1
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Zhang H, Luo J, Zhang Q, Xu Y, Yin Z, Hang W. Coulomb Field-Driven Desorption/Ionization by Femtosecond Laser for Mass Spectrometry Detection and Imaging. J Am Chem Soc 2025. [PMID: 40085827 DOI: 10.1021/jacs.4c18652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Surface-assisted laser desorption/ionization (SALDI) offers promising prospects for mass spectrometry detection and imaging of small biomolecules, as it addresses most of the matrix-related issues encountered in conventional matrix-assisted laser desorption/ionization (MALDI). Currently, nearly all of the fundamental aspects and applications of SALDI depend on nanosecond (ns) lasers, whereas few efforts have been made to integrate ultrafast femtosecond (fs) lasers with SALDI. Therefore, the intrinsic fundamental principle remains poorly understood. Herein, a novel surface-assisted femtosecond laser desorption/ionization mass spectrometry (fs-SALDI-MS) platform was developed, which significantly reduces analyte fragmentation and preserves molecular integrity. Spectral interferences from surface-assisted materials and alkali-metal adducts are absent in fs-SALDI mass spectra. Ion survival yields continuously increase with decreasing laser pulse widths from 5 ns to 600 fs, highlighting a gradual transition from thermal to nonthermal effects. A lower absolute limit of detection down to ∼3 amol for representative antifungal and psychotropic drugs and clearer visualization of ultratrace drug residues on latent fingerprints can be achieved, indicating that fs-SALDI results in gentler and more efficient detection/ionization processes than mainstream ns-SALDI. The biological applicability of this method was further validated through 10 μm-spatial-resolution lipid imaging of mouse brain sections. In short, a novel Coulomb field-driven desorption/ionization mechanism is proposed for fs-SALDI, opening new avenues for the development of emerging fs-SALDI techniques with superior analytical performance.
Collapse
Affiliation(s)
- Heng Zhang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingkai Luo
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi Zhang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yizhu Xu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhibin Yin
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Mandal G, Umar M, Lv R, Guo R, Ge T, Awais M, Yang S, Hasan MSU, Liu J. Facile synthesis of plasmonic BP@Au nanomatrix for sensitive detection of irinotecan and its active SN-38 metabolite via laser desorption/ionization mass spectrometry. Mikrochim Acta 2025; 192:98. [PMID: 39836307 DOI: 10.1007/s00604-024-06881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025]
Abstract
A new methodology is presented for the rapid, specific, and sensitive detection of irinotecan (CPT-11), a chemotherapeutic agent utilized in the treatment of cancer, along with its metabolically active derivative, SN-38, via laser desorption/ionization mass spectrometry (LDI MS). The method includes the detection of camptothecin (CPT), which can be utilized as an internal standard for the quantitative assessment of both CPT-11 and SN-38 in mouse serum. The approach utilizes a plasmonic two-dimensional (2D) black phosphorus nanosheet (BPN)-gold nanomatrix (BP@Au) in LDI MS. The experimental results demonstrated that the BP@Au nanomatrix outperformed the standard organic matrices (SA, CHCA, and DHB) in detecting irinotecan and its active metabolite with improved specificity and sensitivity, crucial factors for applications in personalized medicine. Mass spectra obtained using organic matrices revealed interference from matrix peaks overlapping with analyte peaks. The coefficient of determination (R2) was 0.9806 for CPT-11 and 0.9932 for SN-38, indicating strong linearity suitable for quantification. Moreover, the method achieved a lower limit of detection (LOD) of 62.76 ng/mL for CPT-11 and 189.87 ng/mL for SN-38, significantly enhancing the detection sensitivity by approximately 2-8 times compared with previous matrix-assisted laser desorption/ionization (MALDI) methodologies. This method was subsequently applied to the quantitative determination of analytes in mouse serum. The analyte recoveries for CPT-11 and SN-38 were 95.40% and 92.95%, respectively. Overall, this study offers potential insights and opens avenues for developing new nanomaterials as a MALDI nanomatrix, demonstrating enhanced capabilities for the rapid, specific, and sensitive detection of small biomolecules within the realms of analytical chemistry and personalized medicine.
Collapse
Affiliation(s)
- Govinda Mandal
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Muhammad Umar
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruochen Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tianjin Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Muhammad Awais
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shunli Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Muhammad Sajjad Ul Hasan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Liu Y, Yang S, Li S, Wang Y, Liu X, Xu W, Su H, Qian K. Noble Metal Nanoparticle Assisted Mass Spectrometry for Metabolite-Based In Vitro Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409714. [PMID: 39665377 DOI: 10.1002/smll.202409714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Indexed: 12/13/2024]
Abstract
In vitro diagnostics (IVD) makes clinical diagnosis rapid, simple, and noninvasive to patients, playing a crucial role in the early diagnosis and monitoring of diseases. Metabolic biomarkers are closely correlated to the phenotype of diseases. However, most IVD platforms are constrained by the sensitivity and throughput of assay. In recent years, noble-metal-nanoparticle (NMNP)-assisted laser desorption/ionization mass spectrometry (LDI MS) has generated major advances in metabolite analysis, significantly improving the sensitivity, accuracy, and throughput of IVD due to the unique optical and electrical properties of NMNPs. This review systematically assesses the development of NMNPs as LDI MS matrices in the detection of metabolites for IVD application. The analysis of several NMNP structures, such as core-shell, porous, and 2D nanoparticles, elucidates their significant contribution to the enhancement of MS performance. Furthermore, the recent advancements in the application of NMNPs for diagnosing various systemic diseases are summarized. Finally, the prospects and challenges of NMNP-assisted MS for IVD are discussed. This review elucidates the roles of NMNPs' structure in enhancing MS-based metabolic detection and provides an overview of various IVD applications, consequently offering comprehensive insights for researchers and developers in this field.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shunxiang Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaohui Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wei Xu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Haiyang Su
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
5
|
Müller WH, Potthoff A, Dreisewerd K, Soltwisch J. Investigation of the laser fluence and wavelength dependence in surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024:e9895. [PMID: 39215964 DOI: 10.1002/rcm.9895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
RATIONALE Surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) builds on the use of nanostructured surfaces (e.g., coatings of colloidal nanoparticles) to promote analyte desorption and ionization. The SALDI process is believed to occur mainly through thermal processes, resulting from heating of the nanosubstrate upon absorption of the photon energy, and by assisting ionization steps. Mostly due to the accessibility of the respective hardware, the majority of SALDI-MS studies use standard laser wavelengths for MALDI (i.e., 337 or 355 nm), even though peak absorption of the SALDI nanosubstrate might completely differ from these values. METHODS Here, we investigated the wavelength dependence in SALDI-MS to determine if wavelength adjustment would be beneficial, and to provide new experimental data for a better understanding of the SALDI mechanism. To this end, gold nanoparticles (AuNPs) sprayed onto microscope glass slides were employed as SALDI nanosubstrates and L-arginine as a model analyte. In addition, we used 2,5-dihydroxyacetophenone (2,5-DHAP) for classical MALDI-MS using the same experimental setup. Arginine ion signals were recorded as a function of laser wavelength and laser fluence. Mass spectra were acquired in the wavelength range between 310 and 630 nm, including the absorption maximum of the sprayed AuNPs around 550 nm and that of 2,5-DHAP around 380 nm. RESULTS Laser fluence thresholds for the generation of arginine ions were found to be dependent on the laser wavelength and to inversely correlate with the absorbance profiles of the deposited AuNPs and 2,5-DHAP, respectively. Very differently to MALDI, in SALDI ionization efficiency was found to strictly linearly decrease with increasing laser wavelength. CONCLUSIONS Our results, therefore, corroborate the general assumption that material ejection in SALDI-MS is mainly driven by thermal processes in the low laser fluence range and add new evidence that the ionization process is directly influenced by photon energy when AuNPs are employed as nanosubstrates.
