1
|
Shi H, Zhao XH, Peng Q, Zhou XL, Liu SS, Sun CC, Cao QY, Zhu SP, Sun SY. Green tea polyphenols alleviate di (2-ethylhexyl) phthalate-induced testicular injury in mice via lncRNA-miRNA-mRNA axis†. Biol Reprod 2025; 112:485-500. [PMID: 39658192 DOI: 10.1093/biolre/ioae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer known for its toxic effects on the male reproductive system. Green tea polyphenols (GTPs), recognized for their antioxidant and anti-inflammatory properties, have demonstrated protective effects on various organs, but the mechanisms by which GTPs mitigate DEHP-induced testicular damage remain unclear. Healthy male C57BL/6J mice were divided into five groups: control, DEHP, DEHP + GTP treatment, GTP, and oil groups. Testicular histopathological changes were assessed using hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson staining. Ultrastructural alterations were examined through transmission electron microscopy. High-throughput sequencing was performed to analyze the expression of mRNA, miRNA, and lncRNA and construct an lncRNA-miRNA-mRNA regulatory network for identifying key regulatory axes. Mice in the DEHP group exhibited significant testicular damage, including reduced sperm count, mitochondrial deformation, and endoplasmic reticulum dilation. GTP treatment notably improved testicular structural integrity, restored sperm count, and alleviated mitochondrial and endoplasmic reticulum damage. Additionally, DEHP significantly increased activated CD8+ T cells, which were reduced with GTP treatment. High-throughput sequencing revealed that GTP treatment exerted protective effects through the regulation of six key lncRNA-miRNA-mRNA axes. GTPs significantly protect against DEHP-induced testicular damage, and the lncRNA-miRNA-mRNA regulatory axes play a potential role in this process.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang 42200, China
| | - Xin-Hai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang 42200, China
| | - Xian-Ling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Si-Si Liu
- Department of Pathology, The Central Hospital of Shaoyang, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang 42200, China
| | - Chuan-Chuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Qiu-Yu Cao
- Department of Gynecologic, Jiangmen Hospital Affiliated to Jinan University, No. 30, Huayuan East Road, Jiangmen 529000, China
| | - Shi-Ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Sheng-Yun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| |
Collapse
|
2
|
Wang Y, Liu P, Fan J, Li S, Zhang X, Li Y, Wang X, Zhang C, Yang X. T-2 Toxin Nephrotoxicity: Toxic Effects, Mechanisms, Mitigations, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2732-2744. [PMID: 39871106 DOI: 10.1021/acs.jafc.4c10015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions. T-2 toxin damages kidney structure, causing renal dysfunction. The nephrotoxicity mechanism of T-2 toxin involves multiple factors including oxidative stress, endoplasmic reticulum stress, mitophagy, inflammatory responses, and apoptosis, which are intertwined and interdependent. Current detoxification strategies mainly involve reducing T-2 toxin in feedstuff and using antioxidant substances, but both have limits. Future research should focus on renal cells sensitivity to T-2 toxin, exploring key molecules in T-2 toxin's nephrotoxicity, renal injury's impact on other organs, and better detoxification methods. This review aims to guide future research and underpin T-2 toxin-induced nephrotoxicity prevention and treatment.
Collapse
Affiliation(s)
- Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Pengli Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuo Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Yang W, Duan Z, Li G, Geng H, Gao Y, Shen Q, Liu L, Wang G, Zha X, Xu C, Zhou P, Song B, Tang D, Wu H, Wei Z, Tang F, He X. Association of lifestyle and occupational exposure factors with human semen quality: a cross-sectional study of 1060 participants. Syst Biol Reprod Med 2024; 70:150-163. [PMID: 38896558 DOI: 10.1080/19396368.2024.2357348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024]
Abstract
The incidence of male infertility (MI) is rising annually. However, the lifestyle and occupational exposure factors contributing to MI remain incompletely understood. This study explored the effects of self-reported lifestyle and occupational exposure factors on semen quality. Among 1060 subjects invited to participate, 826 were eligible. The participants' general characteristics, lifestyle, and occupational exposure factors were collected immediately before or after semen evaluation through an online questionnaire. Initially, univariate analysis was used to investigate the relationship between the abovementioned factors and semen quality. The results indicated significant associations between low semen quality and various factors, including age, BMI, infertility type and duration, abstinence time, semen and sperm parameters, smoking, alcohol consumption, irregular sleep habits, and frequent exposure to high temperatures and chemicals at work (p < 0.05). Then, multivariate analysis was conducted to identify factors independently associated with low semen quality. Adjustment for relevant confounders was achieved by including factors with a p-value < 0.25 from univariate analyses as covariates in the binomial and ordered logistic regression models. The results suggested that alcohol consumption was a positive factor for sperm concentration (odds ratio [OR] = 0.60; 95% confidence interval [CI] = 0.36-0.99; p = 0.045). The groups with a BMI ≥ 24 and <28 kg/m2 showed a significant decrease in sperm progressive motility when compared to the reference group (BMI < 24 kg/m2) (OR = 0.63; 95% CI = 0.46-0.87, p = 0.005). In addition, the groups that drank green tea <1 time/week (OR = 1.52, 95% CI = 1.05-2.2) and 1-4 times/week (OR = 1.61, 95% CI = 1.02-2.54) exhibited significantly increased sperm DFI values compared with the group that drank green tea 5-7 times/week. In conclusion, these findings underscore the importance of maintaining a normal weight and regularly consuming green tea for men.
Collapse
Affiliation(s)
- Wen Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Liting Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Guanxiong Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Ministry of Education of the People's Republic of China, Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Anhui, China
| | - Feng Tang
- Zhejiang Mater Child and Reproductive Health Center, Hangzhou, Zhejiang, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu M, Ning Z, Cheng Y, Zheng Z, Yang X, Zheng T, Li N, Wu JL. The key to 2,6-dichloro-1,4-benzoquinone reproductive toxicity and green tea detoxification: Covalent binding and competitive binding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117239. [PMID: 39454356 DOI: 10.1016/j.ecoenv.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Halobenzoquinones (HBQs) are ubiquitous disinfection by-products (DBPs) in chlorinated drinking water with various health risks including reproductive toxicity, while the potential mechanisms are still unclear. Although green tea exhibits common detoxifying properties, its ability to mitigate the toxicity of HBQs still needs to be further deepened and explored. This study attempted to investigate the possible mechanism of the most common HBQ, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) induced reproductive toxicity and elucidate the protective effect of green tea using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. Firstly, in vivo experiments showed that 2,6-DCBQ could induce testicular damage in male rats via significantly decreasing sperm-associated Leydig cells and seminiferous tubules. Then, in vitro incubation of 2,6-DCBQ with amino acids suggested that 2,6-DCBQ could bind to proteins via residues of cysteine or lysine and provided five additional modification patterns. Following, proteomics analysis revealed that at least 42 proteins were modified by 2,6-DCBQ, which were mainly enriched in the reproductive system. These results highlighted the significance of covalent protein modification in 2,6-DCBQ reproductive toxicity. Fortunately, we found that catechins (a class of major components of green tea) could competitively bind to 2,6-DCBQ in vivo and in vitro, reducing the amount and type of 2,6-DCBQ-protein adducts, thereby attenuating the reproductive system damage caused by 2,6-DCBQ. This study provides new insights into 2,6-DCBQ-induced reproductive system damage and reveals a new mechanism of green tea detoxification. Moreover, these findings offer potential strategies for alleviating the harmful impacts of environmental toxicants on human health.
