1
|
Mawale KS, Giridhar P, Johnson TS. Chitosan: A versatile polymer for enhancing plant bioactive accumulation, managing plant diseases, and advancing food preservation technologies. Int J Biol Macromol 2025; 308:142081. [PMID: 40118397 DOI: 10.1016/j.ijbiomac.2025.142081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Chitosan is a versatile biopolymer composed of N-acetyl D-glucosamine and D-glucosamine units linked by β-(1→4) glycosidic bonds. It is known for its diverse biological applications, which include antimicrobial, antioxidant, antitumor, immunomodulatory, immunoadjuvant, and metal ion chelating abilities. Despite these benefits, the complexity of chitosan's structure limits its use in specific applications, particularly in scalability, solubility, and formulation stability. This review examines chitosan's role in food technology, agriculture, and tissue culture, focusing on its potential to enhance the accumulation of secondary metabolites and its applications in nanotechnology. A comprehensive search of databases, including PubMed, Scopus, and Google Scholar, was conducted to gather relevant literature. Chitosan is used in food technology to preserve seafood and meat, package them, and monitor degradation. Its role in improving crop productivity and plant disease management and promoting growth in both ex-vitro and in-vitro conditions has been discussed, as have chitosan-based nanoformulations as plant growth promoters and biocides. Further research could unlock chitosan's potential to enhance food security, environmental sustainability, and sustainable agriculture. Future research should be directed toward enabling chitosan's broader applications beyond food technology and agriculture. An integrated effort among academic institutions, research centres, and regulatory bodies is needed to bridge the gap between innovation and practical implementation. These efforts include joint research initiatives, policy framework development, capacity building, public-private partnerships, harmonization of standards, and fostering collaboration between industries and regulatory agencies. These efforts aim to validate new technologies, establish shared databases, streamline approval processes, and ensure research outcomes are translatable into regulatory and commercial frameworks.
Collapse
Affiliation(s)
- Kiran Suresh Mawale
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Food Safety & Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru 570020, India.
| | - T Sudhakar Johnson
- Formerly Associate Research Director and Professor of Biotechnology, Door 3-662-1, Tadepalli-522501, A. P. India; Present address: Phytoveda Pvt Ltd., #1104, Universal Majestic, P. L. Lokhande Marg, Govandi, Mumbai-400 043, India
| |
Collapse
|
2
|
Vahab SA, K I A, M S, Kumar VS. Exploring chitosan nanoparticles for enhanced therapy in neurological disorders: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2151-2167. [PMID: 39377924 DOI: 10.1007/s00210-024-03507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Chitosan nanoparticles have emerged as a promising therapeutic platform for treating neurological disorders due to their biocompatibility, biodegradability, and ease of functionalization. One of the significant challenges in treating neurological conditions is overcoming the blood-brain barrier (BBB), which restricts the effective delivery of therapeutic agents to the brain. Addressing this barrier is crucial for the successful treatment of various neurological diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, migraine, psychotic disorders, and brain tumors. Chitosan nanoparticles offer several advantages: they enhance drug absorption, protect drugs from degradation, and enable targeted delivery. These properties open new possibilities for non-invasive therapies for neurological conditions. Numerous studies have highlighted the neuroprotective potential of chitosan nanoparticles, demonstrating improved outcomes in animal models of neurodegeneration and neuroinflammation. Additionally, surface modifications of these nanoparticles allow for the attachment of specific ligands or molecules, enhancing the precision of drug delivery to neuronal cells. Despite these advancements, several challenges persist in the clinical translation of chitosan nanoparticles. Issues such as large-scale production, regulatory hurdles, and the need for further research into long-term safety must be addressed. This review explores recent advancements in the use of chitosan nanoparticles for managing neurological disorders and outlines potential future directions in this rapidly evolving field of research.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anjali K I
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sabitha M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
3
|
Richter C, Cord-Landwehr S, Singh R, Ryll J, Moerschbacher BM. Dissecting and optimizing bioactivities of chitosans by enzymatic modification. Carbohydr Polym 2025; 349:122958. [PMID: 39638513 DOI: 10.1016/j.carbpol.2024.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Chitosans are versatile biopolymers with antimicrobial and plant-strengthening properties relevant to agriculture. However, a limited understanding of molecular structure-function relationships and cellular modes of action of chitosans hampers the development of effective chitosan-based agro-biologics. We partially hydrolyzed a chitosan polymer (degree of polymerization DP 800, fraction of acetylation FA 0.2) using acetic acid, a GH18 chitinase, or a GH8 chitosanase. All hydrolysates contained mixtures of chitosan oligomers and small polymers, but their composition in terms of DP, FA, and pattern of acetylation (PA) differed greatly. Importantly, chitinase products had mostly deacetylated residues at their ends, flanking mostly deacetylated residues, and vice versa for chitosanase products, while the products of acid hydrolysis had random PA. Acid hydrolysis did not significantly change antifungal and antibacterial activities. In contrast, chitinase hydrolysis slightly increased antibacterial, and chitosanase almost abolished antifungal activity. Elicitor and priming activities in the plant Arabidopsis were unchanged by acid, destroyed by chitinase, and increased by chitosanase hydrolysis. Transcriptomic analysis revealed that the chitosan polymer strongly induced genes involved in photosynthesis, while the chitosanase hydrolysate strongly induced genes involved in disease resistance. Clearly, different bioactivities require different chitosans, and enzymatic modification can fine-tune these activities as required for different agricultural products.
