1
|
Ripari N, Honorio MDS, Sartori AA, de Oliveira LRC, Bastos JK, Sforcin JM. Brazilian red propolis synergistically with imipenem modulates immunological parameters and the bactericidal activity of human monocytes against methicillin-resistant Staphylococcus aureus (MRSA). J Pharm Pharmacol 2025; 77:524-531. [PMID: 39454045 DOI: 10.1093/jpp/rgae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024]
Abstract
OBJECTIVES Propolis is a bee product found all over the globe and has a well-known antibacterial activity. Previous findings of our group revealed that the combination of Brazilian red propolis (BRP) with a lower concentration of imipenem (IPM) exerted a bactericidal action against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Here, we aimed at investigating the effects of BRP in combination or not with IPM on human monocytes to assess a possible immunomodulatory action. METHODS Monocyte metabolic activity was analysed by MTT assay, cytokine production (TNF-α, IL-1β, IL-6, IL-8, and IL-10) by ELISA, and the expression of cell markers (TLR-2, TLR-4, HLA-DR, and CD80) by flow cytometry. The bactericidal activity of monocytes over MRSA was determined by colony-forming units' count. KEY FINDINGS BRP alone or in combination with IPM exerted no cytotoxic effects on monocytes. BRP downregulated TLR-2 expression and inhibited TNF-α, IL-1β, and IL-6 production, while BRP + IPM stimulated these parameters. BPR alone or in combination increased the bactericidal activity similarly to LPS-activated monocytes. CONCLUSIONS Data indicated the potential of BRP as an anti-inflammatory agent increasing the bactericidal activity of monocytes against MRSA. The combination of BRP + IPM exhibited a stimulatory profile that may be potentially useful in treating patients with MRSA infection.
Collapse
Affiliation(s)
- Nicolas Ripari
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP 18618-691, Brazil
| | - Mariana da Silva Honorio
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP 18618-691, Brazil
| | - Arthur Alves Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP 18618-691, Brazil
| | - Larissa Ragozo Cardoso de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP 18618-691, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP 14040-903, Brazil
| | - José Maurício Sforcin
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, Botucatu, SP 18618-691, Brazil
| |
Collapse
|
2
|
Khan TU, Luan X, Nabi G, Raza MF, Iqbal A, Khan SN, Hu H. Forecasting the Impact of Climate Change on Apis dorsata (Fabricius, 1793) Habitat and Distribution in Pakistan. INSECTS 2025; 16:289. [PMID: 40266805 PMCID: PMC11942931 DOI: 10.3390/insects16030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Climate change has led to global biodiversity loss, severely impacting all species, including essential pollinators like bees, which are highly sensitive to environmental changes. Like other bee species, A. dorsata is also not immune to climate change. This study evaluated the habitat suitability of A. dorsata under climate change in Pakistan by utilizing two years of occurrence and distribution data to develop a Maximum Entropy (MaxEnt) model for forecasting current and future habitat distribution. Future habitat projections for 2050 and 2070 were based on two shared socioeconomic pathways (SSP245 and SSP585) using the CNRM-CM6-1 and EPI-ESM1-2-HR-1 global circulation models. Eight bioclimatic variables (Bio1, Bio4, Bio5, Bio8, Bio10, Bio12, Bio18, and Bio19) were selected for modeling, and among the selected variables, the mean temperature of the wettest quarter (Bio8) and precipitation of the warmest quarter (Bio18) showed major contributions to the model building and strongest influence on habitat of A. dorsata. The model estimated 23% of our study area as a suitable habitat for A. dorsata under current climatic conditions, comprising 150,975 km2 of moderately suitable and 49,792 km2 of highly suitable regions. For future climatic scenarios, our model projected significant habitat loss for A. dorsata with a shrinkage and shift towards northern, higher-altitude regions, particularly in Khyber Pakhtunkhwa and the Himalayan foothills. Habitat projections under the extreme climatic scenario (SSP585) are particularly alarming, indicating a substantial loss of the suitable habitat for the A. dorsata of 40% under CNRM-CM6-1 and 79% for EPI-ESM1-2-HR-1 for the 2070 time period. This study emphasizes the critical need for conservation efforts to protect A. dorsata and highlights the species' role in pollination and supporting the apiculture industry in Pakistan.
Collapse
Affiliation(s)
- Tauheed Ullah Khan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China (M.F.R.)
| | - Xiaofeng Luan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Fahad Raza
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China (M.F.R.)
| | - Arshad Iqbal
- Center of Biotechnology and Microbiology, University of Swat, Swat 19120, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Huijian Hu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China (M.F.R.)
| |
Collapse
|
3
|
de Aguiar SC, Cottica SM, dos Santos ST, da Fonseca JM, da Silva Leite L, da Silva ML. Antioxidant Activity, Phenolic Acid, and Flavonoid Composition of an Antiseptic Ointment Based on Aloe and Green Propolis and Its Potential for Preventing Mastitis in Dairy Cows. Vet Sci 2025; 12:248. [PMID: 40266938 PMCID: PMC11945798 DOI: 10.3390/vetsci12030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 04/25/2025] Open
Abstract
Mastitis is a major challenge in dairy production, leading to decreased milk yield and quality due to increased somatic cell counts (SCCs). The overuse of antibiotics to treat this condition has raised concerns about antimicrobial resistance, prompting the search for alternative treatments. This study aimed to evaluate the antioxidant activity, phenolic acid, and flavonoid content of a natural antiseptic ointment based on green propolis and aloe vera. The phenolic and flavonoid composition was determined using ultra-high-performance liquid chromatography, revealing high concentrations of bioactive compounds, particularly in the green propolis extract. The antioxidant activity was assessed using the DPPH method, and the ointment was applied as a post-dipping treatment in dairy cows. Over a 56-day period, the SCC in cows treated with the ointment showed a significant reduction (p = 0.021) compared to the control group (1.94 and 2.21 log10 SCC/mL, respectively). These findings indicate that the combination of green propolis and aloe vera possesses promising antimicrobial and healing properties, making it an effective alternative for mastitis prevention in dairy cows.
Collapse
Affiliation(s)
- Sílvia Cristina de Aguiar
- Department of Animal Science, Universidade do Estado de Mato Grosso—UNEMAT, Pontes e Lacerda 78250000, Brazil; (S.T.d.S.); (J.M.d.F.); (M.L.d.S.)
| | - Solange Maria Cottica
- Programa de Pós-Graduação em Processos Químicos e Biotecnológicos, Universidade Tecnológica Federal do Paraná, Toledo 85902490, Brazil;
| | - Silvério Teixeira dos Santos
- Department of Animal Science, Universidade do Estado de Mato Grosso—UNEMAT, Pontes e Lacerda 78250000, Brazil; (S.T.d.S.); (J.M.d.F.); (M.L.d.S.)
| | - Juliana Maxiano da Fonseca
- Department of Animal Science, Universidade do Estado de Mato Grosso—UNEMAT, Pontes e Lacerda 78250000, Brazil; (S.T.d.S.); (J.M.d.F.); (M.L.d.S.)
| | - Luiza da Silva Leite
- Bioprocess Engineering and Biotechnology, Universidade Tecnológica Federal do Paraná, Toledo 85902490, Brazil;
| | - Mylena Leite da Silva
- Department of Animal Science, Universidade do Estado de Mato Grosso—UNEMAT, Pontes e Lacerda 78250000, Brazil; (S.T.d.S.); (J.M.d.F.); (M.L.d.S.)
| |
Collapse
|
4
|
Konanc K, Ozturk E. Effects of propolis extract supplementation in breeder and broiler diets and it's in ovo injection on immune status, blood parameters, vaccine-antibody response and intestinal microflora of broiler chick. Trop Anim Health Prod 2025; 57:89. [PMID: 40025281 PMCID: PMC11872974 DOI: 10.1007/s11250-025-04329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
This study evaluated the effects of dietary propolis extract supplementation and in-ovo propolis injection on the immune status, blood parameters, vaccine-antibody response, and intestinal microflora of broiler chickens. A total of 600 Ross 308 broiler chicks were used. Breeder diets were supplemented with 400 ppm propolis extract (P) or left unsupplemented (C) during weeks 38-39. Eggs from the control group (C) were divided into four groups, with in-ovo injections of 400 ppm propolis extract (C-iP) or physiological saline (C-iS) on day 18 of incubation. Untreated eggs formed the control (C-C) or propolis-supplemented (P-C) groups. Chicks were fed either a basal diet (C) or a diet supplemented with 400 ppm propolis extract (P), forming six experimental groups: C-C, C-P, P-C, P-P, C-iP, and C-iS, with 10 replicates per group (10 chicks per replicate). Propolis supplementation significantly increased immunoglobulin levels (IgA, IgG, IgM) compared to the control group. Although it positively affected certain blood parameters, no significant differences were found in post-vaccination antibody titers. The C-C group had the highest total antioxidant levels, while total oxidant levels and oxidative stress index were lowest in the P-P group. Despite positive effects on blood parameters and intestinal microflora, no significant improvements in growth performance were observed. Nevertheless, propolis extract shows potential as an immune enhancer for broiler chickens through parental feeding, standard diets, or in-ovo injection.
