteolytic activity at 70 °C and pH = 5.8. Sodium dodecyl sulfate strongly enhanced the proteolytic activity of the cocktail, whereas FeCl3, CuSO4, and ethylenediaminetetraacetic acid could completely inhibit the enzyme activity. Additionally, the crude-enzyme cocktail of S. speibonae TKU048 could efficiently enhance the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities of all tested proteinaceous materials including the head, viscera, and meat of tuna fish; the head, viscera, and meat of tilapia fish; the head, meat, and shell of shrimp; squid pen; crab shell; and soybean. Taken together, S. speibonae TKU048 revealed potential in the reclamation of proteinaceous wastes for protease production and antioxidant preparation.
Collapse
|
22
|
Utilization of Fishery-Processing By-Product Squid Pens for Scale-Up Production of Phenazines via Microbial Conversion and Its Novel Potential Antinematode Effect. FISHES 2022. [DOI: 10.3390/fishes7030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fishery by-products (FBPs) have been increasingly investigated for the extraction and production of a vast array of active molecules. The aim of this study was to produce phenazine compounds from FBPs via microbial fermentation and assess their novel antinematode effect. Among various FBPs, squid pen powder (SPP) was discovered as the most suitable substrate for phenazine production by Pseudomonas aeruginosa TUN03 fermentation. Various small-scale experiments conducted in flasks for phenazine production indicated that the most suitable was the newly designed liquid medium which included 1% SPP, 0.05% MgSO4, and 0.1% Ca3(PO4)2 (initial pH 7). Phenazines were further studied for scale-up bioproduction in a 14 L bioreactor system resulting in a high yield (22.73 µg/mL) in a much shorter cultivation time (12 h). In the fermented culture broth, hemi-pyocyanin (HPC) was detected as a major phenazine compound with an area percentage of 11.28% in the crude sample. In the bioactivity tests, crude phenazines and HPC demonstrate novel potential nematicidal activity against black pepper nematodes, inhibiting both juveniles (J2) nematodes and egg hatching. The results of this work suggest a novel use of SPP for cost-effective bioproduction of HPC, a novel potential nematodes inhibitor. Moreover, the combination of MgSO4 and Ca3(PO4)2 was also found to be a novel salt composition that significantly enhanced phenazine yield by P. aeruginosa fermentation in this work.
Collapse
|
23
|
Nag M, Lahiri D, Dey A, Sarkar T, Pati S, Joshi S, Bunawan H, Mohammed A, Edinur HA, Ghosh S, Ray RR. Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Front Nutr 2022; 9:879929. [PMID: 35464014 PMCID: PMC9024408 DOI: 10.3389/fnut.2022.879929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
In recent times, the seafood industry is found to produce large volumes of waste products comprising shrimp shells, fish bones, fins, skins, intestines, and carcasses, along with the voluminous quantity of wastewater effluents. These seafood industry effluents contain large quantities of lipids, amino acids, proteins, polyunsaturated fatty acids, minerals, and carotenoids mixed with the garbage. This debris not only causes a huge wastage of various nutrients but also roots in severe environmental contamination. Hence, the problem of such seafood industry run-offs needs to be immediately managed with a commercial outlook. Microbiological treatment may lead to the valorization of seafood wastes, the trove of several useful compounds into value-added materials like enzymes, such as lipase, protease, chitinase, hyaluronidase, phosphatase, etc., and organic compounds like bioactive peptides, collagen, gelatin, chitosan, and mineral-based nutraceuticals. Such bioconversion in combination with a bio-refinery strategy possesses the potential for environment-friendly and inexpensive management of discards generated from seafood, which can sustainably maintain the production of seafood. The compounds that are being produced may act as nutritional sources or as nutraceuticals, foods with medicinal value. Determining utilization of seafood discard not only reduces the obnoxious deposition of waste but adds economy in the production of food with nutritional and medicinal importance, and, thereby meets up the long-lasting global demand of making nutrients and nutraceuticals available at a nominal cost.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ankita Dey
- Department of Pathology, Belle Vue Clinic, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills Innovation and Academic Network Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
- NatNov Bioscience Private Limited, Balasore, India
| | - Sanket Joshi
- Central Analytical and Applied Research Unit, Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Kampus Jeli, Jeli, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Hisham Atan Edinur,
| | - Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
- Rina Rani Ray,
| |
Collapse
|
24
|
Greggio N, Serafini A, Balugani E, Carlini C, Contin A, Marazza D. Quantification and mapping of fish waste in retail trade and restaurant sector: Experience in Emilia-Romagna, Italy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:256-266. [PMID: 34555687 DOI: 10.1016/j.wasman.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The circular economy approach imposes the complete recovery of components, materials and energy from waste. Many active compounds with biomedical and nutraceutical applications can be extracted by Fish Waste (FW), but few are the operating industrial plants. Quantification and mapping of the potential FW availability along the entire fish value-chain is crucial in fostering its actual valorisation. Apart at industrial processing, in the distribution segment the estimation of FW availability is absent. This paper aimed to quantify and locate FW generated by point sources such as supermarkets, fishmongers and restaurants as well as to establish the diffuse domestic FW production in a 4,5M inhabitants region. The study provides an exportable method and indications for comparable worldwide areas. A simplified valorisation scenario for equivalent biomethane production is also presented. Direct interviews and indirect approach based on fish consumption have been adopted and compared. Large supermarkets and medium-large restaurants are the main FW producers (239 and 125 kg/week, respectively) followed medium-large fishmongers and medium supermarkets (63 and 86 kg/week, respectively). In the investigated region the larger FW point sources are supermarkets (average 3000 Mg/y), while fishmongers are the smaller (average 750 Mg/y). Restaurants (average 1400 Mg/y) show the wider range of variability between 460 and 8000 Mg/y. The indirect methodology reveals that domestic FW production ranges from 2376 to 3961 Mg/y. Per capita estimations of FW ranged from 0.5 - 3 kg/y. The economic value of FW (biomethanation route) is 68 EUR/Mg. A qualification as "highly potential waste" would promote FW valorization.