Collapse
Affiliation(s)
- Carolin Richter
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Ratna Singh
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Judith Ryll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Bruno M Moerschbacher
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
4
|
Torres-Rodriguez JA, Reyes-Pérez JJ, Carranza-Patiño MS, Herrera-Feijoo RJ, Preciado-Rangel P, Hernandez-Montiel LG. Biocontrol of Fusarium solani: Antifungal Activity of Chitosan and Induction of Defence Enzymes. PLANTS (BASEL, SWITZERLAND) 2025; 14:431. [PMID: 39942993 PMCID: PMC11820095 DOI: 10.3390/plants14030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
In this work, the efficiency of chitosan as a biocontrol agent against Fusarium solani on tomato plants was determined and the antifungal activity and the induction of defence enzymes were evaluated. Treatments were carried out with different concentrations of chitosan (1, 2 and 3 g L-1) combined with a synthetic fungicide (carbendazim). The results showed that all chitosan treatments significantly inhibited the mycelial growth and biomass of F. solani, with the most effective results obtained with the 3 g L-1 treatment. Scanning electron microscopy revealed that chitosan causes severe structural damage to F. solani, including cell lysis and the deformation of mycelium and spores. In addition, plants treated with chitosan showed significant improvements in height, stem diameter, root dry biomass and root length compared to those treated with synthetic fungicide and the control (no chitosan application). Enzyme assays showed that chitosan significantly increased superoxide dismutase, catalase, peroxidase and phenylalanine ammonia-lyase activity, indicating an increased defensive response. These results suggest that chitosan is a viable and less toxic alternative for the management of disease caused by F. solani in tomato plants, promoting both plant health and growth.
Collapse
Affiliation(s)
- Juan Antonio Torres-Rodriguez
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Juan José Reyes-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Mercedes Susana Carranza-Patiño
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Robinson J. Herrera-Feijoo
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador; (J.J.R.-P.); (M.S.C.-P.); (R.J.H.-F.)
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México/Campus Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, ejido Ana, Torreón, Coahuila 27170, Mexico;
| | - Luis Guillermo Hernandez-Montiel
- Nanotechnology & Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur 23096, Mexico
| |
Collapse
|
5
|
Meynaud S, Wang Y, Huet G, Ibarboure E, Gardrat C, Coma V. Feasibility of Genipin to Evaluate Chitosan Rainfastness for Biopesticide Applications. Int J Mol Sci 2025; 26:1031. [PMID: 39940803 PMCID: PMC11816675 DOI: 10.3390/ijms26031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Chitosan's effectiveness as an antimicrobial coating for biocontrol depends on its resistance to rain. Unfortunately, to the best of our knowledge, there is currently no satisfactory method for assessing this resistance, which means that field tests have to be carried out to evaluate it in situ, which are difficult to implement and therefore unsuitable for optimizing formulations. This article explores the use of genipin to detect residual chitosan on surfaces after simulated rain, using fluorescence microscopy. A first study on real vine leaves using MacroFluo microscopy was carried out but showed limitations for the intended application, notably due to the requirement for high chitosan concentrations to achieve detectable signals. A semi-quantitative method based on confocal laser scanning microscopy was then developed on model leaves, as real leaves were unsuitable due to their autofluorescence. Among the tested models, Parafilm® proved to be the most effective, showing sufficient fluorescence after reaction with genipin, even at low chitosan concentrations. For the first time, a method that does not require chromophore grafting onto chitosan has been proposed, allowing for the comparison of chitosan solution rainfastness under laboratory conditions. As an application, the effect of the counter ion on chitosan's rain resistance was evaluated.
Collapse
Affiliation(s)
| | | | | | | | | | - Véronique Coma
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France; (S.M.); (Y.W.); (G.H.); (E.I.); (C.G.)
| |
Collapse
|
6
|
Sodhi GK, Wijesekara T, Kumawat KC, Adhikari P, Joshi K, Singh S, Farda B, Djebaili R, Sabbi E, Ramila F, Sillu D, Santoyo G, de los Santos-Villalobos S, Kumar A, Pellegrini M, Mitra D. Nanomaterials-plants-microbes interaction: plant growth promotion and stress mitigation. Front Microbiol 2025; 15:1516794. [PMID: 39881995 PMCID: PMC11774922 DOI: 10.3389/fmicb.2024.1516794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Soil salinization, extreme climate conditions, and phytopathogens are abiotic and biotic stressors that remarkably reduce agricultural productivity. Recently, nanomaterials have gained attention as effective agents for agricultural applications to mitigate such stresses. This review aims to critically appraise the available literature on interactions involving nanomaterials, plants, and microorganisms. This review explores the role of nanomaterials in enhancing plant growth and mitigating biotic and abiotic stresses. These materials can be synthesized by microbes, plants, and algae, and they can be applied as fertilizers and stress amelioration agents. Nanomaterials facilitate nutrient uptake, improve water retention, and enhance the efficiency of active ingredient delivery. Nanomaterials strengthen plant antioxidant systems, regulate photosynthesis, and stabilize hormonal pathways. Concurrently, their antimicrobial and protective properties provide resilience against biotic stressors, including pathogens and pests, by promoting plant immune responses and optimizing microbial-plant symbiosis. The synergistic interactions of nanomaterials with beneficial microorganisms optimize plant growth under stress conditions. These materials also serve as carriers of nutrients, growth regulators, and pesticides, thus acting like "smart fertilizers. While nanotechnology offers great promise, addressing potential environmental and ecotoxicological risks associated with their use is necessary. This review outlines pathways for leveraging nanotechnology to achieve resilient, sustainable, and climate-smart agricultural systems by integrating molecular insights and practical applications.
