1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Oyovwi MO, Chijiokwu EA, Ben-Azu B, Atere AD, Joseph UG, Ogbutor UG, Udi OA. Potential Roles of Natural Antioxidants in Modulating Neurodegenerative Disease Pathways. Mol Neurobiol 2025:10.1007/s12035-025-04874-w. [PMID: 40202704 DOI: 10.1007/s12035-025-04874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Neurodegenerative diseases, including Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, are increasingly prevalent among aging populations. Oxidative stress contributes to these diseases, leading to cellular damage and neuronal death. Natural antioxidants are being explored as preventive measures. This study aims to assess the effectiveness of natural antioxidants in delaying the onset or progression of neurodegenerative diseases by identifying their specific mechanisms of action. A comprehensive review of existing literature was conducted, focusing on studies that examine the role of natural antioxidants in neuroprotection. Key natural antioxidants, including flavonoids, polyphenls, vitamins C and E, and omega-3 fatty acids, were reviewed and analyzed for their bioavailability, mechanisms of action, and outcomes in both in vitro and in vivo studies. Additionally, clinical trials involving human subjects were considered to provide insights into the translational implications of antioxidant consumption. The findings suggest that several natural antioxidants exhibit neuroprotective properties by modulating oxidative stress, reducing inflammation, and promoting neuronal survival. For instance, flavonoids such as quercetin and resveratrol have shown promise in enhancing cognitive function and mitigating the pathophysiological alterations associated with neurodegeneration. In clinical studies, higher intakes of dietary antioxidants were correlated with a reduced risk of developing neurodegenerative disorders. Natural antioxidants offer potential for preventing neurodegenerative diseases by counteracting oxidative stress and maintaining cellular integrity. Overall, our report recommends that further research is needed to optimize dosages and understand their long-term benefits.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Ejime A Chijiokwu
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa Zone 1, Ga-Rankuwa, 0208, South Africa
| | - Uchechukwu Gregory Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
3
|
Mao K, Wang R, Karpoff K, Kerr D, Banerjee P, Friedman JM, Huffman DM. Salutary effects of transdermal curcumin on multiple indices of health span in rodent models of normal aging and hypertension. GeroScience 2025:10.1007/s11357-025-01607-8. [PMID: 40088391 DOI: 10.1007/s11357-025-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Geroscience has helped to usher in a new and exciting era of aging drug development and evaluation of novel and repurposed agents, as well as natural compounds purported to target one or more aging hallmarks. Among the latter, curcumin has long been pursued as a promising strategy but has failed to provide convincing evidence in human trials. Oral intake is the typical route of administration tested for the vast majority of gerotherapeutic candidates, including curcumin, but efficacy is dependent upon good oral bioavailability and pharmacokinetics. However, unlike FDA-approved oral medications, many natural compounds, such as curcumin, have poor oral bioavailability, which may explain their limited success in translation. To overcome these inherent limitations, we tested a novel solvent-based formulation of concentrated curcumin (VASCEPTOR®), developed for effective skin penetration and delivery of high amounts of bioactive curcuminoids directly to the circulation on aging and age-related conditions. We demonstrate that short-term topical treatment (7.5 mg per dose) with VASCEPTOR® twice per week can improve both vascular health in a rat model of hypertension, while a late-life intervention in aged mice improves multiple indices of health span, including improved exercise tolerance, motor coordination, diastolic function (p < 0.05), a reduction in frailty status (p < 0.05) and expression of some age-related markers in tissues, particular heart and kidney. Thus, these data suggest that the therapeutic potential of curcumin can potentially be dramatically enhanced by topical delivery and, along with other promising candidates, should be prioritized for further development, testing and deployment to potentially target some manifestations of aging in humans.
Collapse
Affiliation(s)
- Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA
| | - Ruixuan Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA
| | - Kateryna Karpoff
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA
| | - Daniel Kerr
- The Center for Developmental Neuroscience, CUNY College of Staten Island, Staten Island, NY, 10314, USA
| | - Probal Banerjee
- Department of Chemistry, CUNY College of Staten Island, Staten Island, NY, 10314, USA
| | - Joel M Friedman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Vascarta Inc, Summit, NJ, 07901, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building, Room 201, Bronx, NY, USA.
| |
Collapse
|
4
|
Zhai S, Chen Y, Jiang T, Wu F, Cheng X, Wang Q, Wang M. Traditional Chinese medicine provides candidates for mutiple seclorsis: A review based on the progress of MS and potent treatment medicine. Mult Scler Relat Disord 2025; 95:106319. [PMID: 39951915 DOI: 10.1016/j.msard.2025.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Multiple Sclerosis(MS) is a chronic inflammatory and degenerative autoimmune neurological disease, characterized by immune cells infiltration, demyelination, axonal loss and neuron degeneration. At present, the precise mechanism of the disease is still not very clear. Latest studies clarified that immune imbalance, microglia polarization, oxidative stress, the destruction of blood-brain barrier(BBB) and blood-spinal cord barrier(BSCB), and intestinal flora imbalance may participate in the pathogenesis and promote the progress of the disease. Traditional Chinese medicine(TCM) and their bioeffective components were found to have capacity to regulate these mechanisms, and have the advantages of multi-target activity, low toxicity and side effects, making TCM promising therapy candidates. In this review, we summarized the progress of TCM in treating MS or its animal model in recent five years, in order to further demonstrate the mechanism of MS and provide more potential effective drug choice.
Collapse
Affiliation(s)
- Shaopeng Zhai
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Chen
- Department of Rehabilitation, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Taotao Jiang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fengjuan Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaorong Cheng
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Turer BY, Sanlier N. Relationship of Curcumin with Aging and Alzheimer and Parkinson Disease, the Most Prevalent Age-Related Neurodegenerative Diseases: A Narrative Review. Nutr Rev 2025; 83:e1243-e1258. [PMID: 38916925 DOI: 10.1093/nutrit/nuae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The elderly population is increasing worldwide every day. Age is a significant factor in the progression of neurological diseases, which can also cause cognitive decline and memory disorders. Inflammation and oxidative stress are primary drivers of senescence and disorders, particularly those associated with aging and neurodegenerative diseases. Bioactive phytochemicals are considered a promising therapeutic strategy in combating aging and age-related pathological conditions. One of the phytochemicals with diverse biological properties encompassing antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, antifungal, antidepressant, anti-allergic, and anti-aging properties is curcumin. Curcumin, a polyphenolic structure with a distinct orange hue and unique chemical properties, is derived from the roots of Curcuma longa, a member of the Zingiberaceae family, commonly known as turmeric. It has been noted that the incidence of neurodegenerative diseases is low in societies that consume curcumin widely. Therefore, this review investigates the effect of curcumin on aging and Alzheimer and Parkinson disease, which are the most prevalent age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Büşra Yurt Turer
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Ankara, 06050, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, 06050, Turkey
| |
Collapse
|
6
|
Lei K, Zhou L, Dan M, Yang F, Jian T, Xin J, Yu Z, Wang Y. Trojan Horse Delivery Strategies of Natural Medicine Monomers: Challenges and Limitations in Improving Brain Targeting. Pharmaceutics 2025; 17:280. [PMID: 40142943 PMCID: PMC11945504 DOI: 10.3390/pharmaceutics17030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Central nervous system (CNS) diseases, such as brain tumors, Alzheimer's disease, and Parkinson's disease, significantly impact patients' quality of life and impose substantial economic burdens on society. The blood-brain barrier (BBB) limits the effective delivery of most therapeutic drugs, especially natural products, despite their potential therapeutic effects. The Trojan Horse strategy, using nanotechnology to disguise drugs as "cargo", enables them to bypass the BBB, enhancing targeting and therapeutic efficacy. This review explores the applications of natural products in the treatment of CNS diseases, discusses the challenges posed by the BBB, and analyzes the advantages and limitations of the Trojan Horse strategy. Despite the existing technical challenges, future research is expected to enhance the application of natural drugs in CNS treatment by integrating nanotechnology, improving delivery mechanisms, and optimizing targeting characteristics.
