1
|
de Andrade DC, Monteiro SA, de Oliveira TE, Merib J. Microextraction of steroidal hormones from urine samples using natural deep eutectic solvents: insights into chemical interactions using molecular dynamics simulations. Anal Bioanal Chem 2025; 417:1305-1315. [PMID: 39331168 DOI: 10.1007/s00216-024-05560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Natural deep eutectic solvents (NADES) are gaining significant attention in analytical chemistry due to attractive physico-chemical properties associated with sustainable aspects. They have been successfully evaluated in different fields, and applications in sample preparation have increased in the last years. However, there is a limited knowledge related to chemical interactions and mechanism of intermolecular action with specific analytes. In this regard, for the first time, this study exploited a computational investigation using molecular dynamics (MD) predictions combined with experimental data for the extraction/determination of steroidal hormones (estriol, β-estradiol, and estrone) in urine samples using NADES. The ultrasound-assisted liquid-liquid microextraction (UALLME) approach followed by high-performance liquid chromatography with diode array detection (HPLC-DAD) was employed using menthol:decanoic acid as extraction solvent. Experimental parameters were optimized through multivariate strategies, with the best conditions consisting of 3 min of extraction, 150 μL of NADES, and 3 mL of sample (tenfold diluted). According to molecular dynamics predictions confirmed by experimental data, a molar ratio that permitted the highest efficiency consisted of menthol:decanoic acid 2:1 v/v. Importantly, computational simulations revealed that van der Waals interactions were the most significant contributor to the interaction energy of analytes-NADES. Using the optimized conditions, limits of detection (LOD) ranged from 3 and 8 μg L-1, and precision (n = 3) varied from 8 to 19%. Intraday precision was evaluated at 3 concentrations: low (LOQ according to each analyte), medium (100 μg L-1), and high (750 μg L-1). Accuracy was successfully assessed through recoveries that ranged from 82 to 98%. In this case, molecular dynamics simulations proved to be an important tool for in-depth investigations of interaction mechanisms of DES with different analytes.
Collapse
Affiliation(s)
- Débora Coelho de Andrade
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, 90050-170, RS, Brazil
| | - Sofia Aquino Monteiro
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, 90050-170, RS, Brazil
| | - Tiago Espinosa de Oliveira
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, 90050-170, RS, Brazil
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245, Sarmento Leite St., Porto Alegre, 90050-170, RS, Brazil
| | - Josias Merib
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, 90050-170, RS, Brazil.
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245, Sarmento Leite St., Porto Alegre, 90050-170, RS, Brazil.
| |
Collapse
|
2
|
Qiao X, Jiang X, Li X, Chen X, Ma L, Chen D. Convenient analysis of sartan adulteration in herbal oral liquids using cotton fiber-supported liquid extraction and with high-performance liquid chromatography-fluorescence detection. J Pharm Biomed Anal 2024; 250:116406. [PMID: 39121539 DOI: 10.1016/j.jpba.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This research introduces a novel approach for detecting sartan antihypertensive drug adulteration in herbal oral liquids using cotton fiber-supported liquid extraction (CF-SLE) combined with high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Optimal extraction parameters were determined through systematic method development, establishing a sample solution with a pH of 3.0, using 200 mg of cotton fiber, ethyl acetate as the extraction solvent, and a solvent volume of 4 mL. These conditions demonstrated robust extraction efficiency and were further validated for precision and accuracy, with intra- and inter-day relative standard deviations consistently below 7.5 % and relative recoveries ranging from 88.5 % to 106.1 %. The method exhibited excellent linearity for sartans, with R² values greater than 0.993 across a concentration range of 10-2000 ng/mL. Detection limits were effectively established in the range of 2.6-3.1 ng/mL, indicating that the method's sensitivity is adequate for the intended screening purposes. This validated method was then applied to real sample analysis, confirming its potential for routine use in detecting illegal additives within complex herbal matrices, thereby ensuring consumer safety and supporting regulatory compliance.
Collapse
Affiliation(s)
- Xiaofang Qiao
- Henan Provincial Food and Drug Evaluation and Inspection Center, Zhengzhou 450018, China
| | - Xingyi Jiang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, Henan 450001, China
| | - Xiangyu Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, Henan 450001, China
| | - Xiuying Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, Henan 450001, China.
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou 450001, China.