Collapse
Affiliation(s)
- Gurleen Kaur Sodhi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | | | - Kuldeep Joshi
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Smriti Singh
- Department of Anaesthesia and Operation Theatre Technology, College of Pharmacy, Chandigarh Group of Colleges Jhanjeri (Mohali), Sahibzada Ajit Singh Nagar, Punjab, India
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fares Ramila
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Laboratory Biotechnology, Water, Environment and Health, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Laboratory of Mycology, Biotechnology and Microbial Activity, Brothers Mentouri University of Constantine 1, Constantine, Algeria
| | - Devendra Sillu
- Department of Environmental Science and Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | - Ajay Kumar
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Rahman A, Ahammed R, Roy J, Mia ML, Kader MA, Khan MA, Rashid MH, Sarker UK, Uddin MR, Islam MS. Investigating the impact of oligo-chitosan on the growth dynamics and yield traits of Oryza sativa L. 'BRRI dhan29' under subtropical conditions. Heliyon 2025; 11:e41552. [PMID: 39844997 PMCID: PMC11751532 DOI: 10.1016/j.heliyon.2024.e41552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Reducing the harmful chemical use along with obtaining potential yield in field is a worth exploring practice in rice cultivation. To mitigate the prevailing yield gap, the current study was designed to evaluate the effect of chitosan in improving growth, yield contributing characters and yield of rice. The experiment comprised eight different treatments viz. control (no fertilizer and Chitosan) (T0), conventional method (with fertilizers) (T1), conventional method with foliar spray of 100 ppm chitosan solution (T2), conventional method with foliar spray of 300 ppm chitosan solution (T3), conventional method with foliar spray of 500 ppm chitosan solution (T4), only foliar spray of 100 ppm chitosan solution (T5), only foliar spray of 300 ppm chitosan solution (T6), and only foliar spray of 500 ppm chitosan solution (T7). The experiment was laid out in a completely randomized block design containing three replications. Data on different vegetative and yield contributing characters were recorded to evaluate the treatments effectiveness in improving rice yield. Different growth and yield contributing characters showed significant improvement after applying chitosan in addition to the conventional production system. The conventional method with foliar spray of 500 ppm chitosan solution had a greater positive effect on yield contributing characters and yield. In vegetative characters, the highest plant height became (87.3 cm), number of tiller hill-1 (13.7), Total dry matter (12.9), leaf area index (1.35), and chlorophyll content (57.73). On the basis of assessed treatments in yield contributing characters and yield, the highest plant height was (91.8 cm), no. of grains panicle-1 (145.29), grain yield (6.37 t ha-1), straw yield (6.47 t ha-1). Results showed that the conventional method with foliar spray of different concentration of chitosan solution was able to increase yield up to 26 % in comparison to the conventional method. Overall, our findings suggest that additional foliar spray of chitosan with previously recommended cultivation practice can increase the yield per unit area and offers promising technology to achieve potential yield in farmer's field.
Collapse
Affiliation(s)
- Afrina Rahman
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rayhan Ahammed
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jayanta Roy
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Liton Mia
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Abdul Kader
- Department of Arts & Sciences, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
| | - Mubarak A. Khan
- Former Director General, Bangladesh Atomic Energy Commission and Scientific Advisor, BJMC, Ministry of Jute and Textile, Dhaka, 1000, Bangladesh
| | - Md Harun Rashid
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Uttam Kumer Sarker
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shafiqul Islam
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
8
|
Zagoskina N. Special Issue "Advances in the Physiology of Primary and Secondary Plant Metabolism Under Abiotic and Biotic Stress". Int J Mol Sci 2024; 25:12339. [PMID: 39596403 PMCID: PMC11595043 DOI: 10.3390/ijms252212339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
One of the most relevant areas of biology is the study of plant adaptation processes to the action of various stress factors of abiotic and biotic nature, which is reflected in the works of molecular biologists, geneticists, microbiologists, plant physiologists, and biochemists, as well as biotechnologists [...].
Collapse
Affiliation(s)
- Natalia Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
9
|
Taha AG, Attia MS, Abdelaziz AM. Modification of chitosan-ethyl formate polymer with zinc oxide nanoparticles and β-CD to minimize the harmful effects of Alternaria early blight on Vicia faba. Int J Biol Macromol 2024; 282:137246. [PMID: 39505187 DOI: 10.1016/j.ijbiomac.2024.137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Derivatives of chitosan-ethyl formate polymers (Chs-EF) show promise as biologically relevant materials. The novelty of this study lies in the innovative use of Chs-EF doped with zinc oxide nanoparticles and beta-cyclodextrin, which significantly enhances the polymers' protective activities against Alternaria early blight disease in Vicia faba by improving both disease resistance and plant health. After doping Chs-EF with zinc oxide nanoparticles (ZnONPs) and inserting it into the beta-cyclodextrin (CD), two products emerged: Chs-EF/ZnONPs and Chs-EF/CD. Using βCD and ZnONPs to modify the Chs-EF polymer improves the optical properties of the generated polymers. Also, the energy gab values of the modified polymers (Chs-EF/ZnONPs and Chs-EF/βCD) were 3.3 and 3.7 eV, respectively, while energy gab value of the Chs-EF polymer was 3.9 eV. In this study, the effects of ZnONPs, chitosan, β-CD, and Chs-EF/ZnONPs on Alternaria solani early blight disease in Vicia faba plants were investigated. The treatments were evaluated based on disease symptoms and a disease index (DI) to assess their ability to protect against Alternaria early blight disease blight. The results show that the modified polymer with ZnONPs and beta-cyclodextrin (β-CD) and the modified polymer with ZnONPs (Chs-EF/ZnO NPs) provided the best protection, with DI values of 25 % and 12.5 %, respectively. Furthermore, it was discovered that the levels of carotenoids, chlorophyll a, and chlorophyll b in the infected plants had dropped by 52.6 %, 69.2 %, and 36.1 %, respectively. Chs-EF/ZnONPs were the most effective treatment, showing significant increases in the contents of chlorophyll a and b in infected plants by 120.8 % and 225.4 %, respectively. The study revealed that Chs-EF/ZnONPs exhibited a 131 % increase in the total phenolic content of plants, peroxidase (POD) activity (110.6 %), and a 347 % increase in polyphenol oxidase (PPO) activity, respectively, compared to healthy plants. Malondialdhyde (MDA) decreased by 50.7 %, 49.7 %, 43.4 %, 36.6 %, 31.7 %, and 7.5 % in response to Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD, respectively. Also, application of Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD reduced the production of H2O2 by 77.5 %, 62.8 %, 62.5 %, 39.6 %, 22 %, and 15.1 %, respectively, compared to infected controls. We recommend considering these substances as promising candidates for agricultural use, as they may effectively serve as control agents against early blight caused by Alternaria solani.
