1
|
El-Mehalmey WA, Ibrahim AH, Youssef AFA, Abuzalat O, Mousa MS, Mayhoub AS, Alkordi MH. Anion-Exchange Electrospun Mixed-Matrix Polymer Fibers of Colesevelam for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17684-17690. [PMID: 38109475 DOI: 10.1021/acsami.3c13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes. The Cole@PCL membranes demonstrated the dependence of contaminant uptake on the weight percentage of colesevelam in the mixed-matrix membrane. An optimal 10 wt % of colesevelam was identified, demonstrating a staggering ion removal capacity of 155.8 mg/g for nitrate, 177.6 mg/g for phosphate, and 70 mg/g for Methyl Orange.
Collapse
Affiliation(s)
- Worood A El-Mehalmey
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Ahmed H Ibrahim
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Ahmed Fahmy A Youssef
- Environmental Engineering Program, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
- Chemistry Department, Faculty of Science, Cairo University, 12612 Giza, Egypt
| | - Osama Abuzalat
- Department of Chemical Engineering, Military Technical College, 4393010 Cairo, Egypt
| | - Moustafa S Mousa
- Environmental Engineering Program, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
- Faculty of Engineering Mataria, Helwan University, 11795 Cairo, Egypt
| | - Abdelrahman S Mayhoub
- Center for Certified Standards, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| |
Collapse
|
2
|
Diao S, Ma W, Wang Y, Zhao X, Zhang F, Lei X. Synergistic effects of Ca-bentonite and in-situ layered double hydroxide formation in ameliorating saline-alkali soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179084. [PMID: 40081077 DOI: 10.1016/j.scitotenv.2025.179084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Improving saline-alkali soil requires cost-efficient and stable technologies. In this study, a novel technology combining in-situ super-stable mineralization with Ca-bentonite was successfully applied to ameliorate saline-alkali soil. A simulation experiment was conducted on Ca-bentonite in solution to validate its feasibility, and in-situ mineralization using humic acid, Fe(NO3)3·9H2O, and Ca-bentonite was performed to treat saline-alkali soil. Additionally, climate modeling and field experiments were employed to investigate the effects of this technology on soil physicochemical properties, crop growth, and crop yield. Under natural conditions, Ca-bentonite can transform into Na-bentonite via cation exchange with Na+. The results from the in-situ mineralization experiment showed that the soil pH, total content of CO32- and HCO3-, Na+ content, electrical conductivity, and bulk density decreased from approximately 10.30 to below 9.00, 7.81 to 1.53 g/kg, 7.20 to 1.51 g/kg, 2741 to 552 μS/cm, and 1.63 to 1.24 g/cm3, respectively. Furthermore, the germination rate of corn increased from 0 % to 83.3 % in climate simulation experiments. Field trials conducted in Inner Mongolia and Jilin, China, further demonstrated significant improvements in soil properties. The seedling emergence rates for corn and oats significantly increased, rising from 0 % to over 85 % and 95 %, respectively. Correspondingly, crop yields reached 323 kg/hm2 for corn and 182 kg/hm2 for oats. Together, our study introduces a novel, cost-effective, and efficient technology to enhance crop growth by mitigating soil salinity and alkalinity. This approach provides a new perspective for alleviating salt-alkali stress and contributes to the advancement of healthy and sustainable agricultural practices.
Collapse
Affiliation(s)
- Shuteng Diao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenqing Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiping Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, China.
| | - Xuhui Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
3
|
Zhang X, Dong T, Wang L, Yang T, Li Y, Zhang W. Preparation of Mg/Al-LDH@HC composite with low concentration hydrochloric acid modified for phosphate removal from aqueous solution: Synthesis, adsorption performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124222. [PMID: 39864163 DOI: 10.1016/j.jenvman.2025.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms. The adsorption behavior of the composite follows the pseudo-second-order kinetic model and the Langmuir isotherm model, achieving a substantial adsorption capacity of 143.03 mg/g. Multiple mechanisms are leveraged within the absorption process, including pore filling, electrostatic attraction, ligand exchange, metal complexation on inner and outer surfaces, and ion exchange. An approximate 70% phosphate removal efficiency is retained by modified Mg/Al-LDH@HC-HCl after a comprehensive 5-cycle desorption using NaOH as the eluent, demonstrating the remarkable regenerability of synthesized hydrochar composite.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Ting Dong
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Linhao Wang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Tianhua Yang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China.
| | - Yanlong Li
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Wanli Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| |
Collapse
|
4
|
Qiu X, Zheng J, Yan X, Davronbek B, Garcia-Mina JM, Zhou H, Zhao Q, Chai L, Lin Z, Zhang L, Su X. Preparation of calcium-based phosphate adsorbent and mineral-rich humic acid fertilizer from biomass ash and bamboo by hydrothermal-pyrolysis: Performance and mechanism. ENVIRONMENTAL RESEARCH 2025; 264:120318. [PMID: 39521262 DOI: 10.1016/j.envres.2024.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Biomass ash (BA) contains alkaline cations such as K, Ca, and Mg. Due to its high pH, direct application to the soil may result in soil salinization. Composting of BA with organic matter is an effective strategy, but the composting cycle is long and there is a large amount of insoluble residue in the product. Therefore, this research proposed for the first time using the hydrothermal method to rapidly convert BA and bamboo powder (BP) into water - soluble fertilizer (WSF) within 4 h. The insoluble hydrothermal residue was further converted into calcium - rich biochar phosphorus adsorption material by a simple pyrolysis process. WSF was neutral and contained humic acid and elements like K, Ca, Mg, and Si. A 14 - day wheat hydroponic experiment showed that the addition of 0.0125% WSF increased the fresh weight of wheat by 18.77% compared with deionized water. The calcium - based biochar adsorbent produced by pyrolysis had an ideal adsorption capacity of up to 113.6 mg P g-1 for phosphate in water, higher than many existing reports. The adsorption mechanisms mainly included surface precipitation, ion exchange, and electrostatic attraction. Moreover, the calcium - rich biochar sample slowly released phosphorus into water after adsorbing phosphate. When the pH was 3 or 4, the removal rate of Pb2+, Cd2+, and Cu2+ at 15 - 20 mg L-1 was as high as 99%. This indicated its potential as a slow - release fertilizer and heavy metal remediation agent. This research provided a new way of thinking for the treatment and disposal of BA.
Collapse
Affiliation(s)
- Xinyue Qiu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiliang Zheng
- Xinjiang Xinlianxin Energy Chemical Co., Ltd., Manas County, Changji, Xinjiang, 832200, China.
| | - Xiuling Yan
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China
| | - Bekchanov Davronbek
- Department of Polymer Chemistry, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
| | - Jose Maria Garcia-Mina
- Departmento De Biología Ambiental, Grupo De Química Agrícolay Biología-CMI Roullier, Facultad De Ciencias, Universidad De Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qifeng Zhao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Liyuan Chai
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zhang Lin
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Lijuan Zhang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China.
| |
Collapse
|
5
|
Ahmed N, Tu P, Deng L, Chachar S, Chachar Z, Deng L. Optimizing the dual role of biochar for phosphorus availability and arsenic immobilization in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177810. [PMID: 39616926 DOI: 10.1016/j.scitotenv.2024.177810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Soil Phosphorus (P) fixation and Arsenic (As) contamination pose significant challenges to agriculture and environmental health. Biochar has emerged as a promising soil amendment capable of enhancing P availability while immobilizing As. This review explored the mechanisms by which biochar influences P dynamics and As sequestration. Biochar enhances P availability by reducing fixation, stimulating P-solubilizing microorganisms, and gradually releasing the adsorbed P. Specific biochars, such as Mg-modified and La-modified types, demonstrate high P adsorption capacities, reaching up to 263 mg/g, while cerium and iron-modified biochars show As adsorption efficiencies up to 99 % under certain conditions. Biochar's surface functional groups are essential for P and As adsorption through mechanisms such as surface adsorption, ligand exchange, and inner-sphere complexation. The competitive adsorption between P and As is influenced by pH, biochar modification, and co-existing anions. Under acidic conditions, As shows a higher affinity for biochar, forming stable complexes with metal oxides like iron and aluminum. Biochars modified with calcium, magnesium, lanthanum, zinc, cerium, and iron demonstrate enhanced adsorption capacities. In neutral to alkaline conditions, calcium- and magnesium-modified biochars benefit P retention, while iron-modified biochar is preferable for As adsorption. Additionally, biochar promotes microbial activity and enzymatic processes that facilitate As transformation and P mineralization, enhancing overall soil health. These findings underscore biochar's dual role in increasing nutrient availability and reducing contaminant risks, making it a valuable tool for sustainable agriculture. Field-scale applications should be prioritized in future research to optimize biochar's impact on soil fertility and environmental remediation.