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Makhija R, Barik P, Mehta A, Ganti SS, Asati V. Sustainable approaches to analyzing phenolic compounds: a green chemistry perspective. ANAL SCI 2024; 40:1947-1968. [PMID: 39107656 DOI: 10.1007/s44211-024-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/07/2024] [Indexed: 10/29/2024]
Abstract
Innovative and eco-friendly methodologies for the determination of phenolic compounds, showing a paradigm shift in analytical chemistry toward sustainability. Phenolic compounds, valued for their diverse health benefits, have historically been analyzed using methods that often involve hazardous solvents and energy-intensive processes. This review focuses on green analytical chemistry principles, emphasizing sustainability, reduced environmental impact, and analytical efficiency. The use of DES, specifically Ch: Chl-based DES, emerges as a prominent green alternative for extracting phenolic compounds from various sources. The integration of UAE with DES enhances extraction efficiency, contributing to a more sustainable analytical approach. Furthermore, the review highlights the significance of DLLME and SPME in reducing solvent consumption and simplifying extraction procedures. These techniques exemplify the commitment to making phenolic compound analysis environmentally friendly. The incorporation of portable measurement tools, such as smartphones, into analytical methodologies is a notable aspect discussed in the review. Techniques like UA-DLLME leverage portable devices, making phenolic compound determination more accessible and versatile. Anticipating the future, the review foresees ongoing advancements in sustainable analytical approaches, driven by collaborative efforts across diverse disciplines. Novel solvents, extraction techniques, and portable measurement methods are expected to play pivotal roles in the continuous evolution of green analytical methodologies for the analysis of phenolic compounds. The review encapsulates a transformative journey toward environmentally responsible and efficient analytical practices, paving the way for further research and application in diverse analytical settings.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Pallavi Barik
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Ashish Mehta
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
4
|
Abdul Keyon AS, Ng N, Breadmore MC. Advancements in Multiple-Step On-Line Preconcentration Techniques for Enhanced Sensitivity in Capillary Electrophoresis. J Sep Sci 2024; 47:e202400519. [PMID: 39304608 DOI: 10.1002/jssc.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Multiple-step on-line preconcentration, a combination of at least two stacking techniques has been developed to increase the sensitivity in capillary electrophoresis (CE) for analytes in various samples. It is usually conducted sequentially, or in some cases, synergistically, where different stacking modes occur simultaneously. Multiple-step techniques allow simultaneous preconcentration and separation of various kinds of analytes in different complex samples in a single CE run. This review aims to provide recent advances in multiple-step on-line preconcentration techniques in CE. We critically review technical papers published for the last 7 years up until July 2024, subsequently organized according to the combination of the main stacking techniques, that is, field amplification, large volume sample stacking, transient isotachophoresis, micelle to solvent or micelle to cyclodextrin stacking, and others. The procedures, fundamental mechanism, analytical figures of merits achieved, and their feasibility for complicated sample matrices are reviewed.
Collapse
Affiliation(s)
- Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - NyukTing Ng
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Michael Charles Breadmore
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
5
|
Rahimpoor R, Soleymani-Ghoozhdi D, Firoozichahak A, Alizadeh S. Needle trap device technique: From fabrication to sampling. Talanta 2024; 276:126255. [PMID: 38776771 DOI: 10.1016/j.talanta.2024.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Needle Trap Device (NTD) as a novel, versatile, and eco-friendly technique has played an important role in analytical and environmental chemistry. The distinctive role of this interdisciplinary technique can be defended through the sampling and analysis of biological samples and industrial pollutants in gaseous and liquid environments. In recent years, significant efforts have been made to enhance the performance of the needle trap device resulting in the development of novel extraction routes by various packing materials with improved selectivity and enhanced adsorption characteristics. These achievements can lead to the facilitated pre-concentration of desired analytes. This review tries to have a comparative and comprehensive survey of the three important areas of NTD technique: I) Fabrication and preparation procedures of NTDs; II) Sampling techniques of pollutants using NTDs; and III) Employed materials as adsorbents in NTDs. In the packing-material section, the commercial and synthetic adsorbents such as carbon materials, metal-organic frameworks, aerogel, and polymers are considered. Furthermore, the limitations and potential areas for future development of the NTD technique are presented.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
7
|
Baglietto M, Benedetti B, Di Carro M, Magi E. Polar licit and illicit ingredients in dietary supplements: chemometric optimization of extraction and HILIC-MS/MS analysis. Anal Bioanal Chem 2024; 416:1679-1695. [PMID: 38334794 PMCID: PMC10899327 DOI: 10.1007/s00216-024-05173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Many dietary supplements claim the ability to enhance sports performance and to improve the fitness of the consumers. Occasionally, along with legal ingredients, illicit compounds may be added without being labelled, leading to unintended doping. Hence, the aim of this study was to develop an analytical method to determine a set of 12 polar (logDpH=7 from -2.0 to +0.3) compounds including diuretics, stimulants, β2-agonists, methylxanthines, and sweeteners. Hydrophilic interaction liquid chromatography was chosen as separation strategy, coupled with tandem mass spectrometry. The instrumental method was optimized using a two-step design of experiments (DoE). Firstly, a Plackett-Burman (PB) DoE was performed to identify the more influencing variables affecting peak areas and chromatographic resolution among temperature, water percentage in the mobile phase, and flow rate, as well as type and concentration of buffers. Secondly, a D-optimal DoE was set, considering only the most significant variables from the PB-DoE results, achieving a deeper understanding of the retention mechanism. Sample processing by salt-assisted liquid-liquid extraction was studied through DoE as well, and the whole method showed recoveries in the range 40-107% and procedural precision ≤11% for all analytes. Finally, it was applied to real samples, in which the four methylxanthines and two artificial sweeteners were detected and quantified in the range of 0.02-192 mg g-1. These values were compared to the quantities declared on the DS labels, when possible. Furthermore, a sequence of MS/MS scans allowed detection of a signal in one of the samples, structurally similar to the β2-agonist clenbuterol.