Collapse
Affiliation(s)
- Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
10
|
Riseh RS, Vazvani MG, Vatankhah M, Kennedy JF. Chitosan coating of seeds improves the germination and growth performance of plants: A Rreview. Int J Biol Macromol 2024; 278:134750. [PMID: 39218713 DOI: 10.1016/j.ijbiomac.2024.134750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This review article explores the fascinating world of chitosan coating applied to seeds and its profound impacts on enhancing the germination process and growth performance of plants. Chitosan, a biodegradable and non-toxic polysaccharide derived from chitin, has shown remarkable potential in seed treatment due to its bioactive properties. The review discusses the mechanisms of chitosan's effect on plant germination including promoting water uptake, enhancing nutrient absorption, and protecting seeds from biotic and abiotic stresses. Moreover, it evaluates the effects of chitosan on plant growth parameters such as root development, shoot growth, chlorophyll content, and overall yield. The review also discusses the sustainable aspects of chitosan coatings in agriculture, emphasizing their eco-friendly nature and potential for reducing reliance on synthetic chemicals. Overall, the findings underscore the significant benefits of chitosan-coated seeds in improving the overall performance of plants, paving the way for a greener and more productive agricultural future. Finally, the article will conclude with a SWOT analysis discussing the strengths, weaknesses, opportunities, and threats of this technology.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
11
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
12
|
Mohan N, Pal A, Saharan V, Kumar A, Vashishth R, Prince SE. Development, characterization, and evaluation of Zn-SA-chitosan bionanoconjugates on wheat seed, experiencing chilling stress during germination. Heliyon 2024; 10:e31708. [PMID: 38845942 PMCID: PMC11153175 DOI: 10.1016/j.heliyon.2024.e31708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to develop and characterize the chitosan bionanoconjugates (BNCs) loaded with zinc (Zn) and salicylic acid (SA) and test their efficacy on wheat seed exposed to chilling stress. BNCs developed were spherical (480 ± 6.0 nm), porous, and positively charged (+25.2 ± 2.4 mV) with regulated nutrient release properties. They possessed complexation efficiency of 78.4 and 58.9 % for Zn, and SA respectively. BET analysis further confirmed a surface area of 12.04 m2/g. Release kinetics substantiated the release rates of Zn and SA, as 0.579 and 0.559 % per hour, along with a half-life of 119.7 and 124.0 h, respectively. BNCs positively affected the germination potential of wheat seeds under chilling stress as observed by significantly (p < 0.05) reduced mean emergence time (18 %), and increased germination rate (22 %), compared to the control. Higher activities of reserve mobilizing enzymes (α-amylase- 6.5 folds, protease -10.2 folds) as well as faster reserve mobilization of starch (64.4 %) and protein (63.5 %) molecules were also observed. The application further led to increased levels of the antioxidant enzymes (SOD and CAT) and reduced oxidative damage (MDA and H2O2). Thus, it is inferred that the developed BNCs could help substantially improve the germination and reserve mobilization potential, thereby increasing the crop yield.
Collapse
Affiliation(s)
- Narender Mohan
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India
| | - Ajay Pal
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313 001, India
| | - Anuj Kumar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rahul Vashishth
- Department of Biological Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
13
|
de Azevedo MIG, Souza PFN, Monteiro Júnior JE, Grangeiro TB. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chem Biodivers 2024; 21:e202400044. [PMID: 38591818 DOI: 10.1002/cbdv.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.
Collapse
Affiliation(s)
| | - Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Foratelza, Ceará, Brazil
| | - José Edvar Monteiro Júnior
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thalles Barbosa Grangeiro
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
14
|
Chandrasekaran M, Paramasivan M. Chitosan derivatives act as a bio-stimulants in plants: A review. Int J Biol Macromol 2024; 271:132720. [PMID: 38845257 DOI: 10.1016/j.ijbiomac.2024.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by β-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, 209, Neundong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | | |
Collapse
|
15
|
Fotovvat M, Najafi F, Khavari-Nejad RA, Talei D, Rejali F. Investigating the simultaneous effect of chitosan and arbuscular mycorrhizal fungi on growth, phenolic compounds, PAL enzyme activity and lipid peroxidation in Salvia nemorosa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108617. [PMID: 38608504 DOI: 10.1016/j.plaphy.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.
Collapse
Affiliation(s)
- Marzieh Fotovvat
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ramazan Ali Khavari-Nejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Daryush Talei
- Medicinal Plants Research Center, Shahed University, 3319118651, Tehran, Iran
| | - Farhad Rejali
- Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), 3177993545, Karaj, Iran
| |
Collapse
|
16
|
Elshamly AMS, Iqbal R, Elshikh MS, Alwasel YA, Chaudhary T. Chitosan combined with humic applications during sensitive growth stages to drought improves nutritional status and water relations of sweet potato. Sci Rep 2024; 14:6351. [PMID: 38491017 PMCID: PMC10943102 DOI: 10.1038/s41598-024-55904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The current decline in freshwater resources presents a significant global challenge to crop production, a situation expected to intensify with ongoing climate change. This underscores the need for extensive research to enhance crop yields under drought conditions, a priority for scientists given its vital role in global food security. Our study explores the effects of using humic and chitosan treatments to alleviate drought stress during critical growth phases and their impact on crop yield and water efficiency. We employed four different irrigation strategies: full irrigation, 70% irrigation at the early vine development stage, 70% irrigation during the storage root bulking stage, and 85% irrigation across both stages, complemented by full irrigation in other periods. The plants received either humic treatments through foliar spray or soil application, or chitosan foliar applications, with tap water serving as a control. Our findings highlight that the early vine development stage is particularly vulnerable to drought, with a 42.0% decrease in yield observed under such conditions. In normal growth scenarios, foliar application of humic substances significantly improved growth parameters, resulting in a substantial increase in yield and water efficiency by 66.9% and 68.4%, respectively, compared to the control treatment under full irrigation. For sweet potatoes irrigated with 70% water at the storage root bulking stage, ground application of humic substances outperformed both foliar applications of chitosan and humic in terms of yield results. The highest tuber yield and water efficiency were attained by combining chitosan and humic ground applications, regardless of whether 70% irrigation was used at the storage root bulking stage or 85% irrigation during both the early vine development and storage root bulking stages.
