1
|
Arshad F, Hassan IU, AlGhamadi JM, Naikoo GA. Biofouling-resistant nanomaterials for non-enzymatic glucose sensors: A critical review. Mater Today Bio 2025; 32:101746. [PMID: 40275958 PMCID: PMC12020842 DOI: 10.1016/j.mtbio.2025.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Biofouling is a significant concern in sensors and diagnostic applications as it results in reduced sensitivity, selectivity, and response time, false signals or noise, and ultimately causes a reduction in the sensor lifespan. This is particularly a concern while developing non-enzymatic glucose sensors (NEGS) that can be used to fabricate implantable sensors for continuous glucose monitoring. Thus, developing advanced materials solutions in the form of nanomaterials that display inherent antifouling activity is imperative. Due to their small nanosized dimensions and tunable microstructures, nanomaterials display unique physio-chemical properties that display antifouling efficiency and thus can be applied towards developing highly stable, sensitive, and selective NEGS. Through this review, we aim to explore the recent advances in the field of antifouling nanomaterials that offer promising potential to be applied towards developing NEGS. We discuss the details of various biofouling-resistant nanomaterials, including graphene and graphene oxide, carbon nanotubes, gold nanoparticles, silver nanoparticles, metal oxide nanoparticles, and polymeric nanocomposites. Further, we highlighted the possible mechanism of action involving nanomaterials in providing antifouling features in NEGS, followed by a brief discussion of the advantages and disadvantages of using nanomaterials for antifouling in developing NEGS. Finally, we concluded the article by proposing the future prospects of this promising technology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | - Israr U. Hassan
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | - Jwaher M. AlGhamadi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| |
Collapse
|
2
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Ahmadi A, Shokrollahzadeh S, Samimi A, Ashori A. Super hydrophilic and super oleophobic carbon nanotube/TiO 2 composite membranes for efficient separation of algal-derived oil/water emulsions. Colloids Surf B Biointerfaces 2025; 248:114491. [PMID: 39756159 DOI: 10.1016/j.colsurfb.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO2) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes. Two distinct incorporation methods were employed for TiO2; direct nanoparticle incorporation and surface coating onto the CNT/PDA network. The membranes were comprehensively characterized using FTIR, SEM, EDS, contact angle measurements, and AFM analysis. The synthesized MCE@CNT/PDA/NP-TiO2 membrane exhibited super hydrophilicity with a water contact angle of 6.3° and underwater super oleophobicity with oil contact angles up to 172°. Membrane performance evaluation using a Nannochloropsis salina microalgae oil/water emulsion revealed excellent flux up to 9238 L m-2 h-1 bar-1 and oil rejection as high as 98.6 % for the TiO2-incorporated membranes. Additionally, these membranes demonstrated superior antifouling properties, maintaining over 90 % of initial flux even after five separation cycles. Incorporating TiO2 nanoparticles significantly enhanced the membrane's hydrophilicity, oleophobicity, antifouling capability, and stability under extreme pH conditions. The developed composite membranes show great potential for efficient and cost-effective separation of algal oil from microalgae cultivation systems.
Collapse
Affiliation(s)
- Ali Ahmadi
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Abdolreza Samimi
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
4
|
Damasceno DA, Hue KY, Miranda CR, Müller EA. Mechanical Properties of Polyethylene/Carbon Nanotube Composites from Coarse-Grained Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:200. [PMID: 39940176 PMCID: PMC11821049 DOI: 10.3390/nano15030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Advanced nanocomposite membranes incorporate nanomaterials within a polymer matrix to augment the mechanical strength of the resultant product. Characterizing these membranes through molecular modeling necessitates specialized approaches to accurately capture the length scales, time scales, and structural complexities inherent in polymers. To address these requirements, an efficient simulation protocol is proposed, utilizing coarse-grained (CG) molecular dynamics simulations to examine the mechanical properties of polyethylene/single-walled carbon nanotube (PE/SWCNT) composites. This methodology integrates CG potentials derived from the statistical associating fluid theory (SAFT-γ Mie) equation of state and a modified Tersoff potential as a model for SWCNTs. A qualitative correspondence with benchmark classical all-atom models, as well as available experimental data, is observed, alongside enhanced computational efficiency. Employing this CG model, the focus is directed at exploring the mechanical properties of PE/SWCNT composites under both tensile and compressive loading conditions. The investigation covered the influence of SWCNT size, dispersion, and weight fraction. The findings indicate that although SWCNTs enhance the mechanical strength of PE, the extent of enhancement marginally depends on the dispersion, filler size, and weight fraction. Fracture strengths may be elevated by 20% with a minor incorporation of SWCNTs. Under compression, the incorporation of SWCNTs into the composites results in a transformation from brittle to tough materials. These insights contribute to the optimization of PE/SWCNT composites, emphasizing the importance of considering multiple factors to fine-tune the desired mechanical performance.