Collapse
Affiliation(s)
- Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy.
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, via Dodecaneso 31, 16146, Genoa, Italy
| |
Collapse
|
8
|
Molina-Balmaceda A, Rojas-Candia V, Arismendi D, Richter P. Activated carbon from avocado seed as sorbent phase for microextraction technologies: activation, characterization, and analytical performance. Anal Bioanal Chem 2024:10.1007/s00216-024-05203-1. [PMID: 38393340 DOI: 10.1007/s00216-024-05203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
According to green analytical chemistry principles, the use of agricultural byproducts as sorbent phases is an interesting topic due to their lignocellulosic origin, as they are biodegradable and inexpensive. To the best of our knowledge, this is the first study in which avocado seed and avocado seed activated carbon are proposed as sustainable sorbents for solid-phase microextraction technologies, which were used to assess the proof of concept. Rotating disk sorptive extraction (RDSE) was used as a model technology and ibuprofen (Ibu) and 1-hydroxy-ibuprofen (1-OH-Ibu) as representative analytes. It was found that activated carbon (AC) prepared at 600 °C with an impregnation ratio (raw material/activating agent (ZnCl2), w/w) of 1:1.2 had better extraction efficiency than other ACs obtained at different temperatures, impregnation ratios, and activating agents (K2CO3). Characterization revealed several differences between natural avocado seed, biochar prepared at 600 °C, and selected AC since the typical functional groups of the natural starting material begin to disappear with pyrolysis and increasing the surface area and pore volume, suggesting that the main interactions between analytes and the sorbent material are pore filling and π-π stacking. By using this AC as the sorbent phase, the optimal extraction conditions in RDSE were as follows: the use of 50 mg of sorbent in the disk, 30 mL of sample volume, pH 4, 90 min of extraction time at a rotation velocity of the disk of 2000 rpm, and methanol as the elution solvent. The extracts were analyzed via gas chromatography coupled to mass spectrometry (GC-MS). The method provided limits of detection of 0.23 and 0.07 µg L-1 and recoveries of 81% and 91% for Ibu and 1-OH-Ibu, respectively. When comparing the extraction efficiency of the selected activated carbon with those provided by Oasis® HLB and C18 in RDSE, nonsignificant differences were observed, indicating that avocado seed activated carbon is a suitable alternative to these commercial materials.
Collapse
Affiliation(s)
- Alejandra Molina-Balmaceda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Valentina Rojas-Candia
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
9
|
Piergiovanni M, Carlin S, Lotti C, Vrhovsek U, Mattivi F. Development of a Fully Automated Method HS-SPME-GC-MS/MS for the Determination of Odor-Active Carbonyls in Wines: a "Green" Approach to Improve Robustness and Productivity in the Oenological Analytical Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1995-2007. [PMID: 36848621 PMCID: PMC10835727 DOI: 10.1021/acs.jafc.2c07083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was the optimization and validation of a green, robust, and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines that could be added as a new quality control tool for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage. A HS-SPME-GC-MS/MS method was optimized and automated using the autosampler to improve overall performance. A solvent-less technique and a strong minimization of all volumes were implemented to comply with the green analytical chemistry principles. There were as many as 44 VCC (mainly linear aldehydes, Strecker aldehydes, unsaturated aldehydes, ketones, and many other) analytes under investigation. All compounds showed a good linearity, and the LOQs were abundantly under the relevant perception thresholds. Intraday, 5-day interday repeatability, and recovery performances in a spiked real sample were evaluated showing satisfactory results. The method was applied to determine the evolution of VCCs in white and red wines after accelerated aging for 5 weeks at 50 °C. Furans and linear and Strecker aldehydes were the compounds that showed the most important variation; many VCCs increased in both classes of samples, whereas some showed different behaviors between white and red cultivars. The obtained results are in strong accordance with the latest models on carbonyl evolution related to wine aging.
Collapse
Affiliation(s)
- Maurizio Piergiovanni
- Center
Agriculture Food Environment (C3A), University
of Trento, San Michele
all’Adige (TN) 38010, Italy
| | - Silvia Carlin
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| | - Cesare Lotti
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| | - Urska Vrhovsek
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| | - Fulvio Mattivi
- Center
Research and Innovation, Edmund Mach Foundation, San Michele all’Adige (TN) 38010, Italy
| |
Collapse
|
10
|
Schüller M, Hansen FA, Pedersen-Bjergaard S. Extraction performance of electromembrane extraction and liquid-phase microextraction in prototype equipment. J Chromatogr A 2023; 1710:464440. [PMID: 37832461 DOI: 10.1016/j.chroma.2023.464440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In this comparative study, the performance of liquid-phase microextraction and electromembrane extraction in prototype equipment was evaluated for extraction of ninety basic substances from plasma. Using a commercial EME device based on conductive vials enabled a standardized and comprehensive comparison between the two methods. Extractions were performed from a pH-adjusted donor solution, across an organic liquid membrane immobilized in a porous polypropylene membrane, and into an acidic acceptor solution. In LPME, dodecyl acetate was used as the extraction solvent, while 2-nitrophenyl octyl ether was used for EME with an electric field applied across the system. To assess the extraction performance, extraction recovery plots and extraction time curves were constructed and analyzed. These plots provided insights into the efficiency and effectiveness of LPME and EME, allowing users to make better decisions about the most suitable method for a specific bioanalytical application. Both LPME and EME were effective for substances with 2.0 < log P < 4.0, with EME showing faster extraction kinetics. Small (200 µL) and large vials (600 µL) were compared, showing that smaller vials improved kinetics markedly in both techniques. Carrier-mediated extraction showed improved performance for analytes with log P < 2 in EME, however, with some limitations due to system instability. This is, to our knowledge, the first time LPME was performed in the commercial vial-based equipment. An evaluation of vial-based LPME investigating linearity, precision, accuracy, and matrix effects showed promising results. These findings contribute to a general understanding of the performance differences in vial-based LPME and EME.