Collapse
Affiliation(s)
- Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Center, Cairo, Egypt.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yasmeen A Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary.
| |
Collapse
|
17
|
Ferrer-Villasmil V, Fuentealba C, Reyes-Contreras P, Rubilar R, Cabrera-Barjas G, Bravo-Arrepol G, Escobar-Avello D. Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:789. [PMID: 38592776 PMCID: PMC10975318 DOI: 10.3390/plants13060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry.
Collapse
Affiliation(s)
- Víctor Ferrer-Villasmil
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
| | - Cecilia Fuentealba
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
| | - Pablo Reyes-Contreras
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
- Centro de Excelencia en Nanotecnología (CEN), LEITAT Chile, Santiago 7500618, Chile
| | - Rafael Rubilar
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
- Cooperativa de Productividad Forestal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Gastón Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile
| | - Danilo Escobar-Avello
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile; (V.F.-V.); (G.B.-A.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago 7820436, Chile; (P.R.-C.); (R.R.)
| |
Collapse
|
18
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Varma RS, Thakur VK. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture. NANO-MICRO LETTERS 2024; 16:147. [PMID: 38457088 PMCID: PMC10923760 DOI: 10.1007/s40820-024-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural Collage (SRUC), Edinburgh, EH9 3JG, UK.
| |
Collapse
|
19
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
20
|
Hameed A, Maqsood W, Hameed A, Qayyum MA, Ahmed T, Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8917-8929. [PMID: 38182953 DOI: 10.1007/s11356-023-31768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.
Collapse
Affiliation(s)
- Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waqas Maqsood
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
21
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
22
|
Beleggia R, Iannucci A, Menga V, Quitadamo F, Suriano S, Citti C, Pecchioni N, Trono D. Impact of Chitosan-Based Foliar Application on the Phytochemical Content and the Antioxidant Activity in Hemp ( Cannabis sativa L.) Inflorescences. PLANTS (BASEL, SWITZERLAND) 2023; 12:3692. [PMID: 37960049 PMCID: PMC10648115 DOI: 10.3390/plants12213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
In the present study, the phytochemical content and the antioxidant activity in the inflorescences of the monoecious hemp cultivar Codimono grown in southern Italy were assessed, and their elicitation was induced by foliar spray application of 50 mg/L and 250 mg/L of chitosan (CHT) at three different molecular weights (low, CHT L; medium, CHT M; high CHT H). The analysis of the phytochemical profile confirmed that cannabinoids were the most abundant class (54.2%), followed by flavonoids (40.3%), tocopherols (2.2%), phenolic acids (1.9%), and carotenoids (1.4%). Cannabinoids were represented almost exclusively by cannabidiol, whereas cannabigerol and Δ9-tetrahydrocannabinol were detected at very low levels (the latter was below the legal limit of 0.3%). The most abundant flavonoids were orientin and vitexin, whereas tocopherols were mainly represented by α-tocopherol. The antioxidant activity was found to be positively correlated with flavonoids and tocopherols. Statistical analysis revealed that the CHT treatments significantly affected the phytochemical content and the antioxidant activity of hemp inflorescences. Notably, a significant increase in the total phenolic content (from +36% to +69%), the α-tocopherol (from +45% to +75%) and β+γ-tocopherol (from +35% to +82%) contents, and the ABTS radical scavenging activity (from +12% to +28%) was induced by all the CHT treatments. In addition, treatments with CHT 50 solutions induced an increase in the total flavonoid content (from +12% to +27%), as well as in the vitexin (from +17% to +20%) and orientin (from +20% to +30%) contents. Treatment with CHT 50 L almost always resulted in the greatest increases. Overall, our findings indicated that CHT could be used as a low-cost and environmentally safe elicitor to improve the health benefits and the economic value of hemp inflorescences, thus promoting their employment in the food, pharmaceutical, nutraceutical, and cosmetic supply chains.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Anna Iannucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Filippo Quitadamo
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Serafino Suriano
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Cinzia Citti
- Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
- CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| |
Collapse
|
23
|
Toffolatti SL, Davillerd Y, D’Isita I, Facchinelli C, Germinara GS, Ippolito A, Khamis Y, Kowalska J, Maddalena G, Marchand P, Marcianò D, Mihály K, Mincuzzi A, Mori N, Piancatelli S, Sándor E, Romanazzi G. Are Basic Substances a Key to Sustainable Pest and Disease Management in Agriculture? An Open Field Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:3152. [PMID: 37687399 PMCID: PMC10490370 DOI: 10.3390/plants12173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Pathogens and pests constantly challenge food security and safety worldwide. The use of plant protection products to manage them raises concerns related to human health, the environment, and economic costs. Basic substances are active, non-toxic compounds that are not predominantly used as plant protection products but hold potential in crop protection. Basic substances' attention is rising due to their safety and cost-effectiveness. However, data on their protection levels in crop protection strategies are lacking. In this review, we critically analyzed the literature concerning the field application of known and potential basic substances for managing diseases and pests, investigating their efficacy and potential integration into plant protection programs. Case studies related to grapevine, potato, and fruit protection from pre- and post-harvest diseases and pests were considered. In specific cases, basic substances and chitosan in particular, could complement or even substitute plant protection products, either chemicals or biologicals, but their efficacy varied greatly according to various factors, including the origin of the substance, the crop, the pathogen or pest, and the timing and method of application. Therefore, a careful evaluation of the field application is needed to promote the successful use of basic substances in sustainable pest management strategies in specific contexts.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Yann Davillerd
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Ilaria D’Isita
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Chiara Facchinelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Giacinto Salvatore Germinara
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Youssef Khamis
- Agricultural Research Center, Plant Pathology Research Institute, 9 Gamaa St., Giza 12619, Egypt;
| | - Jolanta Kowalska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection–National Research Institute, Władysława Wêgorka 20, 60-318 Poznañ, Poland;
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Patrice Marchand
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Demetrio Marcianò
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Kata Mihály
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Annamaria Mincuzzi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| |
Collapse
|
24
|
Wen Y, Liao Y, Tang Y, Zhang H, Zhang J, Liao Z. Metabolic Effects of Elicitors on the Biosynthesis of Tropane Alkaloids in Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3050. [PMID: 37687296 PMCID: PMC10490125 DOI: 10.3390/plants12173050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Tropane alkaloids (TAs) are large secondary metabolite alkaloids that find extensive applications in the synthesis of antidotes, anesthetics, antiemetics, motion sickness drugs, and antispasmodics. The current production method primarily depends on extraction from medicinal plants of the Solanaceae family. Elicitation, as a highly effective biotechnological approach, offers significant advantages in augmenting the synthesis of secondary metabolites. The advantages include its simplicity of operation, low cost, and reduced risk of contamination. This review focuses on the impact of elicitation on the biosynthesis of TAs from three aspects: single-elicitor treatment, multiple-elicitor treatment, and the combination of elicitation strategy with other strategies. Some potential reasons are also proposed. Plant hormones and growth regulators, such as jasmonic acid (JA), salicylic acid (SA), and their derivatives, have been extensively employed in the separate elicitation processes. In recent years, novel elicitors represented by magnetic nanoparticles have emerged as significant factors in the investigation of yield enhancement in TAs. This approach shows promising potential for further development. The current utilization of multi-elicitor treatment is constrained, primarily relying on the combination of only two elicitors for induction. Some of these combinations have been found to exhibit synergistic amplification effects. However, the underlying molecular mechanism responsible for this phenomenon remains largely unknown. The literature concerning the integration of elicitation strategy with other strategies is limited, and several research gaps require further investigation. In conclusion, the impact of various elicitors on the accumulation of TAs is well-documented. However, further research is necessary to effectively implement elicitation strategies in commercial production. This includes the development of stable bioreactors, the elucidation of regulatory mechanisms, and the identification of more potent elicitors.