Collapse
Affiliation(s)
- Kelu Lei
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Dan
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Fei Yang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Tiantian Jian
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Juan Xin
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Zhigang Yu
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| | - Yue Wang
- Department of Pharmacy, Ya’an People’s Hospital-West China Ya’an Hospital, Sichuan University, Ya’an 625000, China; (K.L.); (M.D.); (F.Y.); (T.J.); (J.X.)
| |
Collapse
|
7
|
Jalouli M. Emerging Role of Hypoxia-Inducible Factors (HIFs) in Modulating Autophagy: Perspectives on Cancer Therapy. Int J Mol Sci 2025; 26:1752. [PMID: 40004215 PMCID: PMC11855875 DOI: 10.3390/ijms26041752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of cellular responses to low oxygen levels and modulate autophagy, a conserved process essential for maintaining homeostasis. Under hypoxic conditions, HIFs regulate the expression of autophagy-related genes and influence autophagic flux and cellular stress responses. Dysregulated hypoxia-induced autophagy promotes cancer cell survival, metabolism, and metastasis, thereby contributing to treatment resistance. Targeting HIF-mediated pathways or modulating autophagic processes offers the potential to improve traditional cancer therapies and overcome drug resistance. Pharmacological inhibitors of HIFs or autophagy, either alone or in combination with other treatments, may disrupt the pro-survival mechanisms within the hypoxic tumor microenvironment. Further research is needed to elucidate the intricate interplay between HIF signaling and the autophagy machinery in cancer cells. Understanding these processes could pave the way for novel therapeutic strategies to enhance treatment outcomes and combat drug resistance. This review highlights the complex relationship between HIFs and autophagy in cancer development and therapy, offering insights into how targeting these pathways may improve patient outcomes.
Collapse
Affiliation(s)
- Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
8
|
Nair AC, Benny S, Aneesh TP, Sudheesh MS, Lakshmi PK. Comprehensive profiling of traditional herbomineral formulation Manasamitra vatakam in rat brain following oral administration and in-silico screening of the identified compound for anti-Alzheimer's activity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119024. [PMID: 39489356 DOI: 10.1016/j.jep.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multi-targeted drug therapy has received substantial attention for the treatment of diseases of multifactorial origin, such as neurodegenerative diseases. Manasamitra vatakam (MMV) is a traditional Ayurvedic formulation used to improve cognitive impairment and mental illness. Here we have used a unique method for leveraging the barrier properties of the intestinal and blood-brain barrier (BBB) to screen and identify the bioactive molecules against Alzheimer's disease (AD). The current method exemplifies a facile method to expedite drug discovery from traditional formulations. AIM OF THE STUDY The present study aimed to identify the phytoconstituents of MMV that reach the brain tissue and to predict major bioactive constituents by computational docking studies. MATERIALS AND METHODS After oral administration of the formulation, brain samples from male Sprague Dawley rats were collected at different time intervals and analyzed by liquid chromatography-mass spectrometry (LC-MS) to identify the phytoconstituents. In silico molecular docking studies were carried out to analyze the binding affinity of the compounds to the target proteins of AD using Schrodinger Maestro. The molecular dynamic studies were carried out for all the docked complexes having higher docking scores. RESULTS 34 phytoconstituents were identified by LC-MS analysis of brain homogenates. In the in silico docking study, the phytoconstituents chrysin, convolvin, rutin, galangin, palmatoside G, isoliquiritigenin, quercetin, and naringenin showed higher docking score against the target proteins of AD. These compounds may serve as the primary bioactive compounds responsible for the neuroprotective activity of the herbal formulation. Furthermore, molecular dynamic studies indicated that the galangin-acetylcholinesterase enzyme complex has the highest stability among these eight compounds. CONCLUSION The study, together with previous in vivo and in vitro efficacy results, suggests that BBB-permeable compounds with high binding affinities for the target proteins of AD might be responsible for the effectiveness of MMV against AD.
Collapse
Affiliation(s)
- Anju C Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
9
|
Peng Q, Wang J, Li K, Xia C, Yao C, Guo Q, Gong X, Tang X, Jiang Q. Effects of plant active substances in rheumatoid arthritis-a systematic review and network meta-analysis. Front Pharmacol 2025; 16:1536023. [PMID: 39974740 PMCID: PMC11835909 DOI: 10.3389/fphar.2025.1536023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Plant active substances are extensively utilized in treating rheumatoid arthritis (RA). Despite numerous experimental and clinical studies on plant active substances their efficacy remains largely unsubstantiated. The widespread use of these extracts as therapeutic measures for RA is problematic due to the lack of compelling evidence. Objective Our research aims to assess the impact of plant active substances on RA by conducting a network meta-analysis. Methods We systematically searched four electronic databases-PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and Web of Science-from their inception to August 2024. The main focus was on assessing primary outcomes, including the Visual Analogue Scale (VAS), inflammatory markers, Swollen Joint Count (SJC), Tender Joint Count (TJC), and Disease Activity Score on 28 joints (DAS28). We performed data analysis using StataMP 15.1 software and ranked the therapeutic effects based on the Surface Under the Cumulative Ranking Curve (SUCRA) probability values. Results Based on screening procedures, 18 eligible studies were incorporated into the analysis. These studies encompassed a total of 1,674 RA patients and investigated 10 different plant active substance therapies. Specifically, 10 studies included VAS indicators, 17 studies included inflammatory marker indicators, 14 studies included DAS28 indicators, 13 studies included SJC indicators, and 13 studies included TJC indicators. Based on SUCRA values, quercetin appeared to be the most effective treatment for decreasing serum VAS levels (67.3%). Furthermore, curcumin emerged as the most promising option for reducing inflammatory marker levels (72.3%), SJC (75.6%), and TJC (76.2%). Lastly, with respect to DAS28, resveratrol emerged as the optimal choice (74.3%). Conclusion According to the network meta-analysis (NMA), curcumin exhibited superior efficacy compared to placebo in decreasing SJC and TJC. Additionally, curcumin demonstrated greater effectiveness in reducing inflammatory markers. Quercetin was more effective in reducing VAS, and resveratrol was more effective in reducing DAS28. Patients with RA may benefit from these findings. Insightful information from this study is helpful for RA patients to consider using plant active substance therapies. For their efficacy and safety to be confirmed, more proof is needed.