Collapse
Affiliation(s)
- Maria Schüller
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Ossanes DS, Birk L, Petry AUS, de Menezes FP, Gonzaga AP, Schlickmann PF, Eller S, de Oliveira TF. Cork sheet as an efficient biosorbent for forensic toxicology: Application to vitreous humor analysis. J Anal Toxicol 2023; 47:580-587. [PMID: 37506044 DOI: 10.1093/jat/bkad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/05/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
There is an increasing number of people affected worldwide by mental health disorders, such as depression and anxiety. One of the main courses of treatment, along with psychotherapy, is the use of psychoactive medications, like antidepressants and benzodiazepines. Also, the unprescribed use of these substances is a concerning public health issue. Hence, the analysis of psychotropic medications is mandatory in postmortem toxicology and various biological samples can be used for this detection, among them the vitreous humor (VH) stands out. Also, there is a demand for more sustainable and more efficient extraction methodologies according to green chemistry. An example is solid phase microextraction techniques (SPME), which use a solid sorbent and small solvent amounts. Biosorbents are substances of natural origin with sorptive properties, and they have been successfully used in SPME in environmental toxicology for water analysis, mainly. This study aimed to develop a sustainable, fast, cheap and simple SPME methodology using cork sheet strips as a biosorbent, to extract antidepressants, benzodiazepines and others from VH samples by liquid chromatography coupled to tandem mass spectrometry. The extraction was conducted in a 96-well plate using 200 µL of VH and optimization of relevant parameters for extraction was performed. For solvent optimization, two simplex-centroid experiments were planned for extraction and desorption and to evaluate time and pH, a Doehlert design experiment was performed. The analytical method for the determination and quantification of 17 substances was validated. The quantification limits were 5 ng/mL for all analytes and the calibration curves were linear between 5 and 30 ng/mL. This study was able to develop an efficient, cheap, simple and fast microextraction method for 17 analytes in VH, using strips of cork sheet for extraction and a 96-well plate as a container. Furthermore, this approach system could be automated for routine toxicology laboratories.
Collapse
Affiliation(s)
- Daniela Souza Ossanes
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Letícia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Adriana Ubirajara Silva Petry
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Francisco Paz de Menezes
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Alexsandro Pinto Gonzaga
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Paula Flores Schlickmann
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
12
|
Ahn S, Bae S. Synthesis and Characterization of a Multi-Walled Carbon Nanotube-Ionic Liquid/Polyaniline Adsorbent for a Solvent-Free In-Needle Microextraction Method. Molecules 2023; 28:molecules28083517. [PMID: 37110753 PMCID: PMC10142705 DOI: 10.3390/molecules28083517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sample preparation is an essential process when handling complex matrices. Extraction without using a solvent requires the direct transfer of analytes from the sample to the adsorbent either in the gas or liquid phase. In this study, a wire coated with a new adsorbent was fabricated for in-needle microextraction (INME) as a solvent-free sample extraction method. The wire inserted into the needle was placed in the headspace (HS), which was saturated with volatile organic compounds from the sample in a vial. A new adsorbent was synthesized via electrochemical polymerization by mixing aniline with multi-walled carbon nanotubes (MWCNTs) in the presence of an ionic liquid (IL). The newly synthesized adsorbent using IL is expected to achieve high thermal stability, good solvation properties, and high extraction efficiency. The characteristics of the electrochemically synthesized surfaces coated with MWCNT-IL/polyaniline (PANI) adsorbents were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). Then, the proposed HS-INME-MWCNT-IL/PANI method was optimized and validated. Accuracy and precision were evaluated by analyzing replicates of a real sample containing phthalates, showing spike recovery between 61.13% and 108.21% and relative standard deviations lower than 15%. The limit of detection and limit of quantification of the proposed method were computed using the IUPAC definition as 15.84~50.56 μg and 52.79~168.5 μg, respectively. We concluded that HS-INME using a wire coated with the MWCNT-IL/PANI adsorbent could be repeatedly used up to 150 times without degrading its extraction performance in an aqueous solution; it constitutes an eco-friendly and cost-effective extraction method.