Collapse
Affiliation(s)
- Yuru Wen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
| | - Yiran Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Jiahui Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
El-Ganainy SM, Soliman AM, Ismail AM, Sattar MN, Farroh KY, Shafie RM. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers (Basel) 2023; 15:2961. [PMID: 37447606 DOI: 10.3390/polym15132961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Plant viruses are a global concern for sustainable crop production. Among the currently available antiviral approaches, nanotechnology has been overwhelmingly playing an effective role in circumventing plant viruses. Alfalfa mosaic virus (AMV) was isolated and identified from symptomatic pepper plants in Egypt using symptomatology, serological tests using the direct ELISA technique, differential hosts and electron microscopy. The virus was biologically purified from a single local lesion that developed on Chenopodium amaranticolor. The AMV infection was further confirmed using an AMV coat protein-specific primer RT-PCR. We further evaluated the antiviral potential of chitosan nanoparticles (CS-NPs) and chitosan silver nanocomposites (CS-Ag NC) in different concentrations against AMV infections in pepper plants. All tested concentrations of CS-NPs and CS-Ag NC induced the inhibition of AMV systemically infected pepper plants when applied 24 h after virus inoculation. The foliar application of 400 ppm CS-NPs or 200 ppm CS-Ag NC produced the highest AMV inhibitory effect (90 and 91%) when applied 24 h after virus inoculation. Treatment with CS-NPs and CS-Ag NC considerably increased the phenol, proline and capsaicin contents compared to the infected plants. Moreover, the agronomic metrics (plant height, fresh and dry pod weights and number of pods per plant) were also significantly improved. According to our results, the potential applications of CS-NPs and CS-Ag NC may provide an effective therapeutic measure for better AMV and other related plant virus management.
Collapse
Affiliation(s)
- Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed M Soliman
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab., Regional Center for Food and Feed, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Radwa M Shafie
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
26
|
Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers (Basel) 2023; 15:2867. [PMID: 37447512 DOI: 10.3390/polym15132867] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150-700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan's MW, and its use as a material for sustainable agriculture.
Collapse
Affiliation(s)
- Ramón Román-Doval
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | | - Aldo Y Tenorio-Barajas
- Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla, Puebla 72570, Mexico
| | - Alejandro Gómez-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | |
Collapse
|
27
|
Saravanan A, Kumar PS, Yuvaraj D, Jeevanantham S, Aishwaria P, Gnanasri PB, Gopinath M, Rangasamy G. A review on extraction of polysaccharides from crustacean wastes and their environmental applications. ENVIRONMENTAL RESEARCH 2023; 221:115306. [PMID: 36682444 DOI: 10.1016/j.envres.2023.115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - D Yuvaraj
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Aishwaria
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - P B Gnanasri
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - M Gopinath
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
28
|
MosChito rafts as effective and eco-friendly tool for the delivery of a Bacillus thuringiensis-based insecticide to Aedes albopictus larvae. Sci Rep 2023; 13:3041. [PMID: 36810640 PMCID: PMC9944263 DOI: 10.1038/s41598-023-29501-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Adult mosquito females, through their bites, are responsible for the transmission of different zoonotic pathogens. Although adult control represents a pillar for the prevention of disease spread, larval control is also crucial. Herein we characterized the effectiveness of a suitable tool, named "MosChito raft", for the aquatic delivery of a Bacillus thuringiensis var. israelensis (Bti) formulate, a bioinsecticide active by ingestion against mosquito larvae. MosChito raft is a floating tool composed by chitosan cross-linked with genipin in which a Bti-based formulate and an attractant have been included. MosChito rafts (i) resulted attractive for the larvae of the Asian tiger mosquito Aedes albopictus, (ii) induced larval mortality within a few hours of exposure and, more importantly, (iii) protected the Bti-based formulate, whose insecticidal activity was maintained for more than one month in comparison to the few days residual activity of the commercial product. The delivery method was effective in both laboratory and semi-field conditions, demonstrating that MosChito rafts may represent an original, eco-based and user-friendly solution for larval control in domestic and peri-domestic aquatic habitats such as saucers and artificial containers in residential or urban environments.