Collapse
Affiliation(s)
- Wendy H Müller
- Institute of Hygiene, University of Münster, Münster, Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Liège, Belgium
| | | | | | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Joh S, Yoo J, Lee SM, Lee E, Na HK, Son JG, Kim J, Jeong MS, Lee SG, Lee TG. Role of Chalcogenides in Sensitive Therapeutic Drug Monitoring Using Laser Desorption and Ionization. ACS NANO 2024; 18:17681-17693. [PMID: 38920103 PMCID: PMC11238597 DOI: 10.1021/acsnano.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.
Collapse
Affiliation(s)
- Sunho Joh
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jaekak Yoo
- Department
of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Mi Lee
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Eunji Lee
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee-Kyung Na
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jin Gyeong Son
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jeongyong Kim
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mun Seok Jeong
- Department
of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang-Guk Lee
- Department
of Laboratory Medicine, Yonsei University
College of Medicine, Seoul 03722, Republic
of Korea
| | - Tae Geol Lee
- Korea
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Liang W, Yan W, Wang X, Yan X, Hu Q, Zhang W, Meng H, Yin L, He Q, Ma C. A single atom cobalt anchored MXene bifunctional platform for rapid, label-free and high-throughput biomarker analysis and tissue imaging. Biosens Bioelectron 2024; 246:115903. [PMID: 38048718 DOI: 10.1016/j.bios.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Few of single-atom materials have been served as platform to analyze small molecules for surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). Herein, a novel single Co atom-anchored MXene (Co-N-Ti3C2) is prepared to achieve enhanced SALDI-MS and mass spectrometry imaging (MSI) performance for the first time. The Co-N-Ti3C2 films were prepared by a simple in situ self-assembly strategy to generate an efficient SALDI-MS platform. Compared to typical inorganic/organic matrices, Co-N-Ti3C2 films exhibit superior performance in small molecules detection with ultra-high sensitivity (LOD at amol level), excellent repeatability (CV <4%), clean background and wide analyte coverage, enabling accurate quantitative analysis of various low-concentration metabolites from 1 μL biofluid in seconds. Its usage efficiently enhanced SALDI-MS detection of various small-molecule biomarkers such as amino acids, succinic acid, itaconic acid, arachidonic acid, citrulline, prostaglandin E2, creatinine, uric acid, glutamine, D-mannose, cholesterol and inositol in positive ion mode. The blood glucose level in humans was successfully determined from a linearity concentration range (0.25-10 mM). Notably, the Co-N-Ti3C2 assisted SALDI-MSI enables study the spatial distribution of small molecules covering the range central to metabolomics at a high resolution on a tissue section. Furthermore, Co-N-Ti3C2 platform revealed a specific peak profile that distinguishes osteoarthritis (OA) from rheumatoid arthritis (RA) tissue. Density functional theory theoretical investigation revealed that single Co atoms anchored on Ti3C2 could highly enhanced the ionization ability of metabolites, resulting in high-sensitivity and heterogeneous metabolome coverage.
Collapse
Affiliation(s)
- Weiqiang Liang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China; Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Weining Yan
- Department of Orthopedics, Trauma, and Reconstructive Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
| | - Xinfeng Yan
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China
| | - Wenqiang Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Hongzheng Meng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Luxu Yin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 Shandong province, China
| | - Qing He
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China.
| |
Collapse
|
8
|
Ouyang D, Wang C, Zhong C, Lin J, Xu G, Wang G, Lin Z. Organic metal chalcogenide-assisted metabolic molecular diagnosis of central precocious puberty. Chem Sci 2023; 15:278-284. [PMID: 38131069 PMCID: PMC10732007 DOI: 10.1039/d3sc05633c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic analysis in biofluids based on laser desorption/ionization mass spectrometry (LDI-MS), featuring rapidity, simplicity, small sample volume and high throughput, is expected to be a powerful diagnostic tool. Nevertheless, the signals of most metabolic biomarkers obtained by matrix-assisted LDI-MS are too limited to achieve a highly accurate diagnosis due to serious background interference. To address this issue, nanomaterials have been frequently adopted in LDI-MS as substrates. However, the "trial and error" approach still dominates the development of new substrates. Therefore, rational design of novel LDI-MS substrates showing high desorption/ionization efficiency and no background interference is extremely desired. Herein, four few-layered organic metal chalcogenides (OMCs) were precisely designed and for the first time investigated as substrates in LDI-MS, which allowed a favorable internal energy and charge transfer by changing the functional groups of organic ligands and metal nodes. As a result, the optimized OMC-assisted platform satisfyingly enhanced the mass signal by ≈10 000 fold in detecting typical metabolites and successfully detected different saccharides. In addition, a high accuracy diagnosis of central precocious puberty (CPP) with potential biomarkers of 12 metabolites was realized. This work is not only expected to provide a universal detection tool for large-scale clinical diagnosis, but also provides an idea for the design and selection of LDI-MS substrates.
Collapse
Affiliation(s)
- Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Chuanzhe Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital Fuzhou 350003 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Guane Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
9
|
Wang C, Qin LY, Li DM, Hu LG, Xue JJ, Zhai XP, Wang Q, Guo L, Tang L, Xie JW. Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 2023; 415:6825-6838. [PMID: 37848578 DOI: 10.1007/s00216-023-04961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
This work aims to rapidly detect toxic alkaloids in traditional Chinese medicines (TCM) using laser desorption ionization mass spectrometry (LDI-MS). We systematically investigated twelve nanomaterials (NMs) as matrices and found that MoS2 and defect-rich-WO3 (D-WO3) were the best NMs for alkaloid detection. MoS2 and D-WO3 can be used directly as matrices dipped onto conventional ground steel target plates. Additionally, they can be conveniently fabricated as three-dimensional (3D) NM plates, where the MoS2 or D-WO3 NM is doped into resin and formed using a 3D printing process. We obtained good quantification of alkaloids using a chemothermal compound as an internal standard and detected related alkaloids in TCM extracts, Fuzi (Aconiti Lateralis Radix Praeparata), Caowu (Aconiti Kusnezoffii Radix), Chuanwu (Aconiti Radix), and Houpo (Magnoliae Officinalis Cortex). The work enabled the advantageous "dip and measure" method, demonstrating a simple and fast LDI-MS approach that achieves clean backgrounds for alkaloid detection. The 3D NM plates also facilitated mass spectrometry imaging of alkaloids in TCMs. This method has potential practical applications in medicine and food safety. Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry.