Collapse
Affiliation(s)
- Daniela A. Damasceno
- Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of São Paulo, Av. Professor Mello Moraes, 2231, São Paulo 05508-030, SP, Brazil;
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
- Department of Materials Physics and Mechanics, Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo 05508-090, SP, Brazil;
| | - Keat Yung Hue
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
| | - Caetano R. Miranda
- Department of Materials Physics and Mechanics, Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo 05508-090, SP, Brazil;
| | - Erich A. Müller
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK;
| |
Collapse
|
5
|
Baratta M, Mastropietro TF, Escamilla P, Algieri V, Xu F, Nicoletta FP, Ferrando-Soria J, Pardo E, De Filpo G, Armentano D. Sulfur-Functionalized Single-Walled Carbon Nanotube Buckypaper/MTV-BioMetal-Organic Framework Nanocomposites for Gold Recovery. Inorg Chem 2024; 63:18992-19001. [PMID: 39325842 DOI: 10.1021/acs.inorgchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Developing sustainable, efficient, and selective gold recovery technology is essential to implement the valorization of complementary alternative sources for this precious metal, such as spent e-waste, and to preserve the environment. The main challenge in recovering gold from liquors obtained from leached waste electronics is the low concentration of this precious metal compared to impurities. Here, we report the preparation of a novel multivariate biological metal-organic framework (MTV-BioMOF) as a potential material for the selective recovery of gold metal ions from water, even in the presence of other interfering metals. Moreover, MTV-BioMOF can be incorporated within single-walled carbon nanotube buckypapers (SWCNT-BP) to yield an MTV-BioMOF@HS-SWCNT-BP composite, which combines enhanced mechanical properties and high chemical stability. The thiol-functionalized SWCNT-BP surface and the presence of thioether groups evenly decorating the MTV-BioMOF channels shape a task-specific functional environment that boosts the interactions with gold metal ions. The efficiency of gold recovery reaches values up to 99.5% when MTV-BioMOF@SWCNT-BP is used as an adsorbent for treating Au(III) in very diluted solutions (initial concentration of 5 ppm). This high recovery efficiency, with values as high as 98.0%, is maintained even in the presence of competing metal cations, also demonstrating a noticeable selectivity. This composite material represents a promising paradigm for the selective extraction, enrichment, and purification of gold.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Teresa F Mastropietro
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Paula Escamilla
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Vincenzo Algieri
- IRCCS NEUROMED-Istituto Neurologico Mediterraneo, Via Atinense 18, Pozzilli (IS) 86077, Italy
| | - Fang Xu
- Department of Biology, Ecology and Earth Science University of Calabria, Rende 87036, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Rende 87036, Italy
| | - Jesus Ferrando-Soria
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Emilio Pardo
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Donatella Armentano
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| |
Collapse
|
6
|
Jebarani AH, Rasal RK, Badsha I, Nallathambi G, Devasena T. Fabrication and optimization of curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate reinforced electrospun polyacrylonitrile membrane for water treatment applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46652-46668. [PMID: 37936040 DOI: 10.1007/s11356-023-30715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
In the recent times, one of the most crucial tasks related to water resources is the treatment of polluted water. This study reports the development of a functionalized nanofibrous membrane with enhanced filtration performance, heavy metal removal, and photocatalytic dye degradation for the effective treatment of contaminated water. The nanofibrous mats were developed by the process of electrospinning using a polymeric solution of polyacrylonitrile (PAN) reinforced with curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate. The experimental trials for membrane fabrication were adapted based on the design of experiments (DoE) approach by making use of the Box-Behnken design (BBD) for a three-variable system, a component of response surface methodology (RSM). The three variable parameters selected for optimization of the electrospinning process were the dopant concentration (in weight percentage), the flow rate (in millilitre per hour), and the spinning time (in hours), respectively, and a total of 15 fibrous membranes were fabricated. The SEM analysis of the fabricated membranes revealed alterations in the surface morphology of the fibrous mats with variations in the electrospinning parameters. The infrared spectrum of the fibrous mats, validated the incorporation C-MWCNT conjugate in PAN, thereby confirming the formation of PAN/C-MWNCNT membrane. The mean flow pore size and breaking force of the PAN/C-MWCNT membranes was also obtained using a universal testing machine (UTM) and porometer, respectively. To choose the best membrane for efficient filtration experiments, the performance of each of the prepared membranes was assessed in terms of solute rejection percentage (SR%), permeate flux (PF), and pure water flux (PWF). The statistical analysis of the assessed parameters in accordance with the membranes prepared was done using the MINITAB software, and the three-dimensional (3D) surface plots were constructed using the STATISTICA software to visualize and validate the relation between each of the electrospinning parameters and the corresponding membrane performance characteristics. Similarly, the potential of the electrospun membranes for efficient heavy metal ion removal and photocatalysis were also tested independently and the optimal electrospinning parameters were determined for the same. Based on the results, it was observed that the PAN/C-MWCNT membranes could serve as potential candidates for the treatment of polluted water.
Collapse
Affiliation(s)
| | - Renjith Kumar Rasal
- Centre for Nanoscience and Technology, Anna University, Chennai, 600025, India
| | - Iffath Badsha
- Centre for Nanoscience and Technology, Anna University, Chennai, 600025, India
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, 600025, India
| | | |
Collapse
|
7
|
Almarzooqi N, Shaheen A, Nogueira R, Mustafa I, Arafat HA, Hong S, AlMarzooqi F. Electrothermal interfacial evaporation through carbon-nanostructured composite membranes. CHEMOSPHERE 2024; 349:140913. [PMID: 38072202 DOI: 10.1016/j.chemosphere.2023.140913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
High energy demand required in membrane distillation (MD) process to heat feed water and maintain the necessary temperature gradient across the membrane presents a challenge to widespread adoption of MD. In response to this challenge, surface heating membrane distillation (SHMD) has emerged as a promising solution. SHMD can employ solar or electrical energy to directly heat the membrane and feed, eliminating the need for an external heat source to heat feed water. In this study, we explore electrothermally-driven interfacial evaporation using a multi-walled carbon nanotube (MWCNT)-based composite membrane and further envision its utilization for high-efficient SHMD. Upon application of voltage, the resistance of the MWCNT leads to the conversion of electrical energy into heat, which is then uniformly transferred to feeds. The MWCNT-based composite membrane exhibited an evaporative water flux of up to 2.34 kg m-2h-1 with an associated energy efficiency of 61% and demonstrated outstanding localized surface heating performance. The employed membranes exhibited no significant variations in either resistance or surface temperature, regardless of the direction of the applied electric field. Energy parameters from the electrothermal membranes showed quantitative agreement with values reported for various electrothermal MD systems, suggesting the potential of the composite membranes in energy-efficient and cost-effective localized heating MD applications.
Collapse
Affiliation(s)
- Noora Almarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Alaa Shaheen
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Ricardo Nogueira
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Ibrahim Mustafa
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Hassan A Arafat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Research and Innovation Center for Graphene & 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Seunghyun Hong
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| | - Faisal AlMarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, 127788, United Arab Emirates; Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
8
|
Fekete L, Fazekas ÁF, Hodúr C, László Z, Ágoston Á, Janovák L, Gyulavári T, Pap Z, Hernadi K, Veréb G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO 2/CNT Nanocomposite-Modified PVDF Membranes. MEMBRANES 2023; 13:209. [PMID: 36837714 PMCID: PMC9964517 DOI: 10.3390/membranes13020209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.
Collapse
Affiliation(s)
- Laura Fekete
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Cecilia Hodúr
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, H-3515 Miskolc, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Berned-Samatán V, Téllez C, Coronas J. Double-Layered Pebax ® 3533/ZIF-8 Membranes with Single-Walled Carbon Nanotube Buckypapers as Support for Gas Separation. MEMBRANES 2023; 13:71. [PMID: 36676878 PMCID: PMC9860796 DOI: 10.3390/membranes13010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Single-walled carbon nanotube buckypapers (SWCNT-bps) coated with a metal-organic framework ZIF-8 layer were used as supports for the preparation of Pebax® 3533 TFC membranes by both phase inversion and spin coating techniques. Upon proper characterization of the materials by X-ray diffraction, IR spectroscopy, thermogravimetry and electron microscopy, the obtained membranes were tested in gas separation experiments with a 15:85 CO2/N2 mixture. These experiments proved that the ZIF-8 layer prevented from the penetration of the polymer selective film into the SWCNT-bp support, giving rise to a highly permeable selective membrane. The optimum membrane was achieved by the spin-coating method, with better permeation results than that prepared by the phase inversion method, obtaining a CO2 permeance of 566 GPU together with a CO2/N2 selectivity of 20.9.