Collapse
Affiliation(s)
- Qiuwei Peng
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Wang
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kesong Li
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Congming Xia
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanhui Yao
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xun Gong
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaopo Tang
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Irum I, Khan F, Sufyan M, Benish Ali SH, Rehman S. Developing multifaceted drug synergistic therapeutic strategy against neurological disorders. Comput Biol Med 2025; 185:109495. [PMID: 39693689 DOI: 10.1016/j.compbiomed.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug synergism can alter the ultimate biological effects and bioavailability of phytoconstituents. Acetylcholinesterase (AChE) inhibitors as symptomatic drugs are potent therapeutic regimen for neurodegenerative diseases. In this context, this study characterized the synergistic antioxidant, anti-inflammatory and anti-AChE effects of the selected phytochemicals including standard drugs followed by enzyme kinetics, structure-based ligands screening and molecular dynamics simulation study. The synergistic interactions were evaluated through Isoradiation and Synergy finder 3.0 methods. The combinations of Quercetin (QCT), Folic acid (FA), and Swertiamarin (SWT) with specific reference drugs were studied. The combinations of SWT + GA (Gallic acid) and FA + GA at 1:1 (γ:0.10 & 0.08, respectively) showed the significant synergistic antioxidant effect via ABTS assay. Further, in combination, QCT + SWT showed the maximum synergistic effect (γ: 0.02-0.13) in anti-inflammatory assay. Moreover, the combinations QCT, FA, and SWT with reference drug, Donepezil (DP), illustrated potent synergistic activity as anti-AChE in 1:1 proportion (γ: 0.18). The interaction pattern of phytochemicals significantly exhibited synergism (γ < 1) depicting their optimum activity in combinations compared to individual components. Enzyme kinetics evaluation showed the competitive binding of SWT with AChE as of donepezil. All the parameters of ADMET study proposed the QCT and SWT as acceptable oral drug molecules. Computational docking study revealed that QCT and SWT with lowest RMSD (1.096, 2.104) and lowest docking score (-9.831, -7.435 kcal/mol) showed maximum binding efficacy. Furthermore, molecular simulation study depicted the stability of protein-ligand complexes. These findings provide novel insight in the development of dietary treatment based on their synergistic effects for neurological disorders as optimum alternative therapeutic agents.
Collapse
Affiliation(s)
- Izza Irum
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
11
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
12
|
Gonçalves S, Fernandes L, Caramelo A, Martins M, Rodrigues T, Matos RS. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. PLANTS (BASEL, SWITZERLAND) 2024; 13:3515. [PMID: 39771213 PMCID: PMC11677410 DOI: 10.3390/plants13243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/05/2025]
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like "plant", "extract", and "pruritus". Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus's physical and emotional burden, thereby enhancing patient well-being.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Lisete Fernandes
- Centro de Química-Vila Real (CQ-VR), UME-CIDE Unidade de Microscopia Eletrónica-Centro de Investigação e Desenvolvimento, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Martins
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Palliative Medicine, Local Health Unit of Trás-os-Montes and Alto Douro EPE, 5400-261 Chaves, Portugal
| | - Tânia Rodrigues
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Local Health Unit of Trás-os-Montes and Alto Douro (ULSTMAD), 5050-275 Peso da Régua, Portugal
- Palliative Medicine, Local Health Unit of Nordeste, 5370-210 Mirandela, Portugal
| |
Collapse
|
13
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
14
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
15
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
16
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
17
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
18
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
19
|
Azzini E, Peña-Corona SI, Hernández-Parra H, Chandran D, Saleena LAK, Sawikr Y, Peluso I, Dhumal S, Kumar M, Leyva-Gómez G, Martorell M, Sharifi-Rad J, Calina D. Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies. Phytother Res 2024; 38:3169-3189. [PMID: 38616356 DOI: 10.1002/ptr.8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.
Collapse
Affiliation(s)
- Elena Azzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | | | - Yousef Sawikr
- Department of Pharmacology and Toxicology, Faculty of Medicine University of Ajdabiya, Ajdabiya, Libya
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
20
|
Raduly FM, Raditoiu V, Raditoiu A, Nicolae CA, Grapin M, Stan MS, Voinea IC, Vlasceanu RI, Nitu CD, Mihailescu DF, Avram S, Mernea M. Half-Curcuminoids Encapsulated in Alginate-Glucosamine Hydrogel Matrices as Bioactive Delivery Systems. Gels 2024; 10:376. [PMID: 38920923 PMCID: PMC11203298 DOI: 10.3390/gels10060376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The therapeutic effects of curcumin and its derivatives, based on research in recent years, are limited by their low bioavailability. To improve bioavailability and develop the medical field of application, different delivery systems have been developed that are adapted to certain environments or the proposed target type. This study presents some half-curcuminoids prepared by the condensation of acetylacetone with 4-hydroxybenzaldehyde (C1), 4-hydroxy-3-methoxybenzaldehyde (C2), 4-acetamidobenzaldehyde (C3), or 4-diethylaminobenzaldehyde (C4), at microwaves as a simple, solvent-free, and eco-friendly method. The four compounds obtained were characterized in terms of morphostructural and photophysical properties. Following the predictions of theoretical studies on the biological activities related to the molecular structure, in vitro tests were performed for compounds C1-C3 to evaluate the antitumor properties and for C4's possible applications in the treatment of neurological diseases. The four compounds were encapsulated in two types of hydrogel matrices. First, the alginate-glucosamine network was generated and then the curcumin analogs were loaded (G1, G3, G5-G7, and G9). The second type of hydrogels was obtained by loading the active compound together with the generation of the hydrogel carrier matrices, by simply dissolving (G4 and G10) or by chemically binding half-curcuminoid derivatives to glucosamine (G2 and G8). Thus, two types of curcumin analog delivery systems were obtained, which could be applied in various types of medical treatments.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Valentin Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Alina Raditoiu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Cristian Andi Nicolae
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Maria Grapin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (F.M.R.); (A.R.); (C.A.N.); (M.G.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Ionela Cristina Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Raluca-Ioana Vlasceanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.V.); (R.-I.V.)
| | - Cristina Doina Nitu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
- Institute of Oncology “Prof. dr. Al. Trestioreanu”, 252, Fundeni, 022328 Bucharest, Romania
| | - Dan F. Mihailescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.D.N.); (D.F.M.); (S.A.); (M.M.)