Collapse
Affiliation(s)
- Nicolas Greggio
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy; University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy.
| | - Alba Serafini
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Enrico Balugani
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Carlotta Carlini
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Andrea Contin
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Physics and Astronomy, Via Irnerio, 46, 40126 Bologna, Italy
| | - Diego Marazza
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Physics and Astronomy, Via Irnerio, 46, 40126 Bologna, Italy
| |
Collapse
|
25
|
Ultrasonic-Assisted Extraction and Structural Characterization of Chondroitin Sulfate Derived from Jumbo Squid Cartilage. Foods 2021; 10:foods10102363. [PMID: 34681412 PMCID: PMC8535863 DOI: 10.3390/foods10102363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Chondroitin sulfate (ChS) is usually used as an oral nutraceutical supplement, and has been popular in Asia, Europe, and United States for many years. In this study, a potential and sustainable source of ChS from jumbo squid (Dosidicus gigas) cartilage was explored; ultrasound-assisted extraction (UAE) was used to extract ChS from jumbo squid cartilage. The result of mass transfer coefficients based on Fick's law showed that UAE had higher mass transfer efficacy. The response surface methodology (RSM) combined with Box-Behnken design (BBD) was employed to evaluate the effects of the extraction parameters. The optimal conditions were extraction temperature of 52 °C, extraction time of 46 min, and NaOH concentration of 4.15%. The crude extract was precipitated by 50% ethanol, which obtained a purified ChS with 23.7% yield and 82.3% purity. The purified ChS measured by energy-dispersive X-ray spectroscopy (EDX) had a carbon to sulfur molar ratio of approximately 14:1. The FTIR, 1H, and 13C NMR confirmed jumbo squid ChS were present in the form of chondroitin-4-sulfate and chondroitin-6-sulfate, with a 4S/6S ratio of 1.62. The results of this study provide an efficient process for production and purification of ChS, and are significant for the development and utilization of ChS from jumbo squid cartilage in the nutrient food or pharmaceutical industries.
Collapse
|
26
|
Zhang S, Yuan Y, Liu C, Yang Y, Zhang D, Liu S, Wang D, Xu Y. Modeling and optimization of porous aerogel adsorbent for removal of cadmium from crab viscera homogenate using response surface method and artificial neural network. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Doan CT, Tran TN, Wang SL. Production of Thermophilic Chitinase by Paenibacillus sp. TKU052 by Bioprocessing of Chitinous Fishery Wastes and Its Application in N-acetyl-D-glucosamine Production. Polymers (Basel) 2021; 13:3048. [PMID: 34577952 PMCID: PMC8471714 DOI: 10.3390/polym13183048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023] Open
Abstract
The bioprocessing of chitinous fishery wastes (CFWs) to chitinases through fermentation approaches has gained importance owing to its great benefits in reducing the enzyme production cost, and utilizing chitin waste. In this work, our study of the chitinase production of Paenibacillus sp. TKU052 in the presence of different kinds of CFWs revealed a preference for demineralized crab shells powder (deCSP); furthermore, a 72 kDa chitinase was isolated from the 0.5% deCSP-containing medium. The Paenibacillus sp. TKU052 chitinase displayed maximum activity at 70 °C and pH 4-5, while Zn2+, Fe3+, Triton X-100, Tween 40, and SDS exerted a negative effect on its activity, whereas Mn2+ and 2-mercaptoethanol were found to potentially enhance the activity. Among various kinds of polysaccharide, Paenibacillus sp. TKU052 chitinase exhibited the best catalytic activity on colloidal chitin (CC) with Km = 9.75 mg/mL and Vmax = 2.43 μmol/min. The assessment of the hydrolysis of CC and N-acetyl chitooligosaccharides revealed that Paenibacillus sp. TKU052 chitinase possesses multiple catalytic functions, including exochitinase, endochitinase, and N-acetyl-β-D-glucosaminidase activities. Finally, the combination of Paenibacillus sp. TKU052 chitinase and Streptomyces speibonae TKU048 N-acetyl-β-D-glucosaminidase could efficiently convert CC to N-acetyl-D-glucosamine (GlcNAc) with a production yield of 94.35-98.60% in 12-24 h.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Thi Ngoc Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Doctoral Program in Applied Sciences, College of Science, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
28
|
Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities. FISHES 2021. [DOI: 10.3390/fishes6030030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this work was to reuse a fish processing waste, shrimp head powder (SHP), for the production of prodigiosin (PG) via microbial technology and to assess its potential bioactivities. PG was produced in a 12 L-bioreactor system, and the highest PG productivity of 6310 mg L−1 was achieved when Serratia marcescens CC17 was used for fermentation in a novel designed medium (6.75 L) containing 1.5% C/N source (SHP/casein = 9/1), 0.02% K2SO4, ans 0.025% Ca3(PO4)2, with initial pH 7.0, and fermentation was performed at 28 °C for 8 h. The purified PG showed moderate antioxidants, efficient anti-NO (anti-nitric oxide), and acetylcholinesterase (AChE) inhibitory activities. In a docking study, PG showed better binding energy scores (−12.3 kcal/mol) and more interactions (6 linkages) with several prominent amino acids in the biding sites on AChE that were superior to those of Berberine chloride (−10.8 kcal/mol and one linkage). Notably, this is the first investigation using shrimp heads for the mass bioproduction of PG with high productivity, and Ca3(PO4)2 salt was also newly found to significantly enhance PG production by S. marcescens. This study also provided available data on the anti-NO and anti-AChE effects of PG, especially from the docking simulation PG towards AChE that was described for the first time in this study. The above results suggest that SHP is a good material for the cost-effective bioproduction of PG, which is a potential candidate for anti-NO and anti-Alzheimer drugs.