Collapse
Affiliation(s)
- Víctor Berned-Samatán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Carlos Téllez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
10
|
Fabrication of novel buckypaper metal oxide nano-catalysis glycerol carbonate/MWCNTs membrane for efficient removal of heavy metals. Heliyon 2022; 8:e12633. [PMID: 36643332 PMCID: PMC9834768 DOI: 10.1016/j.heliyon.2022.e12633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
This study describes the fabrication of novel buckypaper membranes through the dispersion of multi-walled carbon nanotubes (MWCNTs) in the presence of surfactants metal oxide nano-catalysis Zinc oxide and magnesium oxide (ZnO and MgO) glycerol carbonate separately. Following vacuum filtration of the scattered solutions, self-supporting membranes known as buckypapers (BPs) were produced. The suggested membranes were employed for the efficient removal of heavy metals. The obtained data indicated that the incorporation of both glycerol carbonates prepared by two different nano metal oxides enhanced the permeability of MWCNTs membranes rejection efficiency. The characterization of the synthesized metal oxide nanoparticles, as well as the physicochemical and morphological properties of the membranes, were investigated. The rejection capabilities of membranes for the heavy metal ions were examined. Moreover, the suggested MWCNTs/ZnO nano-catalyst glycerol carbonate BP membrane displayed high rejection efficiency for heavy metals (Cd2+, Cu2+, Co2+, Ni2+, and Pb2+) than that prepared from the MgO nano-catalyst one.
Collapse
|
11
|
Baratta M, Tursi A, Curcio M, Cirillo G, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Removal of Non-Steroidal Anti-Inflammatory Drugs from Drinking Water Sources by GO-SWCNT Buckypapers. Molecules 2022; 27:molecules27227674. [PMID: 36431774 PMCID: PMC9696248 DOI: 10.3390/molecules27227674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmaceutical products such as antibiotics, analgesics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) are new emerging pollutants, often present in wastewater, potentially able to contaminate drinking water resources. Adsorption is considered the cheapest and most effective technique for the removal of pollutants from water, and, recently, membranes obtained by wet filtration method of SWCNT aqueous solutions (SWCNT buckypapers, SWCNT BPs) have been proposed as self-standing porous adsorbents. In this paper, the ability of graphene oxide/single-walled carbon nanotube composite membranes (GO-SWCNT BPs) to remove some important NSAIDs, namely Diclofenac, Ketoprofen, and Naproxen, was investigated at different pH conditions (pH 4, 6, and 8), graphene oxide amount (0, 20, 40, 60, and 75 wt.%), and initial NSAIDs concentration (1, 10, and 50 ppm). For the same experimental conditions, the adsorption capacities were found to strongly depend on the graphene oxide content. The best results were obtained for 75 wt.% graphene oxide with an adsorption capacity of 118 ± 2 mg g-1 for Diclofenac, 116 ± 2 mg g-1 for Ketoprofen, and 126 ± 3 mg g-1 for Naproxen at pH 4. Overall, the reported data suggest that GO-SWCNT BPs can represent a promising tool for a cheap and fast removal of NSAIDs from drinking water resources, with easy recovery and reusability features.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| |
Collapse
|
12
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
13
|
Baratta M, Tursi A, Curcio M, Cirillo G, Nicoletta FP, De Filpo G. GO-SWCNT Buckypapers as an Enhanced Technology for Water Decontamination from Lead. Molecules 2022; 27:molecules27134044. [PMID: 35807300 PMCID: PMC9268222 DOI: 10.3390/molecules27134044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Water decontamination is an important challenge resulting from the incorrect disposal of heavy metal waste into the environment. Among the different available techniques (e.g., filtration, coagulation, precipitation, and ion-exchange), adsorption is considered the cheapest and most effective procedure for the removal of water pollutants. In the last years, several materials have been tested for the removal of heavy metals from water, including metal-organic frameworks (MOFs), single-walled carbon nanotubes (SWCNTs), and graphene oxide (GO). Nevertheless, their powder consistency, which makes the recovery and reuse after adsorption difficult, is the main drawback for these materials. More recently, SWCNT buckypapers (SWCNT BPs) have been proposed as self-standing porous membranes for filtration and adsorption processes. In this paper, the adsorption capacity and selectivity of Pb2+ (both from neat solutions and in the presence of other interferents) by SWCNT BPs were evaluated as a function of the increasing amount of GO used in their preparation (GO-SWCNT buckypapers). The highest adsorption capacity, 479 ± 25 mg g−1, achieved for GO-SWCNT buckypapers with 75 wt.% of graphene oxide confirmed the effective application of such materials for cheap and fast water decontamination from lead.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (M.B.); (A.T.)
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (M.B.); (A.T.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (G.C.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (G.C.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (G.C.)
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (M.B.); (A.T.)
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| |
Collapse
|
14
|
Mittal D, Ali SA. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microb Drug Resist 2022; 28:670-697. [PMID: 35696335 DOI: 10.1089/mdr.2021.0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Globally, viral illness propagation is the leading cause of morbidity and death, causing wreaking havoc on socioeconomic development and health care systems. The rise of infected individuals has outpaced the existing critical care facilities. Early and sophisticated methods are desperately required in this respect to halt the spread of the infection. Therefore, early detection of infectious agents and an early treatment approach may help minimize viral outbreaks. Conventional point-of-care diagnostic techniques such as computed tomography scan, quantitative real time polymerase chain reaction (qRT-PCR), X-ray, and immunoassay are still deemed valuable. However, the labor demanding, low sensitivity, and complex infrastructure needed for these methods preclude their use in distant areas. Nanotechnology has emerged as a potentially transformative technology due to its promise as an effective theranostic platform for diagnosing and treating viral infection, circumventing the limits of traditional techniques. Their unique physical and chemical characteristics make nanoparticles (NPs) advantageous for drug delivery platforms due to their size, encapsulation efficiency, improved bioavailability, effectiveness, immunogenicity, and antiviral response. This study discusses the recent research on nanotechnology-based treatments designed to combat new viruses.