Collapse
Affiliation(s)
- Nazir Ahmed
- South China Agricultural University, Guangzhou 510642, China; College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lansheng Deng
- South China Agricultural University, Guangzhou 510642, China
| | - Sadaruddin Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lifang Deng
- South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Wanyonyi FS, Orata F, Ramasami P, Ngeno E, Shikuku V, Gembo RO, Mutua GK, Pembere A. Unlocking the adsorptive effectiveness of naturally occurring heulandite zeolite for the removal of PO 43- and NO 3- anions from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:78. [PMID: 39704871 DOI: 10.1007/s10661-024-13522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The mitigation of high levels of phosphate (PO43-) and nitrate (NO3-) ions in water bodies, particularly in agricultural wastewater, holds paramount importance in curbing eutrophication within aquatic ecosystems. Herein, using experimental and computational techniques, the study explored the potential of naturally occurring South Africa heulandite (HEU) zeolite for the removal of PO43- and NO3- ions from synthetic wastewater in batch mode. The percentage removal of PO43- and NO3- was 59.15% and 51.39%, respectively, whereas the corresponding maximum adsorption capacity of the adsorbent was 0.0236 and 0.0206 mg/g. The adsorption kinetics of both anions by HEU fitted well in the pseudo-first-order (PFO) kinetic model indicating a physisorption-mediated rate-determining step. It was revealed that the adsorption process was multi-mechanistic spontaneous and exothermic. Molecular simulations using Monte Carlo (MC) and density functional theory (DFT) methods also provided insights into the adsorption mechanisms.
Collapse
Affiliation(s)
- Fred Sifuna Wanyonyi
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Francis Orata
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Moka, Mauritius
- Department of Chemical Sciences, Centre for Natural Product Research, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Emily Ngeno
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
- Department of Physical Sciences, Kaimosi Friends University, P.O BOX 385-50309, Kaimosi, Kenya
| | - Victor Shikuku
- Department of Physical Sciences, Kaimosi Friends University, P.O BOX 385-50309, Kaimosi, Kenya
| | - Robert O Gembo
- College of Science, Engineering and Technology (CSET), Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Florida Science Campus, Johannesburg, South Africa
| | - Gershom Kyalo Mutua
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya.
| |
Collapse
|
7
|
Saraugi SS, Routray W. Advances in sustainable production and applications of nano-biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176883. [PMID: 39419217 DOI: 10.1016/j.scitotenv.2024.176883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Biochar is a carbonaceous material that can be amplified into nano-biochar (N-BC) using different physicochemical techniques. Contrary to bulk biochar, nano-biochar, and have better physicochemical characteristics, including a large specific surface area, pore properties, distinctive nanostructure, and high catalytic activity. The spotlight of this review is to contribute up-to-date information on the scaling up of biochar into nano-biochar through various sustainable techniques. This review paper is a compilation of research on nano-biochar from biochar including preparation, distinctive characteristics, and intended applications in the environmental and agricultural sectors, along with some other cutting-edge applications, which are all covered in detail in this review paper and also provides the knowledge gap that will be useful for future investigation and development.
Collapse
Affiliation(s)
- Shristi Shefali Saraugi
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
8
|
Li Z, Jing Y, Zhu R, Yu Q, Qiu X. Sustainable soil rehabilitation with multiple network structures of layered double hydroxide beads: Immobilization of heavy metals, fertilizer release, and water retention. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135385. [PMID: 39121733 DOI: 10.1016/j.jhazmat.2024.135385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The remediation of heavy metal-contaminated soils necessitated a holistic approach that encompassed water and fertilizer conservation alongside soil property restoration. This study introduced the synthesis of (poly)acrylamide-layered double hydroxide gel spheres (PAM-LDH beads), which were designed to simultaneously immobilize heavy metals, control the release of fertilizers, and enhance soil water retention. Laboratory soil experiments under diverse conditions highlighted the superior performance of PAM-LDH beads in the immobilization of hexavalent chromium (Cr(VI)). The layered double hydroxide (LDH) component was identified as the key player in Cr(VI) immobilization, with anion exchange being the predominant mechanism. Notably, the encapsulated urea within the beads was released independently of environmental influences, governed by a concentration gradient across the beads surface. This release process was characterized by an initial phase of absorptive swelling followed by a diffusive phase. The impact on plant growth was assessed, revealing that PAM-LDH beads significantly curtailed Cr(VI) accumulation and alleviated its phytotoxic effects. Changes in the carbon (C) and nitrogen (N) content of the plants suggested that the urea encapsulated within the beads served as a nutrient source, contributing to soil fertility. Moreover, the water-holding capacity and soil-water characteristic curves of PAM-LDH beads suggested that these superabsorbent beads could delay soil water evaporation. The observed shifts in microbial community structure provided evidence for the enhancement of soil carbon and nitrogen cycles, indicative of improved soil properties.
Collapse
Affiliation(s)
- Zhenhui Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yuqi Jing
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Rongjie Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan 430074, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China; Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan 430074, China; Wuhan Institute of Technology Jingmen Research Institute of New Chemical Materials Industry Technology, Wuhan 430070, China; Hubei Three Gorges Laboratory, Yichang 443008, China.
| |
Collapse
|
9
|
Noorin S, Paul T, Ghosh A, Yee JJ, Park SH. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11137. [PMID: 39323177 DOI: 10.1002/wer.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Rising concerns over water scarcity, driven by industrialization and urbanization, necessitate the need for innovative solutions for wastewater treatment. This study focuses on developing an eco-friendly and cost-effective biochar-zeolite composite (BZC) adsorbent using waste materials-spent coffee ground biochar (CGB) and steel slag zeolite (SSZ). Initially, the biochar was prepared from spent coffee ground, and zeolite was prepared from steel slag; their co-pyrolysis resulted in novel adsorbent material. Later, the physicochemical characteristics of the BZC were examined, which showed irregular structure and well-defined pores. Dye removal studies were conducted, which indicate that BZC adsorption reach equilibrium in 2 h, exhibiting 95% removal efficiency compared to biochar (43.33%) and zeolite (74.58%). Moreover, the removal efficiencies of the novel BZC composite toward dyes methyl orange (MO) and crystal violet (CV) were found to be 97% and 99.53%, respectively. The kinetic studies performed with the dyes and phosphate with an adsorbent dosage of 0.5 g L-1 suggest a pseudo-second-order model. Additionally, the reusability study of BZC proves to be effective through multiple adsorption and regeneration cycles. Initially, the phosphate removal remains high but eventually decreases from 92% to 70% in the third regeneration cycle, highlighting the robustness of the BZC. In conclusion, this study introduces a promising, cost-effective novel BZC adsorbent derived from waste materials as a sustainable solution for wastewater treatment. Emphasizing efficiency, reusability, and potential contributions to environmentally conscious water treatment, the findings highlight the composite's significance in addressing key challenges for the removal of toxic pollutants from the aqueous solutions. PRACTITIONER POINTS: A novel biochar-zeolite composite (BZC) material has been synthesized. Excellent removal of dyes by BZC (~95%) was achieved as compared to their counterparts The kinetic studies performed suggest a pseudo-second-order model. BZC proves to be highly effective for multiple adsorption studies. Excellent reusability showed potential as a robust adsorbent.
Collapse
Affiliation(s)
- Shazia Noorin
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
| | - Tanushree Paul
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
- Department of Civil Engineering, Dong-A University, Busan, Republic of Korea
| | - Arnab Ghosh
- University Core Research Center for Disaster-Free Safe Ocean City Construction, Dong-A University, Busan, Republic of Korea
| | - Jurng-Jae Yee
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
| | - Sung Hyuk Park
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
- Department of Civil Engineering, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
10
|
Wang Y, Meng X, Wang S, Mo Y, Xu W, Liu Y, Shi W. Efficient adsorption of Cu 2+ and Cd 2+ from groundwater by MgO-modified sludge biochar in single and binary systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9237-9250. [PMID: 38191722 DOI: 10.1007/s11356-023-31795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
In this study, MgO-modified sludge biochar (1MBC) prepared from sewage sludge was successfully used as an efficient adsorbent to remove heavy metals from groundwater. The adsorption performance and mechanism of 1MBC on Cu2+ and Cd2+ were investigated in single and binary systems, and the contribution of different mechanisms was quantified. Adsorption kinetics and isotherms analysis revealed that the adsorption processes of Cu2+ and Cd2+ by 1MBC followed the pseudo-second-order kinetic and Langmuir isotherm model in both systems, indicating that Cu2+ and Cd2+ were mainly controlled by chemisorption, and their theoretical maximum adsorption capacities were 240.36 and 219.06 mg·g-1, respectively. The results of the binary system showed that due to the competitive adsorption, the adsorption capacity of 1MBC for both heavy metals was lower than that of the single system, and the selective adsorption of Cu2+ was higher. The influencing variable experiments revealed that the adsorption of Cu2+ and Cd2+ by 1MBC had a wide pH adaption range and strong anti-interference ability to coexisting organics and ions. The adsorption mechanisms involved ion exchange (Cu: 47.39%, Cd: 53.17%), mineral precipitation (Cu: 35.31%, Cd: 24.18%), functional group complexation (Cu: 10.44%, Cd: 14.53%), and other possible mechanisms (Cu: 6.87%, Cd: 8.12%). Furthermore, 1MBC demonstrated excellent regeneration potential after five cycle times. Overall, the results have significant reference value for the practical application of removing heavy metals.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Xianrong Meng
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Shanhu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Yuanye Mo
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Wei Xu
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Yang Liu
- Suzhou Yifante Environmental Remediation Co. Ltd., Suzhou, 215100, China
| | - Weilin Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
11
|
Liu Y, Wang S, Huo J, Zhang X, Wen H, Zhang D, Zhao Y, Kang D, Guo W, Ngo HH. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168426. [PMID: 37944608 DOI: 10.1016/j.scitotenv.2023.168426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Phosphate recovery from water is essential for reducing water eutrophication and alleviating the phosphorus resource crisis. In this study, spent coffee grounds and CaCl2 were used as raw materials and a modifier, respectively, to create a novel calcium modified biochar (MBC) for removing phosphorus from water. The modified biochar (MBC) was the best at removing phosphorous when the modifier concentration was 1.5 M with theoretically maximum adsorption capacity of 70.26 mg/g. MBC also performed well in the wide pH range of 3-11 under different phosphorus concentration gradients, with phosphorus removal efficiency of more than 50 %. According to kinetic analysis, the adsorption process at low phosphorus concentrations (50-100 mg/L) can be more properly described by the pseudo-first-order model, while the pseudo-second-order model best describes the adsorption process at high concentrations (200-600 mg/L). The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. Characterization results revealed that surface precipitation, complexation, and ligand exchange were the dominant mechanisms of phosphorus adsorption. MBC has great potential to recover phosphorus from wastewater.