Collapse
|
29
|
Comparative Effects of Two Forms of Chitosan on Selected Phytochemical Properties of Plectranthus amboinicus (Lour.). Molecules 2023; 28:molecules28010376. [PMID: 36615569 PMCID: PMC9824852 DOI: 10.3390/molecules28010376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In response to stress factors, plants produce a wide range of biologically active substances, from a group of secondary metabolites, which are applied in medicine and health prophylaxis. Chitosan is a well-known elicitor affecting secondary metabolism in plants, but its effect on the phytochemical profile of Plectranthus amboinicus has not been assessed yet. In the present experiment, the effectiveness of the foliar application of two forms of chitosan (chitosan suspension or chitosan lactate) was compared in order to evaluate their potential to induce the accumulation of selected polyphenolic compounds in the aboveground parts of P. amboinicus. It was shown that chitosan lactate had substantially higher elicitation efficiency, as the use of this form exerted a beneficial effect on the analysed quality parameters of the raw material, especially the content of selected polyphenolic compounds (total content of polyphenols, flavonols, anthocyanins, and caffeic acid derivatives) and the free radical-scavenging activity of extracts from elicited plants. Concurrently, it had no phytotoxic effects. Hence, chitosan lactate-based elicitation can be an effective method for optimisation of the production of high-quality P. amboinicus raw material characterised by an increased concentration of health-promoting and antioxidant compounds.
Collapse
|
30
|
Casimiro B, Mota I, Veríssimo P, Canhoto J, Correia S. Enhancing the Production of Hydrolytic Enzymes in Elicited Tamarillo ( Solanum betaceum Cav.) Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010190. [PMID: 36616319 PMCID: PMC9824068 DOI: 10.3390/plants12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/07/2023]
Abstract
Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.
Collapse
Affiliation(s)
- Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence: (B.C.); (S.C.)
| | - Inês Mota
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paula Veríssimo
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
- Correspondence: (B.C.); (S.C.)
| |
Collapse
|
31
|
Saengsanga T, Phakratok N, Rattana T. Bioformulations Derived from Enterobacter sp. NRRU-N13 and Oligochitosan Alleviate Drought Stress in Thai Jasmine Rice (Oryza sativa L. var. KDML105). Microbes Environ 2023; 38:ME23025. [PMID: 37914312 PMCID: PMC10728635 DOI: 10.1264/jsme2.me23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/03/2023] Open
Abstract
Climate change is predicted to increase the length, severity, and frequency of drought, which limits plant development by changing various physiological and biochemical processes. Therefore, the present study investigated the effects of drought stress on indole-3-acetic and exopolysaccharide production by Enterobacter sp. NRRU-N13, developed bioformulations of plant growth-promoting Enterobacter sp. NRRU-N13, and evaluated the synergistic effects of these bioformulations in combination with different chitosans on the physiological responses of rice under drought stress. Drought stress inhibited the biosynthesis of indole-3-acetic and exopolysaccharides by Enterobacter sp. NRRU-N13. The viability and stability of Enterobacter sp. NRRU-N13 in bioformulations ranged between 4.70 and 5.70 log CFU g-1 after 80 days at an ambient temperature. Oligochitosan and chitosan at 40 mg L-1 were appropriate concentrations for improving rice seedling growth, namely, plant height, root length, shoot and root fresh weights, biomass, and the vigor index (P<0.05). The abilities of these bioformulations, in combination with oligochitosan and chitosan, to alleviate drought stress in rice were examined. The results obtained revealed that the combined application of oligochitosan (40 mg L-1) and the FON13 bioformulation (filter cake+40 mg kg-1 oligochitosan+10% Enterobacter sp. NRRU-N13) exerted the strongest synergistic effects to alleviate drought stress in rice plants by increasing ascorbate peroxidase and catalase activities, chlo-rophyll concentrations, and relative water content and suppressing proline accumulation and electrolyte leakage from rice plants under drought stress. The present results indicate that the application of oligochitosan combined with these bioformulations effectively improved plant physiology and development. Therefore, the combined application of oligochitosan and a bioformulation of Enterobacter sp. NRRU-N13 is recommended to alleviate drought stress in rice plants.
Collapse
Affiliation(s)
- Thanakorn Saengsanga
- Environmental Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Nutthida Phakratok
- Environmental Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Tarntip Rattana
- Environmental Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
32
|
Garza-Alonso CA, Olivares-Sáenz E, González-Morales S, Cabrera-De la Fuente M, Juárez-Maldonado A, González-Fuentes JA, Tortella G, Valdés-Caballero MV, Benavides-Mendoza A. Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality. PLANTS (BASEL, SWITZERLAND) 2022; 11:3463. [PMID: 36559576 PMCID: PMC9784621 DOI: 10.3390/plants11243463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response-called induction or elicitation-with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000-2022 is organized according to the biostimulant's physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary.
Collapse
Affiliation(s)
| | - Emilio Olivares-Sáenz
- Protected Agriculture Center, Faculty of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico
| | - Susana González-Morales
- National Council of Science and Technology (CONACYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | | | | | - Gonzalo Tortella
- Center of Excellence in Biotechnological Research Applied to the Environment, CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4811230, Chile
| | | | | |
Collapse
|
33
|
Farooq T, Akram MN, Hameed A, Ahmed T, Hameed A. Nanopriming-mediated memory imprints reduce salt toxicity in wheat seedlings by modulating physiobiochemical attributes. BMC PLANT BIOLOGY 2022; 22:540. [PMID: 36414951 PMCID: PMC9682780 DOI: 10.1186/s12870-022-03912-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Around the globe, salinity is one of the serious environmental stresses which negatively affect rapid seed germination, uniform seedling establishment and plant developments restricting sustainable agricultural productivity. In recent years, the concepts of sustainable agriculture and cleaner production strategy have emphasized the introduction of greener agrochemicals using biocompatible and natural sources to maximize crop yield with minimum ecotoxicological effects. Over the last decade, the emergence of nanotechnology as a forefront of interdisciplinary science has introduced nanomaterials as fast-acting plant growth-promoting agents. RESULTS Herein, we report the preparation of nanocomposite using chitosan and green tea (CS-GTE NC) as an ecofriendly nanopriming agent to elicit salt stress tolerance through priming imprints. The CS-GTE NC-primed (0.02, 0.04 and 0.06%), hydroprimed and non-primed (control) wheat seeds were germinated under normal and salt stress (150 mM NaCl) conditions. The seedlings developed from aforesaid seeds were used for physiological, biochemical and germination studies. The priming treatments increased protein contents (10-12%), photosynthetic pigments (Chl a (4-6%), Chl b (34-36%), Total Chl (7-14%) and upregulated the machinery of antioxidants (CAT (26-42%), POD (22-43%)) in wheat seedlings under stress conditions. It also reduced MDA contents (65-75%) and regulated ROS production resulting in improved membrane stability. The priming-mediated alterations in biochemical attributes resulted in improved final germination (20-22%), vigor (4-11%) and germination index (6-13%) under both conditions. It reduced mean germination time significantly, establishing the stress-insulating role of the nanocomposite. The improvement of germination parameters validated the stimulation of priming memory in composite-treated seeds. CONCLUSION Pre-treatment of seeds with nanocomposite enables them to counter salinity at the seedling development stage by means of priming memory warranting sustainable plant growth and high crop productivity.