Collapse
Affiliation(s)
- Meixian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiyuan Ning
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, China
| | - Zhiyuan Zheng
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Ting Zheng
- Multi-omics Mass Spectrometry Core, Biomedical Research Core Facilities, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| |
Collapse
|
5
|
Li X, Zhang B, Yang H, Zhang L, Lou H, Zheng S. The emergence of natural products as potential therapeutics for male infertility. Andrology 2024; 12:1191-1208. [PMID: 38191265 DOI: 10.1111/andr.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Infertility is a major reproductive health problem. Approximately 50% of all documented cases of infertility are attributable to male factors, such as poor testicular function and semen quality. The recent significant global decline in sperm counts has serious implications for male fertility, but the armamentarium for improving testicular function and semen quality is limited. Natural products have a wide range of activities and are a major source of drugs for disease prevention and treatment. To provide ideas and a theoretical basis for the research and development of therapeutic drugs for male infertility, this review summarizes natural products (mostly monomers) that have been shown to improve testicular function and semen quality and their possible mechanisms of action. These natural products primarily improve testicular function and semen quality via antioxidant, antiapoptotic, and anti-inflammatory effects, in addition to increasing serum testosterone and reducing DNA damage in spermatozoa and testicular cells. Prospects for the application of natural products in the treatment of male infertility are discussed.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Zhang
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Liuping Zhang
- Pharmaceutical Department, Shanxian Central Hospital, Heze, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
6
|
Zhang H, Qian S, Chen J, Chen J. Association between tea, coffee and caffeine consumption and risk of female infertility: a cross-sectional study. Reprod Biol Endocrinol 2024; 22:91. [PMID: 39085874 PMCID: PMC11292996 DOI: 10.1186/s12958-024-01261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES To explore the association between tea, coffee, and caffeine consumption and the risk of female infertility. METHODS We analyzed data from 2099 females aged 18 to 44 years, participating in the National Health and Nutrition Examination Survey (NHANES) 2013-2018. We used generalized linear models (GLM) and generalized additive model (GAM) to investigate the dose-response relationship between the tea, coffee, and caffeine consumption and infertility, adjusting for potential confounders. RESULTS A non-linear relationship was detected between tea consumption and infertility and the inflection point was 2 cups/day. On the right side of the inflection point, we did not detect a significant association. However, on the left side, we found a negative relationship between tea consumption and infertility (OR: 0.73; 95% CI: 0.57 to 0.93; P = 0.0122). Meanwhile, our study found no significant association between coffee (0.96, 0.81 to 1.13, P = 0.6189) or caffeine consumption (1.15, 0.93 to 1.42, P = 0.2148) and female infertility. CONCLUSIONS Tea consumption was non-linearly associated with infertility, whereas no significant associations were found between coffee, caffeine consumption and infertility.
Collapse
Affiliation(s)
- Hanzhi Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sixu Qian
- The Second Affiliated Hospital, Department of Obstetrics and Gynecology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Geng S, Chang F, Wang J, Sun Q, Yao X, Zhou J, Lu R, Zhang X, Wen J, Hu L. Association of urinary metal element with semen quality: a cross-sectional study from Eastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:277. [PMID: 38958782 DOI: 10.1007/s10653-024-02048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
The effect of metallic elements on semen quality remains controversial, with limited evidence on the effects of metal mixtures. We conducted a study involving 338 participants from multiple centers in Eastern China, measuring 17 urinary metals and semen quality parameters. Our analysis used various statistical models, including multivariate logistic and linear regression, Bayesian Kernel Machine Regression, and weighted quantile sum models, to examine the associations between metal levels and semen quality. Logistic regression showed that higher urinary lead was associated with increased risk of abnormal sperm concentration (OR = 1.86, p = 0.021), arsenic to higher abnormal progressive motility risk (OR = 1.49, p = 0.027), and antimony to greater abnormal total motility risk (OR = 1.37, p = 0.018). Conversely, tin was negatively correlated with the risk of abnormal progressive motility (OR = 0.76, p = 0.012) and total motility (OR = 0.74, p = 0.003), respectively. Moreover, the linear models showed an inverse association between barium and sperm count, even after adjusting for other metals (β = - 0.32, p < 0.001). Additionally, the WQS models showed that the metal mixture may increase the risk of abnormal total motility (βWQS = 0.55, p = 0.046). In conclusion, semen quality may be adversely affected by exposure to metals such as arsenic, barium, lead, and antimony. The combined effect of the metal mixture appears to be particularly impaired total motility.
Collapse
Affiliation(s)
- Shijie Geng
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210000, Jiangsu, China
| | - Fengjuan Chang
- Department of Andrology, Jiangsu Provinc Hospital of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Junya Wang
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210000, Jiangsu, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Centre for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaodie Yao
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210000, Jiangsu, China
| | - Jing Zhou
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Renjie Lu
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Centre for Disease Control and Prevention, Beijing, 100021, China.
| | - Juan Wen
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210000, Jiangsu, China.
| | - Lingmin Hu
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
8
|
Yang D, Xu K, Wang W, Chen P, Liu C, Liu S, Xu W, Xiao W. Protective effects of L-theanine and dihydromyricetin on reproductive function in male mice under heat stress. Food Funct 2024; 15:7093-7107. [PMID: 38873879 DOI: 10.1039/d4fo00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat stress can impair the male reproductive function. L-Theanine and dihydromyricetin have biological activities against heat stress; however, their effects on reproductive function in heat-stressed males are unclear. In this study, male mice were given L-theanine, dihydromyricetin, or a combination of both for 28 days, followed by 2 h of heat stress daily for 7 days. All interventions alleviated heat stress-induced testicular damage, improving the testicular organ index, sperm density, acrosome integrity, sperm deformity rate, and hormone levels. Treatment increased the antioxidant enzyme activity and decreased the markers of oxidative and inflammatory stress in the testes. A combination dose of 200 + 200 mg kg-1 d-1 showed the best protective effect. The potential mechanism involves the regulation of HSP27 and HSP70, which regulate the levels of reproductive hormones through the StAR/Cyp11a1/Hsd3b1/Cyp17a1/Hsd17b3 pathway, alleviate inflammation and oxidative stress through the P38/NF-κB/Nrf2/HO-1 pathway, and regulate the Bcl-2/Fas/Caspase3 apoptotic pathway. Overall, L-theanine and dihydromyricetin may play a protective role against heat stress-induced reproductive dysfunction, suggesting their potential use in heat stress-resistant foods.