Collapse
Affiliation(s)
- Soyoung Ahn
- Department of Chemistry, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sunyoung Bae
- Department of Chemistry, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| |
Collapse
|
13
|
Treder N, Szuszczewicz N, Roszkowska A, Olędzka I, Bączek T, Bień E, Krawczyk MA, Plenis A. Magnetic Solid-Phase Microextraction Protocol Based on Didodecyldimethylammonium Bromide-Functionalized Nanoparticles for the Quantification of Epirubicin in Biological Matrices. Pharmaceutics 2023; 15:pharmaceutics15041227. [PMID: 37111712 PMCID: PMC10145736 DOI: 10.3390/pharmaceutics15041227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Due to epirubicin's (EPI) narrow therapeutic index and risk of cardiotoxicity, it is critical to monitor concentrations of this drug when being used to treat cancer patients. In this study, a simple and fast magnetic solid-phase microextraction (MSPME) protocol for the determination of EPI in plasma and urine samples is developed and tested. Experiments were performed using prepared Fe3O4-based nanoparticles coated with silica and a double-chain surfactant-namely, didodecyldimethylammonium bromide (DDAB)-as a magnetic sorbent. All the prepared samples were analyzed via liquid chromatography coupled with fluorescence detection (LC-FL). The validation parameters indicated good linearity in the range of 0.001-1 µg/mL with a correlation coefficient > 0.9996 for plasma samples, and in the range of 0.001-10 µg/mL with a correlation coefficient > 0.9997 for urine samples. The limit of detection (LOD) and limit of quantification (LOQ) for both matrices were estimated at 0.0005 µg/mL and 0.001 µg/mL, respectively. The analyte recovery after sample pretreatment was 80 ± 5% for the plasma samples and 90 ± 3% for the urine samples. The developed method's applicability for monitoring EPI concentrations was evaluated by employing it to analyze real plasma and urine samples collected from a pediatric cancer patient. The obtained results confirmed the proposed MSPME-based method's usefulness, and enabled the determination of the EPI concentration-time profile in the studied patient. The miniaturization of the sampling procedure, along with the significant reduction in pre-treatment steps, make the proposed protocol a promising alternative to routine approaches to monitoring EPI levels in clinical laboratories.
Collapse
Affiliation(s)
- Natalia Treder
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Natalia Szuszczewicz
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Ewa Bień
- Department of Pediatrics, Hematology and Oncology, Medical University Gdansk, 80-211 Gdansk, Poland
| | - Małgorzata Anna Krawczyk
- Department of Pediatrics, Hematology and Oncology, Medical University Gdansk, 80-211 Gdansk, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
14
|
Masrura SU, Abbas T, Jones-Lepp TL, Kaewlom P, Khan E. Combining environmental, health, and safety features with a conductor like Screening Model for selecting green solvents for antibiotic analyses. ENVIRONMENTAL RESEARCH 2023; 218:114962. [PMID: 36460072 DOI: 10.1016/j.envres.2022.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.
Collapse
Affiliation(s)
- Sayeda Ummeh Masrura
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Tauqeer Abbas
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA; Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Tammy L Jones-Lepp
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
15
|
de Paula Meirelles G, Fabris AL, Ferreira Dos Santos K, Costa JL, Yonamine M. Green Analytical Toxicology for the Determination of Cocaine Metabolites. J Anal Toxicol 2023; 46:965-978. [PMID: 35022727 DOI: 10.1093/jat/bkac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 01/26/2023] Open
Abstract
Brazil is the third largest contributor to Green Analytical Chemistry, and there is significant participation of toxicologists in the development and improvement of environmental techniques. Currently, toxicologists have their own strategies and guidelines to promote the reduction/replacement or elimination of solvents, reduce the impacts of derivatization and save time, among other objectives, due to the peculiarities of toxicological analysis. Thus, this review aims to propose the concept of Green Analytical Toxicology and conduct a discussion about its relevance and applications specifically in forensic toxicology, using the microextraction methods developed for the determination of cocaine and its metabolites as examples.
Collapse
Affiliation(s)
- Gabriela de Paula Meirelles
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| | - André Luis Fabris
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| | - Karina Ferreira Dos Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| | - José Luiz Costa
- Campinas Poison Control Center, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, SP 13083-859, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), R. Cândido Portinari, 200, Campinas, SP 13083-871, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| |
Collapse
|
16
|
Mohamed DFMS, Kim DY, An J, Kim M, Chun SH, Kwon JH. Simplified Unified BARGE Method to Assess Migration of Phthalate Esters in Ingested PVC Consumer Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1907. [PMID: 36767273 PMCID: PMC9914907 DOI: 10.3390/ijerph20031907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The unified bioaccessibility research group of Europe (BARGE) method (UBM) suggests using in vitro experimental conditions for simulating the release of chemicals from confined matrices, such as soils and sediments, in the human gastrointestinal tract. It contains comprehensive steps that simulate human digestion pathways and has good potential for application in the leaching of plastic additives from accidentally ingested plastic particles. However, its complexity could be a challenge for routine screening assessments of the migration of chemicals from consumer plastic products. In this study, the UBM was modified to assess the migration of plastic additives from consumer products with five model phthalate esters (i.e., dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DNOP)) from polyvinyl chloride (PVC). The migration of phthalate esters was observed in four digestive phases (saliva, gastric, duodenal, and bile). Three separate experiments were conducted with the addition of (1) inorganic constituents only, (2) inorganic and organic constituents, and (3) inorganic and organic constituents in combination with digestive enzymes. While using enzymes with the UBM solution, the migrated mass for leached compounds was comparatively low (0.226 ± 0.04 μg) in most digestion phases, likely due to a self-generated coating of enzymes on the plastic materials. However, higher mass migration (0.301 ± 0.05) was observed when phthalate esters were analyzed in the UBM solution, excluding the enzymes. A ring test among six independent laboratories confirmed the robustness of the modified method. Therefore, we propose a simplified version of the original UBM designed mainly for the migration of inorganic elements using only the inorganic and organic components of the solution throughout all phases of digestion.