Collapse
|
29
|
Li P, Zhang M, Xie D, Zhang X, Zhang S, Gao F, Wang Y, Hsiao CD, Li X, Liu K. Characterization and bioactivities of phospholipids from squid viscera and gonads using ultra-performance liquid chromatography-Q-exactive orbitrap/mass spectrometry-based lipidomics and zebrafish models. Food Funct 2021; 12:7986-7996. [PMID: 34259702 DOI: 10.1039/d1fo00796c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There has been great interest in phospholipids (PLs) from marine by-products due to their long-chain polyunsaturated fatty acids with unique health and functional properties. Here, marine PLs from squid viscera and gonads were comprehensively characterized and compared by UPLC-Q-Exactive Orbitrap/MS-based lipidomics analysis. A total of thirteen phospholipid classes including 1223 molecular species were identified and quantified in both resources. PC, PE and SM were further isolated from the total PLs of squid viscera and gonads, respectively. All isolated squid PL components were first evaluated for anti-inflammatory, antioxidant and cardiovascular effects using in vivo zebrafish models. Our results showed the diversity, content and physiological functions of PLs from squid by-products, which provided a basis for their future application in the nutritional and pharmaceutical industry.
Collapse
Affiliation(s)
- Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Whitaker RD, Altintzoglou T, Lian K, Fernandez EN. Marine Bioactive Peptides in Supplements and Functional Foods - A Commercial Perspective. Curr Pharm Des 2021; 27:1353-1364. [PMID: 33155895 DOI: 10.2174/1381612824999201105164000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Many bioactive peptides have been described from marine sources and much marine biomass is still not explored or utilized in products. Marine peptides can be developed into a variety of products, and there is a significant interest in the use of bioactive peptides from marine sources for nutraceuticals or functional foods. We present here a mini-review collecting the knowledge about the value chain of bioactive peptides from marine sources used in nutraceuticals and functional foods. Many reports describe bioactive peptides from marine sources, but in order to make these available to the consumers in commercial products, it is important to connect the bioactivities associated with these peptides to commercial opportunities and possibilities. In this mini-review, we present challenges and opportunities for the commercial use of bioactive peptides in nutraceuticals and functional food products. We start the paper by introducing approaches for isolation and identification of bioactive peptides and candidates for functional foods. We further discuss market-driven innovation targeted to ensure that isolated peptides and suggested products are marketable and acceptable by targeted consumers. To increase the commercial potential and ensure the sustainability of the identified bioactive peptides and products, we discuss scalability, regulatory frameworks, production possibilities and the shift towards greener technologies. Finally, we discuss some commercial products from marine peptides within the functional food market. We discuss the placement of these products in the larger picture of the commercial sphere of functional food products from bioactive peptides.