Collapse
Affiliation(s)
- Difei Yang
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Kaihang Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenmao Wang
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Peijian Chen
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Chao Liu
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Sha Liu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Michel R, Hazimeh D, Saad EE, Olson SL, Musselman K, Elgindy E, Borahay MA. Common Beverage Consumption and Benign Gynecological Conditions. BEVERAGES (BASEL, SWITZERLAND) 2024; 10:33. [PMID: 38948304 PMCID: PMC11211953 DOI: 10.3390/beverages10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The purpose of this article is to review the effects of four commonly consumed beverage types-sugar-sweetened beverages (SSBs), caffeinated beverages, green tea, and alcohol-on five common benign gynecological conditions: uterine fibroids, endometriosis, polycystic ovary syndrome (PCOS), anovulatory infertility, and primary dysmenorrhea (PD). Here we outline a plethora of research, highlighting studies that demonstrate possible associations between beverage intake and increased risk of certain gynecological conditions-such as SSBs and dysmenorrhea-as well as studies that demonstrate a possible protective effect of beverage against risk of gynecological condition-such as green tea and uterine fibroids. This review aims to help inform the diet choices of those with the aforementioned conditions and give those with uteruses autonomy over their lifestyle decisions.
Collapse
Affiliation(s)
- Rachel Michel
- Department of Population, Family, and Reproductive Health, Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Dana Hazimeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Eslam E. Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Sydney L. Olson
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Kelsey Musselman
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Eman Elgindy
- Department of Gynecology and Obstetrics, Zagazig University School of Medicine, Zagazig, 44519, Egypt
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
10
|
Silva V, Faria HOF, Sousa-Filho CPB, de Alvarenga JFR, Fiamoncini J, Otton R. Thermoneutrality or standard temperature: is there an ideal housing temperature to study the antisteatotic effects of green tea in obese mice? J Nutr Biochem 2023; 120:109411. [PMID: 37423321 DOI: 10.1016/j.jnutbio.2023.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a condition characterized by excessive accumulation of triglycerides in hepatocytes, currently considered the number one cause of chronic liver disease. MAFLD is strongly associated with obesity, type 2 diabetes, hyperlipidaemia, and hypertension. Emphasis has been placed on the use of green tea (GT), produced from the Camellia sinensis plant, rich in antioxidants as polyphenols and catechins, on obesity and MAFLD treatment/prevention. Studies carried out in rodent models housed at a standard temperature (ST, 22°C) are being questioned as ST is a determining factor on generating changes in the physiology of immune response, and energy metabolism. On the other hand, it seems that thermoneutrality (TN, 28°C) represents a closer parallel to human physiology. In this perspective, we investigated the effects of GT (500 mg/kg of body weight, over 12 weeks, 5 days/week) by comparing mice housed at ST or TN in a model of MAFLD of diet-induced obese males C57Bl/6 mice. We show that the liver phenotype at TN exhibits a more severe MAFLD while GT ameliorates this condition. In parallel, GT restores the expression of genes involved in the lipogenic pathway, regardless of temperature, with slight modifications in lipolysis/fatty acid oxidation. We observed an increase promoted by GT in PPARα and PPARγ proteins independently of housing temperature and a dual pattern of bile acid synthesis. Thus, animals' conditioning temperature is a key factor that can interfere in the results involving obesity and MAFLD, although GT has beneficial effects against MAFLD independently of the housing temperature of mice.
Collapse
Affiliation(s)
- Victória Silva
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil
| | | | | | - José Fernando Rinaldi de Alvarenga
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosemari Otton
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Wei YS, Chen YL, Li WY, Yang YY, Lin SJ, Wu CH, Yang JI, Wang TE, Yu J, Tsai PS. Antioxidant Nanoparticles Restore Cisplatin-Induced Male Fertility Defects by Promoting MDC1-53bp1-Associated Non-Homologous DNA Repair Mechanism and Sperm Intracellular Calcium Influx. Int J Nanomedicine 2023; 18:4313-4327. [PMID: 37576465 PMCID: PMC10416785 DOI: 10.2147/ijn.s408623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Cisplatin, a commonly used anticancer compound, exhibits severe off-target organ toxicity. Due to its wide application in cancer treatment, the reduction of its damage to normal tissue is an imminent clinical need. Cisplatin-induced testicular oxidative stress and damage lead to male sub- or infertility. Despite earlier studies showing that the natural polyphenol extracts honokiol serve as the free radical scavenger that reduces the accumulation of intracellular free radicals, whether honokiol exhibits direct effects on the testis and sperm is unclear. Thus, the aim of the current study is to investigate the direct effects of honokiol on testicular recovery and sperm physiology. Methods We encapsulated this polyphenol antioxidation compound into liposome-based nanoparticles (nHNK) and gave intraperitoneally to mice at a dosage of 5 mg/kg body mass every other day for consecutive 6 weeks. Results We showed that nHNK promotes MDC1-53bp1-associated non-homologous DNA double-strand break repair signaling pathway that minimizes cisplatin-induced DNA damage. This positive effect restores spermatogenesis and allows the restructuring of the multi-spermatogenic layers in the testis. By reducing mitochondrial oxidative damage, nHNK also protects sperm mitochondrial structure and maintains both testicular and sperm ATP production. By a yet-to-identify mechanism, nHNK restores sperm calcium influx at the sperm midpiece and tail, which is essential for sperm hypermotility and their interaction with the oocyte. Discussion Taken together, the nanoparticulated antioxidant counteracts cisplatin-induced male fertility defects and benefits patients undertaking cisplatin-based chemotherapy. These data may allow the reintroduction of cisplatin for systemic applications in patients at clinics with reduced testicular toxicity.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Liang Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Yun Li
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Yi Yang
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 10051, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, 10002, Taiwan
| | - Ching-Ho Wu
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Jiue-In Yang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
12
|
Mustofa I, Susilowati S, Suprayogi TW, Oktanella Y, Purwanto DA, Akintunde AO. Combination of nanoparticle green tea extract in tris-egg yolk extender and 39 °c thawing temperatures improve the sperm quality of post-thawed Kacang goat semen. Anim Reprod 2023; 19:e20220025. [PMID: 36686855 PMCID: PMC9844672 DOI: 10.1590/1984-3143-ar2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kacang goats are small ruminants produced by low-income households in smallholder and farm to reduce poverty and prevent undernutrition. Studies to find a cryopreservation protocol for Kacang goat semen are expected to multiplication of genetically superior animals selected by the paternal lineage. This study evaluated the effect of thawing temperature and supplementation of the green tea extract nanoparticle in skim milk-egg yolk (SM-EY) extender on post-thaw sperm quality of Kacang goat semen. Six ejaculates of Kacang goat were diluted in SM-EY supplemented or not (control group) with 0.001 mg/mL NPs GTE. The diluted semen was packaged with 0.25 mL straws (insemination dose: 60x106 sptz/mL) and cryopreserved. Then, six samples of the control group and NPs GTE groups were thawed at 37°C or 39°C sterile water for 30 s and submitted to sperm quality evaluations. The sperm viability, motility, and intact of the plasma membrane (IPM) were higher (p<0.05) in NPs GTE group than control group. In contrast, the NPs GTE group presented lower (p<0.05) malondialdehyde levels and sperm DNA fragmentation (SDF) compared with the control group. The catalase levels were not significantly different (p > 0.05) between the control and NPs GTE groups. Thawing at 39°C resulted in higher (p<0.05) sperm viability, motility, and IPM than thawing at 37°C. However, thawing at 39°C group presented lower (p<0.05) malondialdehyde levels compared with thawing at 37°C. SDF and catalase levels were similar (p>0.05) between thawing at 37°C and thawing at 37°C. In conclusion, supplementation of 0.001 mg/mL of NPs GTE in SM-EY extender and thawing temperature of 39°C resulted in a better quality of frozen-thawed Kacang goat semen.