Collapse
Affiliation(s)
- Deepti Mittal
- Nanosafety Lab, Division of Biochemistry, ICAR-NDRI, Karnal, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, Haryana, India
| |
Collapse
|
15
|
Baratta M, Mastropietro TF, Bruno R, Tursi A, Negro C, Ferrando-Soria J, Mashin AI, Nezhdanov A, Nicoletta FP, De Filpo G, Pardo E, Armentano D. Multivariate Metal-Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective Lead Decontamination. ACS APPLIED NANO MATERIALS 2022; 5:5223-5233. [PMID: 35492436 PMCID: PMC9039961 DOI: 10.1021/acsanm.2c00280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
The search for efficient technologies empowering the selective capture of environmentally harmful heavy metals from wastewater treatment plants, at affordable prices, attracts wide interest but constitutes an important technological challenge. We report here an eco-friendly single-walled carbon nanotube buckypaper (SWCNT-BP) enriched with a multivariate amino acid-based metal-organic framework (MTV-MOF) for the efficient and selective removal of Pb2+ in multicomponent water systems. Pristine MTV-MOF was easily immobilized within the porous network of entangled SWCNTs, thus obtaining a stable self-standing adsorbing membrane filter (MTV-MOF/SWCNT-BP). SWCNT-BP alone shows a moderately good removal performance with a maximum adsorption capacity of 180 mg·g-1 and a considerable selectivity for Pb(II) ions in highly concentrated multi-ion solutions over a wide range of lead concentration (from 200 to 10000 ppb). Remarkably, these features were outperformed with the hybrid membrane filter MTV-MOF/SWCNT-BP, exhibiting enhanced selectivity and adsorption capacity (310 mg·g-1, which is up to 42% higher than that of the neat SWCNT-BP) and consequently enabling a more efficient and selective removal of Pb2+ from aqueous media. MTV-MOF/SWCNT-BP was able to reduce [Pb2+] from the dangerous 1000 ppb level to acceptable limits for drinking water, below 10 ppb, as established by the current EPA and WHO limits. Thus, the eco-friendly composite MTV-MOF/SWCNT-BP shows the potential to be effectively used several times as a reliable adsorbent for Pb2+ removal for household drinking water or in industrial treatment plants for water and wastewater lead decontamination.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Teresa Fina Mastropietro
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Rosaria Bruno
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Antonio Tursi
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Cristina Negro
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Jesús Ferrando-Soria
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Alexander I. Mashin
- Applied
Physics & Microelectronics, Lobachevsky
State University of Nizhni Novgorod, 603022 Nizhni Novgorod, Russian Federation
| | - Aleksey Nezhdanov
- Applied
Physics & Microelectronics, Lobachevsky
State University of Nizhni Novgorod, 603022 Nizhni Novgorod, Russian Federation
| | - Fiore P. Nicoletta
- Dipartimento
di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Emilio Pardo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| |
Collapse
|
16
|
Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: A critical review and prospects. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2022; 46:100544. [PMID: 34778007 PMCID: PMC8577996 DOI: 10.1016/j.colcom.2021.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/31/2021] [Indexed: 05/11/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) around the world has ravaged both global health and economy. This unprecedented situation has thus garnered attention globally. This further necessitated the deployment of an effective strategy for rapid and patient-compliant identification and isolation of patients tested positive for SARS-CoV-2. Following this, several companies and institutions across the globe are striving hard to develop real-time methods, like biosensors for the detection of various viral components including antibodies, antigens, ribonucleic acid (RNA), or the whole virus. This article attempts to review the various, mechanisms, advantages and limitations of the common biosensors currently being employed for detection. Additionally, it also summarizes recent advancements in various walks of fighting COVID-19, including its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Purab Sood
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra 400013, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune - 411038, Maharashtra, India
| |
Collapse
|
17
|
Amide functionalized DWCNT nanocomposite membranes for chiral separation of the racemic DOPA. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Wang X, Li F, Hu X, Hua T. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues: A review on its potential applications, advances, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146912. [PMID: 33901964 DOI: 10.1016/j.scitotenv.2021.146912] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 05/12/2023]
Abstract
Antibiotic pollution is mainly caused by aquaculture wastewater and pharmaceuticals, which are frequently used by humans. Due to limited treatment efficiency or improper selection of treatment methods, these antibiotic residues may be very harmful in human drinking water and aquatic environments. The EAOPs coupling membrane technology (EAOPs-membrane) can play their own advantages, which can significantly improve the degradation efficiency and alleviate membrane pollution (electrochemical manners). In this context, this review mainly collecting researches and information on EAOPs-membrane treatment of antibiotic pollution published between 2012 and 2020. Discussed the different combinations of these two technologies, the mechanism of them in the system to improve the processing efficiency, prolong the working time, and stabilize the system structure. Mainly due to the synergistic effect of electrochemical behavior such as electric repulsion and in-situ oxidation, the membrane fouling in the system is alleviated. In this review it was summarized that the selection of different membrane electrode materials and their modifications. The paper also elaborates the existing challenges facing the EAOPs-membrane methods for antibiotic pollution treatment, and their prospects.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Tao Hua
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Functionalized carbon nanotube–cellulose nanocrystal (CNT–CNC) composite buckypaper via various methods for improved hydrophilicity performance and behavior. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01961-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Improvement of Alcaligenes sp.TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. BIORESOURCE TECHNOLOGY 2021; 327:124785. [PMID: 33582520 DOI: 10.1016/j.biortech.2021.124785] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Aiming at the accumulation of NO2--N and N2O during denitrification process, this work focused to improve the denitrification performance by Pd-Fe embedded multi-walled carbon nanotubes (MWCNTs). The main conclusions were as follows: 30 mg/L Pd-Fe/MWCNTs have shown an excellent promotion on denitrification (completely TN removal at 36 h). Meanwhile, enzyme activity results indicated that the generation of NO2--N, NH4+-N by Pd-Fe/MWCNTs led the occur of short-cut denitrification by increasing 203.9% the nitrite reductase activity. Furthermore, electrochemical results and index correlation analysis confirmed that the electron exchange capacity (1.401 mmol eg-1) of Pd-Fe/MWCNTs was positively related to nitrite reductase activity, indicating its crucial role in electron transport activity (0.46 μg O2/(protein·min) at 24 h) during denitrification process by Pd-Fe/MWCNTs played a role of chemical reductant and redox mediator.