| |
Collapse
|
21
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
22
|
Spanoudaki M, Papadopoulou SK, Antasouras G, Papadopoulos KA, Psara E, Vorvolakos T, Solovos E, Chrysafi M, Psallas M, Mentzelou M, Ourda D, Giaginis C. Curcumin as a Multifunctional Spice Ingredient against Mental Disorders in Humans: Current Clinical Studies and Bioavailability Concerns. Life (Basel) 2024; 14:479. [PMID: 38672750 PMCID: PMC11050944 DOI: 10.3390/life14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mental disorders in terms of depression, anxiety, and stress are one of the major causes of burden globally. Over the last two decades, the use of plant-based substances in the treatment of mental disorders in combination or not with medication has increasingly attracted the interest of the scientific research community. However, even if there is a plethora of naturally occurring bioactive compounds, most of them have low bioavailability, rendering them unable to insert into the bloodstream to exert their biological activities. METHODS This is a comprehensive narrative review that critically summarizes and scrutinizes the new approaches to the treatment of mental disorders using curcumin, also highlighting its bioavailability properties. The most accurate were searched using effective and relevant keywords. RESULTS This narrative review reveals substantial evidence that curcumin can exert significant effects on several mental disorders. However, despite the low cost, the extensive and confirmed potency of curcumin and its involvement in signaling pathways and the scientifically confirmed data regarding its molecular mechanisms of action against mental disorders, this naturally occurring compound presents low oral bioavailability. Pharmaceutical technology has provided solutions to increase the bioavailability of curcumin. Combination with piperine, galactomannosides, liposomal formulation or nanoformulation overcomes the bioavailability and solubility disadvantages. CONCLUSIONS Although curcumin demonstrates anti-anxiety, anti-depressive and anti-stress properties, studies on humans are limited and heterogeneous. Further research is highly recommended to determine the most functional formula, dose, duration, and possible side effects of curcumin on mental disorders in humans. Based on the current knowledge, the curcumin nanoformulation and Theracurmin, a form of colloidal submicroscopic particles, seem to be the most effective bioavailable formulations, which may be examined in future clinical human studies.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece (S.K.P.)
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece (S.K.P.)
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | | | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Theofanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Evangelos Solovos
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Michalis Psallas
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Despoina Ourda
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| |
Collapse
|
23
|
Elhawary EA, Moussa AY, Singab ANB. Genus Curcuma: chemical and ethnopharmacological role in aging process. BMC Complement Med Ther 2024; 24:31. [PMID: 38212737 PMCID: PMC10782795 DOI: 10.1186/s12906-023-04317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.
Collapse
Affiliation(s)
- Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
24
|
Mugundhan SL, Balasubramaniyan P, Narayanasamy D, Mohan M. Curcumin- β-Cyclodextrin Molecular Inclusion Complex: A Water-Soluble Complex in Fast-dissolving Tablets for the Treatment ofNeurodegenerative Disorders. Pharm Nanotechnol 2024; 12:365-377. [PMID: 38192139 DOI: 10.2174/0122117385273171231120051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, β-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. OBJECTIVES The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- β-cyclodextrin molecular inclusion complex using a 32-factorial design. METHODS The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-β-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. RESULTS Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. CONCLUSION The current study reveals the validated curcumin-β-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
25
|
Dong X, Deng L, Su Y, Han X, Yao S, Wu W, Cao J, Tian L, Bai Y, Wang G, Ren W. Curcumin alleviates traumatic brain injury induced by gas explosion through modulating gut microbiota and suppressing the LPS/TLR4/MyD88/NF-κB pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1094-1113. [PMID: 38032526 DOI: 10.1007/s11356-023-30708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Gas explosions (GE) are a prevalent and widespread cause of traumatic brain injury (TBI) in coal miners. However, the impact and mechanism of curcumin on GE-induced TBI in rats remain unclear. In this study, we simulated GE-induced TBI in rats and administered curcumin orally at a dose of 100 mg/kg every other day for 7 days to modulate the gut microbiota in TBI rats. We employed 16S rRNA sequencing and LC-MS/MS metabolomic analysis to investigate changes in the intestinal flora and its metabolic profile. Additionally, we utilized ELISA, protein assays, and immunohistochemistry to assess neuroinflammatory signaling molecules for validation. In a rat TBI model, GE resulted in weight loss, pathological abnormalities, and cortical hemorrhage. Treatment with curcumin significantly mitigated histological abnormalities and microscopic mitochondrial structural changes in brain tissue. Furthermore, curcumin treatment markedly ameliorated GE-induced brain dysfunction by reducing the levels of several neuroinflammatory signaling molecules, including neuron-specific enolase, interleukin (IL)-1β, IL-6, and cryptothermic protein 3. Notably, curcumin reshaped the gut microbiome by enhancing evenness, richness, and composition. Prevotella_9, Alloprevotella, Bacilli, Lactobacillales, Proteobacteria, and Gammaproteobacteria were identified as prominent members of the gut microbiota, increasing the linear discriminant analysis scores and specifically enhancing the abundance of bacteria involved in the nuclear factor (NF)-κB signaling pathway, such as Lachnospiraceae and Roseburia. Additionally, there were substantial alterations in serum metabolites associated with metabolic NF-κB signaling pathways in the model group. Curcumin administration reduced serum lipopolysaccharide levels and downregulated downstream Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/NF-κB signaling. Furthermore, curcumin alleviated GE-induced TBI in rats by modulating the gut microbiota and its metabolites. Based on these protective effects, curcumin may exert its influence on the gut microbiota and the TLR4/MyD88/NF-κB signaling pathways to ameliorate GE-induced TBI.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lvfei Deng
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yaguang Su
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaofeng Han
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Linqiang Tian
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yichun Bai
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Guizhi Wang
- Department of Pathology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, 601 Jinsui Street Xinxiang, Henan, 453003, China.
| |
Collapse
|
26
|
Abbasi H, Hosseinkhani F, Imani Fouladi B, Tarighi S, Sadeghizadeh M, Montazeri M. Dendrosomal Curcumin Showed Cytotoxic Effects on Breast Cancer Cell Line by Inducing Mitochondrial Apoptosis Pathway and Cell Division Arrest. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e151714. [PMID: 39830662 PMCID: PMC11742123 DOI: 10.5812/ijpr-151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 01/22/2025]
Abstract