Collapse
Affiliation(s)
- Chuang Wang
- Key Laboratory of Ethnomedicine, Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lu-Yuan Qin
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Dong-Mei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jin-Juan Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xin-Ping Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Li Tang
- Key Laboratory of Ethnomedicine, Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| | - Jian-Wei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
10
|
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng Y, Yin X, Wan J. Designed Concave Octahedron Heterostructures Decode Distinct Metabolic Patterns of Epithelial Ovarian Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209083. [PMID: 36764026 DOI: 10.1002/adma.202209083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/25/2023] [Indexed: 05/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn2 O3 /(Co,Mn)(Co,Mn)2 O4 (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xia Yin
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
11
|
Lavigne A, Gilquin B, Géhin T, Jousseaume V, Veillerot M, Chevolot Y, Phaner-Goutorbe M, Yeromonahos C. Effects of Silane Monolayers on Lysophosphatidylcholine (LysoPC) Detection by Desorption Ionization on Silicon Mass Spectrometry (DIOS-MS) in Solution and Plasma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18685-18693. [PMID: 37014887 DOI: 10.1021/acsami.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Desorption ionization on silicon mass spectrometry (DIOS-MS) enables high throughput analysis of low-molecular-weight biomolecules. However, detection of metabolite biomarkers in complex fluids such as plasma requires sample pretreatment, limiting clinical application. Here, we show that porous silicon, chemically modified using monolayers of n-propyldimethylmethoxysilane molecules, is a good candidate for fingerprinting lysophosphatidylcholine (lysoPC) in plasma, without sample pretreatment, for DIOS-MS-based diagnosis (e.g., sepsis). Results were correlated to lysoPC molecule location inside/outside the pores, determined by time-of-flight secondary ion mass spectrometry profiling, and to physicochemical properties.
Collapse
Affiliation(s)
- Antonin Lavigne
- CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Univ Lyon, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| | - Benoît Gilquin
- CEA, LETI, Clinatec, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Géhin
- INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Univ Lyon, CNRS, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| | | | - Marc Veillerot
- CEA, LETI, Univ Grenoble Alpes, F-38000 Grenoble, France
| | - Yann Chevolot
- INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Univ Lyon, CNRS, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| | - Magali Phaner-Goutorbe
- CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Univ Lyon, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| | - Christelle Yeromonahos
- CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Univ Lyon, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| |
Collapse
|
12
|
Li W, He Q, Li J, Zhou X, Hu Q, Ma C, Wang X. In Situ Self-Assembled Formation of Nitrogen-Rich Ag@Ti 3C 2 Film for Sensitive Detection and Spatial Imaging of Pesticides with Laser Desorption/Ionization Mass Spectrometry (LDI-MS). ACS APPLIED MATERIALS & INTERFACES 2023; 15:18402-18413. [PMID: 37009649 DOI: 10.1021/acsami.2c22347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pesticide residues are hazardous to human health; thus, developing a rapid and sensitive method for pesticide detection is an urgent need. Herein, novel nitrogen-rich Ag@Ti3C2 (Ag@N-Ti3C2) was synthesized via an ecofriendly, ultraviolet-assisted strategy, followed by in situ formation of a highly homogeneous film on target carriers via a facile water evaporation-induced self-assembly process. Ag@N-Ti3C2 shows greater surface area, electrical conductivity, and thermal conductivity than Ti3C2. This Ag@N-Ti3C2 film overcomes the limitations of conventional matrixes and allows laser desorption/ionization mass spectrometry (LDI-MS) to provide fast and high-throughput analysis of pesticides (e.g., carbendazim, thiamethoxam, propoxur, dimethoate, malathion, and cypermethrin) with ultrahigh sensitivity (detection limits of 0.5-200 ng/L), enhanced reproducibility, extremely low background, and good salt tolerance. Furthermore, the levels of pesticides were quantified with a linear range of 0-4 μg/L (R2 > 0.99). This Ag@N-Ti3C2 film was used for high-throughput analysis of pesticides spiked in traditional Chinese herbs and soft drink samples. Meanwhile, high-resolution Ag@N-Ti3C2 film-assisted LDI-MS imaging (LDI MSI) was used to successfully explore spatial distributions of xenobiotic pesticides and other endogenous small molecules (e.g., amino acids, saccharides, hormones, and saponin) in the roots of plants. This study presents the new Ag@N-Ti3C2 self-assembled film equably deposits on the ITO slides and provides a dual platform for pesticide monitoring and has the advantages of high conductivity, accuracy, simplicity, rapid analysis, minimal sample volume requirement, and an imaging function.
Collapse
Affiliation(s)
- Wenhan Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingchao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qiongzheng Hu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| |
Collapse
|
13
|
Shen YL, Zhuang SJ, Yang F, Gong C, Xu X. Prefabricated platinum nanomaterial matrix for MALDI-MS imaging of oligosaccharides and lipids in plant tissues. FRONTIERS IN PLANT SCIENCE 2023; 14:1105374. [PMID: 36743483 PMCID: PMC9889645 DOI: 10.3389/fpls.2023.1105374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) can visualize the spatial distribution characteristics of molecules in tissues in situ, in which the matrix plays a key role. In this paper, we propose a platinum nanomaterial pre-coated matrix, which can be prepared in bulk by sputtering platinum nanoparticles onto slides using an ion sputterer and then used for MALDI-MS analysis by placing tissue sections on the matrix. We used this matrix for MALDI-MS imaging analysis of corn kernels and germinated wheat sections, and the results show that triacylglycerides were mainly distributed in the embryo of corn kernels and germinated wheat, and sugars were mainly distributed in the endosperm, with the highest content of disaccharides.It provides a simple and reliable experimental condition for analyzing the distribution of oligosaccharide and lipid components in plant tissues.
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Sakai R, Kondo H, Ishikawa K, Ohta T, Hiramatsu M, Tanaka H, Hori M. Effects of High-Quality Carbon Nanowalls Ionization-Assisting Substrates on Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:63. [PMID: 36615973 PMCID: PMC9823508 DOI: 10.3390/nano13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is performed using carbon nanowalls (CNWs) for ionization-assisting substrates. The CNWs (referred to as high-quality CNWs) in the present study were grown using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with the addition of oxygen in a mixture of CH4 and H2 gases. High-quality CNWs were different with respect to crystallinity and C-OH groups, while showing similar wall-to-wall distances and a wettability comparable to CNWs (referred to as normal CNWs) grown without O2. The efficiency of SALDI was tested with both parameters of ion intensity and fragmental efficiency (survival yield (SY)) using N-benzylpyridinuim chloride (N-BP-CI). At a laser fluence of 4 mJ/cm2, normal CNWs had an SY of 0.97 and an ion intensity of 0.13, while 5-sccm-O2- high-quality CNWs had an SY of 0.89 and an ion intensity of 2.55. As a result, the sensitivity for the detection of low-molecular-weight analytes was improved with the high-quality CNWs compared to the normal CNWs, while an SY of 0.89 was maintained at a low laser fluence of 4 mJ/cm2. SALDI-MS measurements available with the high-quality CNWs ionization-assisting substrate provided high ionization and SY values.