Collapse
Affiliation(s)
- Ying Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Shuyan Wang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jiangbo Huo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - HaiTao Wen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Dan Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dejun Kang
- College of Civil Engineering of Fuzhou University, Fuzhou University, Fuzhou 350108, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
12
|
Cho SK, Igliński B, Kumar G. Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors. BIORESOURCE TECHNOLOGY 2024; 391:129904. [PMID: 37918492 DOI: 10.1016/j.biortech.2023.129904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Biochar is a stable carbonaceous material derived from various biomass and can be utilized as adsorbents, catalysts and precursors in various environmental applications. This review discusses various feedstock materials and methods of biochar production via traditional as well as modern approaches. Additionally, the biochar characteristics, HTC process, and its modification by employing steam and gas purging, acidic, basic / alkaline and organo-solvent, electro- and magnetic fields have been discussed. The recent biochar applications for real water, wastewater and industrial wastewater for the abstraction of environmental contaminants also reviewed. Moreover, applications in machine learning and microbial sensors were discussed. In the meantime, analyses on commercial and environmental profit, current ecological concerns and the future directions of biochar application have been well presented.
Collapse
Affiliation(s)
- Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Saghir S, Xiao Z. Synergistic approach for synthesis of functionalized biochar for efficient adsorption of Lopinavir from polluted water. BIORESOURCE TECHNOLOGY 2024; 391:129916. [PMID: 37898366 DOI: 10.1016/j.biortech.2023.129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
The COVID-19 pandemic has led to a significant increase in antibiotic consumption, along with a 70% rise in antiviral drug concentrations in aquatic ecosystems. For the effective adsorption of antibiotics, biochar was modified by incorporating layered double hydroxide (LDH) through hydrothermal method. The results showed that LDH provides additional hydroxyl groups, positive surface charges and ion exchange. Whereas biochar component provides a larger specific surface area (467.8 m2/g). Batch adsorption experiments of biochar @ layered double hydroxide (BC@LDH) showed enhanced adsorption performance (832.9 mg/g), compared to pristine LDH (420.3 mg/g) and unmodified biochar (548.5 mg/g). Adsorption data were best interpreted (R2 = 0.99) by pseudo second order, Freundlich, and Temkin isotherm models. Adsorption was a synergism of LDH and biochar physiochemical properties, whereas pore-filling was the primary mechanism. The recyclability of BC@LDH confirmed its good structural stability. This study introduces a sustainable and efficient method for synthesizing a versatile adsorbent with superior antibiotic removal.
Collapse
Affiliation(s)
- Summaira Saghir
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, People's Republic of China
| | - Zhenggang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
14
|
Abushawish A, Chatla A, Almanassra IW, Ihsanullah I, Shanableh A, Laoui T, Atieh MA. Novel composites of activated carbon and layered double oxide for the removal of sulfate from synthetic and brackish groundwater. CHEMOSPHERE 2023; 339:139740. [PMID: 37544521 DOI: 10.1016/j.chemosphere.2023.139740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Sulfate (SO42-) is a major water and environmental concern that causes severe diarrhea, death of invertebrates and plant species, and clogging of industrial pipes. In the current work, treatment of SO42- from synthetic and real groundwater having 3901 mg(SO42-)/L was investigated for the first time using Zn-Al and Mg-Al layered double oxides doped granular activated carbon (GAC/Mg-Al LDO and GAC/Zn-Al LDO). The co-precipitation method was followed to synthesize the GAC/LDO composites using an Mg or Zn to Al molar ratio of 3:1. The GAC/Mg-Al LDO possessed a higher specific surface area (323.9 m2/g) compared to GAC/Zn-Al LDO (195.1 m2/g). The GAC/Mg-Al LDO demonstrated more than 99% removal of SO42- from synthetic water, while it was 50.9% for GAC/Zn-Al LDO and less than 1% for raw GAC at an initial concentration of 50 mg/L. The GAC/Mg-Al LDO was selected for further batch experiments and modeling investigation. The equilibrium data followed the Redlich-Peterson and Langmuir models with determination coefficients of 0.943 and 0.935, respectively. The maximum Langmuir adsorption capacity was 143.5 mg/g. In the real groundwater adsorption study, the screening experiment revealed high selectivity towards SO42- with 62% removal efficiency. The optimum dosage was found to be 50 g/L with an uptake capacity of 61.5 mg/g. The kinetic data of SO42- removal from synthetic and brackish water were in excellent agreement with the pseudo-second order model, and the equilibrium was attained in 5 h. Accordingly, it can be concluded that the GAC/Mg-Al LDO is an efficient material for treating SO42- from real groundwater and can be utilized as a pretreatment unit for high sulfate water resources.
Collapse
Affiliation(s)
- Alaa Abushawish
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anjaneyulu Chatla
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Ismail W Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
15
|
Liu G, Zhang X, Liu H, He Z, Show PL, Vasseghian Y, Wang C. Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2023; 234:116534. [PMID: 37399983 DOI: 10.1016/j.envres.2023.116534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Heterogeneous advanced oxidation process has been widely studied as an effective method for removing organic pollutants in wastewater, but the development of efficient catalysts is still challenging. This review summaries the present status of researches on biochar/layered double hydroxides composites (BLDHCs) as catalysts for treatment of organic wastewater. The synthesis methods of layered double hydroxides, the characterizations of BLDHCs, the impacts of process factors influencing catalytic performance, and research advances in various advanced oxidation processes are discussed in this work. The integration of layered double hydroxides and biochar provides synthetic effects for improving pollutant removal. The enhanced pollutant degradation in heterogeneous Fenton, sulfate radical-based, sono-assisted, and photo-assisted processes using BLDHCs have been verified. Pollutant degradation in heterogeneous advanced oxidation processes using BLDHCs is influenced by process factors such as catalyst dosage, oxidant addition, solution pH, reaction time, temperature, and co-existing substances. BLDHCs are promising catalysts due to the unique features including easy preparation, distinct structure, adjustable metal ions, and high stability. Currently, catalytic degradation of organic pollutants using BLDHCs is still in its infancy. More researches should be conducted on the controllable synthesis of BLDHCs, the in-depth understanding of catalytic mechanism, the improvement of catalytic performance, and large-scale application of treating real wastewater.
Collapse
Affiliation(s)
- Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhangxing He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Yuan M, Feng M, Guo C, Qiu S, Zhang K, Yang Z, Wang F. La-Ca/Fe-LDH-coupled electrochemical enhancement of organophosphorus removal in water: Organophosphorus oxidation improves removal efficiency. CHEMOSPHERE 2023; 336:139251. [PMID: 37331662 DOI: 10.1016/j.chemosphere.2023.139251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Metal ions or metal (hydrogen) oxides are widely used as active sites in the construction of phosphate-adsorbing materials in water, but the removal of soluble organophosphorus from water remains technically difficult. Herein, synchronous organophosphorus oxidation and adsorption removal were achieved using electrochemically coupled metal-hydroxide nanomaterials. La-Ca/Fe-layered double hydroxide (LDH) composites prepared using the impregnation method removed both phytic acid (inositol hexaphosphate, IHP) and hydroxy ethylidene diphosphonic acid (HEDP) acid under an applied electric field. The solution properties and electrical parameters were optimized under the following conditions: organophosphorus solution pH = 7.0, organophosphorus concentration = 100 mg L-1, material dosage = 0.1 g, voltage = 15 V, and plate spacing = 0.3 cm. The electrochemically coupled LDH accelerates the removal of organophosphorus. The IHP and HEDP removal rates were 74.9% and 47%, respectively in only 20 min, 50% and 30% higher, respectively, than that of La-Ca/Fe-LDH alone. The removal rate in actual wastewater reached 98% in only 5 min. Meanwhile, the good magnetic properties of electrochemically coupled LDH allow easy separation. The LDH adsorbent was characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. It exhibits a stable structure under electric field conditions, and its adsorption mechanism mainly includes ion exchange, electrostatic attraction, and ligand exchange. This new approach for enhancing the adsorption capacity of LDH has broad application prospects in organophosphorus removal from water.
Collapse
Affiliation(s)
- Mingyao Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China
| | - Zengjun Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China.