Collapse
Affiliation(s)
- Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia,Corresponding author:
| | - Suherni Susilowati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Tri Wahyu Suprayogi
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yudit Oktanella
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Djoko Agus Purwanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan-Remo, Ogun, Nigeria
| |
Collapse
|
13
|
Adebayo AA, Oboh G, Ademosun AO. Nutraceutical potential of almond fruits in managing diabetes‐related erectile dysfunction: Effect on Nrf‐2 level and smooth muscle/collagen ratio. Andrologia 2022; 54:e14636. [DOI: 10.1111/and.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Adeniyi A. Adebayo
- Department of Chemical Sciences (Biochemistry Unit) Joseph Ayo Babalola University Ikeji Arakeji Nigeria
- Functional Foods and Nutraceutical Unit, Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Ayokunle O. Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|
14
|
Adebayo AA, Babatola LJ, Fasanya CB, Oboh G. Persea americana seed extract restores defective sperm quality and biochemical parameters relevant to reproduction in male wistar rats treated with cyclosporine A. J Food Biochem 2022; 46:e14220. [PMID: 35561037 DOI: 10.1111/jfbc.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 04/18/2022] [Indexed: 12/29/2022]
Abstract
Studies have shown that some drugs impair spermatogenesis, thereby causing infertility. Thus, this study aims at investigating the effect of Persea americana seed extract on the male reproductive system in cyclosporine-induced rats. Thirty male albino rats were randomly divided into five groups; all groups were induced with cyclosporine except the control group. Group 3 was treated with 10 mg/kg of lisinopril, groups 4 and 5 received 50 and 100 mg/kg of PAE, respectively. The experiment lasted for 7 days. The antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)], and arginase activities were evaluated, nitric oxide (NO) and malondialdehyde (MDA) level of the penile tissue homogenate were determined with serum hormonal (follicle stimulating hormone, luteinizing hormone and testosterone) concentration and sperm quality. This study showed that cyclosporine induction caused a significant (p < .05) decrease in the SOD, CAT, sperm quality, NO, and hormonal level as compared to the control group, with a simultaneous increase in arginase activity and MDA level. However, treatment with PAE and lisinopril significantly (p < .05) increase antioxidant enzyme activities, sperm quality, NO, and serum hormonal level, with a decrease MDA level and arginase activity when compared with cyclosporine-induced group. This study showed that P. americana seed extract could be useful in the management of hormonal disruption resulting from oxidative stress in male folks. PRACTICAL APPLICATIONS: Some pharmaco-agents have been reported to alter spermatogenesis, thereby causing infertility. Plants represent natural resources use in the management of several human diseases from time immemorial. Persea americana seed is a part of the fruit that most people do throw away after consuming the edible portion of the fruit. However, the therapeutic and pharmacological activities of P. americana seed have been reported. Therefore, this study sought to investigate the effects of P. americana seed extract on cyclosporine-induced reprotoxicity.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Chemical Sciences Department (Biochemistry Option), Joseph Ayo Babalola University, Ikeji Arakeji, Nigeria
| | - Leye J Babatola
- Chemical Sciences Department (Biochemistry Option), Joseph Ayo Babalola University, Ikeji Arakeji, Nigeria
| | - Christianah B Fasanya
- Chemical Sciences Department (Biochemistry Option), Joseph Ayo Babalola University, Ikeji Arakeji, Nigeria
| | - Ganiyu Oboh
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
15
|
Liu XR, Wang XL, Zhao J, Hu CH, Cao NN, Chen HG, Sun B, Wang YX, Xiong CL, Deng J, Duan P. Association between tea consumption and semen quality among 1385 healthy Chinese men. CHEMOSPHERE 2022; 303:135140. [PMID: 35636601 DOI: 10.1016/j.chemosphere.2022.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Information on the association between tea drinking and semen quality is limited. Little is reported on whether tea drinking is benefit to sperm quality. This cross-sectional and longitudinal study was conducted between April 2017 and July 2018. Participants were healthy men who were screened as potential sperm donors recruited at the Hubei Province Human Sperm Bank of China. A structured questionnaires containing sociodemographic information, daily habits, sperm collection-related information was completed for each participant at interview. Repeated semen samples were taken to examine the sperm parameters, including sperm volume, sperm concentration, sperm count, progressive motility, and total motility. A total of 1385 men with 6466 sperm samples were included in this study. Two groups were compared: tea drinking men (389, 28.1%) and non-tea drinking men (996, 71.9%). Compared with subjects who never drink tea, the analyses showed that sperm concentration and total sperm count were higher in tea-consuming subjects. A 10-year period or more duration of tea drinking significantly increased semen concentrations by 16.27% (P < 0.05). Sperm concentration was increased in subjects with a frequency of tea drinking of 3 days or more per week (P < 0.05) or, among men who were occasional alcohol drinkers, when tea concentration was weak (P < 0.05). No evidence of trend effects (P for trend > 0.05) or interaction effects (P for interaction > 0.05) between tea consumption and sperm quality, respectively. Our findings provide evidence that tea drinking may improve male reproductive health. Long-term, frequent, weak tea drinking tends to increase sperm quality among men with low BMI or health-related behaviors like smoking or alcohol intake.
Collapse
Affiliation(s)
- Xia-Ren Liu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, PR China
| | - Xue-Lin Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, PR China
| | - Jun Zhao
- School of Public Health, Hubei University of Medicine, Shiyan, 442000, Hubei province, PR China
| | - Chun-Hui Hu
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei province, PR China
| | - Nan-Nan Cao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, PR China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Yi-Xin Wang
- Departments of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cheng-Liang Xiong
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Human Sperm Bank, Wuhan, 430000, Hubei province, PR China
| | - Jie Deng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, PR China.