Background Mutations in the p53 gene have been linked to the initiation and progression of breast cancer, as well as resistance to chemotherapy. Therefore, the development of novel treatment approaches is essential to combat this disease. Objectives This study aimed to evaluate the effects of dendrosomal curcumin (DNC) on the breast cancer cell line MDA-MB231. Methods MDA-MB231 cells were treated with 20 μM DNC, and the apoptosis rate and cell proliferation cycles were assessed using flow cytometry. Additionally, after RNA extraction and cDNA synthesis, the expression levels of Lnc-DANCR, EZH2, Noxa, bcl-2, bax, PUMA, p21, and p53 genes were analyzed using RT-PCR. Protein expression levels of P53, P21, Bcl-2, and Bax were evaluated through western blotting. Results Dendrosomal curcumin induced apoptosis in MDA-MB231 cells and caused cell cycle arrest at the SubG1 phase. Dendrosomal curcumin treatment downregulated Lnc-DANCR, EZH2, bcl-2, and p53 gene expression, while upregulating bax, Noxa, PUMA, and p21 gene expression in a time-dependent manner. Bax and P21 protein levels were significantly upregulated following DNC treatment, whereas Bcl-2 and P53 protein levels were downregulated in DNC-treated breast cancer cells. Conclusions In summary, dendrosomal nanocurcumin demonstrated potent anti-tumor effects against breast cancer cells, suggesting its potential as a therapeutic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Houriye Abbasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinkhani
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Imani Fouladi
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Siroos Tarighi
- Department of Cellular and Molecular, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Bio Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Montazeri
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Briñez-Gallego P, da Costa Silva DG, Horn AP, Hort MA. Effects of curcumin to counteract levodopa-induced toxicity in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:950-964. [PMID: 37767720 DOI: 10.1080/15287394.2023.2261120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction due to the death of dopaminergic neurons in the substantia nigra pars compacta. Currently, treatment of PD has focused on increasing dopamine levels, using a dopamine precursor, levodopa (L-DOPA) or stimulation of dopaminergic receptors. Prolonged use of L-DOPA is associated with the occurrence of motor complications and dyskinesia, attributed to neurotoxic effects of this drug. The aim of this study was to investigate the effects of curcumin (CUR), a lipophilic polyphenol, to counteract L-DOPA induced toxicity. Zebrafish larvae were pre-treated with CUR (0.05 µM) or vehicle dimethyl sulfoxide (DMSO) for 24 hr and subsequently exposed to L-DOPA (1 mM) or vehicle. Immediately and 24 hr after L-DOPA exposure, spontaneous swimming and dark/light behavioral tests were performed. In addition, levels of reactive oxygen species (ROS) and lipid peroxidation products were determined at the end of treatment. CUR significantly improved the motor impairment induced by 24 hr L-DOPA treatment, and reduced levels of ROS and lipoperoxidation products in zebrafish larvae. In conclusion, our results suggest that CUR acts as a neuroprotector against toxicity initiated by L-DOPA. Evidence suggests the observed effects of CUR are associated with its antioxidant properties.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| |
Collapse
|
28
|
Yazdani Y, Zamani ARN, Majidi Z, Sharafkandi N, Alizadeh S, Mofrad AME, Valizadeh A, Idari G, Radvar AD, Safaie N, Faridvand Y. Curcumin and targeting of molecular and metabolic pathways in multiple sclerosis. Cell Biochem Funct 2023; 41:779-787. [PMID: 37653672 DOI: 10.1002/cbf.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Multiple sclerosis (MS) is a life-threading disease that poses a great threat to the human being lifestyle. Having said extensive research in the realm of underlying mechanisms and treatment procedures, no definite remedy has been found. Over the past decades, many medicines have been disclosed to alleviate the symptoms and marking of MS. Meanwhile, the substantial efficacy of herbal medicines including curcumin must be underscored. Accumulated documents demonstrated the fundamental role of curcumin in the induction of the various signaling pathways. According to evidence, curcumin can play a role in mitochondrial dysfunction and apoptosis, autophagy, and mitophagy. Also, by targeting the signaling pathways AMPK, PGC-1α/PPARγ, and PI3K/Akt/mTOR, curcumin interferes with the metabolism of MS. The anti-inflammatory, antioxidant, and immune regulatory effects of this herbal compound are involved in its effectiveness against MS. Thus, the present review indicates the molecular and metabolic pathways associated with curcumin's various pharmacological actions on MS, as well as setting into context the many investigations that have noted curcumin-mediated regulatory effects in MS.
Collapse
Affiliation(s)
- Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo R N Zamani
- Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M E Mofrad
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Valizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aysan D Radvar
- Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Tan Q, Lu J, Liang J, Zhou Y, Yang C, Zhang Z, Li C. A review of traditional Chinese medicine Curcumae Rhizoma for treatment of glioma. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:303-319. [PMID: 37833016 DOI: 10.1016/bs.irn.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Glioma is the most common primary central nervous tumor and its malignant and high recurrence rate are seriously threatening patient's life. The prognosis of glioma patients is still poor with a variety of modern treatments. Traditional Chinese medicine (TCM) is widely used in the adjuvant treatment or alternative medicine of glioma. Curcumae Rhizoma is one of the most commonly used in traditional Chinese medicine prescriptions for its anti-tumor characteristics. There are also many studies that reveals the anti-tumor effect of its active ingredients and some of which have been made into drugs and have been used in clinical practice. This review summarizes the new research progress on Curcumae Rhizoma for the treatment of glioma in recent years.
Collapse
Affiliation(s)
- Qijia Tan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jiamin Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jingtong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yuchen Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Chunrong Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
30
|
Das SS, Gopal PM, Thomas JV, Mohan MC, Thomas SC, Maliakel BP, Krishnakumar IM, Pulikkaparambil Sasidharan BC. Influence of CurQfen ®-curcumin on cognitive impairment: a randomized, double-blinded, placebo-controlled, 3-arm, 3-sequence comparative study. FRONTIERS IN DEMENTIA 2023; 2:1222708. [PMID: 39081970 PMCID: PMC11285547 DOI: 10.3389/frdem.2023.1222708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2024]
Abstract
Background Although curcumin is a blood-brain-barrier permeable molecule with the ability to bind and segregate β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated tau proteins, its poor oral bioavailability, rapid biotransformation to inactive metabolites, fast elimination from the systemic circulation, and hence the poor neuronal uptake has been limiting its clinical efficacy under neurodegenerative conditions. Objective We hypothesized that the highly bioavailable CurQfen-curcumin (CGM), which has been shown to possess significant blood-brain-barrier permeability and brain bioavailability, would ameliorate dementia in neurodegenerative conditions. Methods In the present double-blinded placebo-controlled 3-arm 3-sequence comparative study, 48 subjects characterized with moderate dementia due to the onset of Alzheimer's disease were randomized into three groups (N = 16/group) and supplemented with 400 mg × 2/day of either placebo (MCC), unformulated standard curcumin complex with 95% purity (USC), or CGM as a sachet for six months. The relative changes in cognitive and locomotor functions and biochemical markers were compared. Results Supplementation with CGM produced significant (P < 0.05) improvement in the Mini-Mental State Examination (MMSE) and the Geriatric Locomotive Function Scale (GLFS) scores in both intra- and inter-group comparison by 2 × 2 repeated measures (RM) ANOVA. Further, analysis of the serum levels of specific biomarkers (BDNF, Aβ42, tau protein, IL-6, and TNF-α) also revealed a significant (P < 0.05) improvement among CGM subjects as compared to placebo and the USC groups. Conclusion Supplementation with CGM as sachet was found to offer significant delay in the progress of Alzheimer's disease, as evident from the improvements in locomotive and cognitive functions related to dementia. Clinical trial registration http://ctri.nic.in, identifier: CTRI/2018/03/012410.