Collapse
Affiliation(s)
- Ryusei Sakai
- Department of Electronics, Graduate School of Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Hiroki Kondo
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Kenji Ishikawa
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Takayuki Ohta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Mineo Hiramatsu
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Hiromasa Tanaka
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Masaru Hori
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
16
|
Al-Sayed SA, Amin MO, Al-Hetlani E. Magnetic Nanoparticle-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry for Cosmetics Detection in Contaminated Fingermarks: Magnetic Recovery and Surface Roughness. ACS OMEGA 2022; 7:43894-43903. [PMID: 36506115 PMCID: PMC9730306 DOI: 10.1021/acsomega.2c05134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
In this work, we propose a matrix-free approach for the analysis of fingermarks (FMs) contaminated with five cosmetic products containing different active pharmaceutical ingredients (APIs) using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). For this purpose, a magnetic SALDI substrate based on Fe3O4-CeO2 magnetic nanoparticles was prepared, characterized, and optimized for the analysis of contaminated FMs without sample pretreatment. Initially, groomed FM and cosmetic products were separately analyzed, and their major components were successfully detected. Subsequently, FMs contaminated with Ordinary serum and Skinoren, Dermovate, Bepanthen, and Eucerin creams were analyzed, and components of FM and cosmetics were detected. The stability of the cosmetics in FMs was studied over an interval of 28 days, and all components showed good stability in FM for 4 weeks. Recovery of contaminated FMs from different surfaces utilizing a few microliters of the magnetic substrate was carried out using a simple external magnetic field from ceramic, plastic, metal, and glass. Successful retrieval of the API and FM components was achieved with magnetic recovery, and glass exhibited the best recovery, whereas ceramic tile demonstrated the lowest recovery. This was supported by atomic force microscopy study, which revealed that the ceramic surface had higher roughness than the other surfaces employed in this study, which adversely affected the magnetic maneuvering. This proof-of-concept investigation extends the application of SALDI-MS in forensic analysis of contaminated FMs by exploring cosmetics as exogenous materials and their stability and recovery from different surfaces.
Collapse
|
17
|
Krutilin A, Epp SW, Alejo GML, Busse F, Gitaric D, Schikora H, Schwoerer H, Tellkamp F. Peptide Mass Spectra from Micrometer-Thick Ice Films Produced with Femtosecond Pulses. Anal Chem 2022; 94:13359-13367. [PMID: 36153751 PMCID: PMC9535622 DOI: 10.1021/acs.analchem.2c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset. Our findings show that substrate choice and irradiation wavelength have a minor impact on signal intensity once the preparation protocol is optimized. However, if the temperature is increased from -140 to 0 °C, which is accompanied by ice film thinning, a somehow complex picture of analyte desorption and ionization is recognizable, which has not been described in the literature yet. Under cryogenic conditions (-140 °C), obtaining a signal is only possible from isolated sweet spots across the film. If the thin ice film is between -100 and -70 °C of temperature, these sweet spots appear more frequently. Ice sublimation triggered by temperatures above -70 °C leads to an intense and robust signal onset that could be maintained for several hours. In addition to the above findings, we notice that a vibrant fragmentation pattern produced is strikingly similar with both wavelengths. Our findings suggest that while following an optimized protocol, femtosecond mass spectrometry has excellent potential to analyze small organic molecules and peptides with a mass range of up to 2.5 kDa in aqueous solution without any matrix, as employed in matrix-assisted laser desorption/ionization (MALDI) or any substrate surface modification, found in surface-assisted laser desorption/ionization (SALDI).
Collapse
Affiliation(s)
- Andrey Krutilin
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sascha W. Epp
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Glaynel M. L. Alejo
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Frederik Busse
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Djordje Gitaric
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Hendrik Schikora
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Heinrich Schwoerer
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Friedjof Tellkamp
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
18
|
Qu X, Wang T, Liu X, Jiang X, Liang X, Wu J. Dual-Mechanism-Driven Strategy for High-Coverage Detection of Serum Lipids on a Novel SALDI-MS Target. Anal Chem 2022; 94:8570-8579. [PMID: 35670384 DOI: 10.1021/acs.analchem.1c04929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serum lipid metabolites have been emerging as ideal biomarkers for disease diagnosis and prediction. In the current stage, nontargeted or targeted lipidomic research mainly relies on a liquid chromatography-mass spectrometry (LC-MS) platform, but future clinical applications need more robust and high-speed platforms. Surface-assisted laser desorption ionization mass spectrometry (SALDI-MS) has shown excellent advantages in the high-speed analysis of lipid metabolites. However, the platform in the positive ion mode is more inclined to target a certain class of lipids, leading to the low coverage of lipid detection and limiting its practical translation to clinical applications. Herein, we proposed a dual-mechanism-driven strategy for high-coverage detection of serum lipids on a novel SALDI-MS target, which is a composite nanostructure comprising vertical silicon nanowires (VSiNWs) decorated with AuNPs and polydopamine (VSiNW-Au-PDA). The performance of laser desorption and ionization on the target can be enhanced by charge-driven desorption coupled with thermal-driven desorption. Simultaneous detection of 236 serum lipids (S/N ≥ 5) including neutral and polar lipids can be achieved in the positive ion mode. Among these, 107 lipid peaks were successfully identified. When combined with VSiNW-Au-PDA and VSiNW chips, 479 lipid peaks can be detected in serum samples in positive and negative ion modes, respectively. Based on the platform, serum samples from 57 hepatocellular carcinoma (HCC) patients and 76 healthy controls were analyzed. After data mining, 14 lipids containing different lipid types (TAG, CE, PC) were selected as potential lipidomic biomarkers. With the assistance of an artificial neural network, a diagnostic model with a sensitivity of 92.7% and a specificity of 96% was constructed for HCC diagnosis.
Collapse
Affiliation(s)
- Xuetong Qu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tao Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingyue Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinrong Jiang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
20
|
Huang H, Ouyang D, Lin ZA. Recent Advances in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry and Its Imaging for Small Molecules. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Su CH, Wang BW, Dutkiewicz EP, Hsu CC, Yang YL. Surface-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (SALDI-IMS)-Based Detection of Vinca Alkaloids Distribution in the Petal of Madagascar Periwinkle. Methods Mol Biol 2022; 2505:45-58. [PMID: 35732935 DOI: 10.1007/978-1-0716-2349-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The surface-assisted laser desorption/ionization (SALDI) technique uses inorganic materials to aid desorption and ionization of molecules. SALDI is suitable for analyzing small molecules due to the absence of interfering signals in the low m/z range originating from the organic matrix. Imaging mass spectrometry (IMS) is a versatile imaging approach with high spatial resolution for analyzing various molecular species, but its application depends heavily on the ionization method. We have developed a functionalized titanium dioxide (TiO2) nanowire as a solid substrate for SALDI-MS detection of low-molecular-weight molecules. We apply this novel substrate for imprinting fragile specimens such as petals and further SALDI-IMS analysis. The TiO2 nanowire substrate is prepared from a commercial Ti plate by a hydrothermal process and subsequently chemically modified to improve the quality and selectivity of imprinting as well as the sensitivity of SALDI-IMS analysis. Here, the functionalized TiO2 nanowire substrate is applied to visualize the distribution of vinca alkaloids in the petal of Madagascar periwinkle (Catharanthus roseus).
Collapse
Affiliation(s)
- Chun-Han Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Bo-Wei Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ewelina P Dutkiewicz
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Matrix-Free High-Resolution Atmospheric-Pressure SALDI Mass Spectrometry Imaging of Biological Samples Using Nanostructured DIUTHAME Membranes. Metabolites 2021; 11:metabo11090624. [PMID: 34564440 PMCID: PMC8468348 DOI: 10.3390/metabo11090624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/06/2023] Open
Abstract
Applications of mass spectrometry imaging (MSI), especially matrix-assisted laser desorption/ionization (MALDI) in the life sciences are becoming increasingly focused on single cell analysis. With the latest instrumental developments, pixel sizes in the micrometer range can be obtained, leading to challenges in matrix application, where imperfections or inhomogeneities in the matrix layer can lead to misinterpretation of MS images. Thereby, the application of premanufactured, homogeneous ionization-assisting devices is a promising approach. Tissue sections were investigated using a matrix-free imaging technique (Desorption Ionization Using Through-Hole Alumina Membrane, DIUTHAME) based on premanufactured nanostructured membranes to be deposited on top of a tissue section, in comparison to the spray-coating of an organic matrix in a MALDI MSI approach. Atmospheric pressure MALDI MSI ion sources were coupled to orbital trapping mass spectrometers. MS signals obtained by the different ionization techniques were annotated using accurate-mass-based database research. Compared to MALDI MSI, DIUTHAME MS images captivated with higher signal homogeneities, higher contrast and reduced background signals, while signal intensities were reduced by about one order of magnitude, independent of analyte class. DIUTHAME membranes, being applicable only on tissue sections thicker than 50 µm, were successfully used for mammal, insect and plant tissue with a high lateral resolution down to 5 µm.