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei province, PR China.
| |
Collapse
|
16
|
Ahammed GJ, Li X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:390-400. [PMID: 35785551 DOI: 10.1016/j.plaphy.2022.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
17
|
Susilowati S, Mustofa I, Wurlina W, Hernawati T, Oktanella Y, Soeharsono S, Purwanto DA. Green Tea Extract in the Extender Improved the Post-Thawed Semen Quality and Decreased Amino Acid Mutation of Kacang Buck Sperm. Vet Sci 2022; 9:vetsci9080403. [PMID: 36006318 PMCID: PMC9413626 DOI: 10.3390/vetsci9080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study was the first to combine the addition of antioxidants to a skim milk–egg yolk (SM–EY) extender and different equilibration periods to obtain higher quality post-thawed Kacang buck semen. This study aimed to determine the effects of green tea extract (GTE) on the quality of frozen Kacang goat sperm equilibrated for one and two hours. The pool of Kacang buck ejaculate was equally divided into four portions and was diluted in an SM–EY extender that contained four doses of 0, 0.05, 0.10, and 0.15 mg of GTE/100 mL for T0, T1, T2, and T3 groups, respectively. The aliquots were treated for an equilibration period of 1–2 h before further processing as frozen semen. Post-thawed semen quality was evaluated for sperm quality. The Sanger method was used for DNA sequencing, and the amino acid sequence was read using MEGA v.7.0. The post-thawed semen of the T2 group that was equilibrated for one hour had the highest semen quality. Pre-freezing motility had the highest determination coefficient compared to post-thawed sperm motility. This study is the first to report amino acid mutation due to freeze–thawing. The frequency of amino acid mutations revealed that T2 was the least mutated amino acid. Glycine, valine, leucine, serine, and asparagine strongly correlated to post-thawed sperm motility. It can be concluded that a combination of 0.1 mg GTE/100 mL extender as an antioxidant and one-hour equilibration period resulted in the best post-thawed Kacang buck semen quality.
Collapse
Affiliation(s)
- Suherni Susilowati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
- Correspondence: ; Tel.: +62-812-356-1540; Fax: +62-31-599-3015
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
| | - Yudit Oktanella
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang City 65145, Indonesia;
| | - Soeharsono Soeharsono
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Djoko Agus Purwanto
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| |
Collapse
|
18
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
19
|
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China. .,Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
20
|
Tso KH, Lumsangkul C, Cheng MC, Ju JC, Fan YK, Chiang HI. Differential Effects of Green Tea Powders on the Protection of Brown Tsaiya and Kaiya Ducklings against Trichothecene T-2 Toxin Toxicity. Animals (Basel) 2021; 11:ani11092541. [PMID: 34573507 PMCID: PMC8466186 DOI: 10.3390/ani11092541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The objective of this study is to examine the effects of T-2 toxin (T-2) and green tea powders (GTP) on growth performance, hematology, and pathology parameters in Brown Tsaiya ducklings (BTDs) and Kaiya ducklings (KDs). T-2 toxin shows a strong and differential toxicity in growth suppression, as well as abnormalities in the hematological and pathological parameters of BTDs and KDs. We found that GTP could potentially prevent T-2-induced poor growth performance and improve some hematological parameters. Moreover, BTDs were more sensitive than KDs in terms of responses to T-2 toxicity and GTP detoxification. Abstract A 3-week feeding trial in a 3 × 2 × 2 factorial design was conducted with three concentrations (0, 0.5, and 5 mg/kg) of T-2 toxin (T-2) and two levels (0% and 0.5%) of green tea powder (GTP) supplements used in the diets of female brown Tsaiya ducklings (BTDs) and Kaiya ducklings (KDs), respectively. Breed had a significant effect on the growth performances and the relative weights of organs and carcass. In general, the growth performances of KDs were better than BTDs. The relative weights of organs and carcass of BTDs were typically heavier than those of KDs; however, the breast of KDs was heavier than those of BTDs. Both ducklings received 5 mg/kg of T-2 blended in the diet showed lower feed intake and body weight gain (BWG) in the second and the third week. The diet containing 5 mg/kg of T-2 and 0.5% GTP improved the BWG compared to those fed the diet supplemented with 5 mg/kg of T-2 without GTP in BTDs. Ducklings fed the diet containing 5 mg/kg of T-2 induced hypocalcemia and hypomagnesemia, as well as decreased concentrations of creatine phosphokinase and alkaline phosphatase. The concentrations of blood urea nitrogen (BUN) and glutamate oxaloacetate transaminase (GOT) were increased in KDs and BTDs fed the diet containing 5 mg/kg of T-2 without GTP, respectively. However, duckling diets containing 5 mg/kg of T-2 with 0.5% GTP lowered concentrations of BUN and GOT in the blood plasma of KDs and BTDs, respectively. The diet containing 5 mg/kg of T-2 increased the relative kidney weight but decreased the relative breast weight of ducklings. Enlarged gizzards and reduced relative leg weights were observed in BTDs fed the diets containing 5 mg/kg of T-2. In summary, BTDs are more sensitive than KDs in responding to T-2 toxicity and GTP detoxification. Green tea powder has detoxification ability and could potentially mitigate T-2 toxicity on BWG, BUN, and GOT in ducklings.
Collapse
Affiliation(s)
- Ko-Hua Tso
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Min-Chien Cheng
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Hengchun Branch Institute, Livestock Research Institute, Council of Agriculture, Pingtung 94644, Taiwan
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| |
Collapse
|
21
|
Fouda SF, Khattab AAA, El Basuini MFM, El-Ratel IT. Impacts of different antioxidants sources on semen quality and sperm fertilizing ability of Muscovy ducks under high ambient temperature. J Anim Physiol Anim Nutr (Berl) 2021; 106:1060-1071. [PMID: 34363248 DOI: 10.1111/jpn.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
The potentiality of coenzyme Q10 (CoQ10), D-Aspartic acids (D-Asp), Maca or vitamin C, as antioxidant agents, to reduce negative impacts of high ambient temperature on semen quality, oxidative capacity and fertility of Muscovy ducks was investigated. Seventy-five Muscovy males (34-wk of age) were distributed randomly into five experimental groups of fifteen ducks each. The first group was fed a basal diet without supplementation and served as a control. The other four groups were fed a basal diet supplemented with 400 mg CoQ10, 400 mg D-Asp, 500 mg Maca and 200 mg vitamin C (ascorbic acid) per kg diet for 17 consecutive weeks under high ambient temperature conditions. The dietary inclusion of antioxidants significantly maintains better semen variables and a higher fertility rate either for fresh or preserved semen. Among the tested antioxidants, the Maca group showed the best status and outperformed the others in terms of motility, viability, sperm cell concentration, intact acrosome and membrane integrity percentages, total proteins, total antioxidants capacity, glutathione peroxidase, superoxide dismutase (SOD), malondialdehyde (MDA), testosterone, and the fertility rate for the fresh semen, as well as, forward motility, SOD and MDA for the preserved semen. The CoQ10 showed similar results to Maca in some measurements. Conversely, the basal diet had the poorest performance in all examined variables. The dietary incorporation of antioxidants (Maca or CoQ10) enhances fresh and preserved semen quantity and quality, as well as the fertility rate of Muscovy males under high ambient temperature conditions.