Collapse
Affiliation(s)
- Kalbiye Konanc
- Department of Veterinary, Ordu University, Ulubey Vocational High School, 52850, Ordu, Türkiye.
| | - Ergin Ozturk
- Department of Animal Science, Faculty of Agriculture, Ondokuz MayıS University, 55139, Samsun, Türkiye
| |
Collapse
|
5
|
Aldosari AY, Aljared AM, Alqurshy HS, Alfarran AM, Alnahdi MG, Alharbi SS, Alharbi WS, Alghamdi FT. The Clinical Effectiveness of Propolis on the Endodontic Treatment of Permanent Teeth: A Systematic Review of Randomized Clinical Trials and Updates. Cureus 2025; 17:e77430. [PMID: 39949463 PMCID: PMC11824515 DOI: 10.7759/cureus.77430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 02/16/2025] Open
Abstract
Endodontic treatment of permanent teeth (immature and mature) with propolis in healthy patients remains uncertain, with conflicting evidence. Therefore, this systematic review aims to evaluate the current literature on the safety and efficacy of propolis in endodontic procedures. An extensive literature search was performed using PubMed, Scopus, Web of Sciences, and Google Scholar. Only human randomized clinical trials (RCTs) that explored the clinical applications of propolis in endodontics were considered. Narrative synthesis was performed, and the risk of bias (RoB) for methodological quality assessment was performed with the Cochrane RoB-2 via the Robvis web-based application. Eight RCTs were selected, focusing on using propolis in vital pulps for direct pulp capping and non-vital pulps for root canal disinfection and filling materials. Propolis demonstrated promising effects, including controlling inflammation, promoting tissue healing, and disinfecting the root canal system. However, no significant differences were observed when comparing propolis to other materials used in pulp capping or intracanal medicaments. The RoB assessment revealed varied levels of risk, with two studies exhibiting a high risk, three having unclear risks, and three showing low risk. Moderate certainty of evidence was observed. Based on the current evidence, there is insufficient data to recommend propolis over other materials in the treatment of vital or non-vital pulps in permanent teeth. Propolis was not recommended as a definitive treatment due to the limited evidence and variability in the clinical outcomes across studies. However, future high-quality RCTs are essential for more definitive conclusions.
Collapse
Affiliation(s)
- Amirah Y Aldosari
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Amira M Aljared
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Hanin S Alqurshy
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Abdullah M Alfarran
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Mohanad G Alnahdi
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Sarah S Alharbi
- General Dentistry, Faculty of Dentistry, Riyadh Elm University, Riyadh, SAU
| | - Wed S Alharbi
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Faisal T Alghamdi
- Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
6
|
Al Balawi AN, Eldiasty JG, Mosallam SAER, El-Alosey AR, Elmetwalli A. Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study. BIORESOUR BIOPROCESS 2024; 11:108. [PMID: 39604740 PMCID: PMC11602940 DOI: 10.1186/s40643-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe2⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.
Collapse
Affiliation(s)
- Aisha Nawaf Al Balawi
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia.
| | - Jayda G Eldiasty
- Biology Department, University College of Haql, "University of Tabuk", Tabuk, Saudi Arabia
| | | | - Alaa R El-Alosey
- Department of Mathematics, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
7
|
Sycińska-Dziarnowska M, Szyszka-Sommerfeld L, Ziąbka M, Woźniak K, Spagnuolo G. Propolis in Dental Implantology: A Systematic Review of Its Effects and Benefits. J Funct Biomater 2024; 15:339. [PMID: 39590543 PMCID: PMC11595021 DOI: 10.3390/jfb15110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Dental implants are widely recognized for their effectiveness in restoring missing teeth, yet their success is often compromised by infections or inadequate osseointegration. Propolis, a natural resinous substance with potent antimicrobial, anti-inflammatory, and osteogenic properties, has emerged as a promising adjunct in dental implantology. This systematic review critically evaluates the current evidence on the incorporation of propolis into dental implants, focusing on its impact on antimicrobial efficacy, bone healing, and overall implant stability. The study protocol was registered in PROSPERO under the registration number CRD42024577122. The PRISMA diagram visually represented the search strategy, screening, and inclusion process. Two reviewers conducted a comprehensive literature search across five databases: PubMed, PubMed Central, Embase, Scopus, and Web of Science. The review synthesized findings from 13 studies; in vitro, in vivo, and clinical studies, highlighting that propolis significantly enhances antibacterial and antifungal activities against pathogens such as Staphylococcus aureus, Candida albicans, and Streptococcus mutans, thereby reducing the risk of peri-implant infections. Additionally, propolis promotes osseointegration by stimulating osteoblast activity and reducing inflammatory cytokine expression, leading to improved bone formation and implant stability. The anti-inflammatory and antioxidant properties of propolis further contribute to a favorable healing environment, enhancing the long-term success of dental implants. The systematic review underscores the potential of propolis as a safe, biocompatible, and effective material for improving dental implant outcomes. However, it also identifies the need for more extensive clinical trials to fully establish standardized protocols for propolis application in implantology. This review provides an overview of propolis's potential role in dental implants and suggests promising avenues for future research to optimize its benefits in clinical practice.
Collapse
Affiliation(s)
- Magdalena Sycińska-Dziarnowska
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland
| | - Liliana Szyszka-Sommerfeld
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland
- Laboratory for Propaedeutics of Orthodontics and Facial Congenital Defects, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland
| | - Magdalena Ziąbka
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Krakow, 30059 Krakow, Poland
| | - Krzysztof Woźniak
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Napoli, Italy
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Squarisi IS, Ribeiro VP, Ribeiro AB, de Souza LTM, Junqueira MDM, de Oliveira KM, Hayot G, Dickmeis T, Bastos JK, Veneziani RCS, Ambrósio SR, Tavares DC. Development of a Benzophenone-Free Red Propolis Extract and Evaluation of Its Efficacy against Colon Carcinogenesis. Pharmaceuticals (Basel) 2024; 17:1340. [PMID: 39458981 PMCID: PMC11510570 DOI: 10.3390/ph17101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Brazilian red propolis has attracted attention for its pharmacological properties. However, signs of toxicity were recently observed in long-term studies using the hydroalcoholic extract of red propolis (RPHE), likely due to polyprenylated benzophenones. This study aimed to develop a benzophenone-free red propolis extract (BFRP) and validate an HPLC-PDA method to quantify its main constituents: isoliquiritigenin, vestitol, neovestitol, medicarpine, and 7-O-methylvestitol. METHODS BFRP's toxicity was assessed in zebrafish larvae through a vibrational startle response assay (VSRA) and morphological analysis. Genotoxicity was evaluated using the micronucleus test in rodents, and the extract's effects on chemically induced preneoplastic lesions in rat colon were studied. An HPLC-PDA method was used to quantify BFRP's main compounds. RESULTS BFRP primarily contained vestitol (128.24 ± 1.01 μg/mL) along with isoliquiritigenin, medicarpin, neovestitol, and 7-O-methylvestitol. Zebrafish larvae exposed to 40 µg/mL of BFRP exhibited toxicity, higher than the 10 µg/mL for RPHE, though no morphological differences were found. Fluorescent staining in the notochord, branchial arches, and mouth was observed in larvae treated with both BFRP and RPHE. No genotoxic or cytotoxic effects were observed up to 2000 mg/kg in rodents, with no impact on hepatotoxicity or nephrotoxicity markers. Chemoprevention studies showed a 41.6% reduction in preneoplastic lesions in rats treated with 6 mg/kg of BFRP. CONCLUSIONS These findings indicate that BFRP is a safe, effective propolis-based extract with potential applications for human health, demonstrating reduced toxicity and chemopreventive properties.
Collapse
Affiliation(s)
- Iara Silva Squarisi
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Victor Pena Ribeiro
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Arthur Barcelos Ribeiro
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Letícia Teixeira Marcos de Souza
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Marcela de Melo Junqueira
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Kátia Mara de Oliveira
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Gaelle Hayot
- Institute of Biological and Chemical Systems—Biological Information Processing—Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (G.H.)
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems—Biological Information Processing—Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (G.H.)