Collapse
|
24
|
Dufresne M, Fincher JA, Patterson NH, Schey KL, Norris JL, Caprioli RM, Spraggins JM. α-Cyano-4-hydroxycinnamic Acid and Tri-Potassium Citrate Salt Pre-Coated Silicon Nanopost Array Provides Enhanced Lipid Detection for High Spatial Resolution MALDI Imaging Mass Spectrometry. Anal Chem 2021; 93:12243-12249. [PMID: 34449196 DOI: 10.1021/acs.analchem.1c01560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a pre-coated substrate for matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) that enables high spatial resolution mapping of both phospholipids and neutral lipid classes in positive ion mode as metal cation adducts. The MALDI substrates are constructed by depositing a layer of α-cyano-4-hydroxycinnamic acid (CHCA) and potassium salts onto silicon nanopost arrays (NAPA) prior to tissue mounting. The matrix/salt pre-coated NAPA substrate significantly enhances all detected lipid signals allowing lipids to be detected at lower laser energies than bare NAPA. The improved sensitivity at lower laser energy enabled ion images to be generated at 10 μm spatial resolution from rat retinal tissue. Optimization of matrix pre-coated NAPA consisted of testing lithium, sodium, and potassium salts along with various matrices to investigate the increased sensitivity toward lipids for MALDI IMS experiments. It was determined that pre-coating NAPA with CHCA and potassium salts before thaw-mounting of tissue resulted in a signal intensity increase of at least 5.8 ± 0.1-fold for phospholipids and 2.0 ± 0.1-fold for neutral lipids compared to bare NAPA. Pre-coating NAPA with matrix and salt also reduced the necessary laser power to achieve desorption/ionization by ∼35%. This reduced the effective diameter of the ablation area from 13 ± 2 μm down to 8 ± 1 μm, enabling high spatial resolution MALDI IMS. Using pre-coated NAPA with CHCA and potassium salts offers a MALDI IMS substrate with broad molecular coverage of lipids in a single polarity that eliminates the need for extensive sample preparation after sectioning.
Collapse
Affiliation(s)
- Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Jarod A Fincher
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeremy L Norris
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
25
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
26
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
27
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
28
|
Joh S, Na HK, Son JG, Lee AY, Ahn CH, Ji DJ, Wi JS, Jeong MS, Lee SG, Lee TG. Quantitative Analysis of Immunosuppressive Drugs Using Tungsten Disulfide Nanosheet-Assisted Laser Desorption Ionization Mass Spectrometry. ACS NANO 2021; 15:10141-10152. [PMID: 34097394 DOI: 10.1021/acsnano.1c02016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For organ transplantation patients, the therapeutic drug monitoring (TDM) of immunosuppressive drugs is essential to prevent the toxicity or rejection of the organ. Currently, TDM is done by immunoassays or liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods; however, these methods lack specificity or are expensive, require high levels of skill, and offer limited sample throughput. Although matrix-assisted (MA) laser desorption ionization (LDI) mass spectrometry (MS) can provide enhanced throughput and cost-effectiveness, its application in TDM is limited due to the limitations of the matrixes such as a lack of sensitivity and reproducibility. Here, we present an alternative quantification method for the TDM of the immunosuppressive drugs in the blood of organ transplant patients by utilizing laser desorption ionization mass spectrometry (LDI-MS) based on a tungsten disulfide nanosheet, which is well-known for its excellent physicochemical properties such as a strong UV absorbance and high electron mobility. By adopting a microliquid inkjet printing system, a high-throughput analysis of the blood samples with enhanced sensitivity and reproducibility was achieved. Furthermore, up to 80 cases of patient samples were analyzed and the results were compared with those of LC-MS/MS by using Passing-Bablok regression and Bland-Altman analysis to demonstrate that our LDI-MS platform is suitable to replace current TDM techniques. Our approach will facilitate the rapid and accurate analysis of blood samples from a large number of patients for immunosuppressive drug prescriptions.
Collapse
Affiliation(s)
- Sunho Joh
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Jin Gyeong Son
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - A Young Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Cheol-Hee Ahn
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Da-Jeong Ji
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
29
|
Sakai R, Ichikawa T, Kondo H, Ishikawa K, Shimizu N, Ohta T, Hiramatsu M, Hori M. Effects of Carbon Nanowalls (CNWs) Substrates on Soft Ionization of Low-Molecular-Weight Organic Compoundsin Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS). NANOMATERIALS 2021; 11:nano11020262. [PMID: 33498479 PMCID: PMC7909522 DOI: 10.3390/nano11020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/15/2023]
Abstract
Carbon nanowalls (CNWs), which are vertically oriented multi-layer graphene sheets, were employed in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) measurements to detect low-molecular-weight organic compounds. CNWs substrates with widely different wall-to-wall distances from 142 to 467 nm were synthesized using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with nanosecond pulse biasing to a sample stage. When survival yield (SY) values of N-benzylpyridinium chloride (N-BP-Cl) were examined, which is commonly used to evaluate desorption/ionization efficiency, a narrower wall-to-wall distance presented a higher SY value. The highest SY value of 0.97 was realized at 4 mJ/cm2 for the highest-density CNWs with a wall-to-wall distance of 142 nm. The laser desorption/ionization effect of arginine, an amino acid, was also investigated. When CNWs with a narrower wall-to-wall distance were used, the signal-to-noise (SN) ratios of the arginine signals were increased, while the intensity ratios of fragment ions to arginine signals were suppressed. Therefore, the CNWs nanostructures are a powerful tool when used as a SALDI substrate for the highly efficient desorption/ionization of low-molecular-weight biomolecules.
Collapse
Affiliation(s)
- Ryusei Sakai
- Department of Electronics, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan;
| | - Tomonori Ichikawa
- Japan Aerospace Exploration Agency, 7-44-1, Jindaiji, Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan;
| | - Hiroki Kondo
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
- Correspondence: ; Tel.: +81-52-789-3461
| | - Kenji Ishikawa
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
| | - Naohiro Shimizu
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
| | - Takayuki Ohta
- Departmet of Electrical and Electronic Engineering, Meijo University, Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan; (T.O.); (M.H.)
| | - Mineo Hiramatsu
- Departmet of Electrical and Electronic Engineering, Meijo University, Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan; (T.O.); (M.H.)