Collapse
Affiliation(s)
- Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Ahmed A A Khattab
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Mohammed F M El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt.,Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt
| | - Ibrahim T El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
22
|
Gantenbein KV, Kanaka-Gantenbein C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021; 13:nu13061951. [PMID: 34204057 PMCID: PMC8227318 DOI: 10.3390/nu13061951] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
It has been established, worldwide, that non-communicable diseases such as obesity, diabetes, metabolic syndrome, and cardiovascular events account for a high percentage of morbidity and mortality in contemporary societies. Several modifiable risk factors, such as sedentary activities, sleep deprivation, smoking, and unhealthy dietary habits have contributed to this increase. Healthy nutrition in terms of adherence to the Mediterranean diet (MD), rich in fruits, legumes, vegetables, olive oil, herbs, spices, and high fiber intake may contribute to the decrease in this pandemic. The beneficial effects of the MD can be mainly attributed to its numerous components rich in anti-inflammatory and antioxidant properties. Moreover, the MD may further contribute to the improvement of reproductive health, modify the risk for neurodegenerative diseases, and protect against depression and psychosocial maladjustment. There is also evidence highlighting the impact of healthy nutrition in female people on the composition of the gut microbiota and future metabolic and overall health of their offspring. It is therefore important to highlight the beneficial effects of the MD on metabolic, reproductive, and mental health, while shaping the overall health of future generations. The beneficial effects of MD can be further enhanced by increased physical activity in the context of a well-balanced healthy lifestyle.
Collapse
|
23
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
24
|
Ros-Santaella JL, Pintus E. Plant Extracts as Alternative Additives for Sperm Preservation. Antioxidants (Basel) 2021; 10:antiox10050772. [PMID: 34068069 PMCID: PMC8152457 DOI: 10.3390/antiox10050772] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Sperm preservation is a crucial factor for the success of assisted reproductive technology (ART) in humans, livestock, and wildlife. Irrespective of the extender and the storage conditions used, semen handling and preservation negatively affect sperm quality. Moreover, oxidative stress, which often arises during semen storage, significantly reduces sperm function and compromises the sperm fertilizing ability by inducing oxidative damage to proteins, lipids, and nucleic acids. Plant extracts have recently emerged as a cheap and natural source of additives to preserve and enhance sperm function during semen storage. The present work provides an update on the use of these natural compounds as alternative additives for sperm preservation in 13 animal species, including humans. A detailed description of the effects of 45 plant species, belonging to 28 families, on sperm function during semen storage is presented. The plant material and extraction method employed, dosage, possible toxic effects, and antimicrobial properties are provided.
Collapse
|
25
|
Mustofa I, Susilowati S, Wurlina W, Hernawati T, Oktanella Y. Green tea extract increases the quality and reduced DNA mutation of post-thawed Kacang buck sperm. Heliyon 2021; 7:e06372. [PMID: 33732926 PMCID: PMC7944040 DOI: 10.1016/j.heliyon.2021.e06372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 01/11/2023] Open
Abstract
The study aimed to determine the addition of green tea extract (GTE) in extender on the quality and DNA mutation of post-thawed Kacang buck sperm. The sperm DNA mutation was observed on nicotinamide adenine dinucleotide hydride (NADH) dehydrogenase 1 (ND1) of mitochondrial Deoxyribonucleic Acid (mtDNA). A pool of 12 Kacang buck ejaculates was diluted in skim milk-egg yolk extender contained 0, 0.05, 0.10, and 0.15 mg of GTE/100 mL for T0, T1, T2, and T3 group, respectively. Each of the aliquot groups was packaged in 0.25 mL French mini straw contained 60 million alive sperm and froze according to the protocol. The ND1 mtDNA amplification of samples was carried out Polymerase Chain Reaction machine, followed by DNA sequencing using the Sanger method. Meanwhile, the phylogenetic tree was constructed using the neighbor-joining (NJ) method with MEGA 7.0 software. The results showed that the T2 group maintained the highest quality for Kacang buck post-thawed semen. There was the highest percentages of sperms viability, motility, intact plasma membrane (IPM), the lowest of malondialdehyde (MDA) concentration, sperm DNA fragmentation (SDF), the total and types of ND1 mtDNA mutation frequency. The phylogenetic tree analysis revealed that the clade of the T2 group was most closely related to the sequence reference. However, there was no correlation between the semen quality parameters (sperm viability, motility, IPM, MDA concentration, and SDF) with ND1 mtDNA mutation of post-thawed Kacang buck semen. It could be concluded that GTE was useful as an antioxidant for Kacang buck semen extender for frozen sperm.
Collapse
Affiliation(s)
- Imam Mustofa
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Suherni Susilowati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Wurlina Wurlina
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Tatik Hernawati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, 60115, East Java, Indonesia
| | - Yudit Oktanella
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Jl. Veteran, Ketawanggede, Lowokwaru, Malang, 65145, Indonesia
| |
Collapse
|
26
|
Krepkova LV, Bortnikova VV, Babenko AN, Mizina PG, Mkhitarov VA, Job KM, Sherwin CM, Enioutina EY. Effects of a new thyrotropic drug isolated from Potentilla alba on the male reproductive system of rats and offspring development. BMC Complement Med Ther 2021; 21:31. [PMID: 33441114 PMCID: PMC7807504 DOI: 10.1186/s12906-020-03184-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023] Open
Abstract
Background The dysfunction of the thyroid gland is a common medical condition. Nowadays, patients frequently use medicinal herbs as complementary or alternative options to conventional drug treatments. These patients may benefit from treatment of thyroid dysfunctions with Potentilla alba L. preparations. While it has been reported that Potentilla alba preparations have low toxicity, nothing is known about their ability to affect reproductive functions in patients of childbearing age. Methods Male Wistar rats were orally treated with a thyrotrophic botanical drug, standardized Potentilla alba Dry Extract (PADE), at doses 8 and 40 times higher than the median therapeutic dose recommended for the clinical trials, for 60 consecutive days. Male Wistar rats receiving water (H2O) were used as controls. After completing treatment, half of the PADE-treated and control males were used to determine PADE gonadotoxicity, and the remaining half of PADE-treated and control males were mated with intact females. Two female rats were housed with one male for two estrus cycles. PADE effects on fertility and fetal/offspring development were evaluated. Results Herein, we report that oral treatment of male Wistar rats with PADE before mating with intact females instigated marked effects on male reproductive organs. Treatment significantly decreased the motility of the sperm and increased the number of pathological forms of spermatozoa. Additionally, a dose-dependent effect on Leydig cells was observed. However, these PADE effects did not significantly affect male fertility nor fetal and offspring development when PADE-treated males were mated with intact females. Conclusions PADE treatment of male rates negatively affected sperm and testicular Leydig cell morphology. However, these changes did not affect male fertility and offspring development. It is currently not known whether PADE treatment may affect human male fertility and offspring development. Therefore, these results from an animal study need to be confirmed in humans. Results from this animal study can be used to model the exposure-response relationship and adverse outcomes in humans.