Collapse
|
31
|
Doan CT, Tran TN, Nguyen TT, Tran TPH, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers (Basel) 2021; 13:polym13121959. [PMID: 34199171 PMCID: PMC8231626 DOI: 10.3390/polym13121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there has been increasing use of agro-byproducts in microbial fermentation to produce a variety of value-added products. In this study, among various kinds of agro-byproducts, pomelo albedo powder (PAP) was found to be the most effective carbon source for the production of sucrose hydrolyzing enzyme by Bacillus licheniformis TKU004. The optimal medium for sucrolytic enzyme production contained 2% PAP, 0.75% NH4NO3, 0.05% MgSO4, and 0.05% NaH2PO4 and the optimal culture conditions were pH 6.7, 35 °C, 150 rpm, and 24 h. Accordingly, the highest sucrolytic activity was 1.87 U/mL, 4.79-fold higher than that from standard conditions using sucrose as the carbon source. The purified sucrolytic enzyme (sleTKU004) is a 53 kDa monomeric protein and belongs to the glycoside hydrolase family 68. The optimum temperature and pH of sleTKU004 were 50 °C, and pH = 6, respectively. SleTKU004 could hydrolyze sucrose, raffinose, and stachyose by attacking the glycoside linkage between glucose and fructose molecules of the sucrose unit. The Km and Vmax of sleTKU004 were 1.16 M and 5.99 µmol/min, respectively. Finally, sleTKU004 showed strong sucrose tolerance and presented the highest hydrolytic activity at the sucrose concentration of 1.2 M–1.5 M.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Trung Dung Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
32
|
Venugopal V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The seafood industry generates large volumes of waste. These include processing discards consisting of shell, head, bones intestine, fin, skin, voluminous amounts of wastewater discharged as effluents, and low-value under-utilized fish, which are caught as by-catch of commercial fishing operations. The discards, effluents, and by-catch are rich in nutrients including proteins, amino acids, lipids containing good proportions of polyunsaturated fatty acids (PUFA), carotenoids, and minerals. The seafood waste is, therefore, responsible for loss of nutrients and serious environmental hazards. It is important that the waste is subjected to secondary processing and valorization to address the problems. Although chemical processes are available for waste treatment, most of these processes have inherent weaknesses. Biological treatments, however, are environmentally friendly, safe, and cost-effective. Biological treatments are based on bioconversion processes, which help with the recovery of valuable ingredients from by-catch, processing discards, and effluents, without losing their inherent bioactivities. Major bioconversion processes make use of microbial fermentations or actions of exogenously added enzymes on the waste components. Recent developments in algal biotechnology offer novel processes for biotransformation of nutrients as single cell proteins, which can be used as feedstock for the recovery of valuable ingredients and also biofuel. Bioconversion options in conjunction with a bio-refinery approach have potential for eco-friendly and economical management of seafood waste that can support sustainable seafood production.
Collapse
|
33
|
Nguyen TH, Wang SL, Nguyen DN, Nguyen AD, Nguyen TH, Doan MD, Ngo VA, Doan CT, Kuo YH, Nguyen VB. Bioprocessing of Marine Chitinous Wastes for the Production of Bioactive Prodigiosin. Molecules 2021; 26:molecules26113138. [PMID: 34073944 PMCID: PMC8197340 DOI: 10.3390/molecules26113138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, microbial prodigiosin (PG) has received much attention due to its numerous beneficial applications. The aim of this study was to establish the bioprocessing of marine chitinous wastes (MCWs) for the cost-effective preparation of PG. Of the MCWs, demineralized shrimp shell powders (de-SSP) were found to be a potential source of carbon/nitrogen (C/N) for PG production by bacterial fermentation using Serratia marcescens strains. Further, PG scale-up production was investigated in a 15 L bioreactor system, and the highest yield (6200 mg/L) was achieved during fermentation using 5 L of a novel-designed culture broth that included 1.60% C/N sources (a de-SSP/casein ratio of 7/3), 0.02% K2SO4, and 0.05% K2HPO4, with an initial pH of 6–7. Fermentation was conducted in the dark at 27.5 °C for 8.0 h. This study was the first to report on the utilization of shrimp wastes for cost-effective, large-scale (5 L/pilot) PG production with high productivity (6200 mg/L) in a short cultivation time. The combination of 0.02% K2SO4 and 0.05% K2HPO4 was also found to be a novel salt composition that significantly enhanced PG yield. The red compound was purified and confirmed as PG after analyzing its HPLC profile, mass, and UV/vis spectra. The purified PG was then tested for its bioactivities and showed effective anticancer activities, moderated antioxidant activities, and novel anti-NO effects.
Collapse
Affiliation(s)
- Thi-Hanh Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.-H.N.); (D.-N.N.); (C.-T.D.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: (S.-L.W.); (V.-B.N.); Tel.: +886-2-2621-5656 (S.-L.W.); Fax: +886-2-2620-9924 (S.-L.W.)
| | - Dai-Nam Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.-H.N.); (D.-N.N.); (C.-T.D.)
| | - Anh-Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (A.-D.N.); (T.-H.N.); (M.-D.D.); (V.-A.N.)
| | - Thi-Huyen Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (A.-D.N.); (T.-H.N.); (M.-D.D.); (V.-A.N.)
| | - Manh-Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (A.-D.N.); (T.-H.N.); (M.-D.D.); (V.-A.N.)
| | - Van-Anh Ngo
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (A.-D.N.); (T.-H.N.); (M.-D.D.); (V.-A.N.)
| | - Chien-Thang Doan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.-H.N.); (D.-N.N.); (C.-T.D.)
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan;
| | - Van-Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (A.-D.N.); (T.-H.N.); (M.-D.D.); (V.-A.N.)
- Correspondence: (S.-L.W.); (V.-B.N.); Tel.: +886-2-2621-5656 (S.-L.W.); Fax: +886-2-2620-9924 (S.-L.W.)