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Cimprehensive Experimental Station of Environment Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs, Dali, 671004, China.
| |
Collapse
|
17
|
Bhandari G, Gangola S, Dhasmana A, Rajput V, Gupta S, Malik S, Slama P. Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Front Microbiol 2023; 14:1214870. [PMID: 37547682 PMCID: PMC10400457 DOI: 10.3389/fmicb.2023.1214870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, India
| | - Archna Dhasmana
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vishal Rajput
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
18
|
Jellali S, Hadroug S, Al-Wardy M, Al-Nadabi H, Nassr N, Jeguirim M. Recent developments in metallic-nanoparticles-loaded biochars synthesis and use for phosphorus recovery from aqueous solutions. A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118307. [PMID: 37269723 DOI: 10.1016/j.jenvman.2023.118307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) represents a major pollutant of water resources and at the same time a vital element for human and plants. P recovery from wastewaters and its reuse is a necessity in order to compensate the current important depletion of P natural reserves. The use of biochars for P recovery from wastewaters and their subsequent valorization in agriculture, instead of synthetic industrial fertilizers, promotes circular economy and sustainability concepts. However, P retention by pristine biochars is usually low and a modification step is always required to improve their P recovery efficiency. The pre- or post-treatment of biochars with metal salts seems to be one of the most efficient approaches. This review aims to summarize and discuss the most recent developments (from 2020- up to now) in: i) the role of the feedstock nature, the metal salt type, the pyrolysis conditions, and the experimental adsorption parameters on metallic-nanoparticles-loaded biochars properties and effectiveness in recovering P from aqueous solutions, as well as the dominant involved mechanisms, ii) the effect of the eluent solutions nature on the regeneration ability of P-loaded biochars, and iii) the practical challenges facing the upscaling of P-loaded biochars production and valorization in agriculture. This review shows that the synthesized biochars through slow pyrolysis at relatively high temperatures (up to 700-800 °C) of mixed biomasses with Ca- Mg-rich materials or impregnated biomasses with specific metals in order to from layered double hydroxides (LDHs) biochars composites exhibit interesting structural, textural and surface chemistry properties allowing high P recovery efficiency. Depending on the pyrolysis's and adsorption's experimental conditions, these modified biochars may recover P through combined mechanisms including mainly electrostatic attraction, ligand exchange, surface complexation, hydrogen bonding, and precipitation. Moreover, the P-loaded biochars can be used directly in agriculture or efficiently regenerated with alkaline solutions. Finally, this review emphasizes the challenges concerning the production and use of P-loaded biochars in a context of circular economy. They concern the optimization of P recovery process from wastewater in real-time scenarios, the reduction of energy-related biochars production costs and the intensification of communication/dissemination campaigns to all the concerned actors (i.e., farmers, consumers, stakeholders, and policymakers) on the benefits of P-loaded biochars reuse. We believe that this review is beneficial for new breakthroughs on the synthesis and green application of metallic-nanoparticles-loaded biochars.
Collapse
Affiliation(s)
- Salah Jellali
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Samar Hadroug
- Wastewaters and Environment Laboratory, Water Research and Technologies Centre, Carthage University, Soliman, 2050, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Hamed Al-Nadabi
- Centre for Environmental Studies and Research, Sultan Qaboos University, Al-Khoudh 123, Muscat, Oman.
| | - Najat Nassr
- Rittmo Agroenvironnement, ZA Biopôle, 37 Rue de Herrlisheim, CS 80023, F-68025 Colmar Cedex, France.
| | - Mejdi Jeguirim
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, UMR, 7361, F-68100, Mulhouse, France; Institut de Science des Matériaux de Mulhouse (IS2M), Université de Strasbourg, CNRS, UMR, 7361, F-67081, Strasbourg, France.
| |
Collapse
|
19
|
Bian H, Wang M, Han J, Hu X, Xia H, Wang L, Fang C, Shen C, Man YB, Wong MH, Shan S, Zhang J. MgFe-LDH@biochars for removing ammonia nitrogen and phosphorus from biogas slurry: Synthesis routes, composite performance, and adsorption mechanisms. CHEMOSPHERE 2023; 324:138333. [PMID: 36889475 DOI: 10.1016/j.chemosphere.2023.138333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Layered double hydroxide-biochar composites (LDH@BCs) have been developed for ammonia nitrogen (AN) and phosphorus (P) removal from wastewater. Improvement of LDH@BCs was limited due to the lack of comparative evaluation based on LDH@BCs characteristics and synthetic methods and information on the adsorption properties of LDH@BCs for N and P from natural wastewater. In this study, MgFe-LDH@BCs were synthesized by three different co-precipitation procedures. The differences in physicochemical and morphological properties were compared. They were then employed to remove AN and P from biogas slurry. The adsorption performance of the three MgFe-LDH@BCs was compared and evaluated. Different synthesis procedures can significantly affect the physicochemical and morphological characteristics of MgFe-LDH@BCs. The LDH@BC composite fabricated through a novel method (labeled 'MgFe-LDH@BC1') has the largest specific surface area, Mg and Fe content, and excellent magnetic response performance. Moreover, the composite has the best adsorption property of AN and P from biogas slurry (30.0% and 81.8%, respectively). The main reaction mechanisms include memory effect, ion exchange, and co-precipitation. Applying 2% MgFe-LDH@BC1 saturated with AN and P adsorption from biogas slurry as a fertilizer substitute can substantially improve soil fertility and increase plant production by 139.3%. These results indicate that the facile LDH@BC synthesis method is an effective method to overcome the shortcomings of LDH@BC in practical application, and provide a basis for further exploration of the potential application of biochar based fertilizers in agriculture.
Collapse
Affiliation(s)
- Haohao Bian
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Minyan Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China; Jiyang College, Zhejiang A&F University, 77 Puyang Road, Zhuji, Zhejiang, 311800, China.
| | - Jialin Han
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Xiaopiao Hu
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Honglei Xia
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Lei Wang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Chaochu Fang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Ming Hung Wong
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China.
| |
Collapse
|
20
|
Huang WH, Chang YJ, Wu RM, Chang JS, Chuang XY, Lee DJ. Type-wide biochars loaded with Mg/Al layered double hydroxide as adsorbent for phosphate and mixed heavy metal ions in water. ENVIRONMENTAL RESEARCH 2023; 224:115520. [PMID: 36842698 DOI: 10.1016/j.envres.2023.115520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This study discussed the adsorption of mixed heavy metal ions (Cu2+, Co2+, Pb2+) and phosphate ions by ten pristine biochars and those with precipitated Mg/Al layered double hydroxide (LDH). The pristine biochars have adsorption capacities of 6.9-13.4 mg/g for Cu2+, 1.1-9.7 mg/g for Co2+, 7.8-20.7 mg/g for Pb2+, and 0.8-4.9 mg/g for PO43-. The LDH-biochars have markedly increased adsorption capacities of 20.4-25.8 mg/g for Cu2+, 8.6-15.0 mg/g for Co2+, 26.5-40.4 mg/g for Pb2+ with mixed metal ions, and 13.0-21.8 mg/g for PO43-. Part of the Mg ions but Al ions are released from the LDH-biochars during adsorption, counting less than 7.2% of the adsorbed ions. The pristine biochars have specific adsorption sites for Cu2+ and Co2+, separate Pb2+ sites related to ether groups on biochar, and areal-dependent sites for PO43-. There is no universal adsorption mechanism corresponding to mixed metal ion adsorption for individual pristine biochar involving different contributions of C-O-C, C-O-H, and CO groups and graphitic-N, pyrrolic-N, and pyridine-N groups. The LDH complexes with hydroxyl and carbonyl groups of biochar, and the LDH interacts with biochar's ether groups, which contributes to metal adsorption, against the conception that the biochar is merely a carrier of LDH as adsorbents.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Rome-Ming Wu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gong-Juan Rd., Taishan, New Taipei, 243, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Xiang-Ying Chuang
- Institute of Environmental Engineering, National Yang-Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
21
|
Hettithanthri O, Rajapaksha AU, Nanayakkara N, Vithanage M. Temperature influence on layered double hydroxide tailored corncob biochar and its application for fluoride removal in aqueous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121054. [PMID: 36634859 DOI: 10.1016/j.envpol.2023.121054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Exposure to excess fluoride is a controversial public health concern as it can cause dental/skeletal fluorosis as well as renal toxicity. The study intended to evaluate the synergistic interaction of clay intercalation and thermochemical modification on corncob biochar to remove fluoride from aqueous solutions. Layered double hydroxide was assorted with thermally activated (torrefaction and pyrolysis) corncob biochar at 1:1 (w/w) ratio to obtain composites called LDH-CCBC250 and LDH-CCBC500. Physicochemically characterized adsorbents were assessed against the pH (3-9), reaction time (up to 12 h) and initial fluoride concentration (0.5-10 mg L-1) for defluoridation. The porous structure of biochar was found to be richer compared to biocharcoal. The adsorption performance of LDH-CCBC500 was 6-fold higher compared to LDH-CCBC250 signifying the pronounced effect of thermal activation. Fluoride adsorption was pH dependent, and the best pH was in the range of pH 3.5-5.0 and there was no ionic strength dependency. Fluoride uptake by LDH-CCBC500 follows pseudo-second order and Elovich kinetic models, which suggests a chemisorption process followed by physisorption. The most expected way to eliminate fluoride by LDH-CCBC500, which had a maximum adsorption capacity of 7.24 mg g-1, was cooperative chemical adsorption upon the Langmuir and Hills isotherm (r2 = 0.99) parameters. Layered double hydroxide intercalated corncob biochar derived from slow pyrolysis is best performing in acidic waters.