Collapse
Affiliation(s)
- Dana Fahad M. S. Mohamed
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Du Yung Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jinsung An
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdeahak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Minhye Kim
- Chemical Products Team, FITI Testing and Research Institute, 21 Yangcheong 3-gil, Cheongju-si 28115, Republic of Korea
| | - Sa-Ho Chun
- Chemical Products Team, FITI Testing and Research Institute, 21 Yangcheong 3-gil, Cheongju-si 28115, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Doosti M, Soufi G, Bagheri H. Nanorod coordination polymers for needle trap extraction of E-cigarettes and cigarettes smoke. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
19
|
Alampanos V, Kabir A, Furton K, Panderi I, Samanidou V. Capsule phase microextraction of six bisphenols from human breast milk using a monolithic polyethylene glycol sorbent-based platform prior to high performance liquid chromatography-photo-diode array detection determination. J Chromatogr A 2022; 1685:463615. [DOI: 10.1016/j.chroma.2022.463615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
20
|
Green Extraction Processes for Complex Samples from Vegetable Matrices Coupled with On-Line Detection System: A Critical Review. Molecules 2022; 27:molecules27196272. [PMID: 36234823 PMCID: PMC9571248 DOI: 10.3390/molecules27196272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The detection of analytes in complex organic matrices requires a series of analytical steps to obtain a reliable analysis. Sample preparation can be the most time-consuming, prolonged, and error-prone step, reducing the reliability of the investigation. This review aims to discuss the advantages and limitations of extracting bioactive compounds, sample preparation techniques, automation, and coupling with on-line detection. This review also evaluates all publications on this topic through a longitudinal bibliometric analysis, applying statistical and mathematical methods to analyze the trends, perspectives, and hot topics of this research area. Furthermore, state-of-the-art green extraction techniques for complex samples from vegetable matrices coupled with analysis systems are presented. Among the extraction techniques for liquid samples, solid-phase extraction was the most common for combined systems in the scientific literature. In contrast, for on-line extraction systems applied for solid samples, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and pressurized liquid extraction were the most frequent green extraction techniques.
Collapse
|
21
|
Green bioanalysis: an innovative and eco-friendly approach for analyzing drugs in biological matrices. Bioanalysis 2022; 14:881-909. [PMID: 35946313 DOI: 10.4155/bio-2022-0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Green bioanalytical techniques aim to reduce or eliminate the hazardous waste produced by bioanalytical technologies. A well-organized and practical approach towards bioanalytical method development has an enormous contribution to the green analysis. The selection of the appropriate sample extraction process, organic mobile phase components and separation technique makes the bioanalytical method green. UHPLC-MS is the best option, whereas supercritical fluid chromatography is one of the most effective green bioanalytical procedures. Nevertheless, there remains excellent scope for further research on green bioanalytical methods. This review details the various sample preparation techniques that follow green analytical chemistry principles. Furthermore, it presents green solvents as a replacement for conventional organic solvents and highlights the strategies to convert modern analytical techniques to green methods.
Collapse
|
22
|
Sobczak Ł, Kołodziej D, Goryński K. Modifying current thin-film microextraction (TFME) solutions for analyzing prohibited substances: Evaluating new coatings using liquid chromatography. J Pharm Anal 2022; 12:470-480. [PMID: 35811627 PMCID: PMC9257446 DOI: 10.1016/j.jpha.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/01/2022] Open
Abstract
For identifying and quantifying prohibited substances, solid-phase microextraction (SPME) continues to arouse interest as a sample preparation method. However, the practical implementation of this method in routine laboratory testing is currently hindered by the limited number of coatings compatible with the ubiquitous high-performance liquid chromatography (HPLC) systems. Only octadecyl (C18) and polydimethylsiloxane/divinylbenzene ligands are currently marketed for this purpose. To address this situation, the present study evaluated 12 HPLC-compatible coatings, including several chemistries not currently used in this application. The stationary phases of SPME devices in the geometry of thin film-coated blades were prepared by applying silica particles bonded with various functional ligands (C18, octyl, phenyl-hexyl, 3-cyanopropyl, benzenesulfonic acid, and selected combinations of these), as well as unbonded silica, to a metal support. Most of these chemistries have not been previously used as microextraction coatings. The 48 most commonly misused substances were selected to assess the extraction efficacy of each coating, and eight desorption solvent compositions were used to optimize the desorption conditions. All samples were analyzed using an HPLC system coupled with triple quadrupole tandem mass spectrometry. This evaluation enables selection of the best-performing coatings for quantifying prohibited substances and investigates the relationship between extraction efficacy and the physicochemical characteristics of the analytes. Ultimately, using the most suitable coatings is essential for trace-level analysis of chemically diverse prohibited substances.