| |
Collapse
|
34
|
Accelerated Solvent Extraction and Pulsed Electric Fields for Valorization of Rainbow Trout ( Oncorhynchus mykiss) and Sole ( Dover sole) By-Products: Protein Content, Molecular Weight Distribution and Antioxidant Potential of the Extracts. Mar Drugs 2021; 19:md19040207. [PMID: 33916965 PMCID: PMC8067536 DOI: 10.3390/md19040207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Fishery by-products are rich in biologically active substances and the use of green and efficient extraction methods to recover these high-added-value compounds is of particular importance. In this study, head, skin and viscera of rainbow trout and sole were used as the target matrices and accelerated solvent extraction (ASE) (45–55 °C, 15 min, pH 5.2–6.8, 103.4 bars) and pulsed electric fields (PEF) (1–3 kV/cm, 123–300 kJ/kg, 15–24 h) were applied as extraction technologies. The results showed that ASE and PEF significantly increased the protein extract efficiency of the fish by-products (p < 0.05) by up to 80%. SDS-PAGE results showed that ASE and PEF treatments changed the molecular size distribution of the protein in the extracts, which was specifically expressed as the change in the area or number of bands between 5 and 250 kDa. The antioxidant capacity of the extracts was evaluated by oxygen radical absorbance capacity (ORAC) and total antioxidant capacity (ABTS) assays. The results showed that both ASE and PEF treatments significantly increased the antioxidant capacity of rainbow trout and sole skin and head extracts (p < 0.05). ASE and PEF extraction processes can be used as new technologies to extract high-added-value compounds from fish by-products.
Collapse
|
35
|
Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study. Molecules 2021; 26:molecules26072064. [PMID: 33916797 PMCID: PMC8038390 DOI: 10.3390/molecules26072064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tuna backbone peptide (TBP) has been reported to exert potent inhibitory activity against lipid peroxidation in vitro. Since this bears relevant physiological implications, this study was undertaken to assess the impact of peptide modifications on its bioactivity and other therapeutic potential using in vitro and in silico approach. Some TBP analogs, despite lower purity than the parent peptide, exerted promising antioxidant activities in vitro demonstrated by ABTS radical scavenging assay and cellular antioxidant activity assay. In silico digestion of the peptides resulted in the generation of antioxidant, angiotensin-converting enzyme (ACE), and dipeptidyl peptidase-IV (DPPIV) inhibitory dipeptides. Using bioinformatics platforms, we found five stable TBP analogs that hold therapeutic potential with their predicted multifunctionality, stability, non-toxicity, and low bitterness intensity. This work shows how screening and prospecting for bioactive peptides can be improved with the use of in vitro and in silico approaches.
Collapse
|
36
|
Conversion of Wheat Bran to Xylanases and Dye Adsorbent by Streptomyces thermocarboxydus. Polymers (Basel) 2021; 13:polym13020287. [PMID: 33477336 PMCID: PMC7830096 DOI: 10.3390/polym13020287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Agro-byproducts can be utilized as effective and low-cost nutrient sources for microbial fermentation to produce a variety of usable products. In this study, wheat bran powder (WBP) was found to be the most effective carbon source for xylanase production by Streptomyces thermocarboxydus TKU045. The optimal media for xylanase production was 2% (w/v) WBP, 1.50% (w/v) KNO3, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4, and the optimal culture conditions were 50 mL (in a 250 mL-volume Erlenmeyer flask), initial pH 9.0, 37 °C, 125 rpm, and 48 h. Accordingly, the highest xylanase activity was 6.393 ± 0.130 U/mL, 6.9-fold higher than that from un-optimized conditions. S. thermocarboxydus TKU045 secreted at least four xylanases with the molecular weights of >180, 36, 29, and 27 kDa when cultured on the WBP-containing medium. The enzyme cocktail produced by S. thermocarboxydus TKU045 was optimally active over a broad range of temperature and pH (40–70 °C and pH 5–8, respectively) and could hydrolyze birchwood xylan to produce xylobiose as the major product. The obtained xylose oligosaccharide (XOS) were investigated for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and the growth effect of lactic acid bacteria. Finally, the solid waste from the WBP fermentation using S. thermocarboxydus TKU045 revealed the high adsorption of Congo red, Red 7, and Methyl blue. Thus, S. thermocarboxydus TKU045 could be a potential strain to utilize wheat bran to produce xylanases for XOS preparation and dye adsorbent.
Collapse
|
37
|
Caruso G, Floris R, Serangeli C, Di Paola L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar Drugs 2020; 18:md18120622. [PMID: 33297310 PMCID: PMC7762275 DOI: 10.3390/md18120622] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The search for new biological sources of commercial value is a major goal for the sustainable management of natural resources. The huge amount of fishery by-catch or processing by-products continuously produced needs to be managed to avoid environmental problems and keep resource sustainability. Fishery by-products can represent an interesting source of high added value bioactive compounds, such as proteins, carbohydrates, collagen, polyunsaturated fatty acids, chitin, polyphenolic constituents, carotenoids, vitamins, alkaloids, tocopherols, tocotrienols, toxins; nevertheless, their biotechnological potential is still largely underutilized. Depending on their structural and functional characteristics, marine-derived biomolecules can find several applications in food industry, agriculture, biotechnological (chemical, industrial or environmental) fields. Fish internal organs are a rich and underexplored source of bioactive compounds; the fish gut microbiota biosynthesizes essential or short-chain fatty acids, vitamins, minerals or enzymes and is also a source of probiotic candidates, in turn producing bioactive compounds with antibiotic and biosurfactant/bioemulsifier activities. Chemical, enzymatic and/or microbial processing of fishery by-catch or processing by-products allows the production of different valuable bioactive compounds; to date, however, the lack of cost-effective extraction strategies so far has prevented their exploitation on a large scale. Standardization and optimization of extraction procedures are urgently required, as processing conditions can affect the qualitative and quantitative properties of these biomolecules. Valorization routes for such raw materials can provide a great additional value for companies involved in the field of bioprospecting. The present review aims at collecting current knowledge on fishery by-catch or by-products, exploring the valorization of their active biomolecules, in application of the circular economy paradigm applied to the fishery field. It will address specific issues from a biorefinery perspective: (i) fish tissues and organs as potential sources of metabolites, antibiotics and probiotics; (ii) screening for bioactive compounds; (iii) extraction processes and innovative technologies for purification and chemical characterization; (iv) energy production technologies for the exhausted biomass. We provide a general perspective on the techno-economic feasibility and the environmental footprint of the production process, as well as on the definition of legal constraints for the new products production and commercial use.