Collapse
Affiliation(s)
- Oshadi Hettithanthri
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Postgraduate Institute of Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | | | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; The Institute of Agriculture, The University of Western Australia, Perth WA6009, Australia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
22
|
Yuan MY, Qiu SK, Li MM, Li Y, Wang JX, Luo Y, Zhang KQ, Wang F. Adsorption properties and mechanism research of phosphorus with different molecular structures from aqueous solutions by La-modified biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14902-14915. [PMID: 36161587 DOI: 10.1007/s11356-022-23124-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In order to explore the adsorption characteristics of phosphorus from molecules with different molecular structures and varying number of phosphate groups on metal-modified biochar, walnut shell biochar was modified with LaCl3 to prepare lanthanum-loaded biochar (BC-La). Adsorption of four polar components, namely phytic acid (IHP), adenosine-5'-disodium triphosphate (5-ATP), hydroxyethylidene diphosphonic acid (HEDP), and sodium pyrophosphate (PP), was studied. The adsorption properties and mechanism of phosphorus sorption by BC-La were analyzed by SEM-EDS and FTIR for the different structures. The results showed that the maximum adsorption capacity of BC-La for IHP, 5-ATP, HEDP, and PP was 85.85, 9.04, 15.80, and 14.45 mg/g, respectively. The adsorption capacity was positively correlated with the polarity of organic phosphorus. The adsorption behavior conformed to the quasi second-order kinetic fitting equation, and the increase of temperature was conducive to the removal of all four phosphorus pollutants. BC-La adsorbs IHP and HEDP mainly through electrostatic attraction. The adsorption of 5-ATP and PP is dominated by complexation. The La-modified biochar has broad prospects in water remediation, which can provide a theoretical basis for removal of different forms of phosphorus pollutants and prevention and control of water eutrophication.
Collapse
Affiliation(s)
- Ming-Yao Yuan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Shang-Kai Qiu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Meng-Meng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ji-Xiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuan Luo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Ke-Qiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China.
| |
Collapse
|
23
|
Zhang Z, Huang G, Zhang P, Shen J, Wang S, Li Y. Development of iron-based biochar for enhancing nitrate adsorption: Effects of specific surface area, electrostatic force, and functional groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159037. [PMID: 36179839 DOI: 10.1016/j.scitotenv.2022.159037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The problem of nitrate contamination in water has attracted widespread attention. Original biochar has a poor adsorption capacity for nitrate adsorption. Iron impregnation and acid protonation (base deprotonation) are common modification methods for biochar. In order to develop iron-mediated biochar containing multi-functional groups for enhancing nitrate adsorption, Fe-BC@H and Fe-BC@OH were prepared using a two-stage development process, including an iron-based carbon pyrolysis followed by acid protonation (or base deprotonation). The pseudo-second-order kinetic and Langmuir models can well describe the adsorption process which is a physicochemical complex monolayer adsorption. The data proved that Fe-BC@H (9.35 mg/g NO3--N) had a stronger adsorption capacity than Fe-BC@OH (2.95 mg/g NO3--N). Surface morphologies, functional groups, and mineral compositions of Fe-BC@H and Fe-BC@OH were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Characterization results showed that acid protonation can further improve the specific surface area (SSA), pore volume, and Zeta potential of Fe-based biochar, providing more adsorption sites for nitrate and enhancing the electrostatic force between nitrate and biochar. However, these effects were suppressed through base deprotonation. In addition, acid protonation can significantly increase the type and number of functional groups of biochar to enhance the chemisorption of nitrate. Such results suggested that the acid protonation can further improve the adsorption capacity of Fe-based biochar for nitrate, while base deprotonation had an inhibitory effect on that of Fe-based biochar. Overall, this study reveals that specific surface area, electrostatic force, and functional groups are crucial effects of the nitrate adsorption on acid/base modified biochar.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guohe Huang
- China-Canada Center of Energy, Environment and Sustainability Research, UR-SDU, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jian Shen
- Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongping Li
- China-Canada Center of Energy, Environment and Sustainability Research, UR-SDU, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
24
|
Mehmood T, Khan AU, Raj Dandamudi KP, Deng S, Helal MH, Ali HM, Ahmad Z. Oil tea shell synthesized biochar adsorptive utilization for the nitrate removal from aqueous media. CHEMOSPHERE 2022; 307:136045. [PMID: 35977578 DOI: 10.1016/j.chemosphere.2022.136045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Various reported methods are devoted to nitrate removal from water over the years. However, recently researchers are focusing on developing the materials that offer bio-based, non-toxic, inexpensive and yet an efficient solution for water treatment. In this study, removal of nitrates from water was carried out using oil tea shells (OTS) as a biosorbent. OTS powder was impregnated with ZnCl2 and biochar was prepared which was further treated with Cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Both the Langmuir and the Freundlich models were satisfied by the nitrate adsorption of OTS biochar. The adsorption capacity was measured at 15.6 mg/g when the circumstances were at their best. The pseudo-second-order model provided an accurate description of the kinetic data that were collected from batch trials. The adsorption yield goes up when by usage of more adsorbent, but it goes down when adsorption start with a higher concentration of nitrate. The strong basis of analytical equipments were used to characterize the OTS biosorbent. According to the findings of the research, surface-modified OTS biochar is an effective material for the removal of nitrate from aqueous solutions. This means that it has the potential to be utilized in water treatment as an adsorbent that is both inexpensive and kind to the natural environment. Removal of heavy metals and other organic pollutants, both from groundwater and wastewater using OTS biochar seems like a promising and interesting area of study.
Collapse
Affiliation(s)
- Tariq Mehmood
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Rawind Road, Punjab, Lahore, 54000, Pakistan.
| | - Asad Ullah Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Rawind Road, Punjab, Lahore, 54000, Pakistan.
| | - Kodanda Phani Raj Dandamudi
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
25
|
Li X, Gan T, Zhang J, Shi Z, Liu Z, Xiao Z. High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide. BIORESOURCE TECHNOLOGY 2022; 361:127646. [PMID: 35868467 DOI: 10.1016/j.biortech.2022.127646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in water has been an increasing global concern, and how to effectively remove antibiotics (e.g., oxytetracycline [OTC] hydrochloride) from wastewater becomes imperative. In this study, the biochar derived from an invasive plant (Mikania micrantha Kunth) was synthesized with Zn/Fe- layered double hydroxide (LDH) by co-precipitation method (ZnFe-LDH/MBC) to remove OTC from water. ZnFe-LDH/MBC posed the highest OTC removal performance of 426.61 mg/g. ZnFe-LDH/MBC exhibited stability and efficiency in OTC adsorption at different pH levels and under interfering conditions with co-existing ions, as well as outstanding regeneration capabilities during adsorption-desorption cycles. Furthermore, the removal of OTC by ZnFe-LDH/MBC was mediated by several processes including pore filling, hydrogen bonding force, electrostatic interaction, π-π interaction, as well as complexation. Consequently, ZnFe-LDH/MBC has excellent potential for the purification of OTC pollutants that is low-cost, efficient, and environmentally friendly.
Collapse
Affiliation(s)
- Xiaoying Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tian Gan
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoji Shi
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zeheng Xiao
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Preparation and Phosphorus Removal Performance of Zr–La–Fe Ternary Composite Adsorbent Embedded with Sodium Alginate. Processes (Basel) 2022. [DOI: 10.3390/pr10091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using single metal salts of zirconium, lanthanum, and iron as raw materials and sodium alginate as a cross-linking agent, a new composite adsorbent was prepared via the co-precipitation method and embedding immobilization technology, and its phosphorus adsorption performance in wastewater was evaluated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used for characterization, and a 0.5 mol·L−1 sodium hydroxide solution was used to regenerate the adsorbent. The experimental results demonstrated that the adsorption rate reached 99.88% when the wastewater volume was 50 mL, the initial concentration of phosphorus-containing wastewater was 5 mg·L−1, the pH was 5, the dosage of composite adsorbent was 0.2 g, and the adsorption time was 200 min. The prepared adsorbent could reduce the initial phosphorus concentration of 5 mg·L−1 to 0.006 mg·L−1 in simulated wastewater, and from 4.17 mg·L−1 in urban sewage to undetected (<0.01 mg·L−1), thus meeting the discharge requirements of the grade A standard of the Urban Sewage Treatment Plant Pollutant Discharge Standard (GB18918-2002). The adsorption process conformed to the Freundlich adsorption isothermal equation and quasi-second-order kinetic equation, and the adsorption reaction was exothermic and spontaneous. More importantly, after three lye regeneration tests, the removal rate of phosphorus in water remained above 68%, that is, the composite adsorbent could be reproducibly fabricated and recycled. The characterization results showed that the surface of the composite adsorbent was rough, with a complex pore structure. After phosphorus removal, the surface morphology of the composite adsorbent showed a similar honeycomb structure, with a P-H, P-O stretching vibration peak and a characteristic P2p peak. At the same time, the proportion of hydroxyl groups (M-OH) on the metal surface decreased after adsorption. Our findings thus demonstrate that the mechanism of phosphorus removal is mainly based on the coordination exchange reaction between phosphate and metal active sites and surface hydroxyl groups, resulting in the formation of granular phosphate deposits.