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil;
| | - Rodrigo Cassio Sola Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Sérgio Ricardo Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| | - Denise Crispim Tavares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca 14404-600, SP, Brazil; (I.S.S.); (V.P.R.); (A.B.R.); (L.T.M.d.S.); (M.d.M.J.); (K.M.d.O.); (R.C.S.V.)
| |
Collapse
|
9
|
ALGHUTAIMEL H, MATOUG-ELWERFELLI M, NAGENDRABABU V, DUMMER PMH. Endodontic Applications of Propolis in Primary and Permanent Teeth: A Scoping Review of Clinical Studies. Eur Endod J 2024; 9:167-79. [PMID: 38757564 PMCID: PMC11413607 DOI: 10.14744/eej.2024.65487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/24/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE The use of propolis-based materials within endodontics to promote pulp wound healing or disinfect the root canal system has been a recent focus of scientists and clinicians. This is mainly because of the well-documented antimicrobial, anti-inflammatory, immunomodulatory and wound healing properties of propolis. This scoping review critically appraises the literature on the clinical applications of propolis-based compounds during endodontic therapy of primary and permanent teeth. METHODS An electronic literature search was performed in Scopus, PubMed, and Web of Science up to and including October 2023 to identify studies assessing the use of propolis during endodontic therapy of primary and permanent teeth. A combination of relevant MeSh terms and keywords was used. Only human clinical studies written in English were included. The identified manuscripts were screened and assessed for inclusion by two independent authors. Eligible manuscripts were then subjected to critical appraisal and data extraction with the information being summarised according to their clinical application. RESULTS A total of 26 human clinical studies were identified and included in the analysis. Propolis was investigated for use in the primary and permanent dentitions as a direct pulp capping or pulpotomy material as well as in root canal disinfection and root filling of teeth with non-vital pulps. Overall, the studies reported that the use of propolis was associated with promising outcomes in terms of efficacy to control inflammation, enhance tissue repair, and disinfection of the root canal system. However, a critical appraisal of the studies revealed a range of methodological and reporting deficiencies, resulting in unreliable results and conclusions in terms of the clinical outcomes reported. CONCLUSION Although the studies on the use of propolis-based materials in endodontics reported promising clinical outcomes, they had a range of methodological and reporting flaws. Further well-designed and properly reported controlled clinical studies are essential to derive sound evidence-based conclusions on propolis-based materials. Furthermore, guidelines for quality assurance and safe use of propolis-based materials are necessary to enhance their production for commercial use in endodontics.
Collapse
Affiliation(s)
- Hayat ALGHUTAIMEL
- College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
- Ministry of the National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Manal MATOUG-ELWERFELLI
- Department of Pre-clinical Oral Sciences, College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Venkateshbabu NAGENDRABABU
- Department of Preventive and Restorative Dentistry, University of Sharjah, College of Dental Medicine, Sharjah, United Arab Emirates
| | | |
Collapse
|
10
|
Oliveira RD, Araújo C, Almeida-Aguiar C. In Vitro Antimicrobial Potential of Portuguese Propolis Extracts from Gerês against Pathogenic Microorganisms. Antibiotics (Basel) 2024; 13:655. [PMID: 39061337 PMCID: PMC11273468 DOI: 10.3390/antibiotics13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of humanity's main health problems today. Despite all the breakthroughs and research over the past few years, the number of microbial illnesses that are resistant to the available antibiotics is increasing at an alarming rate. In this article, we estimated the biomedical potential of Portuguese propolis harvested from the Gerês apiary over five years, evaluating the in vitro antimicrobial effect of five hydroalcoholic extracts prepared from five single propolis samples and of a hydroalcoholic extract obtained from the mixture of all samples. The antimicrobial potential was firstly assessed by determining the minimum inhibitory concentration (MIC) of these extracts against a panel of three Gram-positive (Bacillus subtilis, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and one Gram-negative bacteria (Escherichia coli), as well as two yeasts (Candida albicans and Saccharomyces cerevisiae). As MIC values against each bacterium were consistent across all the evaluated propolis extracts, we decided to further conduct a disk diffusion assay, which included three commercial antibiotics-erythromycin, vancomycin, and amoxicillin/clavulanic acid-for comparison purposes. In addition to displaying a concentration-dependent antibacterial effect, the hydroalcoholic extracts prepared with 70% ethanol exhibited stronger antimicrobial capacity than vancomycin against B. subtilis (% of increase ranged between 26 and 59%) and methicillin-sensitive S. aureus (% of increase ranged between 63 and 77%). Moreover, methicillin-resistant S. aureus (MRSA) showed susceptibility to the activity of the same extracts and resistance to all tested antibiotics. These findings support that propolis from Gerês is a promising natural product with promising antimicrobial activity, representing a very stimulating result considering the actual problem with AMR.
Collapse
Affiliation(s)
- Rafaela Dias Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Araújo
- Biology Department, University of Minho, 4710-057 Braga, Portugal;
| | - Cristina Almeida-Aguiar
- Biology Department, University of Minho, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Tavares JAO, Rocha ADO, Anjos LMD, Cardoso M, Silva FAD. bibliometric analysis of the top 100 most-cited articles concerning the use of propolis in dentistry. BRAZILIAN JOURNAL OF ORAL SCIENCES 2024; 23:e245039. [DOI: 10.20396/bjos.v23i00.8675039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Aim: The objective of this bibliometric analysis was to identify and analyze the key characteristics of the 100 most-cited articles related to the use of propolis in dentistry. Methods: The search was conducted in the Web of Science Core Collection, and two independent reviewers selected the articles, excluding meeting articles. The number of citations for each article was compared across the Scopus and Google Scholar databases. The extracted data included the number and density of citations, year of publication, journal and impact factor, study design and theme, country and continent, institution, keywords, and authors. VOSviewer software was employed to generate collaborative network maps. Spearman correlation and Poisson regression analyses were performed on the data. Results: The number of citations ranged from 26 to 247, with a citation density varying between 1.08 and 20.00. Articles were published between 1991 and 2021, with laboratory studies (70%) and antimicrobial activity (39%) being the most prevalent study design and theme, respectively. The most discussed dental specialty was microbiology (49%). Rosalen PL (27%) emerged as the author with the highest number of articles, and the University of Campinas (Brazil) was the most prolific institution. Poisson regression indicated a declining trend in citations over the years, though literature reviews exhibited higher citation performance. Brazil contributed the highest percentage of articles (41%). Conclusion: In conclusion, the 100 most-cited articles predominantly comprised laboratory studies investigating the antimicrobial activity of propolis, primarily originating from Brazil, with notable emphasis on the University of Campinas.
Collapse
|
12
|
Remedio LN, Garcia VADS, Rochetti AL, Berretta AA, Ferreira JA, Fukumasu H, Vanin FM, Yoshida CMP, de Carvalho RA. Oral Films Printed with Green Propolis Ethanolic Extract. Polymers (Basel) 2024; 16:1811. [PMID: 39000666 PMCID: PMC11243841 DOI: 10.3390/polym16131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/17/2024] Open
Abstract
Oral film (OF) research has intensified due to the effortless administration and advantages related to absorption in systemic circulation. Chitosan is one of the polymers widely used in the production of OFs; however, studies evaluating the maintenance of the active principles' activity are incipient. Propolis has been widely used as an active compound due to its different actions. Printing techniques to incorporate propolis in OFs prove to be efficient. The objective of the present study is to develop and characterize oral films based on chitosan and propolis using printing techniques and to evaluate the main activities of the extract incorporated into the polymeric matrix. The OFs were characterized in relation to the structure using scanning and atomic force electron microscopy; the mechanical properties, disintegration time, wettability, and stability of antioxidant activity were evaluated. The ethanolic extract of green propolis (GPEE) concentration influenced the properties of the OFs. The stability (phenolic compounds and antioxidant activity) was reduced in the first 20 days, and after this period, it remained constant.