Collapse
Affiliation(s)
- S. Syam Das
- Akay Natural Ingredients, Kochi, Kerala, India
| | - Prasad M. Gopal
- Alzheimer's and Related Disorders Society of India, Kochi, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jestin V. Thomas
- Leads Clinical Research & Bio Services Private Limited, Bengaluru, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Siju C. Thomas
- Alzheimer's and Related Disorders Society of India, Kochi, Kerala, India
| | | | | | - Baby Chakrapani Pulikkaparambil Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
31
|
Qiu F, Wang Y, Du Y, Zeng C, Liu Y, Pan H, Ke C. Current evidence for J147 as a potential therapeutic agent in nervous system disease: a narrative review. BMC Neurol 2023; 23:317. [PMID: 37674139 PMCID: PMC10481599 DOI: 10.1186/s12883-023-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanmei Wang
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yunbo Du
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
32
|
Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res 2023; 12:100968. [PMID: 37664456 PMCID: PMC10469086 DOI: 10.1016/j.imr.2023.100968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite the extensive research in recent years, the current treatment modalities for neurological disorders are suboptimal. Curcumin, a polyphenol found in Curcuma genus, has been shown to mitigate the pathophysiology and clinical sequalae involved in neuroinflammation and neurodegenerative diseases. Methods We searched PubMed database for relevant publications on curcumin and its uses in treating neurological diseases. We also reviewed relevant clinical trials which appeared on searching PubMed database using 'Curcumin and clinical trials'. Results This review details the pleiotropic immunomodulatory functions and neuroprotective properties of curcumin, its derivatives and formulations in various preclinical and clinical investigations. The effects of curcumin on neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumors, epilepsy, Huntington's disorder (HD), ischemia, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI) with a major focus on associated signalling pathways have been thoroughly discussed. Conclusion This review demonstrates curcumin can suppress spinal neuroinflammation by modulating diverse astroglia mediated cascades, ensuring the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
33
|
Benameur T, Porro C, Twfieg ME, Benameur N, Panaro MA, Filannino FM, Hasan A. Emerging Paradigms in Inflammatory Disease Management: Exploring Bioactive Compounds and the Gut Microbiota. Brain Sci 2023; 13:1226. [PMID: 37626582 PMCID: PMC10452544 DOI: 10.3390/brainsci13081226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The human gut microbiota is a complex ecosystem of mutualistic microorganisms that play a critical role in maintaining human health through their individual interactions and with the host. The normal gastrointestinal microbiota plays a specific physiological function in host immunomodulation, nutrient metabolism, vitamin synthesis, xenobiotic and drug metabolism, maintenance of structural and functional integrity of the gut mucosal barrier, and protection against various pathogens. Inflammation is the innate immune response of living tissues to injury and damage caused by infections, physical and chemical trauma, immunological factors, and genetic derangements. Most diseases are associated with an underlying inflammatory process, with inflammation mediated through the contribution of active immune cells. Current strategies to control inflammatory pathways include pharmaceutical drugs, lifestyle, and dietary changes. However, this remains insufficient. Bioactive compounds (BCs) are nutritional constituents found in small quantities in food and plant extracts that provide numerous health benefits beyond their nutritional value. BCs are known for their antioxidant, antimicrobial, anticarcinogenic, anti-metabolic syndrome, and anti-inflammatory properties. Bioactive compounds have been shown to reduce the destructive effect of inflammation on tissues by inhibiting or modulating the effects of inflammatory mediators, offering hope for patients suffering from chronic inflammatory disorders like atherosclerosis, arthritis, inflammatory bowel diseases, and neurodegenerative diseases. The aim of the present review is to summarise the role of natural bioactive compounds in modulating inflammation and protecting human health, for their safety to preserve gut microbiota and improve their physiology and behaviour.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mohammed-Elfatih Twfieg
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nassima Benameur
- Faculty of Exact Sciences and Sciences of Nature and Life, Research Laboratory of Civil Engineering, Hydraulics, Sustainable Development and Environment (LARGHYDE), Mohamed Khider University, Biskra 07000, Algeria
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | | | - Abeir Hasan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
34
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
35
|
Hazrati A, Mirsanei Z, Heidari N, Malekpour K, Rahmani-Kukia N, Abbasi A, Soudi S. The potential application of encapsulated exosomes: A new approach to increase exosomes therapeutic efficacy. Biomed Pharmacother 2023; 162:114615. [PMID: 37011484 DOI: 10.1016/j.biopha.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cell therapy is one of the methods that have shown promising results in treating diseases in recent decades. However, the use of different types of cells comes with limitations. The application of immune cells in cell therapy can lead to cytokine storms and inappropriate responses to self-antigens. Also, the use of stem cells has the potential to create tumors. Also, cells may not migrate to the injury site after intravenous injection. Therefore, using exosomes from different cells as therapeutic candidates were proposed. Due to their small size and favorable characteristics, such as biocompatibility and immunocompatibility, the easy storage and isolation, exosomes have attracted much attention. They are used in treating many diseases, including cardiovascular diseases, orthopedic diseases, autoimmune diseases, and cancer. However, the results of various studies have shown that the therapeutic efficiency of exosomes (Exo) can be increased by loading different drugs and microRNAs inside them (encapsulated exosomes). Therefore, analyzing studies investigating encapsulated exosomes' therapeutic ability is critical. In this study, we have examined the studies related to the use of encapsulated exosomes in treating diseases such as cancer and infectious diseases and their use in regenerative medicine. Compared to intact exosomes, the results show that the application of encapsulated exosomes has a higher therapeutic ability. Therefore it is suggested to use this method depending on the treatment type to increase the treatment's efficiency.
Collapse
|
36
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
37
|
Kou H, Huang L, Jin M, He Q, Zhang R, Ma J. Effect of curcumin on rheumatoid arthritis: a systematic review and meta-analysis. Front Immunol 2023; 14:1121655. [PMID: 37325651 PMCID: PMC10264675 DOI: 10.3389/fimmu.2023.1121655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Objective The aim of this study is to evaluate the effectiveness and safety of curcumin in rheumatoid arthritis patients. Methods A computerized search from PubMed, Embase, Cochrane Library, and Web of Science databases was performed until 3 March 2023. Literature screening, basic data extraction and risk of bias evaluation were independently performed by two researchers each. The quality evaluation of the literature was performed according to the Cochrane Handbook for Risk of Bias Assessment tool for treatment evaluation. Results The current study includes six publications covering 539 rheumatoid arthritis patients. The activity of rheumatoid arthritis was assessed using erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), protein, disease activity score (DAS), rheumatoid factor (RF), Visual Analogue Scale (VAS) pain, tender joint count (TJC) and swollen joint count (SJC). ESR (MD = -29.47, 95% CI [-54.05, -4.88], Z=2.35, P = 0.02), DAS28 (MD = -1.20, 95% CI [-1.85, -0.55], Z=3.62, P = 0.0003), SJC (MD = -5.33, 95% CI [-9.90, -0.76], Z = 2.29, P = 0.02) and TJC (MD = -6.33, 95% CI [-10.86, -1.81], Z = 2.74, P = 0.006) showed significantly change in experimental patients compared with controls. Conclusion Curcumin is beneficial for rheumatoid arthritis treatment. Inflammation levels and clinical symptoms in patients with rheumatoid arthritis can be improved by curcumin supplementation. Large sample randomized controlled trials on the effects of curcumin on patients with rheumatoid arthritis are needed in the future. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier (CRD42022361992).
Collapse
Affiliation(s)
- Haiyang Kou
- Department of Joint Surgery, Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Huang
- Department of Joint Surgery, Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Meng Jin
- Department of Joint Surgery, Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi He
- Department of Joint Surgery, Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rui Zhang
- Department of Joint Surgery, Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Jianbing Ma
- Department of Joint Surgery, Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Caballero-Florán IH, Cortés H, Borbolla-Jiménez FV, Florán-Hernández CD, Del Prado-Audelo ML, Magaña JJ, Florán B, Leyva-Gómez G. PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells. Pharmaceutics 2023; 15:1594. [PMID: 37376043 DOI: 10.3390/pharmaceutics15061594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.