Collapse
|
27
|
Xu Y, Liao H, Zhang J, Lu H, He X, Zhang Y, Wu Z, Wang H, Lu M. A Novel Ca-Modified Biochar for Efficient Recovery of Phosphorus from Aqueous Solution and Its Application as a Phosphorus Biofertilizer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162755. [PMID: 36014620 PMCID: PMC9413443 DOI: 10.3390/nano12162755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/05/2023]
Abstract
Recovery phosphorus (P) from P-contaminated wastewater is an efficient and environmentally friendly mean to prevent water pollution and alleviate the P shortage crisis. In this study, oyster shell as calcium sources and peanut shells as carbon sources (mass ratio 1:1) were used to prepare a novel Ca-modified biochar (OBC) via co-pyrolysis, and its potential application after P adsorption as a P biofertilizer for soil was also investigated. The results shown that OBC had a remarkable P adsorption capacity from wastewater in a wide range of pH 4−12. The maximum P adsorption capacity of OBC was about 168.2 mg/g with adsorbent dosage 1 g/L, which was about 27.6 times that of the unmodified biochar. The adsorption isotherm and kinetic data were better described by Langmuir isotherm model (R2 > 0.986) and the pseudo second-order model (R2 > 0.975), respectively. Characterization analysis of OBC before and after P adsorption by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and specific surface area and porosity analyzer (BET) indicated that the remarkable P adsorption capacity of OBC was mainly ascribed to chemical precipitation, electrostatic adsorption, and hydrogen bonding. Pot experiment results showed that OBC after P adsorption could significantly promote the germination and growth of Spinacia, which manifested that OBC after P adsorption exhibited a good ability to be reused as P fertilizer for soil.
Collapse
Affiliation(s)
- Yue Xu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huan Liao
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jing Zhang
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haijun Lu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xinghua He
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
28
|
Chu L, Zhang C, Yu J, Sun X, Zhou X, Zhang Y. Adsorption of nitrate from interflow by the Mg/Fe calcined layered double hydroxides. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:511-529. [PMID: 35960834 DOI: 10.2166/wst.2022.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrate loss in interflow caused serious nitrate pollution of neighboring water bodies in the purple soil region of China's Sichuan Province. In this study, Mg/Fe(Al)-calcined layered double hydroxides (Mg/Fe(Al)-CLDHs) with varied Mg/Fe(Al) ratios were synthesized for nitrate removal from interflow, and 3:1 Mg/Fe CLDH exhibited the best adsorption performance. The effects of initial pH, adsorbent dosage and co-existing anions on the adsorption performance were investigated by batch experiments. The best-fitting kinetic and isothermal models for nitrate adsorption were the pseudo-second-order model and Freundlich model, respectively, indicating that the adsorption process was a physical-chemical multilayer process. The maximum adsorption capacity of nitrate was 73.36 mg/g, which was higher than that of many other commonly used adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET) techniques, and the XRD and FT-IR results revealed that the adsorption mechanism involved original layered structure reconstruction and ion-exchange interaction. Under the coexistence of SO42- and Cl-, 75.63% nitrate in interflow could be removed after 6 h of adsorption. Overall, the synthesized Mg/Fe CLDH is an effective and low-cost nitrate adsorbent for in-situ nitrate removal.
Collapse
Affiliation(s)
- Liquan Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yalie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
29
|
da Gama BMV, Selvasembian R, Giannakoudakis DA, Triantafyllidis KS, McKay G, Meili L. Layered Double Hydroxides as Rising-Star Adsorbents for Water Purification: A Brief Discussion. Molecules 2022; 27:molecules27154900. [PMID: 35956849 PMCID: PMC9370053 DOI: 10.3390/molecules27154900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
Within the frame of this article, briefly but comprehensively, we present the existing knowledge, perspectives, and challenges for the utilization of Layered Double Hydroxides (LDHs) as adsorbents against a plethora of pollutants in aquatic matrixes. The use of LDHs as adsorbents was established by considering their significant physicochemical features, including their textural, structural, morphological, and chemical composition, as well as their method of synthesis, followed by their advantages and disadvantages as remediation media. The utilization of LDHs towards the adsorptive removal of dyes, metals, oxyanions, and emerging pollutants is critically reviewed, while all the reported kinds of interactions that gather the removal are collectively presented. Finally, future perspectives on the topic are discussed. It is expected that this discussion will encourage researchers in the area to seek new ideas for the design, development, and applications of novel LDHs-based nanomaterials as selective adsorbents, and hence to further explore the potential of their utilization also for analytic approaches to detect and monitor various pollutants.
Collapse
Affiliation(s)
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India;
| | - Dimitrios A. Giannakoudakis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (D.A.G.); (L.M.)
| | | | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825 Doha, Qatar;
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió 57072-900, AL, Brazil;
- Correspondence: (D.A.G.); (L.M.)
| |
Collapse
|
30
|
Design and preparation of nanoarchitectonics of LDH/polymer composite with particular morphology as catalyst for green synthesis of imidazole derivatives. Sci Rep 2022; 12:11288. [PMID: 35787674 PMCID: PMC9253321 DOI: 10.1038/s41598-022-15582-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
This paper was designed and prepared a new nanoarchitectonics of LDH/polymer composite with specific morphology. For this purpose, CTAB surfactant was used to control the morphology of layered double hydroxide (LDH) and to prepare LDH/polymer nanocomposites (LDH-APS-PEI-DTPA). The polymer was synthesized using diethylenetriaminepentaacetic acid (DTPA), polyethylenimine and used with LDH to form a nanocomposite with high thermal stability. Subsequently, the prepared nanocomposite was identified using FTIR, EDX, TGA, XRD, FESEM, and BET techniques. In addition, the prepared LDH-APS-PEI-DTPA nanocomposite was used as a heterogeneous and recyclable catalyst for the synthesis of imidazole derivatives under green conditions. The results showed that the LDH-APS-PEI-DTPA nanocomposite benefit from suitable morphology, simple preparation, high catalytic activity, and high surface area. Also, the proposed LDH-APS-PEI-DTPA heterogeneous catalyst showed high stability and reusability for five consecutive runs which was consistent with the principles of green chemistry.
Collapse
|
31
|
Zhang M, He M, Chen Q, Huang Y, Zhang C, Yue C, Yang L, Mu J. Feasible synthesis of a novel and low-cost seawater-modified biochar and its potential application in phosphate removal/recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153833. [PMID: 35151752 DOI: 10.1016/j.scitotenv.2022.153833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel and low-cost seawater-modified biochar (SBC) was fabricated via the pyrolysis of fir wood waste followed by co-precipitation modification using seawater as the Ca/Mg source. The co-precipitation pH was a vital factor during modification, and the optimal pH was 10.50 according to calculations using PHREEQC 2.5 and experiments. The characterizations indicated that Ca and Mg were loaded on the SBC as irregular CaCO3 and nanoflake-like Mg(OH)2, respectively, with the latter dominating. The SBC exhibited a high maximum adsorption capacity of 181.07 mg/g for phosphate, calculated using the Langmuir model, excellent adsorption performance under acidic and neutral conditions (pH = 3.00-7.00), and remarkable selectivity against Cl-, NO3-, and SO42-. The presence of HCO3- promoted adsorption. The mechanisms behind phosphate adsorption involved electrostatic attraction, ligand exchange, precipitation, and inner-sphere complexation. Mg, rather than Ca, was served as the main adsorptive sites for phosphate. Additionally, the feasibility of treating real-world wastewater was tested in batch (using SBC powders) and fixed-bed column (using SBC granules) experiments. The results indicate that the SBC powders could reduce the phosphate concentration from 1.26 mg P/L to below 0.5 mg P/L at a low dose of 0.50 g/L, and the SBC granules exhibited a high removal efficiency with excellent recyclability; the capacity still remained at 78.92% of the initial capacity after five adsorption-desorption runs. Furthermore, the modification process almost did not increase the production cost of the SBC, which was estimated to be 0.41 $/kg. Our results demonstrate that seawater is a low-cost and efficient modifier for biochar modification, and the resultant SBC demonstrates great potential for treating actual phosphate-containing wastewater.
Collapse
Affiliation(s)
- Mingdong Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; Fuzhou Institute of Oceanography, Fuzhou 350108, PR China
| | - Minzhen He
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Qinpeng Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yaling Huang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; Fuzhou Institute of Oceanography, Fuzhou 350108, PR China
| | - Chaoyue Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chen Yue
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liyang Yang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Jingli Mu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China; Fuzhou Institute of Oceanography, Fuzhou 350108, PR China.
| |
Collapse
|
32
|
Elhachmi M, Chemat Z, Chebli D, Bouguettoucha A, Abdeltif A. Synthesis and physicochemical characterization of new calcined layered double hydroxide MgZnCoAl-CO3; Classical modeling and statistical physics of nitrate adsorption. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Khan AH, Khan NA, Zubair M, Azfar Shaida M, Manzar MS, Abutaleb A, Naushad M, Iqbal J. Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. ENVIRONMENTAL RESEARCH 2022; 204:112243. [PMID: 34688648 DOI: 10.1016/j.envres.2021.112243] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In the last three decades, pharmaceutical research has increased tremendously to offer safe and healthy life. However, the high consumption of these harmful drugs has risen devastating impact on ecosystems. Therefore, it is worldwide paramount concern to effectively clean pharmaceuticals contaminated water streams to ensure safer environment and healthier life. Nanotechnology enables to produce new, high-technical material, such as membranes, adsorbent, nano-catalysts, functional surfaces, coverages and reagents for more effective water and wastewater cleanup processes. Nevertheless, nano-sorbent materials are regarded the most appropriate treatment technology for water and wastewater because of their facile application and a large number of adsorbents. Several conventional techniques have been operational for domestic wastewater treatment but are inefficient for pharmaceuticals removal. Alternatively, adsorption techniques have played a pivotal role in water and wastewater treatment for a long, but their rise in attraction is proportional with the continuous emergence of new micropollutants in the aquatic environment and new discoveries of sustainable and low-cost adsorbents. Recently, advancements in adsorption technique for wastewater treatment through nanoadsorbents has greatly increased due to its low production cost, sustainability, better physicochemical properties and high removal performance for pharmaceuticals. Herein, this review critically evaluates the performance of sustainable green nanoadsorbent for the remediation of pharmaceutical pollutants from water. The influential sorption parameters and interaction mechanism are also discussed. Moreover, the future prospects of nanoadsorbents for the remediation of pharmaceuticals are also presented.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia.