Collapse
|
23
|
Sequential combination of solid-phase sorbents to enhance the selectivity of organosulfur compounds for flavour analysis. Talanta 2022; 241:123234. [DOI: 10.1016/j.talanta.2022.123234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
|
24
|
A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Kołodziej D, Sobczak Ł, Goryński K. Polyamide Noncoated Device for Adsorption-Based Microextraction and Novel 3D Printed Thin-Film Microextraction Supports. Anal Chem 2022; 94:2764-2771. [PMID: 35113529 PMCID: PMC8851416 DOI: 10.1021/acs.analchem.1c03672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Polyamide noncoated
device for adsorption-based microextraction
(PANDA microextraction) is a brand new, easy to prepare, environmentally
friendly, inexpensive, and efficient sample preparation method created
entirely with the use of 3D printing. The proposed method is based
on the extractive proprieties of the unmodified polyamide and carbon
fiber blends and is compared with the highly selective thin-film microextraction
(TFME). In addition, 3D printing was used to simplify the process
of TFME. Prototype sample preparation devices were evaluated by the
extraction of oral fluid spiked with 38 small molecules with diverse
chemical natures, such as lipophilicity in the log P range of 0.2–7.2. The samples were analyzed by high-performance
liquid chromatography coupled with tandem mass spectrometry. The results
indicate that chemically and thermally resistant 3D printed supports
can be successfully used as a cost-saving, environmentally friendly
solution for the preparation of TFME devices, alternative to the conventional
metal supports, with only marginal differences in the extraction yield
(mean = 4.0%, median = 1.8%, range = 0.0–22.3%, n = 38). Even more remarkably, in some cases, the newly proposed PANDA
microextraction method exceeded the reference TFME in terms of the
extraction efficacy and offered excellent sample cleanup as favorable
matrix effects were observed (mean = −8.5%, median = 7.5%,
range = −34.7–20.0%, n = 20). This
innovative approach paves the road to the simplified sample preparation
with the use of emerging extractive 3D printing polymers.
Collapse
Affiliation(s)
- Dominika Kołodziej
- Bioanalysis Scientific Group, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz at Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Łukasz Sobczak
- Bioanalysis Scientific Group, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz at Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Krzysztof Goryński
- Bioanalysis Scientific Group, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz at Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
26
|
Muguruma Y, Nunome M, Inoue K. A Review on the Foodomics Based on Liquid Chromatography Mass Spectrometry. Chem Pharm Bull (Tokyo) 2022; 70:12-18. [PMID: 34980727 DOI: 10.1248/cpb.c21-00765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the globalization of food production and distribution, the food chain has become increasingly complex, making it more difficult to evaluate unexpected food changes. Therefore, establishing sensitive, robust, and cost-effective analytical platforms to efficiently extract and analyze the food-chemicals in complex food matrices is essential, however, challenging. LC/MS-based metabolomics is the key to obtain a broad overview of human metabolism and understand novel food science. Various metabolomics approaches (e.g., targeted and/or untargeted) and sample preparation techniques in food analysis have their own advantages and limitations. Selecting an analytical platform that matches the characteristics of the analytes is important for food analysis. This review highlighted the recent trends and applications of metabolomics based on "foodomics" by LC-MS and provides the perspectives and insights into the methodology and various sample preparation techniques in food analysis.
Collapse
Affiliation(s)
- Yoshio Muguruma
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Mari Nunome
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Koichi Inoue
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
27
|
Pua A, Huang Y, Goh RMV, Ee KH, Tan LP, Cornuz M, Liu SQ, Lassabliere B, Yu B. Combination of solid phase microextraction and low energy electron ionisation gas chromatography-quadrupole time-of-flight mass spectrometry to meet the challenges of flavour analysis. Talanta 2021; 235:122793. [PMID: 34517651 DOI: 10.1016/j.talanta.2021.122793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
The flavour analysis of volatile compounds remains challenging not only because of their diversity in properties and dynamic range, but also due to the high background noise from food matrix constituents. To improve sensitivity and specificity for a multiclass range of compounds, a combination of solid phase micro-extraction (SPME) devices and low energy electron ionisation (LE-EI) was proposed for the analysis of 36 volatile compounds, using coffee as a model matrix. From a pre-evaluation of devices and extraction modes, the combined use of direct immersion-stir bar sorptive extraction and headspace-thin-film SPME (SBSE-TFSPME) was selected to increase compound recovery, and further optimised for extraction temperature (88 °C) and time (110 min). Furthermore, to complement sample preparation by improving method specificity, a LE-EI technique was developed by evaluating the effect of ionisation energy, source temperature, and emission current on the formation of the diagnostic molecular ions and their preservation. This LE-EI method (15 eV, 150 °C, 0.3 μA) was validated with SBSE-TFSPME as a complete workflow in coffee matrices, and was found to possess good repeatability (intra-day RSD: 1.6-7.3 %), intermediate precision (inter-day RSD: 4.1-12.2 %), and linearity (R2 > 0.98). Even for complex coffee samples, the method detection limit reached the pg/mL range (e.g. 2,4,5-trimethylthiazole was detected at 15 pg/mL). In conclusion, this study provided insights on the potential of SPME and LE-EI to improve the sensitivity and specificity of analysis for a range of volatile compounds from food and other complex matrices.