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
| |
Collapse
|
30
|
Minhas RS, Antunez EE, Guinan TM, Gengenbach TR, Rudd DA, Voelcker NH. Fluorocarbon Plasma Gas Passivation Enhances Performance of Porous Silicon for Desorption/Ionization Mass Spectrometry. ACS Sens 2020; 5:3226-3236. [PMID: 32938190 DOI: 10.1021/acssensors.0c01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is shown to be a powerful technique for the sensing of low-molecular-weight compounds, including drugs and their metabolites. Surface modification of DIOS surfaces is required to increase analytical performance and ensure stability. However, common wet chemical modification techniques use fluorosilanes, which are less suitable for high-throughput manufacturing and analytical repeatability. Here, we report an alternative, rapid functionalization technique for DIOS surfaces using plasma polymerization (ppDIOS). We demonstrate the detection of drugs, metabolites, pesticides, and doping agents, directly from biological matrices, with molecular confirmation performed using the fragmentation capabilities of a tandem MS instrument. Furthermore, the ppDIOS surfaces were found to be stable over a 162 day period with no loss of reproducibility and sensitivity. This alternative functionalization technique is cost-effective and amenable to upscaling, ensuring avenues for the high-throughput manufacture and detection of hundreds of analytes across various applications while still maintaining the gold-standard clinical technique using mass spectrometry.
Collapse
Affiliation(s)
- Rajpreet Singh Minhas
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - E. Eduardo Antunez
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Taryn M. Guinan
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Leica Microsystems, Mount Waverley, Victoria 3149, Australia
| | - Thomas R. Gengenbach
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - David A. Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
31
|
Minhas RS, Rudd DA, Al Hmoud HZ, Guinan TM, Kirkbride KP, Voelcker NH. Rapid Detection of Anabolic and Narcotic Doping Agents in Saliva and Urine By Means of Nanostructured Silicon SALDI Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31195-31204. [PMID: 32551485 DOI: 10.1021/acsami.0c07849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel doping agents and doping strategies are continually entering the market, placing a burden on analytical methods to detect, adapt, and respond to subtle changes in the composition of biological samples. Therefore, there is a growing interest in rapid, adaptable, and ideally confirmatory analytical methods for the fight against doping. Nanostructured silicon (nano-Si)-based surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) can effectively address this need, allowing fast and sensitive detection of prohibited compounds used in sport doping. Here, we demonstrate the detection of growth hormone peptides, anabolic-androgenic steroids, and narcotics at low concentrations directly from biological matrices. Molecular confirmation was performed using the fragmentation data of the structures, obtained with the tandem mass spectrometry capabilities of the SALDI instrument. The obtained data were in excellent agreement with those obtained using leading triple quadrupole liquid chromatography-mass spectrometry instruments. Furthermore, nano-Si SALDI-MS has the capacity for high-throughput analysis of hundreds of biological samples, providing opportunities for real-time MS analysis at sporting events.
Collapse
Affiliation(s)
- Rajpreet Singh Minhas
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - David A Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hashim Z Al Hmoud
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Taryn M Guinan
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Leica Microsystems, Mount Waverly, Victoria 3149, Australia
| | - K Paul Kirkbride
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia 5001, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
32
|
Gas-aggregated Ag nanoparticles for detection of small molecules using LDI MS. Anal Bioanal Chem 2019; 412:1037-1047. [DOI: 10.1007/s00216-019-02329-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 01/04/2023]
|
33
|
He H, Guo Z, Wen Y, Xu S, Liu Z. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal Chim Acta 2019; 1090:1-22. [DOI: 10.1016/j.aca.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
34
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
35
|
High-Performance Sample Substrate of Gold Nanoparticle Multilayers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. NANOMATERIALS 2019; 9:nano9081078. [PMID: 31357575 PMCID: PMC6723548 DOI: 10.3390/nano9081078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/13/2023]
Abstract
The development of a sample substrate with superior performance for desorption and ionization of analyte is the key issue to ameliorate the quality of mass spectra for measurements of small molecules in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Herein, the homogeneous sample substrate of gold nanoparticle multilayers (AuNPs-ML) with hexagonal lattice was successfully prepared by self-assembly technique. With strong surface plasmon resonance absorption and superior photothermal effect, the sample substrate of AuNPs-ML exhibited high signal sensitivity and low background noise for the detection of model analyte of glucose without additional matrixes in SALDI-MS. Furthermore, compared to merchant matrixes of α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), the sample substrate of AuNPs-ML was demonstrated to ameliorate the quality of mass spectra, including signal strength, background interference and signal/noise (S/N) ratio. The sucrose and tryptophan were also measured to show the extensive applications of AuNPs-ML sample substrate for the detections of small molecules in SALDI-MS. Most importantly, the remarkable reproducibility of glucose mass spectra with relative signal of 7.3% was obtained by the use of AuNPs-ML sample substrate for SALDI-MS. The homogeneous sample substrate of AuNPs-ML greatly improved the quality of mass spectra because of its strong absorption of laser energy, low specific heat, high heat conductivity and extraordinary homogeneity. We believe that AuNPs-ML could be a practical sample substrate for small molecule detection in SALDI-MS.
Collapse
|
36
|
Determination of sulfonated azo dyes in chili powders by MALDI-TOF MS. Anal Bioanal Chem 2019; 411:5833-5843. [DOI: 10.1007/s00216-019-01965-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
|
37
|
Chu HW, Lai CS, Ko JY, Harroun SG, Chuang CI, Wang RYL, Unnikrishnan B, Huang CC. Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections. ACS Sens 2019; 4:1543-1551. [PMID: 31066548 DOI: 10.1021/acssensors.9b00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many serious public health emergencies around the globe are caused by viral epidemics. Thus, developing a reliable method for viral screening is in high demand. Multiplex assays for simultaneous detection and fast screening of high-risk pathogens are especially needed. This study employs metal nanoparticles to generate specific mass spectral signals for different RNA viruses, which enables simultaneous detection of whole viruses by laser desorption/ionization mass spectrometry (LDI-MS). We developed a nanoparticle-based sandwich immunosorbent assay as a sensing platform for the detection of viruses and viral nonstructural protein by LDI-MS. Cellulose acetate membrane (CAM) serves as the substrate for the fabrication of the sandwich immunosorbent assay with the advantages of clean mass spectra and high enrichment of analytes. Antibody-modified metal nanoparticles (Ab-MNPs; M = Au or Ag) act as metallic biocodes for the LDI-MS detection. The signal amplification readout for the virus is through the pulsed laser-induced formation of metal cluster ions ([M n]+; n = 1-3) from the Ab-MNPs which specifically bind on the CAM. Our sensing system is effective for the detection of intact viruses [Enterovirus 71 (EV71) and Japanese encephalitis virus (JEV)], nonstructural protein 1 (NS1) of Zika virus (ZIKV), EV71-spiked human serum samples, and the simultaneous detection of EV71 and ZIKV. Our probe efficiently detects EV71 in real clinical serum samples with >95% agreement with RT-qPCR results. This high-throughput LDI-MS viral detection system is simple, reliable, and high-throughput. We believe this platform has the potential to be employed for the routine screening of patients with viral infections.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chao-Sung Lai
- Biomedical Engineering Research Center, Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, New Taipei 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Jo-Yun Ko
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Scott G. Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Chiao-I Chuang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Robert Y. L. Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, New Taipei 33305, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
38
|
Jo SH, Park HG, Song WS, Kim SM, Kim EJ, Yang YH, Kim JS, Kim BG, Kim YG. Structural characterization of phosphoethanolamine-modified lipid A from probiotic Escherichia coli strain Nissle 1917. RSC Adv 2019; 9:19762-19771. [PMID: 35519361 PMCID: PMC9065436 DOI: 10.1039/c9ra02375e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Gut microbiota, a complex microbial community inhabiting human or animal intestines recently regarded as an endocrine organ, has a significant impact on human health. Probiotics can modulate gut microbiota and the gut environment by releasing a range of bioactive compounds. Escherichia coli (E. coli) strain Nissle 1917 (EcN), a Gram-negative bacterial strain, has been used to treat gastrointestinal (GI) disorders (i.e., inflammatory bowel disease, diarrhea, ulcerative colitis, and so on). However, endotoxicity of lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria in the gut, is known to have a strong influence on gut inflammation and maintenance of gut homeostasis. Therefore, characterizing the chemical structure of lipid A which determines the toxicity of LPS is needed to understand nonpathogenic colonization and commensalism properties of EcN in the gut more precisely. In the present study, MALDI multiple-stage mass spectrometry analysis of lipid A extracted from EcN demonstrates that hexaacylated lipid A (m/z 1919.19) contains a glucosamine disaccharide backbone, a myristate, a laurate, four 3-hydroxylmyristates, two phosphates, and phosphoethanolamine (PEA). PEA modification of lipid A is known to contribute to cationic antimicrobial peptide (CAMP) resistance of Gram-negative bacteria. To confirm the role of PEA in CAMP resistance of EcN, minimum inhibitory concentrations (MICs) of polymyxin B and colistin were determined using a wild-type strain and a mutant strain with deletion of eptA gene encoding PEA transferase. Our results confirmed that MICs of polymyxin B and colistin for the wild-type were twice as high as those for the mutant. These results indicate that EcN can more efficiently colonize the intestine through PEA-mediated tolerance despite the presence of CAMPs in human gut such as human defensins. Thus, EcN can be used to help treat and prevent many GI disorders.