Collapse
Affiliation(s)
- Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
34
|
El Amerany F, Rhazi M, Balcke G, Wahbi S, Meddich A, Taourirte M, Hause B. The Effect of Chitosan on Plant Physiology, Wound Response, and Fruit Quality of Tomato. Polymers (Basel) 2022; 14:polym14225006. [PMID: 36433133 PMCID: PMC9692869 DOI: 10.3390/polym14225006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In agriculture, chitosan has become popular as a metabolic enhancer; however, no deep information has been obtained yet regarding its mechanisms on vegetative tissues. This work was conducted to test the impact of chitosan applied at different plant growth stages on plant development, physiology, and response to wounding as well as fruit shape and composition. Five concentrations of chitosan were tested on tomato. The most effective chitosan doses that increased leaf number, leaf area, plant biomass, and stomatal conductance were 0.75 and 1 mg mL-1. Chitosan (1 mg mL-1) applied as foliar spray increased the levels of jasmonoyl-isoleucine and abscisic acid in wounded roots. The application of this dose at vegetative and flowering stages increased chlorophyll fluorescence (Fv/Fm) values, whereas application at the fruit maturation stage reduced the Fv/Fm values. This decline was positively correlated with fruit shape and negatively correlated with the pH and the content of soluble sugars, lycopene, total flavonoids, and nitrogen in fruits. Moreover, the levels of primary metabolites derived from glycolysis, such as inositol phosphate, lactic acid, and ascorbic acid, increased in response to treatment of plants with 1 mg mL-1- chitosan. Thus, chitosan application affects various plant processes by influencing stomata aperture, cell division and expansion, fruit maturation, mineral assimilation, and defense responses.
Collapse
Affiliation(s)
- Fatima El Amerany
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 6120 Halle (Saale), Germany
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Department of Biology, Higher Normal School, Cadi Ayyad University, P.O. Box 575, Marrakech 40000, Morocco
- Laboratory of Sustainable Development and Health Research, Department of Chemistry, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco
- Correspondence: ; Tel.: +212-639-419364
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Department of Biology, Higher Normal School, Cadi Ayyad University, P.O. Box 575, Marrakech 40000, Morocco
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 6120 Halle (Saale), Germany
| | - Said Wahbi
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre Agro Biotech-URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre Agro Biotech-URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Moha Taourirte
- Laboratory of Sustainable Development and Health Research, Department of Chemistry, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre Agro Biotech-URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 6120 Halle (Saale), Germany
| |
Collapse
|
35
|
Picchi V, Calzone A, Gobbi S, Paccani S, Lo Scalzo R, Marti A, Faoro F. Oxidative Stress Mitigation by Chitosan Nanoparticles in Durum Wheat Also Affects Phytochemicals and Technological Quality of Bran and Semolina. PLANTS 2022; 11:plants11152021. [PMID: 35956498 PMCID: PMC9370655 DOI: 10.3390/plants11152021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
In our previous work, durum wheat cv. Fabulis was grown over two consecutive seasons (2016–2017 and 2017–2018) in an experimental field in the north of Italy. With the aim of mitigating oxidative stress, plants were subjected to four treatments (deionized water, CHT 0.05 mg/mL, CHT-NPs, and CHT-NPs-NAC) three times during the experiment. Chitosan nanoparticles (CHT-NPs) reduced symptom severity on wheat leaves and positively influenced the final grain yield. The present work aimed at investigating whether CHT treatments and particularly N-acetyl cysteine (NAC)-loaded or -unloaded CHT-NPs, while triggering plant defense mechanisms, might also vary the nutritional and technological quality of grains. For this purpose, the grains harvested from the previous experiment were analyzed for their content in phytochemicals and for their technological properties. The results showed that CHT increased the polyphenol and tocopherol content and the reducing capacity of bran and semolina, even if the positive effect of the nano-formulation remained still unclear and slightly varied between the two years of cultivation. The positive effect against oxidative stress induced by the chitosan treatments was more evident in the preservation of both the starch pasting properties and gluten aggregation capacity, indicating that the overall technological quality of semolina was maintained. Our data confirm the role of chitosan as an elicitor of the antioxidant defense system in wheat also at the grain level.
Collapse
Affiliation(s)
- Valentina Picchi
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
- Correspondence: (V.P.); (F.F.)
| | - Antonella Calzone
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
| | - Serena Gobbi
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (S.G.); (A.M.)
| | - Sara Paccani
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (S.G.); (A.M.)
| | - Roberto Lo Scalzo
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milano, Italy; (A.C.); (S.P.); (R.L.S.)
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (S.G.); (A.M.)
| | - Franco Faoro
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: (V.P.); (F.F.)
| |
Collapse
|
36
|
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers (Basel) 2022; 14:2854. [PMID: 35890629 PMCID: PMC9322042 DOI: 10.3390/polym14142854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.
Collapse
Affiliation(s)
- Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Klaudia Piekarska
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| | - Maria Wiśniewska-Wrona
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| |
Collapse
|