Collapse
Affiliation(s)
- Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| |
Collapse
|
22
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
23
|
Sedki M, Shen Y, Mulchandani A. Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosens Bioelectron 2021; 176:112941. [DOI: 10.1016/j.bios.2020.112941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
|
24
|
Alshahrani AA, Alsuhybani M, Algamdi MS, Alquppani D, Mashhour I, Alshammari MS, Alsohaimi IH, Alraddadi TS. Evaluating the performance of chitosan and chitosan-palm membrane for water treatment: preparation, characterization and purification study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1885192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | - Dewihi Alquppani
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ibrahim Mashhour
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | - Thamer S. Alraddadi
- Department of Chemistry, College of Sciences and Arts-Alkamil, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Liu Y, Yang B, Xu J, Zhao H, He Y. Oil-water separation performance of aligned single walled carbon nanotubes membrane: A reactive molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Low cost, high performance ultrafiltration membranes from glass fiber-PTFE-graphene composites. Sci Rep 2020; 10:21123. [PMID: 33273591 PMCID: PMC7713439 DOI: 10.1038/s41598-020-78091-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
The development of low-cost ultrafiltration membranes with relatively high flow rate and selectivity is an important goal which could improve access to clean water in the developing world. Here we demonstrate a method to infuse mixtures of graphene nanosheets and Teflon nanoparticles into ultra-cheap glass fibre membranes. Annealing the resultant composites leads to coalescence of the Teflon, resulting in very stable membranes with significantly enhanced mechanical properties. In filtration tests, while adding ~ 10 wt% graphene/Teflon to the glass fibre membrane decreased the flow rate by × 100, the selectivity improved by × 103 compared to the neat glass fibre membrane. This combination of selectively and flow rate was significantly better than any commercial membrane tested under similar circumstances. We found these membranes could remove > 99.99% of 25–250 nm diameter SiC nanoparticles dispersed in ethanol, transmitting only particles with diameters < 40 nm, performance which is superior to commercial alumina membranes. Field trials on dirty canal water showed these composite membranes to remove aluminium to a level × 10 below the EU limit for drinking water and reduce iron and bacteria contents to below detectable levels.
Collapse
|
28
|
Vatanpour V, Mousavi Khadem SS, Masteri-Farahani M, Mosleh N, Ganjali MR, Badiei A, Pourbashir E, Mashhadzadeh AH, Tajammal Munir M, Mahmodi G, Zarrintaj P, Ramsey JD, Kim SJ, Saeb MR. Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2020; 38:101652. [DOI: 10.1016/j.jwpe.2020.101652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
29
|
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.588915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
Wang Z, Cai R, Gao Z, Yuan Y, Yue T. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr Rev Food Sci Food Saf 2020; 19:3802-3824. [PMID: 33337037 DOI: 10.1111/1541-4337.12656] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
The high efficiency and accurate detection of foodborne pathogens and spoilage microorganisms in food are a task of great social, economic, and public health importance. However, the contamination levels of target bacteria in food samples are very low. Owing to the background interference of food ingredients and negative impact of nontarget flora, the establishment of efficient pretreatment techniques is very crucial for the detection of food microorganisms. With the significant advantages of high specificity and great separation efficiency, immunomagnetic separation (IMS) assay based on immunomagnetic particles (IMPs) has been considered as a powerful system for the separation and enrichment of target bacteria. This paper mainly focuses on the development of IMS as well as their application in food microorganisms detection. First, the basic principle of IMS in the concentration of food bacteria is presented. Second, the effect of different factors, including the sizes of magnetic particles (MPs), immobilization of antibody and operation parameters (the molar ratio of antibody to MPs, the amount of IMPs, incubation time, and bacteria concentration) on the immunocapture efficiency of IMPs are discussed. The performance of IMPs in different food samples is also evaluated. Finally, the combination of IMS and various kinds of detection methods (immunology-based methods, nucleic acid-based methods, fluorescence methods, and biosensors) to detect pathogenic and spoilage organisms is summarized. The challenges and future trends of IMS are also proposed. As an effective pretreatment technique, IMS can improve the detection sensitivity and shorten their testing time, thus exhibiting broad prospect in the field of food bacteria detection.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| |
Collapse
|
31
|
Liao Z, Nguyen MN, Wan G, Xie J, Ni L, Qi J, Li J, Schäfer AI. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122779. [PMID: 32387831 DOI: 10.1016/j.jhazmat.2020.122779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
An effective way to remove micropollutants is desirable for water purification. In this work, a dual-functional ultrafiltration (DFUF) membrane was fabricated by loading hollow mesoporous carbon nanospheres (HMCNs) into the finger-like support layer pores of the polymeric ultrafiltration (UF) membrane. The designed DFUF membrane combines the high selectivity of ultrafiltration that removes macromolecules based on size exclusion mechanism, and excellent adsorption capacity of HMCNs towards micropollutants in water. When tetracycline (TCN) and 17β-Estradiol (E2) were selected as model micropollutants, corresponding 97 % and 94 % removal were achieved at a low pressure less than 0.15 bar and a flux of 50 and 64 L h-1 m-2 (estimated residence time less than 6 s), respectively. Moreover, simultaneous removal of multiple pollutants was demonstrated by filtering a mixture containing TCN and polyethylene glycols (PEG) 600 kDa macromolecules. Over a long filtration period (more than 60 h) that produced 3180 L/m2 of permeate, the TCN concentration reduced from 100 μg/L in the feed to less than 10 μg/L in the permeate. The above results indicate that the DFUF membrane is capable of removing the small molecular and macromolecular pollutants simultaneously at low pressure, and hence offers remarkable potential in water treatment applications.
Collapse
Affiliation(s)
- Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minh Nhat Nguyen
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gaojie Wan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Andrea Iris Schäfer
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
32
|
The Importance of Evaluating the Lot-to-Lot Batch Consistency of Commercial Multi-Walled Carbon Nanotube Products. NANOMATERIALS 2020; 10:nano10101930. [PMID: 32992617 PMCID: PMC7601794 DOI: 10.3390/nano10101930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
The biological response of multi-walled carbon nanotubes (MWNTs) is related to their physicochemical properties and a thorough MWNT characterization should accompany an assessment of their biological activity, including their potential toxicity. Beyond characterizing the physicochemical properties of MWNTs from different sources or manufacturers, it is also important to characterize different production lots of the same MWNT product from the same vendor (i.e., lot-to-lot batch consistency). Herein, we present a comprehensive physicochemical characterization of two lots of commercial pristine MWNTs (pMWNTs) and carboxylated MWNTs (cMWNTs) used to study the response of mammalian macrophages to MWNTs. There were many similarities between the physicochemical properties of the two lots of cMWNTs and neither significantly diminished the 24-h proliferation of RAW 264.7 macrophages up to the highest concentration tested (200 μg cMWNTs/mL). Conversely, several physicochemical properties of the two lots of pMWNTs were different; notably, the newer lot of pMWNTs displayed less oxidative stability, a higher defect density, and a smaller amount of surface oxygen species relative to the original lot. Furthermore, a 72-h half maximal inhibitory concentration (IC-50) of ~90 µg pMWNTs/mL was determined for RAW 264.7 cells with the new lot of pMWNTs. These results demonstrate that subtle physicochemical differences can lead to significantly dissimilar cellular responses, and that production-lot consistency must be considered when assessing the toxicity of MWNTs.