Collapse
Affiliation(s)
- Lubov V Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina Street 7, Moscow, 117216, Russia
| | - Valentina V Bortnikova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina Street 7, Moscow, 117216, Russia
| | - Aleksandra N Babenko
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina Street 7, Moscow, 117216, Russia
| | - Praskovya G Mizina
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina Street 7, Moscow, 117216, Russia
| | - Vladimir A Mkhitarov
- FSBI "Research Institute of Human Morphology", 3 Tsyurupy St., Moscow, 117418, Russia
| | - Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Catherine M Sherwin
- Department of Pediatrics, Wright State University, Boonshoft School of Medicine, Dayton Children's Hospital, Children's Plaza, Dayton, OH, 45404, USA
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA. .,Department of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
27
|
Olson KR, Briggs A, Devireddy M, Iovino NA, Skora NC, Whelan J, Villa BP, Yuan X, Mannam V, Howard S, Gao Y, Minnion M, Feelisch M. Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action. Redox Biol 2020; 37:101731. [PMID: 33002760 PMCID: PMC7527747 DOI: 10.1016/j.redox.2020.101731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Matcha and green tea catechins such as (−)-epicatechin (EC), (−)-epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for H2S (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques we here show that popular Japanese and Chinese green teas and select catechins all catalytically oxidize hydrogen sulfide (H2S) to polysulfides with the potency of EGC > EGCG >> EG. This reaction is accompanied by the formation of sulfite, thiosulfate and sulfate, consumes oxygen and is partially inhibited by the superoxide scavenger, tempol, and superoxide dismutase but not mannitol, trolox, DMPO, or the iron chelator, desferrioxamine. We propose that the reaction proceeds via a one-electron autoxidation process during which one of the OH-groups of the catechin B-ring is autooxidized to a semiquinone radical and oxygen is reduced to superoxide, either of which can then oxidize HS− to thiyl radicals (HS•) which react to form hydrogen persulfide (H2S2). H2S oxidation reduces the B-ring back to the hydroquinone for recycling while the superoxide is reduced to hydrogen peroxide (H2O2). Matcha and catechins also concentration-dependently and rapidly produce polysulfides in HEK293 cells with the potency order EGCG > EGC > EG, an EGCG threshold of ~300 nM, and an EC50 of ~3 μM, suggesting green tea also acts as powerful pro-oxidant in vivo. The resultant polysulfides formed are not only potent antioxidants, but elicit a cascade of secondary cytoprotective effects, and we propose that many of the health benefits of green tea are mediated through these reactions. Remarkably, all green tea leaves constitutively contain small amounts of H2S2.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Austin Briggs
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Monesh Devireddy
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| | - Nicholas A Iovino
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nicole C Skora
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jenna Whelan
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian P Villa
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaotong Yuan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Varun Mannam
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Scott Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| | - Magdalena Minnion
- NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
28
|
Bhardwaj JK, Panchal H, Saraf P. Ameliorating Effects of Natural Antioxidant Compounds on Female Infertility: a Review. Reprod Sci 2020; 28:1227-1256. [PMID: 32935256 DOI: 10.1007/s43032-020-00312-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of female infertility cases has been increasing at a frightening rate, affecting approximately 48 million women across the world. However, oxidative stress has been recognized as one of the main mediators of female infertility by causing various reproductive pathologies in females such as endometriosis, PCOS, preeclampsia, spontaneous abortion, and unexplained infertility. Nowadays, concerned women prefer dietary supplements with antioxidant properties over synthetic drugs as a natural way to lessen the oxidative stress and enhance their fertility. Therefore, the current review is an attempt to explore the efficacy of various natural antioxidant compounds including vitamins, carotenoids, and plant polyphenols and also of some medicinal plants in improving the fertility status of females. Our summarization of recent findings in the current article would pave the way toward the development of new possible antioxidant therapy to treat infertility in females. Natural antioxidant compounds found in fruits, vegetables, and other dietary sources, alone or in combination with other antioxidants, were found to be effective in ameliorating the oxidative stress-mediated infertility problems in both natural and assisted reproductive settings. Numerous medicinal plants showed promising results in averting the various reproductive disorders associated with female infertility, suggesting a plant-based herbal medicine to treat infertility. Although optimum levels of natural antioxidants have shown favorable results, however, their excessive intake may have adverse health impacts. Therefore, larger well-designed, dose-response studies in humans are further warranted to incorporate natural antioxidant compounds into the clinical management of female infertility.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
29
|
An R, Wen S, Li DL, Li QH, Lai XF, Zhang WJ, Chen RH, Cao JX, Li ZG, Huang QS, Sun LL, Sun SL. Mixtures of Tea and Citrus maxima (pomelo) Alleviate Lipid Deposition in HepG2 Cells Through the AMPK/ACC Signaling Pathway. J Med Food 2020; 23:943-951. [PMID: 32721265 DOI: 10.1089/jmf.2020.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tea and citrus maxima are natural, medicinal homologous plants, typically used for making beverages, which have anticancer, antiobesity, and antioxidation properties. Green tea, yellow tea, and black tea were combined with citrus maxima to obtain green tea and Citrus maxima (GTCM), yellow tea and Citrus maxima (YTCM), and black tea and Citrus maxima (BTCM). The biochemical components of these mixtures were analyzed, and their possible effects and mechanisms on relieving liver lipid deposition were explored. The tea polyphenols, free amino acids, phenolamine ratio, and caffeine were comparable in YTCM and GTCM, being significantly higher than those in BTCM. In addition, the content of esterified catechins, nonesterified catechins, and total catechins in YTCM was significantly higher than those in GTCM and BTCM. All three mixtures of Citrus maxima tea significantly reduced lipid deposition in HepG2 cells, with GTCM and YTCM being slightly more effective than BTCM. Regarding the possible mechanism, Western blot analysis revealed that the three Citrus maxima tea mixtures could activate the AMPK/ACC signaling pathway, upregulate the expression of p-AMPK, p-ACC, and CPT-1 proteins, and downregulate the expression of SREBP1c and fatty acid synthase proteins to inhibit fat synthesis, thereby relieving lipid deposition in liver cells. In conclusion, as a novel and healthy beverage, Citrus maxima tea has the potential to alleviate liver lipid deposition, and further could be responsible for obesity treatment.
Collapse
Affiliation(s)
- Ran An
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuai Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Qiu-Hua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Xing-Fei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Wen-Ji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ruo-Hong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Jun-Xi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Zhi-Gang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Qiu-Sheng Huang
- Guangdong Kaili Biochemical Science & Technology Co., Ltd., Guangzhou, China
| | - Ling-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Shi-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| |
Collapse
|
30
|
Susilowati S, Sardjito T, Mustofa I, Widodo OS, Kurnijasanti R. Effect of green tea extract in extender of Simmental bull semen on pregnancy rate of recipients. Anim Biosci 2020; 34:198-204. [PMID: 32299169 PMCID: PMC7876723 DOI: 10.5713/ajas.20.0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to ascertain the effects of adding green tea extract (GTE) to skim milk-egg yolk (SM-EY) extender on both the quality of post-thawed bull semen and the pregnancy rates of the recipient cows. METHODS Twelve ejaculates from four Simmental bulls, aged 3 to 5 years and weighing 900 to 950 kg, were diluted SM-EY extender, added with 0, 0.05, 0.1, and 0.15 mg GTE/100 mL extender and then frozen. After four weeks storage in liquid nitrogen, the sperm were thawed and evaluated for viability, motility, intact plasma membrane (IPM), and DNA fragmentation. Meanwhile, the estrus cycles of 48 recipient cows were synchronized by intramuscular administration of a single injection of 5 mg prostaglandin F2α. Estrus cows were divided into four equal groups and inseminated artificially 18 to 20 h after the onset of estrus by using semen from each extender group. Pregnancy was diagnosed by measuring serum progesterone levels at 21 days, followed by transrectal palpation 90 days after insemination. RESULTS The findings revealed that adding 0.1 mg of GTE/100 mL extender produced the highest percentages of sperm viability (70.67%±1.75%), motility (69.17%±1.47%), and IPM (69.23%±1.21%) and the lowest percentage of DNA fragmentation (3.00%±0.50%). The pregnancy diagnosis revealed that all cows (36/36) inseminated using frozen semen in GTE addition extender were pregnant (pregnancy rate 100%), whereas the pregnancy rate of the control group was 83.33% (10/12). CONCLUSION It may be concluded that 0.1 mg GTE/100 mL extender yields the best quality of spermatozoa and that all variants doses of GTE in extender produce a higher pregnancy rate among recipient cows.