Collapse
Affiliation(s)
- Isaac H Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
| | - Fabiola V Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
| | - Carla D Florán-Hernández
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México 14380, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México 14380, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
39
|
Ji C, Zhang C, Xu Z, Chen Y, Gan Y, Zhou M, Li L, Duan Q, Huang T, Lin J. Mussel-inspired HA@TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front Bioeng Biotechnol 2023; 11:1193605. [PMID: 37229495 PMCID: PMC10203166 DOI: 10.3389/fbioe.2023.1193605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Bacterial infection is a major challenge that could threaten the patient's life in repairing bone defects with implant materials. Developing functional scaffolds with an intelligent antibacterial function that can be used for bone repair is very important. We constructed a drug delivery (HA@TA-CS/SA) scaffold with curcumin-loaded dendritic mesoporous organic silica nanoparticles (DMON@Cur) via 3D printing for antibacterial bone repair. Inspired by the adhesion mechanism of mussels, the HA@TA-CS/SA scaffold of hydroxyapatite (HA) and chitosan (CS) is bridged by tannic acid (TA), which in turn binds sodium alginate (SA) using electrostatic interactions. The results showed that the HA@TA-CS/SA composite scaffold had better mechanical properties compared with recent literature data, reaching 68.09 MPa. It displayed excellent degradation and mineralization capabilities with strong biocompatibility in vitro. Furthermore, the antibacterial test results indicated that the curcumin-loaded scaffold inhibited S.aureus and E.coli with 99.99% and 96.56% effectiveness, respectively. These findings show that 3D printed curcumin-loaded HA@TA-CS/SA scaffold has considerable promise for bone tissue engineering.
Collapse
Affiliation(s)
- Cheng Ji
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | | | - Zeya Xu
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Yan Chen
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Yanming Gan
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | - Minghui Zhou
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | - Lan Li
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Qinying Duan
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, China
| | - Tingting Huang
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
| | - Jinxin Lin
- Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
40
|
Slowing K, Gomez F, Delgado M, Fernández de la Rosa R, Hernández-Martín N, Pozo MÁ, García-García L. PET Imaging and Neurohistochemistry Reveal that Curcumin Attenuates Brain Hypometabolism and Hippocampal Damage Induced by Status Epilepticus in Rats. PLANTA MEDICA 2023; 89:364-376. [PMID: 36130709 DOI: 10.1055/a-1948-4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous preclinical studies provide evidence that curcumin, a polyphenolic phytochemical extracted from Curcuma longa (turmeric) has neuroprotective, anti-inflammatory and antioxidant properties against various neurological disorders. Curcumin neuroprotective effects have been reported in different animal models of epilepsy, but its potential effect attenuating brain glucose hypometabolism, considered as an early marker of epileptogenesis that occurs during the silent period following status epilepticus (SE), still has not been addressed. To this end, we used the lithium-pilocarpine rat model to induce SE. Curcumin was administered orally (300 mg/kg/day, for 17 days). Brain glucose metabolism was evaluated in vivo by 2-deoxy-2-[18F]Fluoro-D-Glucose ([18F]FDG) positron emission tomography (PET). In addition, hippocampal integrity, neurodegeneration, microglia-mediated neuroinflammation, and reactive astrogliosis were evaluated as markers of brain damage. SE resulted in brain glucose hypometabolism accompanied by body weight (BW) loss, hippocampal neuronal damage, and neuroinflammation. Curcumin did not reduce the latency time to the SE onset, nor the mortality rate associated with SE. Nevertheless, it reduced the number of seizures, and in the surviving rats, curcumin protected BW and attenuated the short-term glucose brain hypometabolism as well as the signs of neuronal damage and neuroinflammation induced by the SE. Overall, our results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage.
Collapse
Affiliation(s)
- Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisca Gomez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
| | | | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
- BIOIMAC, Complutense University of Madrid, Madrid, Spain
| | - Nira Hernández-Martín
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Brain Mapping Unit, Pluridisciplinary Institute, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
41
|
Porro C, Panaro MA. Recent Progress in Understanding the Health Benefits of Curcumin. Molecules 2023; 28:molecules28052418. [PMID: 36903663 PMCID: PMC10005252 DOI: 10.3390/molecules28052418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Nutrients and their potential benefits are a new field of study in modern medicine due to their positive impact on health [...].
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
- Correspondence:
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
42
|
Calvello R, Porro C, Lofrumento DD, Ruggiero M, Panaro MA, Cianciulli A. Decoy Receptors Regulation by Resveratrol in Lipopolysaccharide-Activated Microglia. Cells 2023; 12:cells12050681. [PMID: 36899817 PMCID: PMC10000713 DOI: 10.3390/cells12050681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Resveratrol is a polyphenol that acts as antioxidants do, protecting the body against diseases, such as diabetes, cancer, heart disease, and neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's diseases (PD). In the present study, we report that the treatment of activated microglia with resveratrol after prolonged exposure to lipopolysaccharide is not only able to modulate pro-inflammatory responses, but it also up-regulates the expression of decoy receptors, IL-1R2 and ACKR2 (atypical chemokine receptors), also known as negative regulatory receptors, which are able to reduce the functional responses promoting the resolution of inflammation. This result might constitute a hitherto unknown anti-inflammatory mechanism exerted by resveratrol on activated microglia.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
- Correspondence:
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| |
Collapse
|
43
|
Diddi S, Lohidasan S, Arulmozhi S, Mahadik KR. Standardization and Ameliorative effect of Kalyanaka ghrita in β-amyloid induced memory impairment in wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115671. [PMID: 36055476 DOI: 10.1016/j.jep.2022.115671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kalyanaka ghrita (KG) is an Ayurvedic formulation traditionally used in the treatment of Daurbalya (debility) and Smritidaurbalya (impairment of intellectual activities). Clinical studies have reported the effect of KG in the treatment of Manasmandata or Buddhimandyata which is associated with impaired learning, social adjustment and maturation. AIM OF THE STUDY The present study aims to standardization of KG and validation of its use in experimental models of neurodegeneration. MATERIALS AND METHODS KG was Standardized for biomarkers curcumin, gallic acid, tannic acid, chebulagic acid, and berberine. In male wistar rats, neurodegeneration was induced by administration of intracerebroventricular Amyloid β (Aβ1-42). The effect of KG (oral and intranasal treatment) was evaluated through behavioral parameters such as Morris water maze, social recognition test, novel object recognition, locomotor activity, and molecular parameters, brain acetylcholinesterase, brain-derived neurotrophic factor (BDNF), inflammatory cytokines, oxidative stress markers, and antioxidants. Brain histopathology was performed for studying the architecture of the brain and plaque formation. RESULTS AND DISCUSSION A novel HPLC method has been developed for the standardization of KG. Treatment with KG significantly improved cognition and memory and increased brain BDNF and antioxidant status in Aβ1-42 induced rats. It also reduced brain acetylcholinesterase, oxidative stress, and inflammatory cytokines and prevented neuronal damage. There were more marked effects with intra-nasal administration compared to oral treatment. CONCLUSION The findings suggest that KG has neuroprotective potential and along with its nootropic property could be a promising therapy for neurodegenerative diseases like Alzheimer's disease.