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Milia Islamia University, New Delhi, India
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Mohd Azfar Shaida
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, P.O. Box 440020, India
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Ahmed Abutaleb
- Department of Chemical Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, South Korea.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114368. [PMID: 34968937 DOI: 10.1016/j.jenvman.2021.114368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.
Collapse
Affiliation(s)
- Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Leila El-Bassi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Muhammad Uaman
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
35
|
Design and Fabrication of a Novel LDH@GO Nanohybrid Material for Its Application Potentials in Polypropylene. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Keyikoglu R, Khataee A, Yoon Y. Layered double hydroxides for removing and recovering phosphate: Recent advances and future directions. Adv Colloid Interface Sci 2022; 300:102598. [PMID: 35007948 DOI: 10.1016/j.cis.2021.102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Eutrophication is a widespread environmental challenge caused by excessive phosphate. Thus, wastewater engineers primarily aim to limit the phosphate concentration in water bodies. Layered double hydroxides (LDHs) are lamellar inorganic materials containing tunable brucite-like structures. This review discusses the fundamental aspects and latest developments in phosphate removal using LDH-based materials. Based on the divalent cations, Ca, Mg, and Zn-containing LDHs are largely used along with trivalent cations such as Al and Fe owing to their limited toxicities. However, classical LDHs are affected by the presence of co-existing anions, have a narrow working pH range, and have moderate adsorption capacities. Binary LDHs have been designed to be selective towards phosphate by the addition of a third metal such as Zr4+. Developing LDH composites with magnetic, polymeric or carbon materials are feasible approaches for increasing adsorption capacity, stability, and reusability of LDHs. Biochar as a carrier material for LDHs achieved remarkable phosphate adsorption performance and improved LDH dispersion, anion exchange capacity, and ease of separation. The use of recovered phosphate as an SRF, which is a type of bioavailable fertilizer, is a promising approach.
Collapse
|
37
|
Heavy Metals and Nutrients Loads in Water, Soil, and Crops Irrigated with Effluent from WWTPs in Blantyre City, Malawi. WATER 2022. [DOI: 10.3390/w14010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heavy metals may cause acute and chronic toxic effects to humans and other organisms, hence the need to treat wastewater properly, as it contains these toxicants. This work aimed at assessing zinc, copper, cadmium, and chromium in water, soil, and plants that are irrigated with effluent from Manase and Soche Wastewater Treatment Plants (WWTPs) in Blantyre, Malawi. Atomic Absorption Spectrophotometry (AAS) was used to assess the heavy metals. Heavy Metal Health Risk Assessment (HMHRA) on plants (vegetables) around both WWTPs was also conducted. Average daily dose (ADD) and target hazard quotients (THQ) were used to assess HMHRA. Physicochemical parameters were determined using standard methods from American Public Health Association (APHA). The heavy metal ranges were below detection limit (BDL) to 6.94 mg/L in water, 0.0003 to 4.48 mg/kg in soil, and 3 to 32 mg/L in plants. The results revealed that plants irrigated with effluent from WWTP had high values of aforementioned metals exceeding the Malawi Standards and WHO permissible limits. Furthermore, the health risk assessment values showed that vegetables consumed for a long period of time from Manase WWTP were likely to cause adverse health effects as compared to those from Soche WWTP.
Collapse
|
38
|
Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldin MS, Abd El-Monaem EM. Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydr Polym 2021; 274:118671. [PMID: 34702487 DOI: 10.1016/j.carbpol.2021.118671] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
The tremendous development in the industrial sector leads to discharging of the several types of effluents containing detrimental contaminants into water sources. Lately, the proliferation of toxic anions particularly phosphates and nitrates onto aquatic systems certainly depreciates the ecological system and causes a deadly serious problem. Chitosan (Cs) is one of the most auspicious biopolymer adsorbents that are being daily developed for removing of various contaminants from polluted water. This is due to its unparalleled benefits involving biocompatibility, non-toxicity, facile modifications and low-cost production. Nevertheless, chitosan displays considerable drawbacks including low adsorption capacity, low surface area and lack of reusability. Therefore, few findings have been established regarding the aptitude of modified chitosan-based adsorbents towards phosphate and nitrate anions. This review elaborates an overview for the current advances of modified chitosan based-adsorbent for phosphate and nitrate removal, in specific multivalent metals-modified chitosan, clays and zeolite-modified chitosan, magnetic chitosan and carbon materials-modified chitosan. The efforts that have been executed for enriching their adsorption characteristics as well as their possible adsorption mechanisms and reusability were well addressed. Besides, the research conclusions for the optimum adsorption conditions were also discussed, along with emphasizing the foremost research gaps and future potential trends that could motivate further research and innovation to find best solutions for water treatment problems facing the world.
Collapse
Affiliation(s)
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nourhan Mohamed Gaber
- Department of Medical Laboratories, Faculty of Applied health science technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Fang Q, Ye S, Yang H, Yang K, Zhou J, Gao Y, Lin Q, Tan X, Yang Z. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126569. [PMID: 34280719 DOI: 10.1016/j.jhazmat.2021.126569] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In recent years, layered double hydroxide-biochar (LDH-BC) composites as adsorbents and catalysts for contaminants removal (inorganic anions, heavy metals, and organics) have received increasing attention and became a new research point. It is because of the good chemical stability, abundant surface functional groups, excellent anion exchange ability, and good electronic properties of LDH-BC composites. Hence, we offer an overall review on the developments and processes in the synthesis of LDH-BC composites as adsorbents and catalysts. Special attention is devoted to the strategies for enhancing the properties of LDH-BC composites, including (1) magnetic treatment, (2) acid treatment, (3) alkali treatment, (4) controlling metal ion ratios, (5) LDHs intercalation, and (6) calcination. In addition, further studies are called for LDH-BC composites and potential areas for future application of LDH-BC composites are also proposed.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinyi Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
40
|
Naseem S, Wießner S, Kühnert I, Leuteritz A. Layered Double Hydroxide (MgFeAl-LDH)-Based Polypropylene (PP) Nanocomposite: Mechanical Properties and Thermal Degradation. Polymers (Basel) 2021; 13:3452. [PMID: 34641267 PMCID: PMC8512664 DOI: 10.3390/polym13193452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022] Open
Abstract
This work analyzes the thermal degradation and mechanical properties of iron (Fe)-containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were prepared using the melt mixing method by a small-scale compounder. Three different loadings of LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer, and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer. Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscosity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A decrease in mechanical properties interpreted as increased catalytic degradation was also observed in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful where faster degradation or faster recycling of polymer nanocomposites is required because of environmental issues.
Collapse
Affiliation(s)
- Sajid Naseem
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
- Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sven Wießner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
- Institute of Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ines Kühnert
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
| | - Andreas Leuteritz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (S.W.); (I.K.); (A.L.)
| |
Collapse
|
41
|
Graphene oxide and Fe3O4 composite synthesis, characterization and adsorption efficiency evaluation for NO3¯ and PO43¯ ions in aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Zhang Z, Wang G, Li W, Zhang L, Guo B, Ding L, Li X. Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe 3O 4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:526. [PMID: 33670815 PMCID: PMC7923089 DOI: 10.3390/nano11020526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/22/2023]
Abstract
A novel nano-β-FeOOH/Fe3O4/biochar composite with enhanced photocatalytic performance and superparamagnetism was successfully fabricated via an environmentally friendly one-step method. The structural properties of the prepared composite were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and a vibrating sample magnetometer. The XPS spectrum of the as-prepared composites confirmed the presence of Fe-O-C bonds between β-FeOOH and biochar, which could be conducive to transfer photo-generated electrons. UV-vis spectroscopy confirmed the existence of an electron-hole connection between β-FeOOH and biochar, which promoted the rapid interface transfer of photogenerated electrons from β-FeOOH to biochar. These novel structures could enhance the response of biochar to accelerate the photoelectrons under visible light for more free radicals. Electron spin resonance analysis and free radical quenching experiments showed that •OH was the primary active species in the photodegradation process of methyl orange by nano-β-FeOOH/Fe3O4/biochar. In the synergistic photocatalytic system, β-FeOOH/Fe3O4/biochar exhibited excellent catalytic activity for the degradation of azo dye (methyl orange), which is 2.03 times higher than that of the original biochar, while the surface area decreased from 1424.82 to 790.66 m2·g-1. Furthermore, β-FeOOH/Fe3O4/biochar maintained a stable structure and at least 98% catalytic activity after reuse, and it was easy to separate due to its superparamagnetism. This work highlights the enhanced photocatalytic performance of β-FeOOH/Fe3O4/biochar material, which can be used in azo dye wastewater treatment.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Z.Z.); (G.W.); (L.Z.); (B.G.); (L.D.)