Collapse
Affiliation(s)
- Gabriella Caruso
- Institute of Polar Sciences, National Research Council, 98122 Messina, Italy
- Correspondence: ; Tel.: +39-090-6015-423
| | - Rosanna Floris
- AGRIS-Sardegna, Servizio Ricerca Prodotti Ittici, Bonassai, 07100 Sassari, Italy;
| | | | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
38
|
Efficient conversion of α-chitin by multi-modular chitinase from Chitiniphilus shinanonensis with KOH and KOH-urea pretreatment. Carbohydr Polym 2020; 250:116923. [DOI: 10.1016/j.carbpol.2020.116923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
|
39
|
Doan CT, Tran TN, Nguyen VB, Nguyen AD, Wang SL. Utilization of Seafood Processing By-Products for Production of Proteases by Paenibacillus sp. TKU052 and Their Application in Biopeptides' Preparation. Mar Drugs 2020; 18:md18110574. [PMID: 33233577 PMCID: PMC7699763 DOI: 10.3390/md18110574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial fermentation of by-products is a renewable and efficient technique in the development of a range of useful products. In this study, protease synthesis by Paenibacillus sp. TKU052 was carried out on culture media containing some common seafood processing by-products (SPBPs) as the sole source of carbon and nitrogen (C/N). The most suitable C/N nutrition source for the production of proteases was found to be 3.0% (w/v) demineralized crab shells powder (deCSP) and maximal enzyme activity of 4.41 ± 0.16 U/mL was detected on the third day of the culture. Two proteases (P1 and P2) with a similar molecular weight of 31 kDa were successfully isolated and purified from the 3-day deCSP-containing medium. Both P1 and P2 exhibited the highest activity of gelatin hydrolysis at pH 6 and 60 °C. The gelatin hydrolysates catalyzed by Paenibacillus TKU052 proteases were evaluated for biological activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, angiotensin-I converting enzyme (ACE) inhibition, and prebiotic activities. The gelatin hydrolysates expressed 31.76–43.95% DPPH radical scavenging activity and 31.58–36.84% ACE inhibitory activity, which was higher than those from gelatin. Gelatin hydrolysates also showed the growth-enhancing effect on Bifidobacterium bifidum BCRC 14615 with an increase to 135.70–147.81%. In short, Paenibacillus sp. TKU052 could be a potential strain to utilize crab shell wastes to produce proteases for bio-active peptides’ preparation.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Thi Ngoc Tran
- Department of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
40
|
Utilization of Crab Waste for Cost-Effective Bioproduction of Prodigiosin. Mar Drugs 2020; 18:md18110523. [PMID: 33105706 PMCID: PMC7690397 DOI: 10.3390/md18110523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed to establish the culture process for the cost-effective production of prodigiosin (PG) from demineralized crab shell powder (de-CSP), a fishery processing byproduct created via fermentation. Among the tested PG-producing strains, Serratia marcescens TNU02 was demonstrated to be the most active strain. Various ratios of protein/de-CSP were used as the sources of C/N for PG biosynthesis. The PG yield was significantly enhanced when the casein/de-CSP ratio was controlled in the range of 3/7 to 4/6. TNU02 produced PG with a high yield (5100 mg/L) in a 15 L bioreactor system containing 4.5 L of a newly-designed liquid medium containing 1.6% C/N source (protein/de-CSP ratio of 3/7), 0.02% (NH4)2SO4, 0.1% K2HPO4, and an initial pH of 6.15, at 27 °C for 8 h in dark conditions. The red pigment was purified from the culture broth and then quantified as being PG by specific Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and UV spectra analysis. The purified PG demonstrated moderate antioxidant and effective inhibition against four cancerous cell lines. Notably, this study was the first to report on using crab wastes for PG bioproduction with high-level productivity (5100 mg/L) in a large scale (4.5 L per pilot) in a short period of fermentation time (8 h). The salt compositions, including (NH4)2SO4 and K2HPO4, were also a novel finding for the enhancement of PG yield by S. marcescens in this report.