Collapse
|
33
|
Hegde RM, Rego RM, Potla KM, Kurkuri MD, Kigga M. Bio-inspired materials for defluoridation of water: A review. CHEMOSPHERE 2020; 253:126657. [PMID: 32304860 DOI: 10.1016/j.chemosphere.2020.126657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The polluted water sources pose a serious issue concerning the various health hazards they bring along. Due to various uncontrolled anthropogenic and industrial activities, a great number of pollutants have gained entry into the water systems. Among all the emerging contaminants, anionic species such as fluoride cause a major role in polluting the water bodies because of its high reactivity with other elements. The need for water remediation has led the research community to come up with several physicochemical and electrochemical methods to remove fluoride contamination. Among the existing methods, biosorption using bio and modified biomaterials has been extensively studied for defluoridation, as they are cheap, easily available and effectively recyclable when compared to other methods for defluoridation. Adding on, these materials are non-toxic and are safe to use compared to many other synthetic materials that are toxic and require high-cost design requirements. This review focuses on the recent developments made in the defluoridation techniques by biosorption using bio and modified biomaterials and defines the current perspectives of fluoride removal specifically using biomaterials.
Collapse
Affiliation(s)
- Raveendra M Hegde
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Richelle M Rego
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Krishna Murthy Potla
- Department of Chemistry, Bapatla Engineering College, Bapatla, 522 102, A.P., India
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
34
|
Aasi A, Aghaei SM, Moore MD, Panchapakesan B. Pt-, Rh-, Ru-, and Cu-Single-Wall Carbon Nanotubes Are Exceptional Candidates for Design of Anti-Viral Surfaces: A Theoretical Study. Int J Mol Sci 2020; 21:E5211. [PMID: 32717853 PMCID: PMC7432269 DOI: 10.3390/ijms21155211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023] Open
Abstract
As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.
Collapse
Affiliation(s)
- Aref Aasi
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (A.A.); (S.M.A.)
| | - Sadegh M Aghaei
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (A.A.); (S.M.A.)
| | - Matthew D. Moore
- Applied and Environmental Virology Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| | - Balaji Panchapakesan
- Applied and Environmental Virology Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
35
|
De Filpo G, Pantuso E, Mashin AI, Baratta M, Nicoletta FP. WO 3/Buckypaper Membranes for Advanced Oxidation Processes. MEMBRANES 2020; 10:membranes10070157. [PMID: 32698318 PMCID: PMC7407767 DOI: 10.3390/membranes10070157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/20/2022]
Abstract
Photocatalytic materials, such as WO3, TiO2, and ZnO nanoparticles, are commonly linked onto porous polymer membranes for wastewater treatment, fouling mitigation and permeation enhancement. Buckypapers (BPs) are entanglements of carbon nanotubes, which have been recently proposed as innovative filtration systems thanks to their mechanical, electronic, and thermal properties. In this work, flexible membranes of single wall carbon nanotubes are prepared and characterized as efficient substrates to deposit by chemical vapor deposition thin layers of WO3 and obtain, in such a way, WO3/BP composite membranes for application in advanced oxidation processes. The photocatalytic efficiency of WO3/BP composite membranes is tested against model pollutants in a small continuous flow reactor and compared with the performance of an equivalent homogeneous WO3-based reactor.
Collapse
Affiliation(s)
- Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy;
- Correspondence: (G.D.F.); (F.P.N.); Tel.: +39-0984-492095 (G.D.F.); +39-0984-493194 (F.P.N.)
| | - Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Aleksander I. Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia;
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy;
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy;
- Correspondence: (G.D.F.); (F.P.N.); Tel.: +39-0984-492095 (G.D.F.); +39-0984-493194 (F.P.N.)
| |
Collapse
|
36
|
Sinha Ray S, Singh Bakshi H, Dangayach R, Singh R, Deb CK, Ganesapillai M, Chen SS, Purkait MK. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. MEMBRANES 2020; 10:E140. [PMID: 32635417 PMCID: PMC7408142 DOI: 10.3390/membranes10070140] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes. This review provides a comprehensive evaluation of the incorporation of new generation nanomaterials such as quantum dots, metalloids and metal oxide-based nanoparticles, metal organic frameworks (MOFs), and carbon-based nanomaterials in the MD membrane. The desired characteristics of the membrane for MD operations, such as a higher liquid entry pressure (LEPw), permeability, porosity, hydrophobicity, chemical stability, thermal conductivity, and mechanical strength, have been thoroughly discussed. Additionally, methodologies adopted for the incorporation of nanomaterials in these membranes, including surface grafting, plasma polymerization, interfacial polymerization, dip coating, and the efficacy of these modified membranes in various MD operations along with their applications are addressed. Further, the current challenges in modifying MD membranes using nanomaterials along with prominent future aspects have been systematically elaborated.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Harshdeep Singh Bakshi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Raghav Dangayach
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Randeep Singh
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Chinmoy Kanti Deb
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Mahesh Ganesapillai
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| |
Collapse
|
37
|
Kong Q, Xu H, Liu C, Yang G, Ding M, Yang W, Lin T, Chen W, Gray S, Xie Z. Fabrication of high performance TFN membrane containing NH 2-SWCNTs via interfacial regulation. RSC Adv 2020; 10:25186-25199. [PMID: 35517444 PMCID: PMC9055286 DOI: 10.1039/d0ra02947e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/19/2020] [Indexed: 12/02/2022] Open
Abstract
A high-flux thin film nanocomposite (TFN) nanofiltration (NF) membrane for low pressure operation (3.5 bar) was fabricated by blending purified amino-functionalized single-walled carbon nanotubes (NH2-SWCNTs) with piperazine (PIP) as aqueous phase monomers through interfacial polymerization (IP). The surface properties and structures of the polyamide (PA) active layer were suitably tailored by introducing different amounts of NH2-SWCNTs into the PA layer. It was found that the homogeneous incorporation of NH2-SWCNTs facilitated a more integral PA layer along with improved roughness, hydrophilicity, and surface charge of the modified membranes, which could be validated by membrane characterisation including SEM, AFM, ATR-FTIR, XPS, zeta potential and water contact angle measurements. Based on cross-flow NF tests, the optimized ultra-thin NH2-SWCNT-TFN membranes with 0.002 wt% of NH2-SWCNTs exhibited outstanding water permeability of up to 17.8 L m−2 h−1 bar−1, 71.1% higher than that of the pristine membrane, along with high MgSO4 rejection of 91.0% and Na2SO4 rejection of 96.34%. Meanwhile, NH2-SWCNT-TFN membranes also showed excellent long-term stability and antifouling ability. This work demonstrates a facile strategy to fabricate a scalable, low-pressure and ultra-thin TFN membrane with excellent performance. The surface properties and structures of the polyamide (PA) active layer were suitably tailored by introducing different amounts of NH2-SWCNTs into the PA layer.![]()