- Research Center for Green and Intelligent Coal Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Guanghua Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Z.Z.); (G.W.); (L.Z.); (B.G.); (L.D.)
- Research Center for Green and Intelligent Coal Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenbing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Z.Z.); (G.W.); (L.Z.); (B.G.); (L.D.)
- Research Center for Green and Intelligent Coal Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lidong Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Z.Z.); (G.W.); (L.Z.); (B.G.); (L.D.)
- Research Center for Green and Intelligent Coal Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Benwei Guo
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Z.Z.); (G.W.); (L.Z.); (B.G.); (L.D.)
| | - Ling Ding
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (Z.Z.); (G.W.); (L.Z.); (B.G.); (L.D.)
| | - Xiangcheng Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
43
|
Graphene Nanoparticle-Based, Nitrate Ion Sensor Characteristics. NANOMATERIALS 2021; 11:nano11010150. [PMID: 33435374 PMCID: PMC7827539 DOI: 10.3390/nano11010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
Gathering and sensing of nitrate ions in the environment due to the abundant use in industry and agriculture have become an important problem, which needs to be overcome. On the other hand, new materials such as carbon-based materials with unique properties have become an ideal choice in sensing technology. In this research, the high-density polyethylene (HDPE) polymer as a carbon source in the melted form was used and carbon nanoparticles in the form of a strand between two electrodes were analyzed. It was fabricated between copper electrodes by the pulsed arc discharge method. Subsequently, the constructed metal–nanoparticle–metal (MNM) contact was employed to recognize the nitrate ions. Therefore, NaNO3, Pb(NO3)2, Zn(NO3)2, and NH4NO3 samples as a usual pollutant of industrial and agricultural wastewater were examined. All nitrate compounds in ten different densities were tested and sensor I-V characteristic was investigated, which showed that all the aforesaid compounds were recognizable by the graphene nano-strand. Additionally, the proposed structure in the presence of ions was simulated and acceptable agreement between them was reported. Additionally, the proposed structure analytically was investigated, and a comparison study between the proposed model and measured results was carried out and realistic agreement reported.
Collapse
|
44
|
Zubair M, Ihsanullah I, Abdul Aziz H, Azmier Ahmad M, Al-Harthi MA. Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. BIORESOURCE TECHNOLOGY 2021; 319:124128. [PMID: 32979597 DOI: 10.1016/j.biortech.2020.124128] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 05/09/2023]
Abstract
Biochar/layered double hydroxide (LDH) composites have gained considerable attention in recent times as low-cost sustainable materials for applications in water treatment. This paper critically evaluates the latest development in applications of biochar/LDH composites in water treatment with an emphasis on adsorption and catalytic degradation of various pollutants. The adsorption of various noxious contaminants, i.e., heavy metals, dyes, anions, and pharmaceuticals onto biochar/LDH composites are described in detail by elaborating the adsorption mechanism and regeneration ability. The synergistic effect of LDH with biochar exhibited significant improvement in specific surface area, surface functional groups, structure heterogeneity, stability, and adsorption characteristics of the resulting biochar/LDH composites. The major hurdles and challenges associated with the synthesis and applications of biochar/LDH composites in water remediation are emphasized. Finally, a roadmap is suggested for future research to assure the effective applications of biochar/LDH composites in water purification.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Pulau Pinang, Malaysia
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Mamdouh A Al-Harthi
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia; Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
45
|
Ahmad A, Jini D, Aravind M, Parvathiraja C, Ali R, Kiyani MZ, Alothman A. A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Nakarmi A, Bourdo SE, Ruhl L, Kanel S, Nadagouda M, Kumar Alla P, Pavel I, Viswanathan T. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111048. [PMID: 32677621 DOI: 10.1016/j.jenvman.2020.111048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 05/12/2023]
Abstract
Phosphate is one of the most costly and complex environmental pollutants that leads to eutrophication, which decreases water quality and access to clean water. Among different adsorbents, biochar is one of the promising adsorbents for phosphate removal as well as heavy metal removal from an aqueous solution. In this study, biochar was impregnated with nano zinc oxide in the presence of glycine betaine. The Zinc Oxide Betaine-Modified Biochar Nanocomposites (ZnOBBNC) proved to be an excellent adsorbent for the removal of phosphate, exhibiting a maximum adsorption capacity of phosphate (265.5 mg. g-1) and fast adsorption kinetics (~100% removal at 15 min at 10 mg. L-1 phosphate and 3 g. L-1 nanocomposite dosage) in phosphate solution. The synthesis of these benign ZnOBBNC involves a process that is eco-friendly and economically feasible. From material characterization, we found that the ZnOBBNC has ~20-30 nm particle size, high surface area (100.01 m2. g-1), microporous (25.79 Å) structures, and 7.64% zinc content. The influence of pH (2-10), coexisting anions (Cl-, CO32-, NO3- and SO43-), initial phosphate concentration (10-500 mg. L-1), and ZnOBBNC dosage (0.5-5 g. L-1) were investigated in batch experiments. From the adsorption isotherms data, the adsorption of phosphate using ZnOBBNC followed Langmuir isotherm (R2 = 0.9616), confirming the mono-layered adsorption mechanism. The kinetic studies showed that the phosphate adsorption using ZnOBBNC followed the pseudo-second-order model (R2 = 1.0000), confirming the chemisorption adsorption mechanism with inner-sphere complexion. Our results demonstrated ZnOBBNC as a suitable, competitive candidate for phosphate removal from both mock lab-prepared and real field-collected wastewater samples when compared to commercial nanocomposites.
Collapse
Affiliation(s)
- Amita Nakarmi
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| | - Shawn E Bourdo
- Center for Integrative Nanotechnology Science, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Laura Ruhl
- Department of Earth Sciences, University of Arkansas at Little Rock, USA
| | - Sushil Kanel
- Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH, 45219, USA
| | - Mallikarjuna Nadagouda
- The United States Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Praveen Kumar Alla
- Department of Chemistry, Wright State University, Dayton, OH, 45435, USA
| | - Ioana Pavel
- Department of Chemistry, Wright State University, Dayton, OH, 45435, USA
| | - Tito Viswanathan
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| |
Collapse
|
47
|
Vithanage M, Ashiq A, Ramanayaka S, Bhatnagar A. Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139718. [PMID: 32526569 DOI: 10.1016/j.scitotenv.2020.139718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
In recent years, biochar composites have received considerable attention for environmental applications. This paper reviews the current state of research on Layered Double Hydroxides (LDHs) tailored biochar composites in terms of their synthesis methods, characteristics, and their use as adsorbents for the removal of various pollutants from water, highlighting and discussing the key advancement in this area. The adsorption potential of LDHs-biochar composites for different inorganic and organic contaminants, important factors affecting composites' properties and the adsorption process, and the mechanisms involved in adsorption are discussed in this review. Though the adsorption capacities are high for the composites studied, partition coefficient which suggest the performance of composites remain low for most adsorbents. Despite the recent progress in the synthesis of LDHs-biochar composites, further research is needed to improve the performance of composites for different classes of aquatic pollutants, and to test their applicability in pilot-scale with real wastewater under real environmental conditions.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| | - Ahmed Ashiq
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
48
|
Magnetic Mg-Fe/LDH Intercalated Activated Carbon Composites for Nitrate and Phosphate Removal from Wastewater: Insight into Behavior and Mechanisms. NANOMATERIALS 2020; 10:nano10071361. [PMID: 32664637 PMCID: PMC7407415 DOI: 10.3390/nano10071361] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
This experimental work focused on the synthesis, characterization, and testing of a unique, magnetically separable, and eco-friendly adsorbent composite material for the advanced treatment and efficient removal of nitrate and phosphate pollutants from wastewater. The MgAl-augmented double-layered hydroxide (Mg-Fe/LDH) intercalated with sludge-based activated carbon (SBAC-MgFe) composites were characterized by FT-IR, XRD, BET, VSM, SEM, and TEM techniques, revealing homogeneous and efficient dispersion of MgFe/LDH within the activated carbon (AC) matrix, a highly mesoporous structure, and superparamagnetic characteristics. The initial solution pH, adsorbent dose, contact time, and temperature parameters were optimized in order to reach the best removal performance for both pollutants. The maximum adsorption capacities of phosphate and nitrate were found to be 110 and 54.5 mg/g, respectively. The competition between phosphate and coexisting ions (Cl−, CO32−, and SO42−) was studied and found to be remarkably lower in comparison with the nitrate adsorption. The adsorption mechanisms were elucidated by kinetic, isotherm, thermodynamic modeling, and post-adsorption characterizations of the composite. Modeling and mechanistic studies demonstrated that physisorption processes such as electrostatic attraction and ion exchange mainly governed the nitrate and phosphate adsorption. The composite indicated an outstanding regeneration performance even after five sequences of adsorption/desorption cycles. The fabricated composite with magnetically separable characteristics can be used as a promising adsorbent for the removal of phosphate and nitrate pollutants from wastewater.
Collapse
|