Collapse
|
41
|
Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Doan CT, Tran TN, Wang CL, Wang SL. Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent. Polymers (Basel) 2020; 12:E2228. [PMID: 32998333 PMCID: PMC7601101 DOI: 10.3390/polym12102228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
As a green and effective technique in the production of a large number of valuable products, the microbial conversion of chitinous fishery wastes is receiving much attention. In this study, protease production using the Paenibacillus mucilaginosus TKU032 strain was conducted on culture media containing several common types of chitinous fishery by-products serving as the carbon and nitrogen (C/N) nutrition source. Among the chitinous wastes, 1.5% (w/v) shrimp head powder (SHP) was found to be the most appropriate nutritional source for protease production when a maximal enzyme activity of 3.14 ± 0.1 U/mL was observed on the 3rd day of the culture period. The molecular mass of P. mucilaginosus TKU032 protease was estimated to be nearly 32 kDa by the polyacrylamide gel electrophoresis method. The residual SHP obtained from the culture medium was also considered to be utilized for chitin extraction. The deproteinization rate of the fermentation was estimated to be 45%, and the chitin obtained from fermented SHP (fSHP) displayed a similar characteristic Fourier-transform infrared spectroscopy (FTIR) profile as that from SHP. In addition, SHP, fSHP, and chitins obtained from SHP and fSHP were investigated for their adsorptive capacity of nine types of dyes, and chitin obtained from fSHP displayed a good adsorption rate on Congo Red and Red No. 7, at 99% and 97%, respectively. In short, the results provide potential support for the utilization of SHP in the production of P. mucilaginosus TKU032 protease via the fermentation as well as the preparation of chitin from fSHP as an effective dye adsorbent.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Thi Ngoc Tran
- Department of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Chuan-Lu Wang
- Department of Fashion Beauty Design, Lan Yang Institute of Technology, Yilan County 26141, Taiwan;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
43
|
Zhang J, Li M, Zhang G, Tian Y, Kong F, Xiong S, Zhao S, Jia D, Manyande A, Du H. Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms. Food Chem 2020; 337:127921. [PMID: 32919266 DOI: 10.1016/j.foodchem.2020.127921] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Antioxidant peptides obtained from snakehead (Channa argus) soup (SHS) after simulated gastrointestinal (GI) digestion were separated, identified and characterized. Results showed that the fraction with MW < 3 kDa had the highest antioxidant capacity. Four novel antioxidant peptides were identified after RP-HPLC and UPLC-MS/MS. PGMLGGSPPGLLGGSPP and SDGSNIHFPN had the highest DPPH radical scavenging activity (IC50 = 1.39 mM) and Fe2+ chelating ability (IC50 = 4.60 mM), respectively. Structures in silico for IVLPDEGK, PGMLGGSPPGLLGGSPP and SDGSNIHFPN suggest at least one β-turn and/or α-helix, which are associated with antioxidant activity. Moreover, our results showed that these three peptides docked with a recombinant Kelch-like ECH-associated protein 1 (Keap1) with a binding score greater than TX6, a good ligand of Keap1. The cell viability assay also showed significant cytoprotective effects against H2O2-induced cellular oxidative damage. This information implies that antioxidant mechanisms of novel SHS peptides occurred via activation of cellular anti-oxidation Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Mei Li
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, PR China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Gaonan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yu Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Dan Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW89GA, UK
| | - Hongying Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
44
|
Wang SL, Nguyen VB, Doan CT, Tran TN, Nguyen MT, Nguyen AD. Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules 2020; 25:E2744. [PMID: 32545769 PMCID: PMC7356639 DOI: 10.3390/molecules25122744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
The technology of microbial conversion provides a potential way to exploit compounds of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen (C/N) sources has become an important factor for large-scale production. Investigations into the bioactivities and applications of PG and its related compounds have also been given increased attention. To save production cost, chitin and protein-containing fishery byproducts have recently been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes. This strategy provides an environmentally-friendly selection using inexpensive C/N sources to produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens. The review article will provide effective references for production, bioactivity, and application of S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
Collapse
Affiliation(s)
- San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| |
Collapse
|
45
|
Doan CT, Tran TN, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers (Basel) 2020; 12:polym12051163. [PMID: 32438616 PMCID: PMC7284385 DOI: 10.3390/polym12051163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Trung Dung Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
46
|
Ashraf SA, Adnan M, Patel M, Siddiqui AJ, Sachidanandan M, Snoussi M, Hadi S. Fish-based Bioactives as Potent Nutraceuticals: Exploring the Therapeutic Perspective of Sustainable Food from the Sea. Mar Drugs 2020; 18:E265. [PMID: 32443645 PMCID: PMC7281228 DOI: 10.3390/md18050265] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Recent developments in nutraceuticals and functional foods have confirmed that bioactive components present in our diet play a major therapeutic role against human diseases. Moreover, there is a huge emphasis on food scientists for identifying and producing foods with better bioactive activity, which can ultimately provide wellness and well-being to human health. Among the several well-known foods with bioactive constituents, fish has always been considered important, due to its rich nutritional values and by-product application in food industries. Nutritionists, food scientists, and other scientific communities have been working jointly to uncover new bioactive molecules that could increase the potential and therapeutic benefits of these bioactive components. Despite the innumerable benefits of fish and known fish bioactive molecules, its use by food or pharmaceutical industries is scarce, and even research on fish-based nutraceuticals is not promising. Therefore, this review focuses on the current information/data available regarding fish bioactive components, its application as nutraceuticals for therapeutic purposes in the treatment of chronic diseases, ethnic issues related to consumption of fish or its by-products. Especial emphasis is given on the utilization of fish wastes and its by-products to fulfill the world demand for cheap dietary supplements specifically for underdeveloped/least developed countries.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
47
|
Tran NVN, Yu QJ, Nguyen TP, Wang SL. Coagulation of Chitin Production Wastewater from Shrimp Scraps with By-Product Chitosan and Chemical Coagulants. Polymers (Basel) 2020; 12:E607. [PMID: 32155925 PMCID: PMC7182843 DOI: 10.3390/polym12030607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Chitin production wastewater contains nutrient-rich organic and mineral contents. Coagulation of the wastewater with a natural coagulant such as by-product chitosan would be an economical and environmentally friendly method of treatment. This study investigated the treatment efficiencies of a preliminary sedimentation process followed by coagulation. The removal efficiencies for wastewater parameters were evaluated and compared for coagulants including by-product chitosan, polyaluminum chloride, and polyacryamide. The evaluation was based on the removal of wastewater turbidity and other criteria, including tCOD, sCOD, TKN, NH4+-N, TP, TSS, calcium, and crude protein. The results showed that the preliminary sedimentation (before coagulation) can remove over 80% of turbidity and more than 93% of TSS at pH 4 in 30 min. At optimal conditions, when the ratio of crude protein and calcium was 4.95, by-product chitosan dose of 77.5 mg·L-1 and pH = 8.3, the wastewater characteristics changes were tCOD 23%, sCOD 32%, TKN and ammonium 25%, TP 90%, TSS 84%, Ca2+ 29%, and crude protein 25%. The residue recovered through coagulation consists of up to 55 mg·g-1 crude protein, which is used for animal feed or crop fertilizer.