Collapse
Affiliation(s)
- Leandro Neodini Remedio
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Vitor Augusto dos Santos Garcia
- Faculty of Agricultural Sciences, UNESP—São Paulo State University, José Barbosa de Barros 1780, Botucatu 18610-034, SP, Brazil;
| | - Arina Lazaro Rochetti
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Andresa Aparecida Berretta
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda, Rua Triunfo 945, Ribeirão Preto 14020-670, SP, Brazil;
| | - Julieta Adriana Ferreira
- FHO—Hermínio Ometto Foundation, Av. Doutor Maximiliano Baruto 500, Araras 13607-339, SP, Brazil;
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Fernanda Maria Vanin
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| | - Cristiana Maria Pedroso Yoshida
- Institute of Environmental, Chemical and Pharmaceutical Sciences, UNIFESP—Federal University of São Paulo, Rua São Nicolau 210, Diadema 09913-030, SP, Brazil;
| | - Rosemary Aparecida de Carvalho
- Faculty of Animal Science and Food Engineering, USP—University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil; (L.N.R.); (A.L.R.); (H.F.); (F.M.V.)
| |
Collapse
|
13
|
Mohamad NA, Al-Emerieen AF, Irekeola AA, Shueb RH. Antibacterial Effects of Various Types of Bee Products in Malaysia: A Systematic Review. Malays J Med Sci 2024; 31:32-51. [PMID: 38984254 PMCID: PMC11229564 DOI: 10.21315/mjms2024.31.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 07/11/2024] Open
Abstract
Antibiotics are widely used to treat bacterial infections. The effectiveness of antibiotics is very important, but unfortunately, prolonged exposure leads to the development of antibiotic resistance in some bacteria. Hence, using natural products as antibacterial agents is an attractive alternative, given that they have been used as traditional medicine since the existence of humanity. This study systematically reviewed the antibacterial activity of Malaysian bee products such as honey, propolis and bee bread. Five electronic databases: i) PubMed; ii) ScienceDirect; iii) Scopus; iv) Web of Science Core Collection and v) Google Scholar, were searched for relevant articles. A total of 153 articles were obtained from the initial search. Of these, 32 articles, including 24 on honey, eight on propolis and one on bee bread, were selected based on inclusion and exclusion criteria. Most studies reported that honey, propolis and bee bread demonstrated antibacterial properties against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Nur Aliah Mohamad
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alaa' Fahed Al-Emerieen
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
14
|
Darbanian N, Nobahar M, Ghorbani R. Effect of propolis mouthwash on the incidence of ventilator-associated pneumonia in intensive care unit patients: a comparative randomized triple-blind clinical trial. BMC Oral Health 2024; 24:636. [PMID: 38811949 PMCID: PMC11137970 DOI: 10.1186/s12903-024-04412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES Ventilator-associated pneumonia (VAP) increases the length of hospitalization and mortality rate. This study aimed to determine the effect of propolis mouthwash on the incidence of VAP in intensive care unit (ICU) patients. MATERIALS AND METHODS Triple-blind, comparative randomized, controlled clinical trial was conducted over one year, with 110 ICU patients at Imam-Hossein and Bahar hospitals (Shahroud) and Kowsar Hospital (Semnan) in Iran. The intervention group used 15 cc of 0.06% propolis mouthwash solution twice daily at 8 AM and 4 PM for seven days. The control group used 15 cc of 0.2% chlorhexidine mouthwash at the same times and duration. Data were collected using a demographic questionnaire, APACHE II, Beck Oral Assessment Scale, and Modified Clinical Pulmonary Infection Score (MCPIS). RESULTS There was no significant difference in demographic information, disease severity, and oral health between the two groups before and after intervention (P > 0.05). The incidence of VAP in the intervention group compared to the control group was 10.9% vs. 30.9% on the third day (P = 0.0166, 95% CI: 0.53-0.83 and RR = 0.35), 23.6% vs. 43.6% on the fifth day (P = 0.0325 and 95% CI: 0.31-0.95 and RR = 0.54), and 25.5% vs. 47.3% on the seventh day (P = 0.0224, 95% CI: 0.32-0.92, and RR = 0.54). The Mann-Whitney indicated the incidence of VAP was significantly lower in the intervention group on the third, fifth, and seventh days. CONCLUSION Propolis mouthwash can be considered as an alternative to chlorhexidine mouthwash for ICU patients. CLINICAL RELEVANCE Propolis mouthwash serves as a simple, economical intervention to potentially reduce incidence of VAP. TRIAL REGISTRATION (IRCT20110427006318N12, date 02.04.2019).
Collapse
Affiliation(s)
- Nayereh Darbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Monir Nobahar
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, 3513138111, Iran.
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raheb Ghorbani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
15
|
El-Kersh DM, Abou El-Ezz RF, Ramadan E, El-kased RF. In vitro and in vivo burn healing study of standardized propolis: Unveiling its antibacterial, antioxidant and anti-inflammatory actions in relation to its phytochemical profiling. PLoS One 2024; 19:e0302795. [PMID: 38743731 PMCID: PMC11093344 DOI: 10.1371/journal.pone.0302795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Natural propolis has been used since decades owing to its broad-spectrum activities. Burn injuries are a global health problem with negative impacts on communities. Bacterial infections usually accompany burns, which demand implementation of antibiotics. Antibiotics abuse led to emergence of microbial drug resistance resulting in poor treatment outcomes. In such instances, the promising alternative would be natural antimicrobials such as propolis. OBJECTIVE Full chemical profiling of propolis and evaluation of in vitro antibacterial, antioxidant and anti-inflammatory activities as well as in vivo burn healing properties. METHODS Chemical profiling of propolis was performed using Liquid chromatography (UHPLC/MS-PDA and HPLC-PDA). In vitro assessment was done using Disc Diffusion susceptibility test against Staphylococcus aureus and infected burn wound mice model was used for in vivo assessment. In vitro antioxidant properties of propolis were assessed using DPPH, ABTS and FRAP techniques. The anti-inflammatory effect of propolis was assessed against lipopolysaccharide/interferon-gamma mediated inflammation. RESULTS UHPLC/MS-PDA results revealed identification of 71 phytochemicals, mainly flavonoids. Upon flavonoids quantification (HPLC-PDA), Pinocembrin, chrysin and galangin recorded high content 21.58±0.84, 22.73±0.68 and 14.26±0.70 mg/g hydroalcoholic propolis extract, respectively. Propolis showed concentration dependent antibacterial activity in vitro and in vivo burn healing via wound diameter reduction and histopathological analysis without signs of skin irritation in rabbits nor sensitization in guinea pigs. Propolis showed promising antioxidant IC50 values 46.52±1.25 and 11.74±0.26 μg/mL whereas FRAP result was 445.29±29.9 μM TE/mg. Anti-inflammatory experiment results showed significant increase of Toll-like receptor 4 (TLR4), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) mRNA levels. Nitric oxide and iNOS were markedly increased in Griess assay and western blot respectively. However, upon testing propolis against LPS/IFN-γ-mediated inflammation, TLR4, IL-6 and TNF-α expression were downregulated at transcriptional and post-transcriptional levels. CONCLUSION Propolis proved to be a promising natural burn healing agent through its antibacterial, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Dina M. El-Kersh
- Faculty of Pharmacy, Pharmacognosy Department, The British University in Egypt, Cairo, Egypt
| | - Rania F. Abou El-Ezz
- Faculty of Pharmacy, Pharmacognosy Department, Misr International University, Cairo, Egypt
| | - Eman Ramadan
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, The British University in Egypt, Cairo, Egypt
| | - Reham F. El-kased
- Center for Drug Research and Development (CDRD), The British University in Egypt, Cairo, Egypt
- Faculty of Pharmacy, Department of Microbiology and Immunology, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
16
|
Manginstar CO, Tallei TE, Niode NJ, Salaki CL, Hessel SS. Therapeutic potential of propolis in alleviating inflammatory response and promoting wound healing in skin burn. Phytother Res 2024; 38:856-879. [PMID: 38084816 DOI: 10.1002/ptr.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Burns can cause inflammation and delayed healing, necessitating alternative therapies due to the limitations of conventional treatments. Propolis, a natural bee-produced substance, has shown promise in facilitating burn healing. This literature review provides a comprehensive overview of propolis' mechanisms of action, wound-healing properties, and its application in treating skin burns. Propolis contains bioactive compounds with antimicrobial, antioxidant, and anti-inflammatory properties, making it a promising candidate for managing skin burn injuries. It helps prevent infections, neutralize harmful free radicals, and promote a well-balanced inflammatory response. Moreover, propolis aids in wound closure, tissue regeneration, collagen synthesis, cellular proliferation, and angiogenesis, contributing to tissue regeneration and remodeling. The article discusses various propolis extracts, extraction methods, chemical composition, and optimized formulations like ointments and creams for burn wound treatment. Considerations regarding dosage and safety are addressed. Further research is needed to fully understand propolis' mechanisms, determine optimal formulations, and establish suitable clinical dosages. Nevertheless, propolis' natural origin and demonstrated benefits make it a compelling avenue for burn care exploration, potentially complementing existing therapies and improving burn management outcomes.