Collapse
Affiliation(s)
- Suherni Susilowati
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya-60115, Indonesia
| | - Trilas Sardjito
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya-60115, Indonesia
| | - Imam Mustofa
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya-60115, Indonesia
| | - Oky Setio Widodo
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya-60115, Indonesia
| | - Rochmah Kurnijasanti
- Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya-60115, Indonesia
| |
Collapse
|
31
|
Alagawany M, Abd El-Hack ME, Saeed M, Naveed M, Arain MA, Arif M, Tiwari R, Khandia R, Khurana SK, Karthik K, Yatoo MI, Munjal A, Bhatt P, Sharun K, Iqbal HMN, Sun C, Dhama K. Nutritional applications and beneficial health applications of green tea and l-theanine in some animal species: A review. J Anim Physiol Anim Nutr (Berl) 2020; 104:245-256. [PMID: 31595607 DOI: 10.1111/jpn.13219] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
Green tea (Camellia sinensis) is a popular herbal plant with abundant health benefits, and thus, it has been used as a potent antioxidant for a long time. Based on the available literature, the diversity and the availability of multifunctional compounds in green tea offer its noteworthy potential against many diseases such as liver and heart diseases, inflammatory conditions and different metabolic syndromes. Owing to its bioactive constituents including caffeine, amino acids, l-theanine, polyphenols/flavonoids and carbohydrates among other potent molecules, green tea has many pharmacological and physiological effects. The effects of green tea include anti-oxidative, anti-inflammatory, anti-arthritic, anti-stress, hypolipidaemic, hypocholesterolaemic, skin/collagen protective, hepatoprotective, anti-diabetic, anti-microbial, anti-infective, anti-parasitic, anti-cancerous, inhibition of tumorigenesis and angiogenesis, anti-mutagenic, and memory and bone health-improving activities. Apart from its utilization in humans, green tea has also played a significant role in livestock production such as in dairy, piggery, goatry and poultry industries. Supplementation of animal feeds with green tea and its products is in line with the modern concepts of organic livestock production. Hence, incorporating green tea or green tea by-products into the diet of poultry and other livestock can enhance the value of the products obtained from these animals. Herein, an effort is made to extend the knowledge on the importance and useful applications of green tea and its important constituents in animal production including poultry. This review will be a guideline for researchers and entrepreneurs who want to explore the utilization of feeds supplemented with green tea and green tea by-products for the enhancement of livestock production.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Saeed
- Department of Animal Nutrition, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Pakistan
| | - Muhammad Naveed
- Faculty of Pharmacy and Alternative Medicine, Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Clinical Pharmacy, School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Muhammad A Arain
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, China
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sandip K Khurana
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Mohd I Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar (Udham Singh Nagar), Uttarakhand, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, India
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, NL, Mexico
| | - Chao Sun
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
32
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [PMID: 31554120 DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|
33
|
Pokhrel G, Yihao S, Wangcheng W, Khatiwada SU, Zhongyang S, Jianqiao Y, Yucong Z, Xiaming L, Dan Z, Jihong L. The impact of sociodemographic characteristics, lifestyle, work exposure and medical history on semen parameters in young Chinese men: A cross-sectional study. Andrologia 2019; 51:e13324. [PMID: 31134681 DOI: 10.1111/and.13324] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
There is an ongoing debate on the declining semen quality, and unfortunately, existing evidence is inconclusive and inconsistence. We evaluated the impact of sociodemographic characteristics, lifestyle, medical history and work exposure on semen quality. Univariate and multivariate analysis was used to investigate the association between different risk factors and semen quality parameters. Total sperm count (p = 0.041), sperm concentration (p = 0.007), normal morphology (p = 0.002), total motility (p = 0.004) and progressive motility (p = 0.009) decreased in men with varicocele. Sperm concentration increased in tea (p = 0.044); progressive and total motility increased in cola (p = 0.018, p = 0.012) consumers. Progressive and total motility decreased in urogenital surgery (p = 0.016, p = 0.014) and infection (p = 0.037, p = 0.022). However, age, coffee and alcohol drinking, physical activities, sleep duration and cell phone use were unrelated to any of semen parameters. Interestingly, semen volume (p < 0.0001), total sperm count (p < 0.0001) and concentration (p < 0.033) increased with longer abstinence period (>5 days); normal morphology (p = 0.013) improved in men with higher body mass index (BMI > 24), curvilinear velocity (p = 0.042) increased with smoking; semen volume (p = 0.050) increased in manual labourers. This study highlights the importance of sociodemographic characteristics, lifestyle, occupational exposure and medical history and provides time trends in semen quality, its clinical importance and direction for further research.
Collapse
Affiliation(s)
- Gaurab Pokhrel
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Yihao
- MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Wangcheng
- MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shikha Upadhyaya Khatiwada
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sun Zhongyang
- MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jianqiao
- MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Yucong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Xiaming
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Dan
- MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jihong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Ribas-Maynou J, Benet J. Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility. Genes (Basel) 2019; 10:E105. [PMID: 30708937 PMCID: PMC6410262 DOI: 10.3390/genes10020105] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Reproductive diseases have become a growing worldwide problem and male factor plays an important role in the reproductive diagnosis, prognosis and design of assisted reproductive treatments. Sperm cell holds the mission of carrying the paternal genetic complement to the oocyte in order to contribute to an euploid zygote with proper DNA integrity. Sperm DNA fragmentation had been used for decades as a male fertility test, however, its usefulness have arisen multiple debates, especially around Intracytoplasmic Sperm Injection (ICSI) treatments. In the recent years, it has been described that different types of sperm DNA breaks (single and double strand DNA breaks) cause different clinical reproductive effects. On one hand, single-strand DNA breaks are present extensively as a multiple break points in all regions of the genome, are related to oxidative stress and cause a lack of clinical pregnancy or an increase of the conception time. On the other hand, double-strand DNA breaks are mainly localized and attached to the sperm nuclear matrix as a very few break points, are possibly related to a lack of DNA repair in meiosis and cause a higher risk of miscarriage, low embryo quality and higher risk of implantation failure in ICSI cycles. The present work also reviews different studies that may contribute in the understanding of sperm chromatin as well as treatments to prevent sperm DNA damage.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jordi Benet
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|