Collapse
Affiliation(s)
- Qing Kong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - ChenWei Liu
- Nanjing Institute of Environmental Sciences of the Ministry of Ecology and Environment Nanjing 210042 China
| | - Guang Yang
- Institute of Sustainable Industries and Liveable Cities, Victoria University P. O. Box 14428 Melbourne Victoria 8001 Australia
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Wen Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Stephen Gray
- Institute of Sustainable Industries and Liveable Cities, Victoria University P. O. Box 14428 Melbourne Victoria 8001 Australia
| | - Zongli Xie
- CSIRO Manufacturing Private Bag 10 Clayton South Vic. 3169 Australia
| |
Collapse
|
38
|
Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review. NANOMATERIALS 2020; 10:nano10061203. [PMID: 32575642 PMCID: PMC7353087 DOI: 10.3390/nano10061203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
As a sustainable, cost-effective and energy-efficient method, membranes are becoming a progressively vital technique to solve the problem of the scarcity of freshwater resources. With these critical advantages, carbon nanotubes (CNTs) have great potential for membrane desalination given their high aspect ratio, large surface area, high mechanical strength and chemical robustness. In recent years, the CNT membrane field has progressed enormously with applications in water desalination. The latest theoretical and experimental developments on the desalination of CNT membranes, including vertically aligned CNT (VACNT) membranes, composited CNT membranes, and their applications are timely and comprehensively reviewed in this manuscript. The mechanisms and effects of CNT membranes used in water desalination where they offer the advantages are also examined. Finally, a summary and outlook are further put forward on the scientific opportunities and major technological challenges in this field.
Collapse
|
39
|
Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020. [DOI: 10.3390/catal10060680] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This paper aims to revise research on carbonaceous nanomaterials used in developing sensors. In general, nanomaterials are known to be useful in developing high-performance sensors due to their unique physical and chemical properties. Thus, descriptions were made for various structural features, properties, and manner of functionalization of carbon-based nanomaterials used in electrochemical sensors. Of the commonly used technologies in manufacturing electrochemical sensors, the screen-printing technique was described, highlighting the advantages of this type of device. In addition, an analysis was performed in point of the various applications of carbon-based nanomaterial sensors to detect analytes of interest in different sample types.
Collapse
|
40
|
Wisdom KS, Bhat IA, Chanu TI, Kumar P, Pathakota GB, Nayak SK, Walke P, Sharma R. Chitosan grafting onto single-walled carbon nanotubes increased their stability and reduced the toxicity in vivo (catfish) model. Int J Biol Macromol 2020; 155:697-707. [PMID: 32224185 DOI: 10.1016/j.ijbiomac.2020.03.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/28/2022]
Abstract
The present work was aimed to develop the tissue benign, modified acid-functionalized single-walled carbon nanotube (COOH-SWCNT) chitosan (CS) hybrid (COOH-SWCNT-CS). Chitosan-nanotube hybrids were characterized by Fourier-transform infrared spectroscopy (FTIR), Thermogravimetry Analysis (TGA), Raman spectroscopy, Emission Gun-Scanning Electron Microscopes (FEG-SEM), Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDS). Micronuclei test of blood cells, comet assay of liver tissue and histological analysis of liver and kidney tissues were conducted after different treatments to evaluate the toxicity. Fish receiving COOH-SWCNT developed more numbers of micronuclei than COOH-SWCNT-CS treatments. Similarly, more DNA damage was observed in fish injected with nanotubes alone than chitosan hybrid groups. Histological observations revealed severe liver cell damage at higher concentrations of COOH-SWCNT whereas, in COOH-SWCNT-CS, no such damage was observed. However, kidney tissue remained unaffected in all groups. The study suggests that the nanohybrid developed will be safe and useful for delivery of micro or macro biomolecules in fish and higher animals.
Collapse
Affiliation(s)
- K S Wisdom
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Irfan Ahmad Bhat
- College of Fisheries Science, Gumla, Birsa Agricultural University, Jharkhand, India
| | - T I Chanu
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Pravesh Kumar
- Department of Aquaculture, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Gireesh-Babu Pathakota
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Sunil Kumar Nayak
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Pravin Walke
- National Center for Nanoscience and Nanotechnology, University of Mumbai, Mumbai 400098, Maharashtra, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|
41
|
Effect of Loading and Functionalization of Carbon Nanotube on the Performance of Blended Polysulfone/Polyethersulfone Membrane during Treatment of Wastewater Containing Phenol and Benzene. MEMBRANES 2020; 10:membranes10030054. [PMID: 32213937 PMCID: PMC7142715 DOI: 10.3390/membranes10030054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
In this study, a carbon nanotube (CNT)-infused blended polymer membrane was prepared and evaluated for phenol and benzene removal from petroleum industry wastewater. A 25:75 (by weight %) blended polysulfone/polyethersulfone (PSF/PES) membrane infused with CNTs was prepared and tested. The effect of functionalization of the CNTs on the quality and performance of the membrane was also investigated. The membranes were loaded with CNTs at different loadings: 0.5 wt. %, 1 wt. %, 1.5 wt. % pure CNTs (pCNTs) and 1 wt. % functionalized CNTs (fCNTs), to gain an insight into the effect of the amount of CNT on the quality and performance of the membranes. Physicochemical properties of the as-prepared membranes were obtained using scanning electron microscopy (SEM) for morphology, Raman spectroscopy for purity of the CNTs, Fourier transform infrared (FTIR) for surface chemistry, thermogravimetric analysis (TGA) for thermal stability, atomic force microscopy (AFM) for surface nature and nano-tensile analysis for the mechanical strength of the membranes. The performance of the membrane was tested with synthetic wastewater containing 20 ppm of phenol and 20 ppm of benzene using a dead-end filtration cell at a pressure ranging from 100 to 300 kPa. The results show that embedding CNTs in the blended polymer (PSF/PES) increased both the porosity and water absorption capacity of the membranes, thereby resulting in enhanced water flux up to 309 L/m2h for 1.5 wt. % pCNTs and 326 L/m2h for 1 wt. % functionalized CNT-loaded membrane. Infusing the polysulfone/polyethersulfone (PSF/PES) membrane with CNTs enhanced the thermal stability and mechanical strength. Results from AFM indicate enhanced hydrophilicity of the membranes, translating in the enhancement of anti-fouling properties of the membranes. However, the % rejection of membranes with CNTs decreased with an increase in pCNTs concentration and pressure, while it increased the membrane with fCNTs. The % rejection of benzene in the pCNTs membrane decreased with 13.5% and 7.55% in fCNT membrane while phenol decreased with 55.6% in pCNT membrane and 42.9% in the FCNT membrane. This can be attributed to poor CNT dispersion resulting in increased pore sizes observed when CNT concentration increases. Optimization of membrane synthesis might be required to enhance the separation performance of the membranes.