Collapse
Grants
- 158/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 1803/UN12.13/LT/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Christian Oktavianus Manginstar
- Entomology Study Program, Postgraduate Program, Sam Ratulangi University, Manado, Indonesia
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Christina Leta Salaki
- Plant Protection Study Program, Faculty of Agriculture, Sam Ratulangi University, Manado, Indonesia
| | - Sofia Safitri Hessel
- Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung, Indonesia
| |
Collapse
|
17
|
Sartori AA, Son NT, da Silva Honorio M, Ripari N, Santiago KB, Gomes AM, Zambuzzi WF, Bastos JK, Sforcin JM. Effects of caatinga propolis from Mimosa tenuiflora and its constituents (santin, sakuranetin and kaempferide) on human immune cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117297. [PMID: 37813289 DOI: 10.1016/j.jep.2023.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a bee product used in folk medicine to treat inflammatory diseases. Diverse types of propolis are produced worldwide depending on the local flora. Recently, research has been focused on a propolis sample produced in the northeast Brazilian "caatinga" from Mimosa tenuiflora, popularly known as "jurema-preta". AIM OF THE STUDY A possible immunomodulatory/anti-inflammatory action was analyzed to verify the potential of M. tenuiflora propolis (MP) and its constituents (santin, sakuranetin and kaempferide) in human immune cells under baseline conditions or in LPS-stimulated cells. METHODS Cell viability, cytokine (TNF-α, IL-1β, IL-6, IL-8, IL-10) production and intracellular pathways (NF-kB and p38 MAPK) were evaluated. RESULTS Under basal conditions, MP and sakuranetin did not affect cytokine production; santin enhanced TNF-α, IL-1β, IL-6, while kaempferide inhibited IL-8 and IL-10. In LPS-stimulated cells, MP and its compounds exerted an inhibitory activity on TNF-α and IL-1β, while no effects were seen on IL-6 and IL-8. Santin and kaempferide inhibited IL-10 production. No significant differences were seen on NF-kB and p38 MAPK intracellular pathways. CONCLUSION Data indicated the immunomodulatory action of caatinga propolis and its constituents at noncytotoxic concentrations, specifically an anti-inflammatory activity in LPS-treated cells by inhibiting cytokine production. Santin, sakuranetin and kaempferide appeared to be involved in MP activities.
Collapse
Affiliation(s)
- Arthur Alves Sartori
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil.
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoàng Quoc Viet, Cầu giay, Hanoi, Viet Nam; University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil.
| | | | - Nicolas Ripari
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil.
| | | | | | | | - Jairo Kenupp Bastos
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
18
|
Atta A, Salem MM, El-Said KS, Mohamed TM. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell Mol Biol Lett 2024; 29:14. [PMID: 38225555 PMCID: PMC10790468 DOI: 10.1186/s11658-024-00531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving T and B lymphocytes. Autoantibodies contribute to joint deterioration and worsening symptoms. Adenosine deaminase (ADA), an enzyme in purine metabolism, influences adenosine levels and joint inflammation. Inhibiting ADA could impact RA progression. Intracellular ATP breakdown generates adenosine, which increases in hypoxic and inflammatory conditions. Lymphocytes with ADA play a role in RA. Inhibiting lymphocytic ADA activity has an immune-regulatory effect. Synovial fluid levels of ADA are closely associated with the disease's systemic activity, making it a useful parameter for evaluating joint inflammation. Flavonoids, such as quercetin (QUE), are natural substances that can inhibit ADA activity. QUE demonstrates immune-regulatory effects and restores T-cell homeostasis, making it a promising candidate for RA therapy. In this review, we will explore the impact of QUE in suppressing ADA and reducing produced the inflammation in RA, including preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
19
|
Silva-Beltrán NP, Galvéz-Ruíz JC, Ikner LA, Umsza-Guez MA, de Paula Castro TL, Gerba CP. In vitro antiviral effect of Mexican and Brazilian propolis and phenolic compounds against human coronavirus 229E. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1591-1603. [PMID: 35951754 DOI: 10.1080/09603123.2022.2110576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Propolis is a resinous substance collected by bees (Apis mellifera). It is used for its biological properties. This natural product is available as a safe therapeutic option. Herein, we report the antiviral effects of brown propolis extract from Mexico and green and red propolis extracts from Brazil, as well as their phenolic compounds (quercetin, caffeic acid, and rutin) in preventing infection of MRC-5 cells by HCoV-229E. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. All samples studied showed antiviral activity. Green and brown propolis extracts, and quercetin exhibited the best EC50 values with values of 19.080, 11.240, and 77.208 µg/mL against HCoV-229E, respectively, and with TC50 of 62.19, 29.192, and 298 µg/mL on MRC-5 cells, respectively. These results are the first in vitro study of the effects of propolis on HCoV-229E and provide the basis for the development of natural formulations against other coronavirus strains.
Collapse
Affiliation(s)
| | | | - Luisa A Ikner
- Department of Environmental Science, University of Arizona, Water Energy Sustainable Technology (WEST) Center, Tucson, AZ, USA
| | | | | | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Water Energy Sustainable Technology (WEST) Center, Tucson, AZ, USA
| |
Collapse
|
20
|
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu MC, Ghosh S, Jung C, Burgett M, Hongsibsong S. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023; 12:3909. [PMID: 37959028 PMCID: PMC10648409 DOI: 10.3390/foods12213909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract.
Collapse
Affiliation(s)
- Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., Singapore 368819, Singapore;
| | - Pichet Praphawilai
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand;
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida 5001, Venezuela;
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Arias C, Salazar LA. Ethanolic Extract of Propolis Modulates Autophagy-Related microRNAs in Osteoarthritic Chondrocytes. Int J Mol Sci 2023; 24:14767. [PMID: 37834215 PMCID: PMC10573165 DOI: 10.3390/ijms241914767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced by aging and closely linked to cartilage health. This correlation between autophagy, cell death, and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably, the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate through in silico analysis and postulate five microRNAs that could regulate autophagy proteins (AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a, miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted to substantiate these promising observations.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
22
|
Alarjani KM, Yehia HM, Badr AN, Ali HS, Al-Masoud AH, Alhaqbani SM, Alkhatib SA, Rady AM. Anti-MRSA and Biological Activities of Propolis Concentrations Loaded to Chitosan Nanoemulsion for Pharmaceutics Applications. Pharmaceutics 2023; 15:2386. [PMID: 37896146 PMCID: PMC10610434 DOI: 10.3390/pharmaceutics15102386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Propolis is a naturally occurring substance with beneficial properties; bees produce it from various plant sources, and it is an anti-inflammatory and therapeutic resinous substance. This study aimed to enhance the biological features of propolis extract by loading it onto active film. Firstly, extraction was performed using three solvent systems, and their total phenolic, flavonoid, and antioxidant activity was measured. Propolis ethanol extract (EEP) was evaluated for phenolic fraction content and then chosen to prepare a chitosan-loaded emulsion with several concentrations. The antibacterial, anti-mycotic, and anti-mycotoxigenic properties of the extract and nanoemulsion were assessed. PPE's cytotoxicity and nanoemulsion were evaluated using brine shrimp and cell line assays. Results indicate higher phenolic (322.57 ± 4.28 mg GAE/g DW), flavonoid (257.64 ± 5.27 mg QE/g DW), and antioxidant activity of the EEP. The phenolic fraction is distinguished by 18 phenolic acids with high p-hydroxybenzoic content (171.75 ± 1.64 µg/g) and 12 flavonoid compounds with high pinocembrin and quercetin content (695.91 ± 1.76 and 532.35 ± 1.88 µg/g, respectively). Phenolic acid derivatives (3,4-Dihydroxybenzaldehyde, 3,4-Dihydroxyphenol acetate, and di-methoxy cinnamic) are also found. Concentrations of 50, 100, 150, and 200 ng EEP loaded on chitosan nanoemulsion reflect significant antibacterial activity against pathogenic bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and toxigenic fungi, particularly Fusarium. Among the four EEP-loaded concentrations, the nanoemulsion with 150 ng showed outstanding features. Using a simulated medium, 150 and 200 ng of EEP-loaded chitosan nanoemulsion concentrations can stop zearalenone production in Fusarium media with complete fungi inhibition. Also, it reduced aflatoxins production in Aspergillus media, with fungal inhibition (up to 47.18%). These results recommended the EEP-chitosan application for pharmaceutics and medical use as a comprehensive wound healing agent.