Collapse
Affiliation(s)
- Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University 369 Sangdo-Ro Seoul 06978 Korea +82-2-828-7099
| | - Han-Gyu Park
- Department of Chemical Engineering, Soongsil University 369 Sangdo-Ro Seoul 06978 Korea +82-2-828-7099
| | - Won-Suk Song
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Korea
| | - Seong-Min Kim
- Department of Chemical Engineering, Soongsil University 369 Sangdo-Ro Seoul 06978 Korea +82-2-828-7099
| | - Eun-Jung Kim
- Institute of Molecular Biology and Genetics, Seoul National University Seoul 08826 Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University Seoul 05029 Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Seoul 05355 Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University 369 Sangdo-Ro Seoul 06978 Korea +82-2-828-7099
| |
Collapse
|
39
|
Silina YE, Semenova D, Spiridonov BA. One-step encapsulation, storage and controlled release of low molecular weight organic compounds via electroplated nanoparticles. Analyst 2019; 144:5677-5681. [DOI: 10.1039/c9an01246j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we introduce an original strategy towards one-step encapsulation, storage and controlled release of low molecular weight organic compounds via electroplated nanoparticles.
Collapse
Affiliation(s)
- Y. E. Silina
- Institute of Biochemistry
- Saarland University
- Saarbrücken
- Germany
- KIST – Korea Institute of Science and Technology
| | - D. Semenova
- Process and Systems Engineering Center (PROSYS)
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- Kgs. Lyngby
- Denmark
| | - B. A. Spiridonov
- Voronezh State Technical University
- Department of Chemistry
- Voronezh
- Russia
| |
Collapse
|
40
|
Garcia MM, Wrobel K, Barrientos EY, Escobosa ARC, Serrano O, Donis IE, Wrobel K. Determination of copper and lead in tequila by conventional matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and partial least squares regression. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2174-2184. [PMID: 30280437 DOI: 10.1002/rcm.8297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/08/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Quantification of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is challenging yet attractive, due to micro-scale procedural simplicity, high throughput and lack of memory effects. Since these features are important while analyzing trace elements in quality control schemes, MALDI-TOFMS was used for the determination of copper (Cu) and lead (Pb) in tequila with quantification carried out by partial least squares regression (PLS2) and by univariate calibration (UC). METHODS In the proposed procedure, Bi(III) was added as internal standard (IS), diethyldithiocarbamate complexes were formed (pH 7.4) and extracted into chloroform; after solvent evaporation and re-constitution in acetonitrile, the sample was co-crystallized with α-cyano-4-hydroxycinnamic acid on a steel target. From the acquired mass spectra, UC was performed using IS-normalized signals of the monoisotopic ions of analytes, and the m/z range 350-513 was used for PLS2. Accuracy was tested by recovery experiments and by inductively coupled plasma (ICP)-MS analysis. RESULTS When compared with direct analyte signal measurements, application of IS yielded enhanced analytical performance using either UC or PLS2; the method quantification limits were: 11.1 μg L-1 , 23.4 μg L-1 for Cu and 89.8 μg L-1 , 97.1 μg L-1 for Pb, respectively. In tequila, MALDI-TOFMS and ICP-MS provided consistent results for Cu (165-2599 μg L-1 ); Pb was not detected in any sample by MALDI-TOFMS, yet recoveries obtained after standard addition were indicative of acceptable accuracy (400 μg L-1 Pb added; recoveries: 91.2-108% for UC and 98.8-120% for PLS2). CONCLUSIONS New experimental evidence has been provided supporting the inclusion of trace metals quantification within a range of MALDI-TOFMS applications. Slightly better results were obtained for UC as compared with PLS2 yet both methods can be recommended for testing the compliance of Cu and Pb levels with Official Mexican Norm. Of note, while using PLS2, there is no need for signal integration nor for IS normalization.
Collapse
Affiliation(s)
- Manuel Mendez Garcia
- Department of Chemistry, University of Guanajuato, L de Retana N°5, 36000, Guanajuato, Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, L de Retana N°5, 36000, Guanajuato, Mexico
| | - Eunice Yanez Barrientos
- Department of Chemistry, University of Guanajuato, L de Retana N°5, 36000, Guanajuato, Mexico
| | | | - Oracio Serrano
- Department of Chemistry, University of Guanajuato, L de Retana N°5, 36000, Guanajuato, Mexico
| | - Israel Enciso Donis
- Department of Chemistry, University of Guanajuato, L de Retana N°5, 36000, Guanajuato, Mexico
| | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato, L de Retana N°5, 36000, Guanajuato, Mexico
| |
Collapse
|
41
|
Semenova D, Gernaey KV, Silina YE. Exploring the potential of electroless and electroplated noble metal-semiconductor hybrids within bio- and environmental sensing. Analyst 2018; 143:5646-5669. [PMID: 30328420 DOI: 10.1039/c8an01632a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the last two decades, the rapid development and widespread application of nanomaterials has significantly influenced research in various fields, including analytical chemistry and biosensing technologies. In particular, the simple functionalization and tuning of noble metal nanoparticle (NP) surface chemistry resulted in the development of a series of novel biosensing platforms with quick read-out and enhanced capabilities towards specific analyte detection. Moreover, noble metal NPs possess a number of unique properties, viz. high surface-to-volume ratio and excellent spectral, optical, thermal, electrical and catalytic characteristics. This manuscript provides an elaborate review on galvanic noble metal NPs deposited onto semiconductor surfaces, from the preparation stage towards their application in biosensors and gas sensing. Two types of deposition approaches, viz. galvanic displacement/electroless and conventional electroplating, are introduced and compared. Furthermore, the analytical merit of hybrid nanomaterials towards the improvement of sensing abilities is highlighted. Finally, some limitations and challenges related to progress in the development and application of analytical devices based on electroless and electroplated noble metal NPs-semiconductor hybrids (NMNPsHs) in biochemical and environmental sensing are discussed.