Collapse
Affiliation(s)
- Snehalatha Diddi
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune, 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to Be University), Poona College of Pharmacy, Pune, 411038, India
| | - S Arulmozhi
- Department of Pharmacology, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune, 411038, India.
| | - Kakasaheb R Mahadik
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to Be University), Poona College of Pharmacy, Pune, 411038, India
| |
Collapse
|
44
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Sokouti H, Mohajeri D, Nourazar MA. 6-Hydroxydopamine-Induced Neurotoxicity in Rat Model of Parkinson’s Disease: Is Reversed via Anti-Oxidative Activities of Curcumin and Aerobic Exercise Therapy. Physiol Res 2022. [DOI: 10.33549/physiolres.934929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Gagliardi S, Truffi M, Tinelli V, Garofalo M, Pandini C, Cotta Ramusino M, Perini G, Costa A, Negri S, Mazzucchelli S, Bonizzi A, Sitia L, Busacca M, Sevieri M, Mocchi M, Ricciardi A, Prosperi D, Corsi F, Cereda C, Morasso C. Bisdemethoxycurcumin (BDC)-Loaded H-Ferritin-Nanocages Mediate the Regulation of Inflammation in Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:9237. [PMID: 36012501 PMCID: PMC9409287 DOI: 10.3390/ijms23169237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bisdemethoxycurcumin (BDC) might be an inflammation inhibitor in Alzheimer's Disease (AD). However, BDC is almost insoluble in water, poorly absorbed by the organism, and degrades rapidly. We thus developed a new nanoformulation of BDC based on H-Ferritin nanocages (BDC-HFn). METHODS We tested the BDC-HFn solubility, stability, and ability to cross a blood-brain barrier (BBB) model. We tested the effect of BDC-HFn on AD and control (CTR) PBMCs to evaluate the transcriptomic profile by RNA-seq. RESULTS We developed a nanoformulation with a diameter of 12 nm to improve the solubility and stability. The comparison of the transcriptomics analyses between AD patients before and after BDC-HFn treatment showed a major number of DEG (2517). The pathway analysis showed that chemokines and macrophages activation differed between AD patients and controls after BDC-HFn treatment. BDC-HFn binds endothelial cells from the cerebral cortex and crosses through a BBB in vitro model. CONCLUSIONS Our data showed how BDC-Hfn could improve the stability of BDC. Significant differences in genes associated with inflammation between the same patients before and after BDC-Hfn treatment have been found. Inflammatory genes that are upregulated between AD and CTR after BDC-HFn treatment are converted and downregulated, suggesting a possible therapeutic approach.
Collapse
Affiliation(s)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| | - Veronica Tinelli
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | | - Alfredo Costa
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sara Negri
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Leopoldo Sitia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | | | - Marta Sevieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Michela Mocchi
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| | | | - Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | | | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS Spa SB, 27100 Pavia, Italy
| |
Collapse
|
47
|
ELBini-Dhouib I, Manai M, Neili NE, Marzouki S, Sahraoui G, Ben Achour W, Zouaghi S, BenAhmed M, Doghri R, Srairi-Abid N. Dual Mechanism of Action of Curcumin in Experimental Models of Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23158658. [PMID: 35955792 PMCID: PMC9369178 DOI: 10.3390/ijms23158658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Multiple sclerosis (MS) is characterized by a combination of inflammatory and demyelination processes in the spinal cord and brain. Conventional drugs generally target the autoimmune response, without any curative effect. For that reason, there is a great interest in identifying novel agents with anti-inflammatory and myelinating effects, to counter the inflammation and cell death distinctive of the disease. Methods and results: An in vitro assay showed that curcumin (Cur) at 10 µM enhanced the proliferation of C8-D1A cells and modulated the production of Th1/Th2/Th17 cytokines in the cells stimulated by LPS. Furthermore, two in vivo pathophysiological experimental models were used to assess the effect of curcumin (100 mg/kg). The cuprizone model mimics the de/re-myelination aspect in MS, and the experimental autoimmune encephalomyelitis model (EAE) reflects immune-mediated events. We found that Cur alleviated the neurological symptomatology in EAE and modulated the expression of lymphocytes CD3 and CD4 in the spinal cord. Interestingly, Cur restored motor and behavioral deficiencies, as well as myelination, in demyelinated mice, as indicated by the higher index of luxol fast blue (LFB) and the myelin basic protein (MBP) intensity in the corpus callosum. Conclusions: Curcumin is a potential therapeutic agent that can diminish the MS neuroimmune imbalance and demyelination through its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Ines ELBini-Dhouib
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: or
| | - Maroua Manai
- Laboratoire de Génétique Humaine (LR99ES10), Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia or
| | - Nour-elhouda Neili
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Soumaya Marzouki
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR11IPT02), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Ghada Sahraoui
- Laboratoire de Médecine de Précision, Médecine Personnalisée et Investigation en Oncologie (LR21SP01), Service d’Anatomie Pathologique, Institut Salah Azaiez, Bab Saadoun, Tunis 1006, Tunisia
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Warda Ben Achour
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Sondes Zouaghi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Melika BenAhmed
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR11IPT02), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Raoudha Doghri
- Laboratoire de Médecine de Précision, Médecine Personnalisée et Investigation en Oncologie (LR21SP01), Service d’Anatomie Pathologique, Institut Salah Azaiez, Bab Saadoun, Tunis 1006, Tunisia
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Najet Srairi-Abid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
48
|
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152:113208. [PMID: 35660246 DOI: 10.1016/j.biopha.2022.113208] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE REVIEW This study aimed to reveal the classical signal pathways and important potential targets of traditional Chinese medicine (TCM) for treating Alzheimer's disease (AD), and provide support for further investigation on TCM and its active ingredients. MATERIALS AND METHODS Literature survey was conducted using PubMed, Web of Science, Google Scholar, CNKI, and other databases, with "Alzheimer's disease," "traditional Chinese medicine," "medicinal herb," "Chinese herb," and "natural plant" as the primary keywords. RESULTS TCM could modulate signal pathways related to AD pathological progression, including NF-κB, Nrf2, JAK/STAT, ubiquitin-proteasome pathway, autophagy-lysosome pathway-related AMPK/mTOR, GSK-3/mTOR, and PI3K/Akt/mTOR, as well as SIRT1 and PPARα pathway. It could regulate crosstalk between pathways through a multitarget, thus maintaining chronic inflammatory interaction balance, inhibiting oxidative stress damage, regulating ubiquitin-proteasome system function, modulating autophagy, and eventually improving cognitive impairment in patients with AD. CONCLUSION TCM could be multilevel, multitargeted, and multifaceted to prevent and treat AD. In-depth research on the prevention and treatment of AD with TCM could provide new ideas for exploring the pathogenesis of AD and developing new anti-AD drugs.
Collapse
Affiliation(s)
- Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
49
|
He X, Liao Y, Liu J, Sun S. Research Progress of Natural Small-Molecule Compounds Related to Tumor Differentiation. Molecules 2022; 27:2128. [PMID: 35408534 PMCID: PMC9000768 DOI: 10.3390/molecules27072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.
Collapse
Affiliation(s)
- Xiaoli He
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yongkang Liao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha 410078, China; (X.H.); (Y.L.)
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
50
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|