Collapse
Affiliation(s)
- Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Hany Mohamed Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hatem Salma Ali
- Food Technology Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Abdulrahman Hamad Al-Masoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Sarah Mubark Alhaqbani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Shahad Ahmed Alkhatib
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Ahmed Moustafa Rady
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| |
Collapse
|
23
|
Pandey P, Khan F, Upadhyay TK, Giri PP. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review. Chem Biol Drug Des 2023; 102:201-216. [PMID: 36929632 DOI: 10.1111/cbdd.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Nowadays, there is a lot of public and scientific interest in using phytochemicals to treat human ailments. Existing cancer medicines still run across obstacles, despite significant advancements in the field. For instance, chemotherapy may result in severe adverse effects, increased drug resistance, and treatment failure. Natural substances that are phytochemically derived provide innovative approaches as potent therapeutic molecules for the treatment of cancer. Bioactive natural compounds may enhance chemotherapy for cancer by increasing the sensitivity of cancer cells to medicines. Propolis has been found to interfere with the viability of cancer cells, among other phytochemicals. Of all the components that make up propolis, caffeic acid phenethyl ester (CAPE) (a flavonoid) has been the subject of the most research. It demonstrates a broad spectrum of therapeutic uses, including antitumor, antimicrobial, antiviral, anti-inflammatory, immunomodulatory, hepatoprotective, neuroprotective, and cardioprotective effects. Studies conducted in vitro and in vivo have demonstrated that CAPE specifically targets genes involved in cell death, cell cycle regulation, angiogenesis, and metastasis. By altering specific signaling cascades, such as the NF-κB signaling pathway, CAPE can limit the proliferation of human cancer cells. This review highlights the research findings demonstrating the anticancer potential of CAPE with a focus on multitargeted molecular and biological implications in various cancer models.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Pavan Prakash Giri
- Department of Chemistry, Noida Institute of Engineering & Technology, Greater Noida, India
| |
Collapse
|
24
|
Karaoğlu Ö, Serhatlı M, Pelvan E, Karadeniz B, Demirtas I, Çakırca G, Sipahix H, Özhan Y, Karapınar G, Charehsaz M, Aydın A, Yesilada E, Alasalvar C. Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus. J Funct Foods 2023; 105:105544. [PMID: 37155488 PMCID: PMC10113600 DOI: 10.1016/j.jff.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Prevention of COVID-19 is of paramount importance for public health. Some natural extracts might have the potential to suppress COVID-19 infection. Therefore, this study aimed to design a standardised, efficient, and safe chewable tablet formulation (with propolis and three herbal extracts) for possible prevention against two variants (Wuhan B.1.36 and Omicron BA.1.1) of SARS-CoV-2 virus and other viral infections. Green tea, bilberry, dried pomegranate peel, and propolis extracts were selected for this purpose. Cytotoxicity and antiviral activity of each component, as well as the developed chewable tablet, were examined against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus using Vero E6 cells with the xCELLigence real-time cell analyser-multiple plates system. Anti-inflammatory and analgesic activities, as well as mutagenicity and anti-mutagenicity of the chewable tablet were also analysed. Compared to the control, it was observed that the chewable tablet at concentrations of 110 and 55 µg/mL had antiviral activity rates of 101% and 81%, respectively, for the Wuhan variant and 112% and 35%, respectively, for the Omicron variant. The combination of herbal extracts with propolis extract were synergically more effective (∼7-fold higher) than that of individual extract. The present work suggests that a combination of herbal extracts with propolis at suitable concentrations can effectively be used as a food supplement for the prevention of both variants of the SARS-CoV-2 virus in the oral cavity (the first entry point of the SARS-CoV-2 virus).
Collapse
Affiliation(s)
- Öznur Karaoğlu
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Müge Serhatlı
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Bülent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Ilknur Demirtas
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Gamze Çakırca
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Hande Sipahix
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Yağmur Özhan
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Gözdem Karapınar
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | | |
Collapse
|
25
|
Tasca KI, Conte FL, Correa CR, Santiago KB, Cardoso EDO, Manfio VM, Garcia JL, Berretta AA, Sartori AA, Honorio MDS, Souza LDR, Sforcin JM. Propolis consumption by asymptomatic HIV-individuals: Better redox state? A prospective, randomized, double-blind, placebo-controlled trial. Biomed Pharmacother 2023; 162:114626. [PMID: 37004329 DOI: 10.1016/j.biopha.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Propolis is a natural product has many biological properties of clinical interest, such as anti-inflammatory and antioxidant. Considering that people living with HIV/aids (PLWHA) on effective combined antiretroviral therapy (cART) present early aging due to an intense immune activation, inflammation, and redox imbalance, propolis consumption could offer a benefit to such patients. This double-blind longitudinal study evaluated whether Brazilian green propolis pills intake (500 mg/day for three months) would decrease the oxidative stress of virological suppressed HIV-individuals. To compare each group (propolis, n = 20 versus placebo, n = 20) in both moments (M0, before and M1, after the intervention), the following markers were assessed: plasma malondialdehyde (MDA), carbonylation, total oxide nitric, total antioxidant capacity (TAP), superoxide dismutase, catalase, and NFkB and NRF2 gene expression. Data were analyzed using Poisson, Gamma distribution and ANOVA followed by Tukey-Kramer. The groups were homogeneous regarding age, gender, time of diagnosis/ treatment, cART scheme, CD4+ T cell count, and no changes were observed in the diet food, or patients' lifestyles. A decreased MDA concentration was seen in the propolis group (M0 = 0.24 ± 0.13, M1 = 0.20 ± 0.10 protein nmol/mg; p = 0.005) as well as a slight but non-significant increase of TAP (M0 = 49.07 ± 13.26, M1 = 52.27 ± 14.86%; p = 0.06). One may conclude that propolis promoted a lower lipid peroxidation and improved the antioxidant system, suggesting that its use may be beneficial to PLWHA in an attempt to contain the intense inflammatory and oxidant activity.
Collapse
|
26
|
Bobiş O, Berretta AA, Vilas-Boas M, De Jong D. Editorial: Therapeutic potential of propolis-from in vitro studies to clinical trials. Front Pharmacol 2023; 14:1192045. [PMID: 37305532 PMCID: PMC10248498 DOI: 10.3389/fphar.2023.1192045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Otilia Bobiş
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - David De Jong
- Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Sa-eed A, Donkor ES, Arhin RE, Tetteh-Quarcoo PB, Attah SK, Kabotso DEK, Kotey FCN, Dayie NTKD. In vitro antimicrobial activity of crude propolis extracts and fractions. FEMS MICROBES 2023; 4:xtad010. [PMID: 37333437 PMCID: PMC10165684 DOI: 10.1093/femsmc/xtad010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 06/20/2023] Open
Abstract
The search for antimicrobials in propolis presents a new dimension for addressing the problem of antimicrobial drug resistance. The aim of this study was to determine the antimicrobial activity of extracts of crude propolis collected from different regions in Ghana and their active fractions. The antimicrobial activity of the extracts, as well as that of the chloroform, ethyl acetate, and petroleum ether fractions of the active samples were determined using the agar well diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the most active fractions were determined. The various crude propolis extracts frequently produced zones of inhibition against Staphylococcus aureus (17/20) than Pseudomonas aeruginosa (16/20), and Escherichia coli (1/20) test isolates. Chloroform and ethyl acetate solvents produced fractions possessing greater antimicrobial activity than the petroleum ether fraction. The mean MIC range of the most active fractions was greatest for S. aureus (76.0 ± 34.8-48.0 ± 33.0 mg/ml) than for P. aeruginosa (40.8 ± 33.3-30.4 ± 6.7 mg/ml) and E. coli, as was the mean MBC. Propolis has antimicrobial potential, and hence should be exploited as an alternative for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Alhassan Sa-eed
- Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana
- Department of Medical Laboratory Technology, Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana
| | - Reuben E Arhin
- Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana
- Department of Science Laboratory Technology, Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana
| | - Simon K Attah
- Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana
- Baldwin University College, P. O. Box 19872, Osu, Accra, Ghana
| | - Daniel E K Kabotso
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana
- FleRhoLife Research Consult, P.O. Box TS 853, Teshie, Accra, Ghana
| | - Nicholas T K D Dayie
- Corresponding author. Department of Medical Microbiology, University of Ghana Medical School, P. O. Box KB 4236, Korle Bu, Accra, Ghana. Tel: +233 20 886 2855; E-mail:
| |
Collapse
|
28
|
Berretta AA, Zamarrenho LG, Correa JA, De Lima JA, Borini GB, Ambrósio SR, Barud HDS, Bastos JK, De Jong D. Development and Characterization of New Green Propolis Extract Formulations as Promising Candidates to Substitute for Green Propolis Hydroalcoholic Extract. Molecules 2023; 28:molecules28083510. [PMID: 37110745 PMCID: PMC10145546 DOI: 10.3390/molecules28083510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The technologies used to produce the different dosage forms of propolis can selectively affect the original propolis compounds and their biological activities. The most common type of propolis extract is hydroethanolic. However, there is considerable demand for ethanol-free propolis presentations, including stable powder forms. Three propolis extract formulations were developed and investigated for chemical composition and antioxidant and antimicrobial activity: polar propolis fraction (PPF), soluble propolis dry extract (PSDE), and microencapsulated propolis extract (MPE). The different technologies used to produce the extracts affected their physical appearance, chemical profile, and biological activity. PPF was found to contain mainly caffeic and p-Coumaric acid, while PSDE and MPE showed a chemical fingerprint closer to the original green propolis hydroalcoholic extract used. MPE, a fine powder (40% propolis in gum Arabic), was readily dispersible in water, and had less intense flavor, taste, and color than PSDE. PSDE, a fine powder (80% propolis) in maltodextrin as a carrier, was perfectly water-soluble and could be used in liquid formulations; it is transparent and has a strong bitter taste. PPF, a purified solid with large amounts of caffeic and p-Coumaric acids, had the highest antioxidant and antimicrobial activity, and therefore merits further study. PSDE and MPE had antioxidant and antimicrobial properties and could be used in products tailored to specific needs.