Collapse
|
42
|
Bell D, Sengpiel R, Wessling M. Metallized hollow fiber membranes for electrochemical fouling control. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Masoome Sheikhi, Shahab S, Alnajjar R, Ahmadianarog M. Theoretical Model for Surface Forces between Cytosine and CNT(6,6-6) Nanotube: Geometry Optimization, Molecular Structure, Intermolecular Hydrogen Bond, Spectroscopic (NMR, UV/Vis, Excited State), FMO, MEP, and HOMO–LUMO Investigations. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419120203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona. Biophys Chem 2019; 253:106218. [PMID: 31325709 DOI: 10.1016/j.bpc.2019.106218] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022]
Abstract
In biological fluids, nanoparticles (NPs) are in contact with proteins and other biomolecules. Proteins adsorb to NPs and form a coating called a protein corona (PC). The PC is known to greatly affect the interaction of NPs with biological systems. A comprehensive knowledge of the protein nanoparticle interaction is essential to understand the biological fate of NPs and for the design of NPs for biomedicine. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are sensitive spectroscopy techniques that measure fluorescence intensity fluctuations of single molecules inside a femtoliter confocal volume. Both techniques are suitable for studying the formation of protein corona around NPs and for examining corona stability in situ in biological matrixes. In this review we provide a short description of FCS/FCCS and their application in PC studies, highlighting results from our work about the impact of surface chemistry of NPs on corona formation and NP intracellular fate.
Collapse
|
45
|
Sheikhi M, Shahab S, Khaleghian M, Ahmadianarog M, Azarakhshi F, Kumar R. Investigation of the Adsorption Rubraca Anticancer Drug on the CNT(4,4-8) Nanotube as a Factor of Drug Delivery: A Theoretical Study Based on DFT Method. Curr Mol Med 2019; 19:473-486. [PMID: 31057107 DOI: 10.2174/1566524019666190506143152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the present study, the interaction between new drug Rubraca and CNT(4,4-8) nanotube by Density Functional Theory (DFT) calculations in an aqueous medium for first time have been investigated. METHOD AND RESULTS According to calculations, the intermolecular hydrogen bonds take place between active positions of the molecule Rubraca and hydrogen atoms of the nanotube that plays an important role in the stability of the complex CNT(4,4- 8)/Rubraca. The non-bonded interaction effects of the molecule Rubraca with CNT(4,4- 8) nanotube on the electronic properties, chemical shift tensors and natural charge have been also detected. The natural bond orbital (NBO) analysis suggested that the molecule Rubraca as an electron donor and the CNT(4,4-8) nanotube plays the role an electron acceptor at the complex CNT(4,4-8)/Rubraca. The electronic spectra of the Rubraca drug and the complex CNT(4,4-8)/Rubraca were also calculated by Time Dependent Density Functional Theory (TD-DFT) for the investigation of adsorption effect of the Rubraca drug over nanotube. CONCLUSION The use of CNT(4,4-8) nanotube for Rubraca delivery to the diseased cells have been established.
Collapse
Affiliation(s)
- Masoome Sheikhi
- Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Siyamak Shahab
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus,13 Surganov Str, Minsk 220072, Belarus.,Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 Skarina Str., Minsk 220141, Belarus.,Belarusian State University, ISEI BSU, Minsk, Belarus
| | - Mehrnoosh Khaleghian
- Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Mahin Ahmadianarog
- Department of Chemistry, Malekan Branch, Islamic Azad University, Malekan, Iran
| | - Fatemeh Azarakhshi
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Rakesh Kumar
- Department of Chemistry, DAV University, Jalandhar - 144012 (Punjab), India
| |
Collapse
|
46
|
Nashrom FIR, Saheed MSM, Fai Kait C. Development of janus polymer/carbon nanotubes hybrid membrane for oil-water separation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2018.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.043] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Sabetghadam A, Liu X, Gottmer S, Chu L, Gascon J, Kapteijn F. Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and Polyactive™ for CO2 capture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Synthesis of Carbon Nanotube Arrays with High Aspect Ratio via Ni-Catalyzed Pyrolysis of Waste Polyethylene. NANOMATERIALS 2018; 8:nano8070556. [PMID: 30037121 PMCID: PMC6070808 DOI: 10.3390/nano8070556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022]
Abstract
Carbon nanotube (CNT) arrays 30–50 nm in diameter and with a length of several micrometers were prepared by catalytic pyrolysis of waste polyethylene in Ar at 773−1073 K using nickel dichloride as a catalyst precursor. X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectrometry (Raman), a vibrating-sample magnetometer (VSM), and nitrogen adsorption/desorption were used to investigate the effects of the pyrolysis temperature and catalyst contents on the preparation of the aligned CNTs. As results, the as-obtained CNTs had an outer diameter of 30 nm, a wall thickness of 10 nm, and a length of about 50 μm, and their aspect ratio was high up to 1500. The aligned CNTs containing 0.75 wt% Ni prepared at 973 K exhibited good adsorption performance for methylene blue (MB); furthermore, benefiting from the special magnetic properties of residual Ni catalysts, the as-obtained CNTs could be easily magnetically recycled from the treated solution after adsorption.
Collapse
|
50
|
Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbon-based materials show unique chemicophysical properties, and they have been successfully used in many catalytic processes, including the production of chemicals and energy. The introduction of heteroatoms (N, B, P, S) alters the electronic properties, often increasing the reactivity of the surface of nanocarbons. The functional groups on the carbons have been reported to be effective for anchoring metal nanoparticles. Although the interaction between functional groups and metal has been studied by various characterization techniques, theoretical models, and catalytic results, the role and nature of heteroatoms is still an object of discussion. The aim of this review is to elucidate the metal–heteroatoms interaction, providing an overview of the main experimental and theoretical outcomes about heteroatom-mediated metal–support interactions. Selected studies showing the effect of heteroatom–metal interaction in the liquid-phase alcohol oxidation will be also presented.
Collapse
|