Collapse
Affiliation(s)
- Nguyen Van Nhi Tran
- Civil and Environmental Engineering, School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (N.V.N.T.); (Q.J.Y.)
| | - Qiming Jimmy Yu
- Civil and Environmental Engineering, School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (N.V.N.T.); (Q.J.Y.)
| | - Tan Phong Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, Ho Chi Minh City 70000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
48
|
Al Shaqsi NHK, Al Hoqani HAS, Hossain MA, Al Sibani MA. Isolation, characterization and standardization of demineralization process for chitin polymer and minerals from the crabs waste of Portunidae segnis. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020. [DOI: 10.1016/j.abst.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Anti-Oxidant and Anti-Diabetes Potential of Water-Soluble Chitosan-Glucose Derivatives Produced by Maillard Reaction. Polymers (Basel) 2019; 11:polym11101714. [PMID: 31635395 PMCID: PMC6836137 DOI: 10.3390/polym11101714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
Chitosan-sugar derivatives demonstrate some useful biology activities (for example anti-oxidant and anti-microbial activities). In this study, water-soluble chitosan–glucose derivatives (WSCGDs) were produced from a water-soluble chitosan hydrochloride (WSC) with 12.5 kDa of molecular weight and 24.05% of degree of acetylation (DA) via Maillard reaction with the heating temperatures of 100 °C and 121 °C. The Maillard reaction between WSC and glucose was investigated by measuring the absorbances at 420 nm and 294 nm, indicating that the reaction took place more effectively at 121 °C. All WSCGDs exhibited higher anti-oxidant activity than WSC, in which WSCGDs obtained at the treatment 121 °C for 2 h, 3 h, and 4 h expressed the highest ability (IC50 range from 1.90–1.05 mg/mL). Increased anti-α-amylase and anti-α-glucosidase activities were also observed in WSCGDs from the treatment at 121 °C. In detail, the highest IC50 values of anti-α-amylase activity were 18.02 mg/mL (121 °C, 3 h) and 18.37 mg/mL (121 °C, 4 h), whereas the highest IC50 values of anti-α-glucosidase activity were in range of 7.09–5.72 mg/mL (121 °C, for 1–4 h). According to the results, WSCGD obtained from 121 °C for 3 h was selected for further characterizing by high performance liquid chromatography size exclusion chromatography (HPLC SEC), colloid titration, FTIR, as well as 1H-NMR, indicating that the derivative of WSC and glucose was successfully synthesized with a molecular weight of 15.1 kDa and degree of substitution (DS) of 34.62 ± 2.78%. By expressing the excellent anti-oxidant and anti-diabetes activities, WSCGDs may have potential use in health food or medicine applications.
Collapse
|
50
|
Conversion of Shrimp Head Waste for Production of a Thermotolerant, Detergent-Stable, Alkaline Protease by Paenibacillus sp. Catalysts 2019. [DOI: 10.3390/catal9100798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fishery processing by-products have been of great interest to researchers due to their beneficial applications in many fields. In this study, five types of marine by-products, including demineralized crab shell, demineralized shrimp shell, shrimp head, shrimp shell, and squid pen, provided sources of carbon and nitrogen nutrition by producing a protease from Paenibacillus sp. TKU047. Strain TKU047 demonstrated the highest protease productivity (2.98 U/mL) when cultured for two days on a medium containing 0.5% of shrimp head powder (SHP). The mass of TKU047 protease was determined to be 32 kDa (approximately). TKU047 protease displayed optimal activity at 70–80 °C and pH 9, with a pH range of stability from 6 to 11. TKU047 protease also showed stability in solutions containing surfactants and detergents. Based on its excellent properties, Paenibacillus sp. TKU047 protease may be a feasible candidate for inclusion in laundry detergents.
Collapse
|