Collapse
Affiliation(s)
- Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542
| | - Yunle Huang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542
| | - Rui Min Vivian Goh
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542
| | - Kim-Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623
| | - Lay Peng Tan
- Agilent Technologies Singapore (Sales) Pte Ltd, 1 Yishun Avenue 7, Singapore 768923
| | - Maurin Cornuz
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542.
| | | | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623.
| |
Collapse
|
28
|
Simultaneous determination of short-chain chlorinated paraffins and other classes of persistent organic pollutants in sediment by gas chromatography‒tandem mass spectrometry after ultrasonic solvent extraction combined with stir bar sorptive extraction. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Abstract
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. The four main steps can be distinguished in the evaluation of the volatiles in the food matrix as follows: (1) isolation and concentration; (2) separation; (3) identification; and (4) sensory characterization. The most commonly used techniques to separate a fraction of volatiles from non-volatiles are solid-phase micro-(SPME) and stir bar sorptive extractions (SBSE). However, to study the active components of food aroma by gas chromatography with olfactometry detector (GC-O), solvent-assisted flavor evaporation (SAFE) is used. The volatiles are mostly separated on GC systems (GC or comprehensive two-dimensional GCxGC) with the support of mass spectrometry (MS, MS/MS, ToF–MS) for chemical compound identification. Besides omics techniques, the promising part could be a study of aroma using electronic nose. Therefore, the main assumptions of volatolomics are here described.
Collapse
|
30
|
Benefits of Innovative and Fully Water-Compatible Stationary Phases of Thin-Film Microextraction (TFME) Blades. Molecules 2021; 26:molecules26154413. [PMID: 34361565 PMCID: PMC8347298 DOI: 10.3390/molecules26154413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Octadecyl (C18) groups are arguably the most popular ligands used for preparation of solid phase microextraction (SPME) devices. However, conventional C18-bonded silica particles are not fully compatible with the nearly 100% aqueous composition of typical biological samples (e.g., plasma, saliva, or urine). This study presents the first evaluation of thin-film SPME devices coated with special water-compatible C18-bonded particles. Device performance was assessed by extracting a mixture of 30 model compounds that exhibited various chemical structures and properties, such as hydrophobicity. Additionally, nine unique compositions of desorption solvents were tested. Thin-film SPME devices coated with C18-bonded silica particles with polar end-capping groups (10 µm) were compared with conventional trimethylsilane end-capped C18-bonded silica particles of various sizes (5, 10, and 45 µm) and characteristics. Polar end-capped particles provided the best extraction efficacy and were characterized by the strongest correlations between the efficacy of the extraction process and the hydrophobicity of the analytes. The results suggest that the original features of octadecyl ligands are best preserved in aqueous conditions by polar end-capped particles, unlike with conventional trimethylsilane end-capped particles that are currently used to prepare SPME devices. The benefits associated with this improved type of coating encourage further implementation of microextractraction as greener alternative to the traditional sample preparation methods.
Collapse
|
31
|
Li G, Lv Y, Chen M, Ye X, Niu Z, Bai H, Lei H, Ma Q. Post-Chromatographic Dicationic Ionic Liquid-Based Charge Complexation for Highly Sensitive Analysis of Anionic Compounds by Ultra-High-Performance Supercritical Fluid Chromatography Coupled with Electrospray Ionization Mass Spectrometry. Anal Chem 2020; 93:1771-1778. [PMID: 33382576 DOI: 10.1021/acs.analchem.0c04612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A green analytical strategy has been developed for the analysis of 10 perfluorinated compounds (PFCs) incorporating supramolecular solvent (SUPRAS)-based extraction and ultra-high-performance supercritical fluid chromatography (UHPSFC)-tandem mass spectrometry. The SUPRAS was prepared through self-assembly of reverse micelles by mixing heptanol, tetrahydrofuran, and water at optimized volume ratios. An imidazolium-based germinal dicationic ionic liquid (DIL), 1,1-bis(3-methylimidazolium-1-yl) butylene difluoride ([C4(MIM)2]F2), was dissolved in the make-up solvent of UHPSFC and introduced post-column but before the electrospray ionization source. After chromatographic separation on a Torus DIOL analytical column (100 mm × 2.1 mm, 1.7 μm), the PFC analytes associated with the DIL reagent through charge complexation. The formation of positively charged complexes resulted in improved ionization efficiency and analytical sensitivity. Enhancement in signal intensity by one to two magnitudes was achieved in the positive ionization mode compared to the negative ionization mode without using the dicationic ion-pairing reagent. The developed protocol was applied to 32 samples of real textiles and 6 samples of real food packaging materials, which exhibited great potential for the analysis of anionic compounds.
Collapse
Affiliation(s)
- Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiwen Ye
- Technology Center of Qingdao Customs District, Qingdao 266002, China
| | - Zengyuan Niu
- Technology Center of Qingdao Customs District, Qingdao 266002, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|