Collapse
Affiliation(s)
- Andresa Aparecida Berretta
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Luana Gonçalves Zamarrenho
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 05508-060, SP, Brazil
| | - Juliana Arcadepani Correa
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Jéssica Aparecida De Lima
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Giovanna Bonfante Borini
- Research, Development & Innovation Department, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto 14020-670, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Nucleus of Research in Sciences and Technolog, University of Franca, Franca 14404-600, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Group, University of Araraquara, Araraquara 14801-320, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - David De Jong
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
29
|
Li A, Wang Q, Huang Y, Hu L, Li S, Wang Q, Yu Y, Zhang H, Tang DYY, Show PL, Feng S. Can egg yolk antibodies terminate the CSBV infection in apiculture? Virus Res 2023; 328:199080. [PMID: 36882131 DOI: 10.1016/j.virusres.2023.199080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Chinese sacbrood virus (CSBV) is the most severe pathogen of Apis cerana, which leads to serious fatal diseases in bee colonies and eventual catastrophe for the Chinese beekeeping industry. Additionally, CSBV can potentially infect Apis mellifera by bridging the species barrier and significantly affect the productivity of the honey industry. Although several approaches, such as feeding royal jelly, traditional Chinese medicine, and double-stranded RNA treatments, have been employed to suppress CSBV infection, their practical applicabilities are constrained due to their poor effectiveness. In recent years, specific egg yolk antibodies (EYA) have been increasingly utilized in passive immunotherapy for infectious diseases without any side effects. According to both laboratory research and practical use, EYA have demonstrated superior protection for bees against CSBV infection. This review provided an in-depth analysis of the issues and drawbacks in this field in addition to provide a thorough summary of current advancements in CSBV studies. Some promising strategies for the synergistic study of EYA against CSBV, including the exploitation of novel antibody drugs, novel TCM monomer/formula determination, and development of nucleotide drugs, are also proposed in this review. Furthermore, the prospects for the future perspectives of EYA research and applications are presented. Collectively, EYA would terminate CSBV infection soon, as well as will provide scientific guidance and references to control and manage other viral infections in apiculture.
Collapse
Affiliation(s)
- Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Qianfang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yu Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haizhou Zhang
- Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China.
| |
Collapse
|
30
|
Luque-Bracho A, Rosales Y, Vergara-Buenaventura A. The benefits of propolis in periodontal therapy. A scoping review of preclinical and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115926. [PMID: 36400346 DOI: 10.1016/j.jep.2022.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment of periodontal disease (PD) is aimed at adequate control of bacterial plaque. In many patients mechanical methods are unable to eliminate this plaque leading to the need for adjuvant chemical products. Propolis is a natural product that has demonstrated therapeutic properties and has shown to be effective as an anti-inflammatory and antibacterial agent in dentistry. AIM OF THE STUDY Considering the beneficial effects of propolis on various oral conditions, this study aimed to review, update and summarize the available evidence on the benefits of propolis in in vitro studies, animal models, and human clinical trials on non-surgical periodontal therapy. MATERIALS AND METHODS An electronic search in three databases was performed up to December 2021. The search strategy included the terms "propolis" and "periodontal disease" to identify relevant studies on the potential advantages of propolis in periodontal therapy in in vitro studies, animal models, and human clinical trials. RESULTS The search yielded 538 results, discarding 459 studies that did not clearly meet the inclusion criteria. A total of 42 studies were included: 18 in vitro, one animal, and 23 randomized clinical trials. In vitro studies have demonstrated that propolis has antimicrobial activity against periodontal pathogens and clinical studies have reported its use as an adjunct to non-surgical periodontal therapy. The clinical effects of propolis have been reported in conjunction with prophylaxis, polishing, and scaling and root planing (SRP). It has shown to have anti-plaque activity and improve gingival health. Propolis was found to be more effective in improving clinical parameters than conventional treatment (SRP alone) and demonstrated similar efficacy in treating chronic periodontitis compared to positive controls. Only one study reported an allergic reaction. CONCLUSION The evidence available on the benefits of propolis in in vitro studies, animal models, and clinical trials suggests that propolis could be a promising adjunct to conventional therapy of gingivitis and periodontitis. However, further studies are needed to determine its superiority to other therapies in the treatment of PD.
Collapse
Affiliation(s)
- Angel Luque-Bracho
- Facultad de Ciencias de la Salud, Universidad Cientifica del Sur, Lima, Peru.
| | - Yasmin Rosales
- Facultad de Ciencias de la Salud, Universidad Cientifica del Sur, Lima, Peru.
| | | |
Collapse
|
31
|
Silva-Beltrán NP, Boon SA, Ijaz MK, McKinney J, Gerba CP. Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. J Ind Microbiol Biotechnol 2023; 50:kuad036. [PMID: 37951298 PMCID: PMC10710307 DOI: 10.1093/jimb/kuad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants. ONE-SENTENCE SUMMARY This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
- Departmento de Ciencias de la Salud, Universidad de Sonora, Ciudad Obregón, CP 85010, México
| | - Stephanie A Boon
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Charles P Gerba
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| |
Collapse
|
32
|
Abdelsattar AS, Yakoup AY, Khaled Y, Safwat A, El-Shibiny A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int J Biol Macromol 2023; 228:374-384. [PMID: 36581028 DOI: 10.1016/j.ijbiomac.2022.12.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Public health and environmental security are seriously at risk due to the growing contamination of pathogenic microorganisms. Therefore, effective antimicrobials are urgently needed. In our study, the antimicrobial effects of three types of nanoparticles were investigated with phage. The biosynthesis of nanoparticles was confirmed based on the color change and shapes, which tended to be mono-dispersed with a spherical shape with a size range of 20-35 nm for Ag-CS-NPs; 15-30 nm for Phage-CS-NPs (Ph-CS-NPs); and 5-35 nm for Propolis-CS-NPs (Pro-CS-NPs). Nanoparticles displayed peaks between 380-420 nm, 335-380 nm, and below 335 nm for Ag-CS-NPs, Pro-CS-NPs, and Ph-CS NPs, respectively. Throughout the three synthesized nanoparticles, AgCs NPs represented a higher antibacterial effect in combination with phages. It showed MIC against S. sciuri, S. Typhimurium, and P. aeruginosa between 31.2 and 62.2 μg/mL and MBC at 500, 62.5, and 31.2 μg/mL, respectively, while in combination with phages showed MIC at 62.2, 31.2, and 15.6 μg/mL, respectively and MBC at 125, 62.2, and 15.6 μg/mL, respectively. Furthermore, a significant killing efficiency was observed with 16.5-30.1 μg/mL of Ag-CS NPs combined with phages. In conclusion, Ag-CS-NPs with phages present potential bactericidal and inhibitory effects against Gram-positive and Gram-negative bacteria, as well as against the production of biofilms.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Yousef Khaled
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
33
|
Ożarowski M, Karpiński TM. The Effects of Propolis on Viral Respiratory Diseases. Molecules 2023; 28:359. [PMID: 36615554 PMCID: PMC9824023 DOI: 10.3390/molecules28010359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| |
Collapse
|
34
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Kokorina PI, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3399. [PMID: 36501438 PMCID: PMC9739404 DOI: 10.3390/plants11233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees. Black poplar (Populus balsamifera L.) buds are one of the primary sources of propolis. Despite their reported therapeutic properties, little is known about the innate immunomodulatory activity of essential oils from P. balsamifera and propolis. In the present studies, essential oils were isolated from the buds of P. balsamifera and propolis collected in Montana. The main components of the essential oil from P. balsamifera were E-nerolidol (64.0%), 1,8-cineole (10.8%), benzyl benzoate (3.7%), α-terpinyl acetate (2.7%), α-pinene (1.8%), o-methyl anisol (1.8%), salicylaldehyde (1.8%), and benzyl salicylate (1.6%). Likewise, the essential oil from propolis was enriched with E-nerolidol (14.4%), cabreuva oxide-VI (7.9%), α-bisabolol (7.1%), benzyl benzoate (6.1%), β-eudesmol (3.6%), T-cadinol (3.1%), 2-methyl-3-buten-2-ol (3.1%), α-eudesmol (3.0%), fokienol (2.2%), nerolidol oxide derivative (1.9%), decanal (1.8%), 3-butenyl benzene (1.5%), 1,4-dihydronaphthalene (1.5%), selina-4,11-diene (1.5%), α-cadinol (1.5%), linalool (1.4%), γ-cadinene (1.4%), 2-phenylethyl-2-methyl butyrate (1.4%), 2-methyl-2-butenol (1.3%), octanal (1.1%), benzylacetone (1.1%), and eremoligenol (1.1%). A comparison between P. balsamifera and propolis essential oils demonstrated that 22 compounds were found in both essential oil samples. Both were enriched in E-nerolidol and its derivatives, including cabreuva oxide VI and nerolidol oxides. P. balsamifera and propolis essential oils and pure nerolidol activated Ca2+ influx in human neutrophils. Since these treatments activated neutrophils, the essential oil samples were also evaluated for their ability to down-regulate the neutrophil responses to subsequent agonist activation. Indeed, treatment with P. balsamifera and propolis essential oils inhibited subsequent activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, nerolidol inhibited human neutrophil activation induced by fMLF (IC50 = 4.0 μM) and WKYMVM (IC50 = 3.7 μM). Pretreatment with the essential oils and nerolidol also inhibited human neutrophil chemotaxis induced by fMLF, again suggesting that these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Finally, reverse pharmacophore mapping predicted several potential kinase targets for nerolidol. Thus, our studies have identified nerolidol as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Polina I. Kokorina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia
| | | | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
35
|
Coluccia A, Matti F, Zhu X, Lussi A, Stähli A, Sculean A, Eick S. In Vitro Study on Green Propolis as a Potential Ingredient of Oral Health Care Products. Antibiotics (Basel) 2022; 11:antibiotics11121764. [PMID: 36551420 PMCID: PMC9774696 DOI: 10.3390/antibiotics11121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Propolis is increasingly being discussed as an alternative to commonly used antiseptics. This in vitro study focused on the ethanolic extract of green Brazilian propolis (EEPg) as an additive in an oral health care product. We investigated (i) a potential inflammation-modulation activity of EEPg when a periodontal or Candida biofilm was exposed to monocytic (MONO-MAC-6) cells, (ii) the adhesion of oral pathogens to gingival keratinocytes and (iii) the antimicrobial and antibiofilm effect of different toothpaste formulations. EEPg decreased the levels of interleukin (IL)-1β and increased IL-10 in MONO-MAC cells challenged with a periodontal biofilm. In contact with TIGK cells, EEPg reduced the numbers of adherent Porphyromonas gingivalis to 0.5% but did not affect the adhesion of Candida albicans. The frequent brushing of a cariogenic biofilm with a toothpaste supplemented with EEPg reduced the surface microhardness loss of enamel specimens. Mixing an experimental erythritol toothpaste with 25 and 50 mg/mL of EEPg confirmed the antibacterial activity of EEPg against oral bacteria and particularly inhibited periodontal biofilm formation. The suggested toothpaste formulations seem to have potential in the prevention of caries, gingivitis and periodontitis and should be evaluated in further in vitro research and in clinical trials.
Collapse
Affiliation(s)
- Achille Coluccia
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Fabienne Matti
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Adrian Lussi
- Preventive and Paediatric Dentistry, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
36
|
Matuszewska E, Plewa S, Pietkiewicz D, Kossakowski K, Matysiak J, Rosiński G, Matysiak J. Mass Spectrometry-Based Identification of Bioactive Bee Pollen Proteins: Evaluation of Allergy Risk after Bee Pollen Supplementation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227733. [PMID: 36431835 PMCID: PMC9695670 DOI: 10.3390/molecules27227733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Bee pollen, because of its high content of nutrients, is a very valuable medicinal and nutritional product. However, since its composition is not completely studied, the consumption of this product may cause adverse effects, including allergic reactions. Therefore, this study aimed to discover and characterize the bioactive proteins of bee pollen collected in Poland, focusing mainly on the allergens. For this purpose, the purified and concentrated pollen aqueous solutions were analyzed using the nanoLC-MALDI-TOF/TOF MS analytical platform. As a result of the experiments, 197 unique proteins derived from green plants (Viridiplantae) and 10 unique proteins derived from bees (Apis spp.) were identified. Among them, potential plant allergens were discovered. Moreover, proteins belonging to the group of hypothetical proteins, whose expression had not been confirmed experimentally before, were detected. Because of the content of bioactive compounds-both beneficial and harmful-there is a critical need to develop guidelines for standardizing bee pollen, especially intended for consumption or therapeutic purposes. This is of particular importance because awareness of the allergen content of bee pollen and other bee products can prevent health- or life-threatening incidents following the ingestion of these increasingly popular "superfoods".
Collapse
Affiliation(s)
- Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
- Correspondence:
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Kacper Kossakowski
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Joanna Matysiak
- Faculty of Health Sciences, Calisia University, 13 Kaszubska Street, 62-800 Kalisz, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznan, 6 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
37
|
Russo C, Piccioni M, Lorenzini ML, Catalano C, Ambrogi V, Pagiotti R, Pietrella D. Bud-Poplar-Extract-Embedded Chitosan Films as Multifunctional Wound Healing Dressing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227757. [PMID: 36431858 PMCID: PMC9695786 DOI: 10.3390/molecules27227757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Wounds represent a major global health challenge. Acute and chronic wounds are sensitive to bacterial infection. The wound environment facilitates the development of microbial biofilms, delays healing, and promotes chronic inflammation processes. The aim of the present work is the development of chitosan films embedded with bud poplar extract (BPE) to be used as wound dressing for avoiding biofilm formation and healing delay. Chitosan is a polymer with antimicrobial and hydrating properties used in wound dressing, while BPE has antibacterial, antioxidative, and anti-inflammatory properties. Chitosan-BPE films showed good antimicrobial and antibiofilm properties against Gram-positive bacteria and the yeast Candida albicans. BPE extract induced an immunomodulatory effect on human macrophages, increasing CD36 expression and TGFβ production during M1/M2 polarization, as observed by means of cytofluorimetric analysis and ELISA assay. Significant antioxidant activity was revealed in a cell-free test and in a human neutrophil assay. Moreover, the chitosan-BPE films induced a good regenerative effect in human fibroblasts by in vitro cell migration assay. Our results suggest that chitosan-BPE films could be considered a valid plant-based antimicrobial material for advanced dressings focused on the acceleration of wound repair.
Collapse
Affiliation(s)
- Carla Russo
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Sereni, Building D, 4th Floor, 06129 Perugia, Italy
| | - Miranda Piccioni
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Maria Laura Lorenzini
- Pharmaceutical Technology Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Chiara Catalano
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Valeria Ambrogi
- Pharmaceutical Technology Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Rita Pagiotti
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Donatella Pietrella
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Sereni, Building D, 4th Floor, 06129 Perugia, Italy
- Correspondence:
| |
Collapse
|
38
|
Chemical Composition and Biological Activity of Argentinian Propolis of Four Species of Stingless Bees. Molecules 2022; 27:molecules27227686. [PMID: 36431788 PMCID: PMC9697202 DOI: 10.3390/molecules27227686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The chemical composition of propolis of four species of stingless bees (SLBs) from Argentina was determined, and its antibacterial and anticancer activity was evaluated on selected types of microbes and cancer cell lines. Volatile secretions of all propolis samples are formed by 174 C2-C15 organic compounds, mainly mono- and sesquiterpenes and their derivatives. The chromatograms of ether extracts showed 287 peaks, of which 210 were identified. The most representative groups in the extracts of various propolis samples were diterpenoids (mainly resin acids), triterpenoids and phenolic compounds: long-chain alkenyl phenols, resorcinols and salicylates. The composition of both volatile and extractive compounds turned out to be species-specific; however, in both cases, the pairwise similarity of the propolis of Scaptotrigona postica and Tetragonisca fiebrigi versus that of Tetragona clavipes and Melipona quadrifasciata quadrifasciata was observed, which indicated the similarity of the preferences of the respective species when choosing plant sources of resin. The composition of the studied extracts completely lacked flavonoids and phenolcarboxylic acids, which are usually associated with the biological activity and medicinal properties of propolis. However, tests on selected microbial species and cancer cell lines showed such activity. All propolis samples tested against Paenibacillus larvae, two species of Bacillus and E. coli showed biofilm inhibition unrelated to the inhibition of bacterial growth, leading to a decrease in their pathogenicity. Testing the anticancer activity of ether extracts using five types of cell cultures showed that all four types of propolis studied inhibit the growth of cancer cells in a dose- and time-dependent manner. Propolis harvested by T. clavipes demonstrated the highest cytotoxicity on all tested cell lines.
Collapse
|
39
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|