Collapse
Affiliation(s)
- D Semenova
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
42
|
Chu HW, Unnikrishnan B, Anand A, Mao JY, Huang CC. Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J Food Drug Anal 2018; 26:1215-1228. [PMID: 30249320 PMCID: PMC9298562 DOI: 10.1016/j.jfda.2018.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
|
43
|
Duncombe TA, Raad MD, Bowen BP, Singh AK, Northen TR. Insulator Nanostructure Desorption Ionization Mass Spectrometry. Anal Chem 2018; 90:9657-9661. [PMID: 30063326 DOI: 10.1021/acs.analchem.8b01989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface-assisted laser desorption ionization (SALDI) is an approach for gas-phase ion generation for mass spectrometry using laser excitation on typically conductive or semiconductive nanostructures. Here, we introduce insulator nanostructure desorption ionization mass spectrometry (INDI-MS), a nanostructured polymer substrate for SALDI-MS analysis of small molecules and peptides. INDI-MS surfaces are produced through the self-assembly of a perfluoroalkyl silsesquioxane nanostructures in a single chemical vapor deposition silanization-step. We find that surfaces formed from the perfluorooctyltrichlorosilane monomer assemble semielliptical features with a 10 nm height, diameters between 10 and 50 nm, and have attomole-femtomole sensitivities for selected analytes. Surfaces prepared with silanes that either lack the trichloro or perfluoro groups, lack sensitivity. Further, we demonstrate that hydrophobic INDI regions can be micropatterned onto hydrophilic surfaces to perform on-chip self-desalting in an array format.
Collapse
Affiliation(s)
- Todd A Duncombe
- DOE Joint BioEnergy Institute , 5885 Hollis Street , Emeryville , California 94608 , United States.,Sandia National Laboratories , Livermore , California 94550 , United States
| | - Markus De Raad
- Environmental Genomics and Systems Biology, Biosciences , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Benjamin P Bowen
- Joint Genome Institute , Department of Energy , 2800 Mitchell Drive , Walnut Creek , California 94598 , United States.,Environmental Genomics and Systems Biology, Biosciences , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Anup K Singh
- DOE Joint BioEnergy Institute , 5885 Hollis Street , Emeryville , California 94608 , United States.,Sandia National Laboratories , Livermore , California 94550 , United States
| | - Trent R Northen
- DOE Joint BioEnergy Institute , 5885 Hollis Street , Emeryville , California 94608 , United States.,Joint Genome Institute , Department of Energy , 2800 Mitchell Drive , Walnut Creek , California 94598 , United States.,Environmental Genomics and Systems Biology, Biosciences , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| |
Collapse
|
44
|
Holá M, Salajková Z, Hrdlička A, Pořízka P, Novotný K, Čelko L, Šperka P, Prochazka D, Novotný J, Modlitbová P, Kanický V, Kaiser J. Feasibility of Nanoparticle-Enhanced Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2018; 90:11820-11826. [DOI: 10.1021/acs.analchem.8b01197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Markéta Holá
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zita Salajková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Aleš Hrdlička
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Karel Novotný
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Petr Šperka
- Institute of Machine and Industrial Design, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - David Prochazka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Jan Novotný
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Pavlína Modlitbová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
45
|
Palermo A, Forsberg EM, Warth B, Aisporna AE, Billings E, Kuang E, Benton HP, Berry D, Siuzdak G. Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS NANO 2018; 12:6938-6948. [PMID: 29966083 DOI: 10.1021/acsnano.8b02376] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanostructure imaging mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) is a nanoparticle assisted laser desorption/ionization approach that requires low laser energy and has demonstrated high sensitivity. Here we describe NIMS with f-AuNPs for the comprehensive analysis of metabolites in biological tissues. F-AuNPs assist in desorption/ionization by laser-induced release of the fluorocarbon chains with minimal background noise. Since the energy barrier required to release the fluorocarbons from the AuNPs is minimal, the energy of the laser is maintained in the low μJ/pulse range, thus limiting metabolite in-source fragmentation. Electron microscopy analysis of tissue samples after f-AuNP NIMS shows a distinct "raising" of the surface as compared to matrix assisted laser desorption ionization ablation, indicative of a gentle desorption mechanism aiding in the generation of intact molecular ions. Moreover, the use of perfluorohexane to distribute the f-AuNPs on the tissue creates a hydrophobic environment minimizing metabolite solubilization and spatial dislocation. The transfer of the energy from the incident laser to the analytes through the release of the fluorocarbon chains similarly enhances the desorption/ionization of metabolites of different chemical nature, resulting in heterogeneous metabolome coverage. We performed the approach in a comparative study of the colon of mice exposed to three different diets. F-AuNP NIMS allows the direct detection of carbohydrates, lipids, bile acids, sulfur metabolites, amino acids, nucleotide precursors as well as other small molecules of varied biological origins. Ultimately, the diversified molecular coverage obtained provides a broad picture of a tissue's metabolic organization.
Collapse
Affiliation(s)
- Amelia Palermo
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Erica M Forsberg
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Vienna Metabolomics Center (VIME) , University of Vienna , Währingerstraße 38 , 1090 Vienna , Austria
| | - Aries E Aisporna
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Elizabeth Billings
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ellen Kuang
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - H Paul Benton
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Gary Siuzdak
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
- Department of Chemistry, Molecular and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
46
|
Garcia MM, Wrobel K, Segovia ASR, Barrientos EY, Escobosa ARC, Serrano O, Aguilar FJA, Wrobel K. Application of MALDI-TOFMS Combined with Partial Least Square Regression for the Determination of Mercury and Copper in Canned Tuna, Using Dithizone as the Complexing Agent and Ag(I) as Internal Standard. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 2018; 410:4015-4038. [DOI: 10.1007/s00216-018-1014-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
48
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
49
|
Li Y, Cao X, Zhan L, Xue J, Wang J, Xiong C, Nie Z. Hot electron transfer promotes ion production in plasmonic metal nanostructure assisted laser desorption ionization mass spectrometry. Chem Commun (Camb) 2018; 54:10905-10908. [DOI: 10.1039/c8cc05793a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Experimental evidences are shown that hot electron transfer in LSPR plays a key role in ionizing molecules during laser desorption ionization process.
Collapse
Affiliation(s)
- Yafeng Li
- College of Chemical Engineering
- Jiujiang University
- Jiujiang
- China
- Beijing National Laboratory for Molecular Sciences
| | - Xiaohua Cao
- College of Chemical Engineering
- Jiujiang University
- Jiujiang
- China
| | - Lingpeng Zhan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Jingjuan Xue
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
50
|
Luo X, Tue PT, Sugiyama K, Takamura Y. High yield matrix-free ionization of biomolecules by pulse-heating ion source. Sci Rep 2017; 7:15170. [PMID: 29123135 PMCID: PMC5680173 DOI: 10.1038/s41598-017-15259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been widely used for biomolecular analysis. However, with conventional MALDI, it is difficult to analyse low-molecular-weight compounds because of the interference of matrix ion signals. Here, we report a matrix-free on-chip pulse-heating desorption/ionization (PHDI) method for a wide range of biomolecules ranging from low molecular-weight substances such as glycine (75.7 Da) to large species such as α-lactalbumin (14.2 kDa). Compared with the conventional MALDI, the matrix-free PHDI method affords high yields of singly charged ions with very less fragmentation and background using only one-pulse without light (laser). We believe that this new technique for matrix-free biomolecules analysis would overcome the limitations of the conventional MALDI.
Collapse
Affiliation(s)
- Xi Luo
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Phan-Trong Tue
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Kiyotaka Sugiyama
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Yuzuru Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan.
| |
Collapse
|